Sesion 4 - Gustavo Zuleta

Transcripción

Sesion 4 - Gustavo Zuleta
Jornada de Economía Regional,
1-Agosto, Buenos Aires
Degradación/restauración de ecosistemas: 1- impactos ambientales
mineros, 2- prioridades en Argentina
Gustavo Zuleta 1,2
1 Dpto. de Ecología y Ciencias Ambientales, CEBBAD, Universidad Maimónides, Buenos
Aires. Argentina.
2 Facultad de Cs. Agrarias, Universidad Nacional de Lomas de Zamora. Argentina.
1
Modelo conceptual
Modelo conceptual de degradación y restauración de ecosistemas
(Hobbs & Harris 2001)
Módulo 1 - Marco conceptual
2
Post-disturbance regeneration
thresholds in degraded and rehabilitated
semiarid shrublands of the Monte
Austral (Northern Patagonia, Argentina)
Zuleta, G.A1,2, P. Tchilinguirian1,3,4 , M.L. Castro1, M.E. Ciancio1, A.A. Pérez1, L.G. Reichmann5 ,
J.Fuchs1,4,6, & C. Escartín1
1 Dept. of Ecology & Environmental Sc., CEBBAD, ISI, Maimónides University, Buenos Aires.
2 Urban Rehabilitation Lab, Faculty of Engineering, National University of Lomas de Zamora, AMBA.
3 Dept. of Geology, Faculty of Natural Sciences, Buenos Aires University, Buenos Aires.
4 National Council of Scientific & Technological Research (CONICET).
5 School of Life Sciences, Arizona State University, Tempe AZ, USA.
6 Dept. of Biological Chemistry, Faculty of Natural Sc., Buenos Aires University, Buenos Aires.
3
Today´s topics
 The problem: ecosystem degradation.
 Natural dynamics: the mound cycle.
 Post-disturbance dynamics: soil-plants-moundsfauna (40 years chronosequence & low-tech
experiments).
 Ecogeomorphic model: thresholds.
 Rehabilitated dynamics: ¿when/how apply
techniques? … ¿low-tech or high-tech?
4
The Problem:
ecosystem
degradation
5
Worldwide
scale
Major cause: global economic
model of production/consumption.
Global Footprint Network (2005)
6
Degradation in Argentina
arid/semiarid ecosystems: ca. 140.000.000 ha (50% of the country)
Not degraded
Extremely degraded
Oliva et al. 1995.
http://www.fao.org/nr/lada
7
Estepa Patagónica
Superficies
Ha
Total
Natural
Protegidos
Sin uso ni protegidos
Humedales
Degradada (bajo usos)
1 Ganadería
2 Urbanización
3 Agricultura
4 Cuerpos de agua artificiales
5 Forestación
Minería
Explotación petrolera
%
57.701.512
100,0
5.238.806
2.419.401
1.785.205
1.034.200
9,1
4,2
3,1
1,8
52.462.705
51.943.435
385.850
84.534
40.315
8.572
NA*
NA*
90,9
90,0
0,7
0,1
0,1
0,0
NA*
NA*
* Factores de degradación no cuantificables
Libro REA (2014) … en elaboración
8
Argentina´s
biodiversity and
current ecosystems
conditions
9
Argentina´s biodiversity
 World´s 8th largest country: 2.816.544 km2.
 3800-km North-South of environmental gradients.
 aprox. 4.750 km of marine coastline.
 15 terrestrial ecoregions (>35 sub-units).
 As a result: ranks 10th world highest biodiversity.
 385 mammals, ≈1000 birds, 6896 vascular plants ..
 … high number of endemisms, rare & vulnerable spp.
10
Biodiversity / biome types
Subtropical forests (Yungas)
Wetlands (Iberá)
Temperate grasslands (Pampas)
Highlands (Puna)
11
Degradation caused by land use change
type
km2
country%
degraded%
5 grasslands
1.517.480
54
90
6 woodlands
1.010.910
36
50
2 “altitude”
214.588
8
47
2 wetlands
73.567
2
19
100
70
Total
2.816.544
“Ecosystem Restoration Needs in Argentina” (2014) … in preparation
12
Ranking by land use type
Degraded
(%)
2.000.000 ha
Restoration &
EIA regulations
Cattle raising
68,8
Almost nule
Agriculture
29,5
Very low
Forestry
0,6
High
Urbanization
0,6
Almost nule
Mining
0,3
Very high
Dams
0,2
Very high
Land use
Total
100,0
“Ecosystem Restoration Needs in Argentina” (2014) … in preparation
13
Restoration needs
Espinal and Pampa´s ecotone: almost gone! … highly
threatened ecosystems (Santa Fe & Córdoba)
“Ecosystem Restoration Needs in Argentina”
(2014) … in preparation
14
Agro-cultural landscapes
Pampean grasslands: Argentina´s economic growth
15
” is restoration feasible?
social contraints: “el asadito”
16
Eat or restore?
asadito!!!!!
17
RE national priorities project
18
… volviendo a
Patagonia … y
minería/petróleo
19
Monte (estepa arbustiva)
Superficies
Ha
%
Total
35.304.013
100,0
Natural
Protegidos
Sin uso ni protegidos
Humedales
1.8641.865
1.390.325
333.856
117.684
5,2
3,9
1,0
0,3
33.462.148
37.798.681
1.027.951
283.434
195.193
165.888
NA*
NA*
NA*
94,8
90,0
2,9
0,8
0,6
0,5
NA*
NA*
NA*
Degradada (bajo usos)
1 Ganadería
2 Agricultura
3 Forestación
4 Cuerpos de agua artificiales
5 Urbanización
Minería
Fuego
Disposición de residuos
* Factores de degradación no cuantificables
Libro REA (2014) … en elaboración
20
Study area: Monte Austral
Semi-arid shrub steppes
(Northern Patagonia)
21
Degradation factors
1- Oil exploitation
2- Cattle raising
Zuleta et al. 2012; Castro et al. 2012
22
Impactos en yacimientos
mineros
Gentileza Migale & del Valle
23
TESIS DE MAESTRÍA EN MANEJO AMBIENTAL
Percepción social del impacto
ambiental de la actividad
minera en Argentina.
Lic. Gabriela Marisa Migale1,2
Director: Dr. Gustavo A. Zuleta 2,3
Codirectora: MSc. Carolina del Valle 1,2
Diciembre 2013
1. URS Corporation S. A.
2. Dpto. de Ecología y Cs. Ambiente, CEBBAD, Universidad Maimónides.
3. Facultad de Ingeniería, Universidad Nacional de Lomas de Zamora (UNLZ).
GRAN DINAMISMO DEL SECTOR EN
TÉRMINOS MACROECONÓMICOS
25
Se analizó con mayor detalle la categoría “conflicto
social” (54/426).
26
27
IDENTIFICACIÓN DE LOS GRUPOS DE INTERÉS
RELACIONADOS CON LA ACTIVIDAD MINERA
28
PLANTA
PROCESO
29
• PRINCIPALES IMPACTOS AMBIENTALES DE LA MINERÍA
Obra
/actividad
Medio Físico
Medio Biológico
Medio Social
Topografía y
recursos
hídricos
Biodiversidad
Calidad paisaje
Tajo/Rajo
Escombreras
Dique de
colas
Planta de
Proceso
Directos
Indirectos
Indirectos
30
LEY NAC.
N° 24.585
Fuente: Secretaría de Minería.
31
LEY 6.800 San Juan (modifica la ley 6.571)
ARTICULO 4º.- El procedimiento de evaluación del Impacto Ambiental, con
excepción del referido a la actividad minera, estará integrado por las siguientes
etapas:
1- Manifestación del Impacto Ambiental
2- Audiencia Pública de los interesados o afectados.
3- Dictamen Técnico.
4- Declaración de Impacto Ambiental
En el caso de la actividad minera, el procedimiento de evaluación será el
dispuesto en el Código de Minería, Título Complementario de la Protección
Ambiental para la actividad Minera, y reglamentación pertinente.
COMISIÓN
INTERDISCIPLINARIA DE
EVALUACIÓN AMBIENTAL
MINERA: evaluación de IIA:
PASCUA-LAMA
Decreto 1815/04
Consulta Pública
(60 días)
32
Conflictos socioambientales en torno
a la actividad minera
metalífera.
“MEGAMINERÍA”
resultante del desacuerdo respecto
al signo + o - de los impactos
producidos por un proyecto minero.
Confrontación u oposición entre los
actores involucrados (Robledo &
Lumerman 2009).
Percepción social: intenta
formar una impresión global de
las otras personas u objetos.
Muy resistentes al cambio, aún
frente a información posterior
contraria (Baron & Byrne 1994).
33
Degradation factors
1- Oil exploitation
2- Cattle raising
Zuleta et al. 2012; Castro et al. 2012
34
Degradation characteristics
Attribute
Cattle Raising
Mining
regional
local – (regional)
Frequency
permanent
single events
Life span
permanent
< 30-40 years
Intensity
low-selective
severe, maximum
Spatial scale
Social perception
+ positive
-
negative
35
Vegetation, mounds and soil removal
(local scale)
36
Landscape fragmentation
(regional scale)
Zuleta et al. (2011)
37
Overgrazing: ecological impact
58
56
54
Poa lanuginosa
9,667
52
cobertura promedio
Cobertura de Poa lanuginosa
50
48
46
44
42
40
38
36
0,003
34
0
20
37
60
80
96
120
140
160
180
32
200
30
Ganadería (carga/km)
inadecuado
Mean
±SE
±1,96*SE
adecuado
manejo ganadero

23,077
Larrea divaricata


13,580
11,190
2,170
Baccharis spp
8,640
Baccharis sp.
1,830
3,803
1,500
0
20
37
60
80
96
120
140
160
180
200
Ganadería (carga/km)
1,530
Cobertura de
Cobertura de
Larrea divaricata
19,710
Loss of biodiversity
Cover reduction (selective herbivory)
Inadequate range management
0,477
0,237
20
Sade & Zuleta 2005
37
60
80
96
120
Ganadería (carga/km)
140
160
180
38
200
Degradation history: thresholds
natural
shrublands
↑ bare soil
↓ productivity
↓ cover of grasses
active
restoration
Biotic
threshold
degraded
ecosystems
passive
restoration
Abiotic
threshold
bare soil
1890
grazing pressure
starts
XX Century
1960
XXI Century
Legal
Oil exploitation in our
requirements
study area
Time
39
Natural dynamics
40
Why to study regeneration?
Basic questions: 1st step in
Ecological Restoration
 How degraded ecosystems respond to human activitities?
 Which are the reversibility thresholds?
 What trajectories prevail?
 Which are the key/critical species and processes?
 In summary, which are the driving factors?
41
The mound cycle
 Estimated mean time: 100‐200 years ... … depends on species & geomorphic processes.
 Low resilience and high resistence.
 Incidence of functional groups.
Soriano et al. 1994
42
Mound estabilization
 Fertility islands
 High rates of sand
accumulation
 Climax, late successional
species establishment
 Microphytic crust formation
 Higher microbial activity
43
Predictive models, drivers
 Classic Clemensian model.
 State and transitions: thresholds.
 Regeneration in Monte Austral depends on:
(1) disturbance intensity,
(2) climate regime, and/or
(3) geomorphological processes.
44
Clemensian model
Begon et al. 2001
45
State & transitions: thresholds
Hobbs & Harris 2001
Briske et al. 2006
46
Post-disturbance
dynamics
1: soil recovery
> 5-25 years
47
Soil indicators
pH (NS)
Dif. in % OM = -1.337 + 0.01783 * Time
r = 0.35469 p=NS
0.6
1.0
0.6
10 years later
0.2
-0.2
-0.6
Difference in % Organic Matter
0.2
1.4
Difference in pH
organic matter (NS)
c
Difference in pH = -0.2219 - 0.0002 * Time
r = -0.0038 p=NS
a
40-years chronosequence
-1.0
-0.2
-0.6
-1.0
-1.4
-1.8
-2.2
-2.6
-1.4
-1.8
5
10
15
20
25
30
35
40
Time
0
5
10
15
20
25
30
35
40
45
Time
22 years later
Gravel (P < 0.001)
sand accumulation
e
Difference in % Gravel = 53.869 - 1.021 * Time
r = -0.6998 p<0.001
d
Difference in %Sand = -8.633 + 0.16852 * Time
r = 0.48087 p<0.10
70
60
2
35-40 years
later
-2
-6
-10
Difference in % Gravel
6
Difference in % Sand
0
50
40
30
20
10
0
-10
-14
0
5
10
15
20
25
30
35
40
Time
-18
0
5
10
15
20
Time
25
30
35
40
45
Fuchs et al. 2005
48
45
45
Ants: engineering spp
Herbivorous ants: + effects, recolonization.
120
100
80
60
40
20
0
-20
Granivorous
100
% Granivorous nests
% Herbivorous nests
a
y=28.191+0.304*x+eps
b
y=-4.156+1.2*x+eps
0
5
10
15
20
25
30
35
40
80
60
40
20
0
0
45
5
10
Dominant species
Acromyrmex lobicornis
Granivorous (seed harvester
ants)
Pogonomyrmex carbonarius
Pheidole aberrans
Omnivorous (including predators
& liquid-feeders)
Forelius chalibaeus
Pheidole bergi
% Omnivorus nests
c
Herbivorous (leaf-cutting ants)
20
25
30
35
40
45
Time since abandonment
Time since abandonment
Functional group
15
y=75.965-1.503*x+eps
120
Omnivorous
100
80
60
40
20
0
-20
0
5
10
15
20
25
30
35
40
Time since abandonment
Gainza et al. 2005
49
45
Plant responses & restoration
effectiveness
Stage I: 0-2 years postscarification
Scarification Technique:
ecological similarity and
successional stages (189 sites)
I
II
Índice de Similitud de Sörensen
0.5
III
pioneer
spp
ruderal
spp
0.4
Stage II: 2-6 years
0.3
Stage III: 6-12…20-25? yr
pioneer + climax spp
0.2
0.1
0.0
0
1
2
3
4
5
6
7
8
TDE (años)
9
10
11
12
13
14
Castro et al. 2011, 2012
50
Ecogeomorphologic model-1
State I
pioneer
species II
I Abiotic
Threshold (soil)
bare soil
0
ruderal
species
10
pioneer
species I
20
Establishment of early
successional species
Soil / microsites
recovery
↓ plant density
↓ plant morphology
30
40
50
60
Years
Time since disturbance
Sq: similarity Sorensen quantitative index
51
Sq
Post-disturbance
dynamics
2: plant facilitation
10-30 years
52
Vegetation
regeneration
40-years chronosequence
¿which is the desire time or
succesional stage?
modelo de regresión lineal
(R2 = 0,874; p< 0,001)
nivel aceptable de
similitud
10 years later
35 years later
Reichman (2003)
53
Ecological Indicators
Zuleta et al. 2003; Castro et al. 2011, 2012
54
Ecogeomorphologic model-2
I Biotic Threshold (plants)
 plant density
 plant morphology
State II
State III
Establishment of late
successional species
State I
pioneer
species II
I Abiotic
Threshold (soil)
bare soil
0
ruderal
species
10
pioneer
species I
20
Establishment of early
successional species
Soil / microsites
recovery
↓ plant density
↓ plant morphology
30
40
50
60
Years
Time since disturbance
Sq: similarity Sorensen quantitative index
55
Sq
Post-disturbance
dynamics
3: mounds estabilization
> 35-40 years
56
Mounds: all types
40-years chronosequence
Types:
m1: growth
m2: stable
m3: deflation
Reichman (2003)
57
Mound restoration effectiveness
Discriminant analysis - physical attributes (189 sites)
degraded sites
8 years after scarification
natural/reference site
Ciancio et al. 2011, 2012
58
Sand offer & geomorphic unit
Oferta de arena total (%)
90
C
75
B
B
60
AB
A
45
30
15
0
4
6
3
1
2
Macrounidad geomorfologica
Ciancio et al. 2011, 2012
59
Ecogeomorphologic model-3
stable mounds
sand accumulation
II Abiotic Threshold (microtopography)
I Biotic Threshold (plants)
 plant density
 plant morphology
State II
State III
Establishment of late
successional species
State I
pioneer
species II
I Abiotic
Threshold (soil)
bare soil
0
ruderal
species
10
pioneer
species I
20
Establishment of early
successional species
Soil / microsites
recovery
↓ plant density
↓ plant morphology
30
40
50
60
Years
Time since disturbance
Sq: similarity Sorensen quantitative index
60
Sq
Post-disturbance
dynamics
4: wildlife permanent use
> 50 years
61
Habitat wildlife recovery
mostly
burrowing
species
Fernández
(2002)
62
Ecogeomorphologic model-4
Burrowing species
II Biotic Threshold (habitat for wildlife)
stable mounds
sand accumulation
II Abiotic Threshold (microtopography)
I Biotic Threshold (plants)
resident
home-range
 plant density
 plant morphology
State II
State III
Establishment of late
successional species
State I
pioneer
species II
I Abiotic
Threshold (soil)
bare soil
0
ruderal
species
10
pioneer
species I
20
Establishment of early
successional species
Soil / microsites
recovery
↓ plant density
↓ plant morphology
30
40
50
60
Years
Time since disturbance
Sq: similarity Sorensen quantitative index
63
Sq
Restored dynamics
- which are the desire stages?
- when to rehabilitate?
- how: low or high tech?
64
Restoration definitions
 Regeneration: natural process to return to an
estable state after disturbance (natural or human).
 Ecosystem (active) restoration: deliberated
intervention to repair the structure and/or function
of an ecosystem that has been impacted by human
disturbance (degraded, damaged, impacted).
 Passive restoration: = regeneration?
65
Tested techniques in NW Patagonia
Antiherbivore
protection
Organic matter
addition
(Li Puma 2005)
(Pérez et al. 2011)
Planting & hidrogel (B. Leiva et al. 1990, Pérez et al. 2010)
Decompactation & planting
Branching
(Zuleta et al. 2003)
(Apcarian et al. 2002, Dalmasso 2010)
66
Mounding: 3-factors experiments
Control
Dense rectangule
Dense circle
17 months after
Li Puma et al. 2004
Low density
circle
67
Ecogeomorphologic model
Burrowing species
II Biotic Threshold (habitat for wildlife)
Low‐tech techniques
 plant density
 plant morphology
0
State II
State III
Establishment of late
successional species
State I
pioneer
species II
I Abiotic
Threshold (soil)
bare soil
resident
home-range
stable mounds
sand accumulation
II Abiotic Threshold (microtopography)
I Biotic Threshold (plants)
Sq
ruderal
species
10
pioneer
species I
20
Establishment of early
successional species
Soil / microsites
recovery
↓ plant density
↓ plant morphology
30
40
50
60
Years
Time since disturbance
Sq: similarity Sorensen quantitative index
68
Ecogeomorphologic model
resident
home-range
Burrowing species
II Biotic Threshold
Sq
stable mounds
sand accumulation
Low‐tech techniques
Low‐tech techniques
II Abiotic Threshold
State II
State III
Establishment of late
successional species
I Biotic Threshold (plants)
State I
I Abiotic
Threshold (soil)
pioneer
species II
Establishment of early
successional species
Soil / microsites
recovery
pioneer
species I
bare soil
0
10
20
30
40
50
60
Years
Time since disturbance
Sq: similarity Sorensen quantitative index
69
Ecogeomorphologic model
Burrowing species
II Biotic Threshold
Low‐tech techniques
Low‐tech techniques
resident
home-range
stable mounds
II Abiotic Threshold
sand accumulation
State II
State III
Establishment of late
successional species
I Biotic Threshold
I Abiotic
Threshold (soil)
Sq
State I
pioneer
species II
Establishment of early
successional species
Soil / microsites
recovery
pioneer
species I
bare soil
0
10
20
30
40
50
60
Years
Time since disturbance
Sq: similarity Sorensen quantitative index
70
Conclusions, future actions
 NW Patagonia shrublands regeneration: 40 years.
 Soil-plants-mounds dynamics is better explained
by classic models (Clemensian, geomorphic).
 Mound re-establishment is the key component,
whereas … sand accumulation is the key process.
 Low-tech restoration is a preferred option.
 10-15 years: desired/feasible rehabilitation time.
 2013: researching while restoring … or … restore
under scientific designs, local-regional scales.
71
Gracias! …
… grupo de investigación y fuentes de financiación
72

Documentos relacionados