Transformación de la planta de valorización

Transcripción

Transformación de la planta de valorización
FuturEnviro | Marzo March 2015
© Prohibida la reproducción total o parcial por cualquier medio sin autorización previa y escrita del editor.
The total or partial reproduction by any means is prohibited without the prior authorisation in writing of the editor.
Depósito Legal | Legal Deposit: M-Marzo-15915-2013 ISSN: 2340-2628
FuturENVIRO
PROYECTOS, TECNOLOGÍA Y ACTUALIDAD MEDIOAMBIENTAL
P RO J E C T S , TE C H N O L O G I E S A N D E N V I RO N M E N T A L N E W S
Transformación de la
planta de valorización
energética de Sant Adrià de Besòs
Upgrading of the Sant Adrià de
Besòs waste-to-energy plant
www.futurenviro.es
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Valorización energética | Waste-to-energy
Español | Inglés | Spanish | English
19
The Sant Adrià de Besòs waste-to-energy (WtE) plant was built
and commissioned in 1975, when it was the first facility of its
kind in Spain. The plant has been in operation with excellent
uptime for 40 years, thanks to the different upgrading work
carried out over that period. The latest renovation work started
in 2008 with a view to creating a state-of-the-art combustion
system. The project, which sought to adapt the waste-to-energy
plant to the new Catalonian municipal waste management
model, was completed in 2014.
TERSA es una sociedad mercantil pública cuyos accionistas son
el Ayuntamiento de Barcelona (58,64%) y el Área Metropolitana
de Barcelona (41,36%). Presta servicio a los 36 municipios del AMB
(incluida la ciudad de Barcelona), cuya población total se sitúa en
torno a los 3,2 millones de habitantes.
TERSA is a publicly owned company whose shareholders are the
Barcelona City Council (58.64%) and the Área Metropolitana de
Barcelona (41.36%). It serves the 36 municipalities of the AMB
(including the city of Barcelona), which have a total population
of around 3.2 million. One of TERSA’s main social missions is the
treatment of municipal waste generated in this area through
energy recovery.
La energía generada está considerada de origen renovable; se
inyecta a la red eléctrica y se comercializa en las condiciones del
mercado libre de la electricidad. Adicionalmente, desde el año
2003 la PVE también suministra energía térmica, mediante el
aporte de vapor de agua a la red de distribución de calor y frío de
los barrios Fòrum y 22@ de Barcelona, para su uso en calefacción,
climatización y agua caliente sanitaria.
Nuevo modelo de gestión de residuos municipales de Cataluña
La valorización energética representa la opción propuesta por la
Unión Europea para aprovechar, de una manera eficiente y respetuosa con el medio ambiente, los rechazos que no pueden ser reciclados ni reutilizados. La Directiva marco 2008/98/CE de residuos,
traspuesta en España a la Ley 22/2011 de 28 de julio de residuos y
suelos contaminados, establece la siguiente jerarquía de prioridades en gestión de residuos: prevención, reparación para la reutilización, reciclado, valorización energética y por último eliminación.
El nuevo modelo de gestión de residuos municipales adoptado por
la Agencia de Residuos de Cataluña, acorde con la nueva normativa, contempla el proceso de valorización energética únicamente
para aquel residuo que ya no pueda ser valorizado previamente,
y cuya denominación es rechazo. Así, la fracción resto, que es la
fracción de los residuos de origen doméstico que se obtiene de la
recogida no selectiva, antes de poder ser valorizada se debe tratar
en las plantas de tratamiento mecánico-biológico para recuperar
todo el material que todavía puede ser seleccionado.
Este cambio ha supuesto un aumento significativo del poder calorífico inferior (PCI) del residuo que se trata en la planta. Se ha pasado
de un rango de 1.700 –2.200 kcal/kg de la fracción resto inicial a un
nuevo rango de 2.500 ± 600 kcal/kg para la fracción rechazo actual.
Para tratar este nuevo residuo, la planta de valorización energética
de Sant Adrià del Besòs ha requerido un plan estratégico de ajustes
y modificaciones para poder seguir manteniendo la capacidad mecánica de tratamiento, aumentando la eficiencia energética y mejorando las condiciones de operación y mantenimiento.
www.futurenviro.es
The Sant Adrià de Besòs plant treats approximately 25% of
the waste generated in the Área Metropolitana de Barcelona
(AMB). The waste treated is the reject from the mechanicalbiological treatment plants (ecoparques) and is the approximate
equivalent of the waste generated by a population of 800,000
in one year. Waste-to-energy is a process of controlled
combustion that gives rise to thermal and electrical energy,
valorisable materials (ferrous and non-ferrous metals, and rare
earth elements) and ash (considered a special waste). It is also
a process that enables a very significant reduction in the initial
weight and volume of the waste.
The energy generated is considered to come from a renewable
source. It is exported to the electricity grid and sold under free
electricity market conditions.
Moreover, since 2003, the WtE plant has also supplied thermal
energy, in the form of water vapour, to the district heating and
cooling distribution network that serves the districts of Fórum
and 22@ in Barcelona, for heating, air conditioning and domestic
hot water applications.
New catalan municipal waste management model
Energy recovery is an option proposed by the European Union to
avail of reject that cannot be recycled or reused in an efficient,
eco-friendly manner. The Waste Framework Directive 2008/98/
EC, transposed into Spanish law by Act 22/2011 of July 28th on
waste and contaminated land, sets out the following waste
management hierarchy: Prevention, preparation for reuse,
recycling, energy recovery and disposal.
In accordance with this legislation, the new municipal waste
management model adopted by the Catalan Waste Agency
proposes energy recovery only for waste known as reject,
which cannot be reused or recycled. Therefore, the rest
fraction, the fraction of household waste obtained from nonselective collection, must be treated in mechanical-biological
treatment plants to recover all valuable materials prior to the
implementation of energy recovery.
This change has resulted in a significant increase in the net calorific
value (NCV) of the waste treated in the plant, which has risen from
the previous range of 1,700 – 2,200 kcal/kg to a new range of range
of 2,500 ± 600 kcal/kg for the current rest fraction.
As a result of these new waste characteristics, the Sant Adrià del
Besòs WtE plant needed adjustment and modification for the
purpose of maintaining mechanical treatment capacity, increasing
energy efficiency and improving operation and maintenance.
FuturEnviro | Marzo March 2015
Uno de sus principales objetos sociales es el tratamiento de los
residuos municipales generados en este ámbito territorial mediante el proceso de valorización energética. En la planta de Sant
Adrià de Besòs se trata aproximadamente el 25% de los residuos
generados en el AMB, concretamente el rechazo procedente de
las plantas de tratamiento mecánico-biológico (ecoparques), cantidad que equivale aproximadamente a los residuos generados
anualmente por 800.000 habitantes. La valorización energética
es un proceso de combustión controlada del que se obtiene energía térmica y eléctrica, materiales valorizables (férricos, no férricos, y tierras) y cenizas (considerado un residuo especial) -, y que
a su vez permite una reducción muy significativa tanto en peso
como en volumen del residuo inicial-.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
La planta de valorización energética de Sant Adrià de Besòs fue construida y puesta en funcionamiento en 1975, siendo la primera de estas
características en España. Esta instalación ha estado operando con
una buena disponibilidad durante 40 años, gracias a las diferentes
actualizaciones que se han ido realizando. La última de ellas se inicia
en 2008 con el objetivo de modernizar el sistema de combustión al
estado actual de la técnica. Se trata del proyecto de adecuación de la
planta de valorización energética al nuevo modelo de gestión de residuos municipales de Cataluña, que culminó a finales de 2014.
21
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Objetivos
Objectives
El proyecto del plan estratégico recibió el nombre de Plan de adecuación de la planta de valorización energética (PVE) al nuevo modelo de gestión de residuos municipales de Cataluña, y tenía los
siguientes objetivos principales:
The Plan for the adaptation of the Waste-to-Energy Plant to
the new Catalan municipal waste management model was a
strategic plan with the following objectives:
•Adecuación de la planta de valorización energética a las características de este nuevo residuo proveniente de las plantas de tratamiento mecánico y biológico, con el objetivo de conservar la
misma capacidad nominal de tratamiento.
•Optimización del rendimiento energético, adaptando el ciclo
termodinámico para aprovechar al máximo el incremento de la
energía calorífica de este nuevo residuo.
•Aumento del vapor disponible para poder suministrar energía a
la red de distribución de frío y calor de la zona del Fòrum y 22@
de Barcelona.
•Aumento de la disponibilidad de la planta, disminuyendo la duración
de las paradas de línea y planta para su mantenimiento o revisión.
Escenario inicial y valores objetivo
La planta de valorización energética de Sant Adrià del Besòs, fue
diseñada sobre la base de tres líneas de proceso idénticas de 15 t/h
de capacidad de carga mecánica con un PCI de 2000 kcal/kg. Disponía de dos turbogrupos de generación eléctrica, uno de 18 MW
y otro de 5,75 MW, con un coeficiente de generación energética del
470 kWh/t residuo.
Antes de la modificación las toneladas totales tratadas al año oscilaban entre 315.000 y 340.000 t/año, y la energía eléctrica producida era de unos 160.000 MWh/año.
•Adaptation of the waste-to-energy plant to the characteristics
of the new waste from the mechanical and biological treatment
plants in order to maintain nominal treatment capacity.
•Optimisation of energy production, adapting the the
thermodynamic cycle to fully of the calorific value of this new
waste.
•Increase available steam to supply energy to the heating and
cooling distribution network serving the districts of Fórum and
22@ of Barcelona.
•Increased plant uptime, with a reduction in the duration of
line and plant downtime for maintenance and/or review
operations.
Initial scenario and target values
The Sant Adrià del Besòs waste-to-energy plant has a design
based on 3 identical process lines with a mechanical loading
capacity of 15 t/h and a NCV of 2000 kcal/kg. It was equipped
with two turbine generator sets, one with a capacity of 18 MW
and the other with a power output of 5.75 MW. The energy
generation ratio was 470 kWh/t of waste.
Prior to the modification of the facility, the plant treated 315,000
– 340,000 t/annum, producing around 160,000 MWh/annum of
electricity.
Con la adecuación de la planta al nuevo residuo se pretendía tratar
la misma cantidad de residuos, 15 t/h por línea, pero con un PCI de
2.500 kcal/kg, aumentando así la generación de energía eléctrica
anual a 200.000MWh y el suministro de vapor a la red de frío y
calor a 30 t/h de forma constante.
Subsequent to the adaptation of the plant to the new waste
type, the aim was to continue treating the same quantity of
waste, 15 t/h per line, but with an NCV of 2,500 kcal/kg, thereby
increasing annual electricity generation to 200,000 MWh
and the supply of steam to the district heating and cooling
distribution network to a constant rate of 30 t/h.
La versatilidad de los nuevos hornos permite tratar residuos con
un margen de PCI de entre 1.900kcal/kg y 3.200kcal/kg, según el
diagrama de combustión.
The versatility of the new furnaces enables the treatment of
waste with an NCV ranging from 1,900 kcal/kg to 3,200 kcal/kg,
as can be seen from the combustion diagram.
Residuo tratado | Waste treated
PCI del residuo | NCV Of Waste
Horas de funcionamiento (Total hornos)
Total Operating Hours (Furnace B)
Energía generada | Power Generated (Turbine B)
kWh generados por tonelada | kWh Generated Per Tonne
Disponibilidad hornos | Furnace B Uptime
Residuo tratado por horno (Valor medio)
Waste Treated Per Furnace (Average Value)
Valores Iniciales | Initial Values 336.000 t/año | 336,000 t/year
2.000 kcal/kg | 2,000 kcal/kg
Valores objetivo | Target values
360.000 t/año | 360,000 t/year
2.500 kcal/kg | 2,500 kcal/kg
315.000 t/año | 315,000 t/year
2.800 kcal/kg | 2,800 kcal/kg
22.878 h/año | 22,878 h/year
24.00 h/año | 24,000 h/year
158.460 MWh/año | 158,460 MWh/year
470 kWh/t | 478 kWh/t
87 %
200.000 MWh/año (*) | 200,000 MWh/year (*)
555 kWh/t | 555 kWh/t
635 kWh/t | 635 kWh/t
> 92%
> 92%
14,71 t/h | 14.71 t/h
15 t/h | 15 t/h
13,7 t/h | 13.7 t/h
www.futurenviro.es
(*) Considerando un aporte de vapor a la red de frío y calor constante de 30t/h. | (*) with a constant steam supply to the district heating and cooling network of 30t/h.
22
Actuaciones
Initiatives undertaken
Para cumplir con los objetivos propuestos se definen tres grandes
líneas de actuación que agrupan mayoritariamente las modificaciones que se han implementado en cada una de ellas:
Three main lines of action were defined for the purpose of
meeting the proposed targets:
•Adecuación del sistema de combustión:
a. Sistema de alimentación del residuo al horno: grúas, tolvas y
empujador.
b. Sustitución de las parrillas y del sistema de extracción de escorias.
•Adaptación del ciclo agua-vapor para el incremento de la producción de vapor.
•Actuaciones para aumentar la generación de energía eléctrica.
•Adaptation of the combustion system:
a. System for feeding waste to the furnace: cranes, hoppers and
pusher.
b. Replacement of grates and slag extraction
system.
•Adaptation of the water-steam cycle to increase steam
output.
•Actions to increase electricity generation.
FuturEnviro | Marzo March 2015
New feeder cranes
The cranes for feeding waste to the furnaces had
been in operation since the opening of the plant
and had exceeded their service life.
Moreover, in 2006, the commissioning of a mechanicalbiological treatment plant adjacent to the waste-toenergy plant, with a direct conveyer connection
to send reject to the storage pit, had made
management of the pit more complex.
The supply of the new cranes included: two
bridge cranes, the moving winch, three
orange peel grabs (one per crane
and one standby), crane operating
positions, electrical panels and
control system (automatic, semiautomatic and manual for each
crane).
Nuevas grúas de alimentación
Las grúas de alimentación de residuo a los hornos, eran las existentes desde el inicio de la actividad de la planta y habían superado su
periodo de vida útil.
Adicionalmente, en el año 2006, el inicio de funcionamiento de la
planta de tratamiento mecánico-biológico anexa a la PVE, con conexión directa de la cinta de rechazo al foso de almacenaje, añadió
más complejidad a la gestión del foso.
Con el suministro de las nuevas grúas se incluyeron: los dos puentes grúas, el carro móvil, tres cucharas (una para cada grúa y una de
reserva), los puestos de operación del gruista, los cuadros eléctricos
y el sistema de control: automático, semiautomático y manual para
cada una de ellas.
Los nuevos puentes grúa se dimensionaron para una carga útil de 6
toneladas, son de tipo carro abierto, preparados para funcionar 365
días/año, 24 horas/día. En una hora de funcionamiento el puente
grúa está capacitado para descargar 50 t de residuos municipales (RM) durante 45 minutos efectivos de descarga, quedando un
tiempo libre de como mínimo 15 minutos por hora para dedicarlo a
labores de mezcla y homogeneización del residuo del foso. Incluyen
un sistema de pesaje por células de carga con un error máximo del
±2%, además de los siguientes sistemas de protección: protección
contra sobrecargas de peso, destensado del cable, sistema anticolisiones y sistema antibalanceo. El consumo eléctrico se ha reducido
mediante la incorporación de un sistema de recuperación de energía en frenadas patentado por Konecranes.
Las cucharas son electrohidráulica de 5 m3 de capacidad, fácilmente
intercambiables entre sí, de forma que si una se estropea, pueda cambiarse por la de reserva mientras se repara la otra. Están fabricadas
para una densidad máxima del residuo de 0,9 t/m3, con los dientes
de penetración protegidos contra el desgate y la abrasión mediante
Hardox 500. Cada cuchara incorpora un inclinómetro para evitar los
vuelcos con desviaciones verticales superiores a 45º.
La incorporación del sistema de funcionamiento en automático de
las grúas es muy importante para la optimización de la gestión
del rechazo de la planta de tratamiento mecánico-biológico y del
www.futurenviro.es
The new open-winch type bridge
cranes have a lifting capacity of 6 tonnes and are designed
to operate 24 hours/day, 365 days/annum. In a period of one
hour, the bridge crane can unload 50 t of MSW in an effective
unloading period of 45 minutes, with a minimum time of 15
minutes per hour left free for the mixing and homogenising of
waste in the pit. The crane features a load cell weighing system
with a maximum error of ±2%, in addition to the following
protection systems: protection against overloading, loosening
of cables, anti-collision system, and anti-sway system. Electricity
consumption has been reduced through the incorporation of a
patented system developed by Konecranes for energy recovery in
braking and load lowering.
The electro-hydraulic grab has a capacity of 5 m3 and grabs are
easily interchangeable so that if one becomes damaged, it can
easily be replaced by the standby unit and sent for repair. The grab
is designed to handle a maximum waste density of 0.9 t/m3 and is
fitted with teeth protected against wear and abrasion by means
of Hardox 500. It features an inclinometer to prevent overturning
with vertical deviations of over 45º.
The incorporation of the automatic crane operating mode is
very important for optimising management of the reject from
the mechanical-biological treatment plant and optimising the
management of the pit itself. In automatic mixing mode, one
of the orange peel grabs takes the waste from the conveyer
unloading area and automatically transfers it to a previously
defined zone, while the crane operator can continue to feed the
furnaces with the other crane.
Working conditions for crane operators have been improved
through the installation of two ergonomic, redundant operating
positions, in such a way that both cranes can be operated from
either of the two positions. Each operating point includes the
console, with joysticks and pads required for crane handling, a
screen and a SCADA application for configuration, operation and
supervision of automatic and semi-automatic operation.
These new cranes enable a maintenance position to be arranged
at each end of the pit, in such a way that when one crane is out
of service for maintenance, the other can manage the entire
pit, including the end where the conveyer from the mechanical
treatment plant unloads. This has solved one of the greatest
uptime issues at the plant and the two overhead cranes are now
FuturEnviro | Marzo March 2015
Adecuación del sistema de alimentación de residuo
al horno
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Adaptation of system to feed waste to the furnace
23
Ingeniería y Asistencia Técnica de Tersa para la
transformación de la Planta
Owner’s Engineer of Tersa for the Refurbishment
of the WtE Facility
La ingeniería del proyecto de Transformación de la Planta de Valorización Energética de Sant Adrià de Besós fue realizada para
TERSA por la empresa RESA Fichtner Group y comprendió el análisis de los distintos sistemas de la planta, el estudio y selección
de las mejoras tecnológicas y funcionales a aplicar, que se concretaron en el Proyecto Básico de adecuación de la Planta, y la
planificación de las actuaciones, recogida en el correspondiente
Plan Director al objeto de:
The engineering of the project to upgrade the Sant Adrià de
Besós Waste-to-Energy Plant was carried out by RESA Fichtner
Group for TERSA. The work consisted of the analysis of the
different plant systems, the study and selection of the best and
most functional technologies to be implemented, as specified
in the Basic Design for the adaptation of the Facility, and the
planning of the initiatives defined in the corresponding Master
Plan, for the purpose of:
•Adecuar la planta al nuevo modelo de gestión de residuos.
•Optimizar el rendimiento energético y la exportación de vapor
para la red de distribución de frío y calor existente.
•Adapting the plant to the new waste management model.
•Optimising energy yield and the export of steam for the
existing district heating and cooling network.
RESA Fichtner Group también preparó la documentación para
obtención de licencias y acompañó a TERSA en la gestión de las
compras hasta el cierre de los contratos.
RESA Fichtner Group also prepared the documents necessary to
obtain the relevant permits and assisted TERSA in the area of
procurement management until the contracts were signed.
Durante la fase de implementación de las mejoras, RESA Fichtner
Group se encargó de asegurar el cumplimiento de los objetivos
establecidos para las distintas
actuaciones realizadas, la ejecución de las mismas conforme
a los plazos y costes previstos y
gestionó la correcta ejecución
de las mismas, manteniendo
informada a TERSA en todo momento.
During the implementation of the improvements, RESA Fichtner
Group was responsible for ensuring that the objectives set
for the different initiatives were
met and that the initiatives were
undertaken in accordance with the
scheduled deadlines and costs. The
company also managed the correct
execution of the work, keeping
TERSA informed of these matters
at all times.
La asistencia técnica de RESA Fichtner Group continuó durante
la puesta en marcha, hasta el
final del periodo de garantía.
RESA Fichtner Group continued to
provide technical assistance during
the commissioning stage, until the
expiry of the guarantee period.
MSW Hopper, channel and
feeder
The modification of the
feeding system made
it necessary to achieve
uniform distribution of the
waste on the grate. The
new equipment features
Hitachi Zosen Inova (HZI)
technology.
Se han mejorado las condiciones para el operador de grúa,
al instalar dos puestos de
trabajo ergonómicos y redundantes, de forma que con cualquiera de las dos posiciones
se puedan controlar ambas
grúas. Cada puesto de trabajo
incluye la consola con los joysticks y pulsadores necesarios
para el manejo de las grúas,
una pantalla y una aplicación
SCADA para la configuración,
operación y supervisión del
funcionamiento en automático y semiautomático.
Tolva, conducto y alimentador de RSU
La modificación del sistema de alimentación era necesaria para
conseguir una distribución uniforme del residuo sobre la parrilla.
La tecnología de los nuevos equipos es de Hitachi Zosen Inova (HZI).
La grúa descarga los residuos sobre la tolva de alimentación de sección superior 4.5x3.9 m. La tolva está construida en acero y protegida con placas antidesgate realizadas en Hardox de 10mm de espesor en la pared frontal. Las paredes de la tolva y la disposición de la
compuerta se diseñaron para evitar obstrucciones, con un ángulo
de inclinación superior a 40º, asegurando el suministro constante
de residuos al alimentador. La compuerta de la tolva tiene una opción de funcionamiento rompe bóvedas.
El conducto de alimentación, también de acero y con placas antidesgate, se construyó con una altura de 4 m para garantizar el
sello de la cámara de combustión desde el foso. Tiene una sección
inferior de 1.51x3.8m igual al ancho del empujador para un mayor
aprovechamiento de la parrilla. El conducto de alimentación se
diseñó con un sistema de refrigeración de agua de doble pared
para resistir el estrés térmico que se produce cuando está en funcionamiento.
www.futurenviro.es
The feed channel is also
made of steel and has
anti-wear plates. It was
built with a height of 4 m
to ensure the sealing of the
combustion chamber from
the pit. The lower cross
section has the same width as the pusher to enable the grate to
be fully availed of. The feed channel is designed with a doublewalled water cooling system to resist the heat stress produced
when it is in operation.
The waste falls from the feed channel onto the horizontal tray of
the feed unit and is sent to the first zone of the grate by means
of two hydraulically driven cylinders, one for each line.
The forward speed of the pusher is adjusted to the combustion
control system by means of a controller. Continuous regulation
of the forward movement enables uniform measurement and
immediate adjustment in accordance with the volume of waste
required. Each forward thrust is designed to carry the same
volumetric quantity of waste to the grate.
Monitoring of the waste level is carried out from two points,
a lower point located in the feed channel to indicate very low
levels and the other in the upper part of the hopper to indicate
high levels. The latter sensor is used for the automatic operation
of the cranes.
Modification of combustion systems and equipment
Combustion grates
The grate system implemented is designed to be able to treat
waste with a calorific value ranging from 1800 kcal/kg (7,530
kJ/kg) to 3,200 Kcal/kg (13,400 kJ/kg) and a moisture content
FuturEnviro | Marzo March 2015
Estas grúas permiten tener
una posición de mantenimiento, arrimada a cada uno
de los extremos del foso, de
tal forma que cuando una
está parada por mantenimiento, la otra puede gestionar todo el foso incluido
el extremo donde descarga
la cinta de la planta de tratamiento mecánico. Este hecho ha solucionado uno de los grandes
problemas de disponibilidad que tenía la planta, siendo en la actualidad los dos puentes grúa totalmente redundantes. Para conseguirlo, el tecnólogo ha diseñado unos puentes especiales que
se encajan entre sí disminuyendo el espacio necesario entre ellos.
The crane unloads the
waste into the steel feed
hopper. The hopper walls
and the arrangement of
the gate are designed
to prevent obstruction.
Together with an angle of
inclination of over 40º, this
ensures continuous supply
of waste to the feeder. The
hopper gate has an arch
breaker operating option.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
completely redundant.
In order to achieve this,
special bridges that fit
together were designed,
thereby reducing the space
needed between them.
foso. En el modo de mezclado
automático, uno de los pulpos coge la basura de la zona
de descarga de la cinta de la
planta de tratamiento mecánico-biológico y automáticamente la traslada a una
zona definida previamente,
y mientras tanto el gruista
puede seguir alimentado los
hornos con la otra grúa.
25
Pulpos de Stemm para procesos automáticos
con seguridad y sistemas de ahorro de energía
Stemm orange peel grabs with safety features and
energy saving systems for automatic processes
Los pulpos suministrados por Stemm son del tipo PH6-50000,9 de 5 m3 de capacidad, preparados expresamente para trabajar en procesos automáticos con todo tipo de seguridades
y sistemas de ahorro de energía incluido. Estos pulpos están
diseñados para la manipulación de RSU, biomasa y residuos
industriales de todo tipo hasta una densidad de 0.9 Tm/m3.
Son pulpos que han resultado extraordinariamente rentables,
dada la excelente carga de toma en todas y cada una de las
pulpadas, dado que las semiconchas son de
perfil progresivo que permite un perfecto y
óptimo llenado en cada toma.
The PH6-5000-0,9 orange peel grabs, supplied by Stemm, have
a capacity of 5 m3 and are specifically designed for operation in
automatic processes. They incorporate all the necessary safety
features and energy-saving systems and are designed to handle
MSW, biomass and industrial waste of all types with densities of
up to 0.9 T/m3. These units are extremely cost-effective as a result
of the excellent grab volumes afforded by the progressive profile
of the half-shells, which enables optimal filling in each pick-up
manoeuvre.
La estructura de estos pulpos está concebida
y calculada por medio de elementos finitos
para realizar 6 millones de ciclos. Además
poseen un bloque compacto desmontable lo
cual facilita enormemente todas las operaciones de mantenimiento.
Estos equipos suministrados por Stemm, en
el caso de un corte de energía no se abren
e impiden la caida de la carga, lo cual es un plus de seguridad.
Los cilindros hidráulicos especialmente reforzados, con amortiguación y cámara de seguridad, se suministran probados a una
presión de 400 bars.
Cuentan con un sistema de autofiltraje constante a 3 micras, por
medio de un riñón que filtra constantemente el aceite. Están
equipados con un sistema antibalanceo, que los hace multiestable y permite trabajar hasta una posición inclinada casi hasta la
horizontal. El ritmo de trabajo que pueden someterse nuestros
pulpos, es de 130 ciclos/hora.
The structure of these
grabs is designed and
calculated, by means
of finite elements
analysis, to carry out a
total of 6 million cycles
and they have compact
dismountable blocks
that greatly facilitate all
maintenance operations.
An added safety feature of Stemm orange peel grabs is that
they do not fall or release loads in the event of a power
outage. The specially reinforced hydraulic cylinders, with shock
absorption systems and safety chambers, are supplied at a
pressure of 400 bar.
The grabs have a 3-micron self-filtering system that continuously
filters oil and they also feature an anti-sway system that makes
them extremely stable, enabling operation on planes that are
practically horizontal. Stemm orange peel grabs are designed to
operate at rates of up to 130 cycles/hour.
La velocidad de avance del empujador se ajusta con el sistema de
control de la combustión mediante un controlador. La regulación
continua de los movimientos de avance permite una medición uniforme y el ajuste inmediato según el volumen de residuos requerido. Cada empuje debe llevar la misma cantidad volumétrica de
residuos a la parrilla.
La monitorización del nivel de residuos se hace desde dos puntos:
uno inferior ubicado en el conducto de alimentación que indica nivel muy bajo y otro en la parte superior de la tolva, que señaliza
nivel bajo. Este último se utiliza para el automatismo de las grúas.
Modificación de los sistemas
y equipos que intervienen
en la combustión
Parrillas de combustión
El sistema de parrillas implantado está diseñado para poder tratar
residuo con un poder calorífico comprendido entre las 1800 kcal/
kg (7.530 kJ/kg) y las 3200 Kcal/kg (13.400 kJ/kg) con una humedad
comprendida entre el 30% y el 50%. La primera problemática en el
diseño fue el poco espacio disponible; debido a la colisión con la
estructura de caldera no era posible poner una parrilla más ancha
como requeriría el proceso de combustión. La solución adoptada
modificando las paredes del horno por paredes de tubos de membrana, ampliando la caldera, permitió poder ganar 0,6 metros de
anchura frente a las parrillas antiguas, pasando de 3 a 3,6 m.
La tecnología es Hitachi Zosen Inova: una única parrilla horizontal
de 14,5 m de longitud y con 18º de inclinación, compuesta por barrotes fijos alternados con otros móviles. Se divide en dos vías de
siete zonas o elementos de parrilla. Tres zonas de cada vía están refrigeradas por agua, concretamente la zona 2, 3 y 4 donde se produce
básicamente la combustión del residuo. La zona 1, donde se reduce
la humedad, sigue refrigerada por aire primario, al igual que las zonas 5, 6 y 7 donde se produce el final de la combustión y apagado de
las escorias. La carga mecánica admisible por superficie es de 287,36
kg/h/m2 y el caudal de residuos de PCI 2.500 kcal/kg es de 15 t/h.
El diseño de la parrilla tiene un movimiento de atizamiento y volteo de
los residuos que asegura un buen secado y volatilización de la escoria
y la ceniza. Cada elemento de parrillas está controlado por dos cilindros hidráulicos conectados en serie. El pistón actúa sobre los barrotes móviles de cada elemento,
Vista parrilla acabada
generando un movimiento hacia adelante o hacia
atrás. El número o la frecuencia de movimientos
realizados por los bloques móviles de la parrilla
esta continuamente regulado por el controlador
(CCS, del inglés combustion control system), mientras que la velocidad de avance y la longitud del
movimiento no pueden ser regulados. Esto se realiza mediante un control electrónico de pulsos.
Technology is Hitachi Zosen Inova: a single horizontal grate of
14.5 m in length and an inclination of 18º, comprising alternating
fixed and moving grate block rows. Three zones of each line
are water cooled, corresponding to zones 2,3 and 4, which are
basically the zones in which combustion takes place. Zone 1,
where moisture content is reduced, continues to be cooled by
means of primary air, as are zones 5, 6 and 7, where the final
stages of combustion and slag quenching take place. The
maximum mechanical load is 287.36 kg/h/m2 and the flow rate
of waste with an NCV of 2,500 kcal/kg is 15 t/h.
The grate is designed to stoke and turn the waste to ensure
good drying and volatilisation of the slag and ash. Each grate
unit is controlled by two hydraulic cylinders connected in series.
The piston acts on the moving grate blocks of each unit to create
a forward or backward movement. The number or frequency
of each movement of the moving grate blocks is regulated
continuously by the controller (Combustion Control System CCS), while the forward speed and length of motion cannot be
regulated by the CCS and are instead regulated by means of an
electronic pulse motor controller.
The primary air enters the furnace through orifices at the end of
the grate blocks.
The grate is mounted on the support structure to enable it to
move in response to heat expansion. The grate cylinders and the
fine materials collection hoppers expand and contract with the
grate.
Return condensate to the water feed tank is used to cool
zones 2, 3 and 4, due to its lower conductivity and salt
concentration. The cooling circuit is a closed circuit and the
water from the three cooled zones of the grate is chilled
once again by means of a heat exchanger with sea water. In
this way, only the water that evaporates from the system is
replaced. In the event of an emergency, cooling is carried out
by injecting a large quantity of cold water from the network
into the cooling circuit.
| View of completed grate
La parrilla se apoya en la estructura de soporte
que le permite moverse en respuesta a la expansión térmica. Los cilindros de la parrilla y las tolvas de recogida de caída de finos se expanden y
contraen con la parrilla.
FuturEnviro | Marzo March 2015
El aire primario entra en el horno de residuos a
través de unos orificios practicados en el extremo del bloque de la parrilla.
of between 30% and 50%. The first design problem was
the lack of available space. Due to the position of the boiler
structure, it was not possible to fit a wider grate as required
by the combustion process. The solution adopted consisted of
replacing the furnace walls with membrane tube walls and
extending the boiler, thereby enabling a space gain of 0.6
metres with respect to the previous grates, with the width
increasing from 3 to 3.6 metres.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Desde el conducto de alimentación los residuos caen sobre la bandeja horizontal del alimentador. Mediante dos cilindros con accionamiento hidráulico, uno por vía, se introduce el residuo a la primera zona de la parrilla.
www.futurenviro.es
27
Pictor Valves suministra válvulas Pressure
Seal de última generación a Tersa
En primer lugar todo el equipo humano que forma Pictor
Valves S.L., nos expresa su deseo de manifestar su agradecimiento a Tersa, no sólo por
la confianza que han depositado en ellos, también por la
aportación de ideas que les
ha trasladado su equipo de
ingeniería, operación y mantenimiento.
En relación al amplio suministro realizado a Tersa por Pictor
Valves, cabe destacar las series
2122L, 2128L, 2425L, válvulas
Pressure Seal (compuertas y
retenciones) de última generación, con detectores de fugas, sistemas de seguridad pasiva, orientables y nivel de estanqueidad TASA A. (DN 50 hasta
DN 300) forjadas. Cabe destacar como Tersa por sus
exigencias de seguridad, las instaló a partir de PN100.
Pictor Valves supply leading-edge Pressure Seal
valves to Tersa
First of all, the entire staff of Pictor Valves S.L. would like to convey
our gratitude to Tersa, not only for the confidence placed in us
but also for the ideas provided to our engineering, operation and
maintenance team.
The wide scope of the Pictor Valves supply to Tersa included 2122L,
2128L, and 2425L series, leading-edge Pressure Seal valves (gate
and check valves). These adjustable forged steel valves feature leak
detectors, passive safety systems and TASA A leakage classification
(DN 50 to DN 300). Tersa’s stringent safety standards required the
installation of valves from PN100.
Valves were also supplied for drain and vent services, specifically
(forged steel) 5218, 5219 and 5449 series adjustable valves with
TASA A leakage classification (DN 15 to DN 50) (PN63 and above).
Pictor Valves also supplied PN16/PN63 cast carbon steel and alloy
steel valves (DN 50 to DN 350).
Además ha suministrado las válvulas para servicios
de purgas, drenajes y venteos, en concreto las series
(forjado) 5218, 5219 ,5449. TASA A. Orientables. (DN 15
a DN 50) (PN 63 y superiores).
Pictor Valves también ha suministrado las válvulas
fundidas, PN16/PN63 en acero carbono y aceros aleados, DN 50 hasta DN 350.
Renovación de las tres líneas de combustión
Renovation of the three combustion lines
SARTECH Engineering es una empresa de Ingeniería Aplicada líder,
perteneciente al GRUPO SARRALLE, con vocación de ser referente en
el sector de la Ingeniería y Proyectos llave en mano. Cuenta con un
numeroso equipo técnico altamente cualificado, dinámico y multicultural, integrado por ingenieros de todas las disciplinas, que permite abordar Proyectos Globales en cualquier país apoyándose en
los centros de trabajo del Grupo a nivel mundial. Actualmente, se
encuentra en pleno proceso de consolidación de las posiciones alcanzadas por el grupo durante más de 50 años y
ampliando su presencia en los sectores de Energía, Oil and Gas y Tratamiento de Residuos y Reciclaje, con referencias como la que se describe
a continuación.SARTECH Engineering, junto con
la empresa de fabricación EQUISIDER perteneciente al Grupo, ha realizado la Renovación de las
Tres Líneas de Combustión de la Planta de Valorización Energética en Sant Adrià de Besòs.
SARTECH Engineering is a leading Applied Engineering company
belonging to GRUPO SARRALLE. The aim of the company is to become
a leader in the sector of engineering and turnkey projects. It boasts
a large, dynamic, highly qualified, multi-cultural technical team
composed of engineers from all disciplines. This enables Sartech to
undertake Global Projects with the support of the group’s Worldwide
network of work centres. The company is currently immersed in a
process of consolidation of the positions achieved by the group over
more than 50 years and it is also expanding
its presence in the energy, Oil & Gas, Waste
Treatment and Recycling Sectors. In this respect,
it boasts the following references. SARTECH
Engineering, in cooperation with the group’s
manufacturing company EQUISIDER, carried out
the Renovation of the Three Combustion Lines at
the Sant Adrià de Besòs Waste-to-Energy Plant.
Los trabajos han consistido en realizar la Ingeniería de Detalle, Fabricación, Suministro, Montaje y Puesta en marcha, del nuevo sistema de
alimentación del horno-feed Hopper, nuevo sistema de parrilla, refuerzo y modificación estructura horno, nuevos sistemas de aporte
aire de combustión primario y secundario incluyendo inyectores,
nuevo sistema de recogida de escorias y cenizas, así como las correspondientes estructuras primarias y secundarias necesarias. Tras
esta oportunidad, SARTECH Engineering ha desarrollado también
para HITACHI ZOSEN INNOVA, con el mismo alcance, el sistema de
aporte de aire primario y secundario de la nueva incineradora en
Vantaa (Finlandia). De esta forma, SARTECH Engineering sigue desarrollando su visión y estrategia en busca de la innovación, calidad
de servicio y atención al cliente, para cumplir su objetivo de erigirse
en un socio de máxima confianza.
The work undertaken comprised the detailed
Engineering, Manufacture, Supply, Installation
and Commissioning of the new furnace
feed hopper system, the new grate system,
reinforcement and modification of furnace structures, the new air
supply systems for primary and secondary combustion (including
injection systems), the new slag and ash collection system, and
the corresponding primary and secondary structures required.
Subsequent to this project, SARTECH Engineering carried out the
supply for Hitachi Zosen Innova of the primary and secondary air
supply system for the new incinerator in Vantaa (Finland). The scope
of this supply was the same as that for the Sant Adrià de Besòs plant.
In this way, SARTECH Engineering continues to develop its vision and
strategy in a quest for the innovation, quality of service and customer
service excellence required to achieve the company goal of becoming
a partner with a reputation for the utmost reliability.
Los ventiladores de aire de combustión deben ser capaces de proporcionar amplios márgenes de regulación para cada uno de los
dos flujos de aire, de acuerdo con la flexibilidad de funcionamiento y calidad de la combustión exigida al horno. Para ello se instala un nuevo ventilador de aire primario de 55.000 m3/h de caudal
nominal y uno de aire secundario de 40.000 m3/h, en la misma
ubicación, pero accionados mediante variador de frecuencia. El aire
terciario, conocido como aire de refrigeración de paredes del horno
es eliminado, la refrigeración de las paredes del horno se realiza con
las nuevas paredes de membrana de la caldera.
La consigna del caudal de aire primario necesario para la combustión viene dada por el controlador y se regula en el ventilador mediante el convertidor de frecuencia. Una vez precalentado, el aire
se distribuye en siete conductos, uno por cada zona de parrillas, y
se inyecta al horno a través de los agujeros de las parrillas. En cada
conducto se dispone de una válvula de regulación y un medidor
de presión diferencial para que el sistema pueda ajustar el caudal
de entrada necesario definido por el sistema de control de combustión. Con registros de control ajustables se logra disponer del
caudal de aire óptimo para cada elemento de la parrilla.
El aire secundario forma parte del caudal total de aire requerido
para la combustión completa. El aire se inyecta en las paredes laterales del horno a la atura del estrechamiento del primer paso de
caldera. La inyección de aire secundario provoca un flujo turbulento en la cámara de combustión. Esta inyección se realiza mediante
unas boquillas especialmente diseñadas, cuyo ángulo de inclinación fue estudiado con un programa especial de simulación por el
tecnólogo en la fase previa del proyecto.
La distribución del aire secundario se realiza mediante cuatro colectores, dos por lado del horno, de cinco boquillas cada uno. Los
cuatro colectores están equipados con una válvula manual que
permite regular durante la puesta en marcha el flujo que circula
por las boquillas de cada colector.
The combustion air fans are capable of providing wide
regulating margins for each of the two air flows, in accordance
with operational flexibility and the combustion quality required
of the furnace. For this purpose, a new primary air fan was
installed with a nominal flow rate of 55,000 m3/h, along with
a secondary air fan with a flow rate of 40,000 m3/h. These fans
are installed in the same location and are fitted with variable
frequency drives. The tertiary air system, known as the furnace
wall air cooling system, has been eliminated and cooling of
the furnace wall is now carried out by means of the new boiler
membrane walls.
The set point for the flow of primary air needed for combustion
is provided by the controller and is regulated by means of the
variable speed drive of the fan. After it has been preheated,
the air is distributed through 7 conduits, one for each grate
zone, and is injected into the furnace through the orifices in
the grates. Each conduit is fitted with a regulating valve and a
differential pressure gauge to enable the system to adjust the
required inlet flow as defined by the combustion control system.
Adjustable control levels enable the optimum flow of air for
each grate element.
The secondary air forms part of the total air flow required for
complete combustion. The air is injected through the side walls
of the furnace at the height where the first pass of the boiler
narrows. The injection of secondary air causes a turbulent flow
in the combustion chamber. The air is injected through specially
designed nozzles and the angle of inclination of these nozzles
was determined using special simulation software in the
preliminary design stage.
The distribution of secondary air is carried out by means of four
headers, two on either side of the furnace, each with 5 nozzles.
The four manifolds are fitted with manual valves that enable
the flow circulating through the nozzles of each header to be
regulated during start up of the system.
Combustion control system (CCS)
The renovation project required an upgrading of the
combustion control system to obtain a stable steam output
of 50 t/h with waste of a higher NCV, without exceeding the
maximum flow of flue gases capable of being treated by the
gas cleaning system. Moreover, the new system achieves a
reduction in excess air, higher quality slag
and lower emissions.
The new combustion control system
(CCS), featuring technology Hitachi Zosen
Inova (HZI), is integrated into the SCADA
(supervisory control and data acquisition)
system and operates automatically and
safely. It is a multi-variable control system
with a structure comprising two parallel
connections of different controllers
connected in series.
Montaje de la parrilla | Montaje de la parrilla
www.futurenviro.es
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Aire primario y secundario
Primary and secondary air
Depending on the steam flow and calorific
value of the waste indicated by the operator,
the system calculates, for each point of
the combustion diagram, the flow and
temperature of primary air, the total air flow,
the grate movement frequency, the feeder
speed and the oxygen content of the flue
gases outlet the boiler.
FuturEnviro | Marzo March 2015
Para la refrigeración de las zonas 2, 3 y 4 se utiliza condensado de retorno al tanque de alimentación de agua, por su menor concentración
en sales y conductividad. El circuito de refrigeración es un circuito cerrado.El agua procedente de las tres zonas de la parrilla refrigeradas se
vuelve a enfriar mediante un intercambiador con agua de mar, de esta
forma solamente se repone el agua que se evapora en el sistema. En
caso de emergencia, la refrigeración se realiza mediante la inyección
de una gran cantidad de agua fría en el circuito proveniente de la red.
29
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Sistema de control de combustión (CCS)
El proyecto requería de una modernización
del sistema de control de combustión que
permitiera obtener una producción estable de
50 t/h de vapor con un residuo de mayor PCI,
sin sobrepasar el caudal máximo de gases de
combustión admitido por el sistema de depuración de gases, además de conseguir una reducción del exceso de aire, una mejor calidad
en las escorias y unos valores de emisión de
contaminantes más bajos.
El nuevo sistema de control de combustión
(CCS), con tecnología de HZI, se integra en
SCADA (supervisión, control y adquisición de
Ddgura. Es un sistema de control multivariable, cuya estructura consta de dos conexiones
paralelas de distintos controladores conectados en serie.
Según el caudal de vapor y el valor calorífico de
los residuos que indica el operador, el sistema calcula para cada
punto del diagrama de combustión el caudal y temperatura del
aire primario, caudal total de aire, frecuencia de movimiento de
parrilla, velocidad del alimentador y el contenido de oxígeno de los
gases de combustión a la salida de caldera.
Las mediciones del contenido de oxígeno en los gases y del caudal
de vapor, llegan a los dos controladores de la unidad CCS que regulan simultáneamente la velocidad del alimentador, la frecuencia de
movimiento de las parrillas y el caudal de aire primario.
El caudal de aire total debe mantenerse constante para que el contenido de O2 en la salida de caldera sea representativo de la eficacia
de la combustión.
Para el control del avance del fuego se incorporan dos sondas de
temperatura en el techo al final de la parrilla. Un fuego adelantado,
próximo a la caída de escorias al extractor, posibilita que haya una
combustión incompleta lo cual puede generar inquemados. El controlador correspondiente modula la frecuencia de las parrillas y la
velocidad del alimentador.
La actuación del empujador y los distintos elementos de la parrilla
se procesa mediante un sistema autónomo, al cual se envían los
valores de consigna para las velocidades y frecuencias que se establecen en el sistema de distribución y control.
Transportador de finos, extractor de escorias
y vibrante
www.futurenviro.es
Bajo cada elemento de parrilla hay una tolva y un conducto que
recogen los materiales finos que se criban entre los bloques de las
parrillas y los conducen al transportador de cadena húmedo. Los
conductos quedan dentro del transportador por debajo del nivel
de agua para garantizar que no entre aire falso a la cámara de combustión. Mediante la cadena se transportan los finos al extractor
de escorias.
30
La escoria que queda en el extremo de la parrilla, después de la
zona 7, cae a través de una tolva al extractor de escorias, donde se
enfrían con agua. Al igual que el transportador el extractor mediante un sistema de control mantiene un nivel de agua suficiente
para poder sellar el horno y evitar la entrada de aire. Ambos se rellenan con agua de proceso y solamente se aporta el agua necesaria
para mantener el nivel.
The oxygen content measurements of the gases and the
steam flow rate are recorded by the two CCS controllers, which
simultaneously regulate the feeder speed, the grate movement
frequency and the flow of primary air. The total air flow must be
kept constant to ensure that the O2 at the outlet of the boiler is
representative of the combustion efficiency.
Two temperature sensors are fitted in the roof at the end of the grate
to control the advance of the fire. A forward fire position, near where
the slag falls to the extractor may result in incomplete combustion,
giving rise to unburned waste. The corresponding controller
modulates the frequency of the grates and the feeder speed.
The operation of the pusher and the different grate elements
are processed by an independent system, which transmits the
set point values for the speeds and frequencies defined by the
distribution and control system.
Fine materials conveyer, slag extractor and vibrating conveyor
Under each grate element, there is a hopper and channel to
collect the fine materials screened between the grate blocks and
send it to a wet slag chain conveyor. The channels are within
the conveyor below the water level to prevent false air entering
the combustion chamber. The chain conveyor takes the fine
materials to the slag extractor.
The slag that remains at the end of the grate, after zone 7, falls
through a hopper to the slag extractor, where it is cooled with water.
Like the conveyor, a control system maintains a level of water in the
extractor that is sufficient to seal the furnace and prevent the entry
of air. Both conveyor and extractor are filled with process water and
only the water needed to maintain the level is supplied.
By means of a hydraulic piston, the slag extractor pushes the slag to
a vibrating conveyor. The concave shape of the extractor enables the
slag to be compacted and the water drains as the piston pushes the
slag to the discharge ramp that sends it to the channel. This system
results in drier slag, with a moisture content of less than 20%.
Hydraulic station
A combined hydraulic station is installed for the cylinders of the
feed hopper gates, the grate and the slag extractor. The three
pumps and control blocks are connected to a common manifold
in such a way that one of the pumps makes the other two
FuturEnviro | Marzo March 2015
Central hidráulica
Vista general nuevo sistema evacuación escorias: canal, escoriador
y vibrante | General view of new slag evacuation system: channel,
slag extractor and vibrating conveyor
Un intercambiador de calor refrigerado por aire se integra en la línea de retorno del circuito hidráulico al depósito.
Adaptación del ciclo agua-vapor para el incremento
de la producción de vapor
Ampliación de caldera
La caldera existente era una caldera acuotubular de tres pasos de gases, construida para una presión de trabajo de 44 kg/cm2 y admisible
de 54 kg/cm2, que producía vapor sobrecalentado a 39 bar y 400ºC.
Partiendo de la base de que el nuevo combustible, el rechazo, dispone de más energía calorífica, las modificaciones que se realizan
en la caldera para conseguir aumentar la producción de vapor son
las siguientes:
•Ampliación de las paredes de caldera, desde el antiguo colector
inferior, ubicado en cota 15.00, hasta las parrillas. Esta actuación
permite ganar 0,6 metros de anchura a las nuevas parrillas.
•Modificación de la pared frontal de la caldera.
•Adaptación de la pared divisoria entre el primer y segundo paso
y la nariz.
•Modificación de los colectores verticales (downcomers).
•Ampliación de los colectores horizontales inferiores, de cota 15,
mediante un nuevo colector unido por la parte inferior.
Las modificaciones de la caldera comportan un aumento de 15 m3
en el volumen total de la caldera, pasando de 60 m3 a 75 m3. Con la
optimización de la transferencia de calor se incrementa en 9 t/h la
producción de vapor, así se pasa de una generación inicial de 40 t/h
a 49.7 t/h por unidad de horno-caldera..
Estas modificaciones fueron definidas por los tecnólogos de HZI
después de hacer un estudio de la transferencia de calor, la distribución del flujo en el interior de la caldera y las velocidades. En el
estudio también se comprobó el dimensionamiento de los economizadores, evaporadores y sobrecalentadores, así como el diseño
del calderín.
Las paredes de tubos de membrana del horno van protegidas por
placas conformadas de refractario. En el horno se discriminan tres
zonas. La primera va des de el empujador hasta la zona 4 de parrillas donde se han colocado placas de carburo de silicio nitrurado.
En la zona 5 se han colocado placas nitruradas con un porcentaje
de alúmina, y en las zona final de la parrilla las placas son de alúmina para optimizar la transferencia de calor en la zona de baja
www.futurenviro.es
redundant. Each system has an individual hydraulic control block
with electronic control elements to operate the functions of the
feed hopper, the pusher and the grate.
An air-cooled heat exchanger is integrated into the return line of
the hydraulic circuit to the tank.
Adaptation of the water-steam cycle to increase steam production
Boiler Expansion
The existing boiler is a water tube boiler with three gas passes,
built for a working pressure of 44 kg/cm2 and maximum
pressure of 54 kg/cm2. This boiler produces superheated steam
at 39 bar and 400ºC.
Based on the fact that the new fuel (the reject) has a higher
calorific value, the modifications carried out to the boiler to
achieve higher steam output are as follows:
•Extension of the boiler walls, of the old lower header
positioned at a height of 15 m, to the grates, enabling a gain of
0.6 m in the width of the new grates.
•Modification of the front wall of the boiler.
•Adaptation of the dividing wall between first and second pass
and nose cone.
•Modification of vertical headers (downcomers).
•Extension of the lower horizontal manifolds, at a height of 15
m, by means of a new headers joined to the lower part of the
existing ones.
The modification to the boiler affords an increase in total
volume of 15 m3, from 60 m3 to 75 m3. With the optimisation of
heat transfer, steam production has increased by 9 t/h, from the
initial output per boiler-furnace of 40 t/h to 49.7 t/h.
These modifications were defined by HZI technologists
subsequent to the carrying out of a study on heat transfer, flow
distribution inside the boiler and flow rates. The study also
served to define the sizing of the economisers and superheaters
as well as the cylinder design.
The membrane tube furnace walls are protected by moulded
refractory plates. The furnace is divided into three zones, the first of
which goes from the pusher to zone 4 of the grates, where nitride
bonded silicon carbide plates are installed. Nitride bonded plates
with a percentage of alumina are installed in zone 5, while at the
FuturEnviro | Marzo March 2015
Se instala una estación hidráulica combinada para
los cilindros de las compuertas de la tolva de alimentación, el alimentador, la parrilla y el extractor
de escorias. Las tres bombas y los bloques de control
están conectados a un colector común de forma que
una de las bombas aporta redundancia a las otras
dos. Cada sistema cuenta con un bloque de control
hidráulico individual con elementos de control eléctricos para ejecutar las funciones de las compuertas
de la tolva de alimentación, el empujador y la parrilla.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
El extractor de escorias, mediante un pistón hidráulico empuja la escoria a un transportador vibrante. La
forma cóncava del extractor permite que la escoria se
compacte y escurra el agua a medida que el pistón la
va empujando por la rampa de descarga hacia el canal.
Mediante este sistema se obtiene la escoria más seca,
con un porcentaje de humedad inferior al 20%.
31
Teide Refractory Solutions suministra el revestimiento refractario de los hornos y se adjudica el mantenimiento
Teide Refractory Solutions S.L. ha realizado la ingeniería de detalle, suministro, demolición del existente y montaje del nuevo revestimiento refractario
de los hornos de las 3 líneas de incineración que
posee TERSA entre los años 2012 - 2014 dentro del
proyecto de optimización de la Planta.
Más de 60 años avalan la experiencia de Teide Refractory Solutions en el sector, los constantes estudios y mejoras, que su departamento de I+D ha estado realizando en las calidades de SiC nitrurado /
aditivado, durante los últimos años, le ha permitido
especializarse también en este campo, ofreciendo a sus clientes
mejores calidades para las placas de carburo de silicio, así como
servicios y materiales adicionales.
Para este proyecto, se estudió cada una de las zonas de los hornos
con la finalidad de encontrar el material más adecuado en cada
una de ellas, para obtener el resultado deseado por el cliente. En el
conjunto de los trabajos realizados para esta optimización, se han
revestido más de 1.200 m2, combinando materiales No conformados y Conformados, siendo estos últimos los utilizados prácticamente en el 100% de las paredes laterales de los hornos.
Asimismo Teide Refractory Solutions S.L. ha sido el adjudicatario
del contrato de mantenimiento de la planta para los próximos
3-4 años, en el que se incluye la realización de la Modelización
del proceso de combustión de cada una de las líneas, con la finalidad de conocer el comportamiento de la misma y en consecuencia, conocer las condiciones de trabajo de cada parte del
horno – caldera.
Teide Refractory Solutions supplies refractory
lining for furnaces and secures maintenance
contract
Teide Refractory Solutions S.L. carried out
the detailed engineering, supply, and
installation of the new refractory lining
for the furnaces of the three incineration
lines, as part of the project to upgrade
the TERSA plant. The work, which also
included the demolition of the existing
lining, was carried out during the period
2012 – 2014.
Teide Refractory Solutions has more than
60 years of experience in the sector.
The constant studies and enhancements carried out by the
R&D department in the area of nitride-bonded/additivated SiC
qualities in recent years has enabled the company to specialise in
this area for the purpose of offering clients the best quality silicon
carbide plates, in addition to other services and materials.
For this project, all the furnace zones were studied for the
purpose of identifying the optimal material for each of them and
achieving the desired result for the client. The work carried out
in this optimisation project entailed the lining of over 1,200 m2,
combining both shaped and unshaped materials, with the latter
being used on almost 100% of the side walls of the furnaces.
Teide Refractory Solutions S.L. was also awarded the maintenance
contract for the facility for the next 3-4 years. This includes
carrying out a modelling of the combustion process of each of the
lines with a view to gathering information on the behaviour of
the process and consequently on the operating conditions of each
part of the furnace-boiler.
Increase in equipment capacity and capacity of water-steam
cycle pipes
Montaje ampliación caldera (tubos) | Assembly of boiler extension (tubes)
combustión. Justo en los laterales de la parrilla se han colocado dos
hileras de placas de refractario también nitruradas con un espesor
especial de 150mm para proteger la caldera de la fuerte abrasión y
erosión que sufren por el contacto con el residuo.
Ampliación de la capacidad de los equipos y las tuberías del ciclo
agua vapor
El ciclo de agua-vapor de la planta fue construido en 1975 para
una producción de vapor total de 87 t/h. Con el plan de adecuación la producción total de vapor pasa a ser de 150 t/h, lo cual
obliga a revisar todo el balance de masa y energía de la planta.
Con los caudales obtenidos se procede a estudiar las velocidades
de las tuberías de agua, vapor y condensado así como la pérdida
de carga de los distintos circuitos. Finalmente, se sustituyen los
siguientes equipos cuya capacidad no permite absorber el incremento previsto:
Tuberías y colectores de vapor
Estos se dimensionan según el nuevo caudal del balance debido a
que las velocidades son próximas a los límites técnicos. Estas tuberías son: la tubería de vapor de salida de cada una de las calderas
hacia el colector principial, el colector principal de DN 500 y 5 metros de longitud, la tubería de unión entre colectores, y el colector
de baja presión que abastece los autoconsumos de planta como
son el vapor al desaireador y precalentadores de aire primario.
Se sustituyen las válvulas del colector principal, las del colector de
baja presión y colector de arranque, por válvulas de estanqueidad
cero con reductor de Pictor Valves.
Desaireador y tanque de agua de alimentación
El desaireador se sustituye por otro suministrado por Acsa y fabricado por Graver con una capacidad de tratamiento de agua de
114,7t/h; 39,2 t/h más que el original.
The water-steam cycle of the plant was built in 1975 for a total
steam output of 87 t/h. The adaptation project has increased
the total steam output to 150 t/h, which required a review of
the entire mass and energy balance of the plant. With the flows
obtained, a study was carried out of velocities of the water,
steam and condensate pipes as well as head loss in the different
circuits. Subsequent to the study, it was decided to replace the
following equipment due to the fact capacity was insufficient to
absorb the envisaged increase:
Steam pipes and drums
These are sized in accordance with the new flow due to the fact
that flow rates are close to technical limits. These pipes include:
the steam outlet pipe of each of the boilers that connects to the
main pipe, the main DN 500 pipe header of 5 metres in length,
the connection tube between pipes, and the low pressure steam
pipe header that supplies plant needs, including the steam for
the deaerator and primary air pre-heaters.
The valves of the main pipe, the low pressure pipe and the startup pipe were replaced with leakproof pressure reducing valves
supplied by Pictor Valves.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
end of the grate, the plates are made of alumina to optimise heat
transfer in the low combustion zone. At the sides of the grate, two
rows of nitride bonded refractory plates with a special thickness of
150 mm are installed to protect the boiler from the severe abrasion
and erosion created by the contact with the waste.
Deaerator and feedwater tank
The existing deaerator was replaced by a new deaerator supplied
by Acsa and manufactured by Graver. The new unit has a water
treatment capacity of 114.7 t/h, 39.2 t/h more than the previous unit.
Turbine by-pass system
The maximum steam flow to be re-routed to the by-pass and
auxiliary condenser system is 120 t/h, a flow far greater than the
original 87 t/h. The regulating valve was replaced by a CCI steam
attemperator valve (60 bar, 151º) is used for the attemperation
(60 bar, 151ºC).
New Alstom turbine condenser and condensate pre-heaters (I and II)
In 2005, the original turbine was replaced by an Alstom turbine
designed for a steam inflow of 120 t/h but no other equipment
Colectores vapor | Steam pipes
Sistema de by-pass de las turbinas
En 2005 se cambió la turbina original por una Alstom que se dimensionó para una entrada de vapor de 120t/h, pero no se modi-
FuturEnviro | Marzo March 2015
El caudal máximo de vapor a desviar hacia el sistema de by-pass y
condensador auxiliar es de aproximadamente 120 t/h, caudal muy
superior al del diseño original de 87t/h. Se sustituye la válvula de
regulación por una válvula atemperadora de vapor de CCI, para la
atemperación se utiliza agua de alimentación (60 bar, 151ºC).
www.futurenviro.es
33
Nuevo condensador de turbina Alstom y precalentadores de condensado (I y II)
Mejora y ampliación de los equipos y tuberías
para el aumento de la capacidad de producción
de vapor
ACSA Obras e Infraestructuras S.A.U, desde su área industrial ha llevado a cabo la ingeniería de detalle y la ejecución del proyecto de
mejora y ampliación de los equipos y tuberías para el aumento de
la capacidad de producción de vapor de la planta de Sant Adrià de
Besos. Se han sustituido las tuberías del ciclo agua-vapor, el colector
principal de alta presión, el colector de baja presión, los precalentadores de condensado, las bombas de alimentación a caldera, así
como el equipo desaireador y su tanque de agua de alimentación.
Las tuberías de vapor y el colector de alta (Ø500) han sido suministradas en acero aleado P-11 para una temperatura de operación de 400ºC, llevando a cabo un exhaustivo control de calidad
con el radriografiado y tratamiento térmico del 100% de las soldaduras, prueba de presión a 80 bar de todas las líneas, posterior
limpieza química, y soplado final con vapor de su interior. Las
líneas de tubería de retorno de condensado de baja presión y su
colector (Ø600), se han realizado en acero al carbono para una
temperatura máxima de operación de 223°C.
Se ha sustituido el equipo existente desaireador y su tanque
agua alimentación por otro nuevo adaptado a los nuevos balances térmicos de la planta; especial dificultad ha tenido la maniobra de sustitución del equipo mediante dos grúas
de gran tonelaje, puesto que el edificio no había sido
diseñado para tal fin. Todos estos trabajos se han
ejecutado en un periodo de 5 semanas de modo ininterrumpido, participando simultáneamente varios
equipos de soldadores y montadores organizados en
turnos de 24 horas, con el fin de interferir el menor
tiempo posible en las condiciones de operación de la
planta de Sant Adrià de Besos.
Upgrading and expansion of equipment and pipes
to increase steam production capacity
The industrial division of ACSA Obras e Infraestructuras S.A.U.
carried out the detailed engineering and execution of the project
for the upgrading and expansion of equipment and pipes to
increase steam production capacity at the Sant Adrià de Besos
plant. The water-steam cycle pipes were replaced, as were the
main high-pressure manifold pipe, the low-pressure manifold
pipe, the condensate preheaters, the boiler feed pumps, and the
deaeration unit and its corresponding feedwater tank.
The steam pipes and the high pressure manifold pipe (Ø500)
were supplied in P-11 alloy steel for an operating temperature of
400ºC. Exhaustive quality control was carried out by means of
digital radiography technology and thermal treatment of 100% of
welded joints, a pressure test of all lines at 80 bar, and subsequent
chemical cleaning and final steam blowing of the pipe interior.
The low pressure condensate return pipe and its manifold pipe
(Ø600) are made of carbon steel for a maximum operating
temperature of 223°C.
The existing deaerator unit and its feedwater tank were replaced
by a new unit adapted to the new heat balances of the plant. A
particularly difficult challenge was posed by the operation to replace
the unit by means of two high-capacity cranes, because the design
of the building hindered this process.
All this work was carried out over an
uninterrupted period of five weeks and
involved the simultaneous participation
of several welding and installation teams,
organised in 24-hour shifts with a view to
interfering for the shortest possible time
with operating conditions at the Sant
Adrià de Besos plant.
ficó ningún otro equipo. Con el plan de adecuación el caudal del
vapor de escape de la turbina se incrementa de 64 t/h a 92 t/h. Al
comprobar la superficie de intercambio del condensador existente
(1.210 m2), se determinó que era necesario sustituir el condensador
principal por uno nuevo con un 30% más de capacidad. El nuevo
condensador fabricado por GEA, de iguales medidas que el anterior,
dispone de una superficie de intercambio de 1.5552 m2, con 4.814
tubos de CuNi.
La consecución y mantenimiento de la presión de trabajo en el condensador principal (0,06 bara), así como la eliminación de los incondensables que arrastra el vapor, se realiza mediante un conjunto de eyectores de servicio accionados por vapor a 39 bar y 400ºC.
El equipo de servicio consta de dos etapas con un eyector por etapa
y de una unidad de condensación doble que utiliza como medio refrigerante el condensado proveniente del condensador impulsado
por las bombas.
Para mejorar la eficiencia del condensador se añadió un sistema
de limpieza de bolas para mantener más limpia la superficie de intercambio.
Uno de los requerimientos para la elección del condensador fue
que el incremento de temperatura del agua de refrigeración, al utilizarse agua de mar, según normativa, no puede ser superior a 13ºC.
La tubería de retorno del condensado al desaireador se sustituye por otra de mayor diámetro para reducir la velocidad a 1,6 m/s.
Con la disminución de la perdida de carga de la tubería, la altura
manométrica total del circuito no aumenta, y permite utilizar las
mismas bombas verticales de extracción de condensado sin tener
la necesidad de cambiarlas.
Modificación del circuito de agua de alimentación
y suministro de nuevas bombas
La instalación de bombeo para suministrar agua a las tres calderas
antes de la modificación estaba compuesta por cuatro electrobombas de 40 t/h, tres adquiridas en el año 1975 y la cuarta en 2003,
y una turbobomba de vapor. Debido al incremento en la producción de vapor de 10 t/h por caldera, es necesario aportar un caudal
de agua mayor reemplazando las bombas existentes por nuevas
bombas de 50t/h cada una. Este hecho permite seguir trabajando
con la misma filosofía anterior, tres bombas en funcionamiento en
operación normal de la planta, la cuarta bomba parada preparada
para arrancar para cubrir demandas puntuales y la turbobomba
como bomba de emergencia.
www.futurenviro.es
A ball cleaning system was installed to keep the heat transfer
surface clean, thereby improving condenser efficiency.
Because seawater is used, a key requirement for the selection of
the condenser was that the increase in temperature of the cooling
water could not exceed 13ºC, in accordance with current legislation.
The condensate return pipe to the deaerator was replaced by
a pipe of larger diameter in order to reduce the flow rate to
1.6 m/s. With the reduction in head loss of the pipe, the total
manometric head of the circuit did not increase, meaning
that the original vertical condensate extraction pumps did not
require replacement.
Modification of feed water circuit and supply of new
pumps
The pumping system to supply water to the three boilers prior
to the renovation project was made up of four electric pumps
with a capacity of 40 t/h (three acquired in 1975 and the fourth
in 2003), and a steam turbopump. Owing to the increase of 10
t/h in the steam output per boiler, it was necessary to provide
a greater flow of water and the old pumps had to be replaced
with new pumps with a unitary capacity of 50t/h. This enabled
the existing operating system to be maintained: three pumps
in operation in normal plant operating conditions with the
fourth pump on standby to cover peaks in demand, and the
turbopump acting as an emergency pump.
In order to reduce head loss in the feed water circuit to the
boilers, the dimensions of the pipes were modified and the
internal components of the drum level regulating valve were
replaced. With the new internal components, the valve had
difficulties in regulating low flows and another control valve
was added to the system for the regulation of the flow during
start-up and shut-downs of the line.
Work undertaken to increase electricity generation.
New 32.5 MVA alternator
Although the steam turbine had been adapted for a steam
inflow of 120 t/h at 39 bar and 400ºC, the alternator originally
installed remained in operation at the plant. To enable
increased electricity generation with the available steam flow
as a result of the change in NCV of the waste and the enlarging
of the boilers, it was necessary to substitute the alternator and
FuturEnviro | Marzo March 2015
Nuevo condensador principal | New main condenser
Achieving and maintaining the working pressure
in the main condenser (0.06 bar) and the
elimination of non-condensable gases is carried
out by means of a set of service ejectors driven
by steam at 39 bar and 400ºC. The service unit
comprises two stages with one ejector per stage
and a double condensation unit that uses the
condensate from the condenser, pumped by the
pumps, as a refrigerant.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
was modified at that time. The adaptation plan
envisaged an increase in turbine exhaust steam
from 64 t/h to 92 t/h. On examining the surface
area of the existing condenser (1,210 m2), it was
decided that the main condenser needed to be
substituted for a new condenser with 30% more
capacity. The new condenser, manufactured
by GEA, has the same dimensions and a heat
transfer surface area of 1.5552 m2, provided by
4,814CuNi tubes.
35
Actuaciones para aumentar la generación de energía eléctrica
Nuevo alternador de 32,5 MVA
Aunque la turbina de vapor estaba adaptada para 120 t/h de entrada de vapor a 39bar y 400ºC, el alternador de era el original de la
planta. Para poder incrementar la generación de energía eléctrica
con el caudal de vapor disponible por el cambio del PCI del residuo
y la ampliación de las calderas, era necesario sustituir el alternador
y el transformador de bloque de 22.5 MVA por uno de 32.5 MVA, así
como adaptar las instalaciones eléctricas a la nueva potencia.
Nuevo alternador | Nuevo alternador
the transformer of 22.5 MVA for a 32.5 MVA unit and and it was
also necessary to adapt the electrical installations to the new
capacity.
The new Jeumont Electric alternator is a three-phase, horizontal
shaft, air-cooled unit that connects to the existing steam
turbine shaft by means of rigid coupling. It has a nominal
power rating of 26 MW, a power factor of 0.80, and a voltage
of 11 kV ±10% in a frequency range of 50Hz. The exciter is of the
brushless type, with rotating diodes with permanent magnetic
poles (permanent magnetic generator- PMG). Unlike the
previous genset, two bearings are arranged, one just after the
coupling and the other prior to the PMG.
The generator has a closed recirculation ventilation system.
For cooling purposes, it is fitted with a water-air exchanger
made up of two condensers mounted on the upper part of the
housing. Each condenser comprises a double wall tube bundle
through which the cooling water circulates. The outside of
the tubes are made of copper,
the fins of aluminium and the
insides of CuNi. The condensers
are sized so that the alternator
can function at full power with
one heat exchanger out of
service.
To prevent the transmission of
vibrations, in 1975, the genset
was installed on an engine
bench/foundation the structure
of the remainder of the plant.
Because the dimensions and
loads of the new alternator
were different, it was necessary
to adapt the bench/foundation
and this work was carried out by
the original designer.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Para reducir la pérdida de carga del circuito de agua alimentación a
calderas se modificó el dimensionado de las tuberías de impulsión
de bombas y se cambiaron los internos de la válvula de regulación
de nivel de calderín. Con los nuevos internos la válvula tenía dificultades para regular a caudales bajos y se añadió al sistema otra
válvula de control para la regulación del caudal en arranques y paros de línea.
Modifications to the Alstom
turbine: extractions
A4 and A3 and control system
El generador tiene un sistema de ventilación por recirculación cerrado.
Para su refrigeración está equipado con un intercambiador agua-aire
constituido por dos refrigerantes montados en la parte superior de la
carcasa. Cada uno de los refrigerantes consta de un haz de tubos de
doble pared por los cuales circula el agua de refrigeración. Los tubos
son de cobre en la parte exterior con aletas de aluminio y de CuNi en
su interior. Están dimensionados para que el alternador pueda funcionar al 100% de la potencia con un intercambiador fuera de servicio.
Para evitar la transmisión de vibraciones, el turbogrupo se diseñó ya en 1975 sobre una bancada independiente de la estructura del resto de la planta. Como las dimensiones y las cargas
del nuevo alternador son distintas, para adaptar la bancada a
los nuevos valores se contactó con el calculista original de la estructura.
www.futurenviro.es
The new flow of steam available
for the Alstom turbine made it necessary to adapt the turbine
extractions to be able to continue supplying steam for the
self-consumption of the plant (steam at 4 bar and 223 ºC) as
efficiently as possible from extraction A3 of the turbine.
Similarly, the replacement of the alternator for a new
32.5 MVA model required the updating of the control and
monitoring system of the entire turbo generator, part Alstom
and part Jeumont, with the aim of achieving a control
architecture with all signals and alarms integrated, with
greater storage capacity and memory, with the possibility
of remote supervision and operation, as well as achieving
system redundancy by means of an emergency control
panel, amongst other enhancements. To carry this out,
communication was established between the PLCs and this
communication was integrated within the internal ring
for Ethernet communication of plant signals. The result is
improved operating conditions and safer operation.
Other initiatives related to the turbine included the adaptation
of the regulation of reactive energy exported to the grid and the
capacity to operate the turbine as a generating engine in a black
start situation so that plant operation can be guaranteed until a
state of safe operation is restored.
FuturEnviro | Marzo March 2015
El nuevo alternador de Jeumont Electric es síncrono trifásico, de eje
horizontal, con refrigeración por aire, cuyo eje se acopla con el eje de
la actual turbina de vapor mediante acoplamiento rígido. La potencia
nominal es de 26MW, con un factor de potencia de 0.80, la tensión
de 11 kV ±10% en el rango de frecuencia de 50Hz. La excitatriz es de
tipo sin escobillas, de diodos rotativos de polo magnético permanente
(PMG). A diferencia del turbogrupo anterior se colocaron dos cojinetes,
uno justo después del acoplamiento y el otro anterior a la PMG.
37
Other initiatives
Civil works
The plant was constructed in 1973 and 1974.
Since that time, the support structures for the
furnace-boiler units of the three lines had not
undergone substantial modifications.
The substitution of the existing grates for the
new grates with a width of 3.6 m, the change in
the furnace feeding system, the new membrane
boiler walls, the refractory plates, and changes
to other equipment changed the distribution
of effective loads borne by the existing civil
engineering structure. This made it necessary to
carry out a study of the structural behaviour of
pillars and pylons and the results of the study
showed that these pillars and pylons needed
to be reinforced in order to maintain the same
supporting capacity and ensure durability.
Modificaciones en la turbina Alstom: extracción
A4 y A3 y sistema de control.
El nuevo caudal de vapor disponible para la turbina Alstom hace
que sea necesario adecuar las extracciones de la turbina para poder seguir suministrando el vapor de autoconsumo de la planta,
vapor a 4bar y 223 ºC, de la forma más eficiente posible: des de la
extracción A3 de turbina.
De la misma forma, la sustitución del alternador por uno nuevo de
32.5MVA, obliga a actualizar el sistema de control y monitorización
de todo el turbogrupo, parte Alstom y parte Jeumont, con el objeto
de conseguir una arquitectura de control con todas las señales y
alarmas integradas, de más capacidad de almacenaje y memoria,
con la posibilidad de poder supervisar y trabajar con conexión remota y disponer de redundancia del sistema mediante un panel de
control de emergencia, entre otras mejoras. Para realizarlo se establece la comunicación entre los PLC’s y se integra dentro del anillo
interno de comunicación Ethernet de las señales de la planta. Se
obtiene como efecto una mejora en las condiciones de trabajo y
una operación más segura.
The civil engineering work undertaken was based on a Ros Roca
design study and basically consisted of the reinforcement of the
pylons and pillars of each line.
Adaptation of the existing electrical installation: DM3
transformer, electrical panels, transmission lines.
The electrical energy produced feeds the bus bars where the
transformers are connected for the internal power consumption
of the plant. The generating voltage of the alternator
subsequent to transformation is 25 KV and the self-consumption
voltage is 380 V.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
Refuerzo encepados y pilares | Reinforcement of pylons and pillars
Nuevo trafo de bloque | New block transformer
Otras actuaciones realizadas en la turbina han sido la adaptación
de la regulación de la energía reactiva exportada a la red y la capacidad de hacer funcionar la turbina como motor de generación
cuando hay un cero eléctrico para que garantice el funcionamiento
de la planta hasta reconducirla a un estado de operación segura.
Otras actuaciones:
Obra civil
Con la sustitución de las parrillas existentes por las nuevas parrillas
de 3,6 m de ancho, el cambio del sistema de alimentación al horno,
las nuevas paredes de membrana de caldera y el refractario, entre
otros equipos, se cambia la distribución de cargas efectiva sobre
la estructura de obra civil existente. Este hecho hace necesario
realizar un estudio del comportamiento estructural de los pilares
y encepados, cuyo resultado determinó que hacía falta reforzar los
pilares y encepados si se quería conservar la misma capacidad portante de los elementos de carga y garantizar su durabilidad.
www.futurenviro.es
FuturEnviro | Marzo March 2015
La obra civil de la planta se desarrolló en el transcurso de los años
1973 y 1974. Desde entonces, la estructura de soporte de los conjuntos de horno-caldera de las tres líneas, no ha sufrido modificaciones sustanciales.
39
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
www.futurenviro.es
40
Los trabajos de obra civil se realizan según el proyecto de Ros Roca
y consisten básicamente en el refuerzo de los encepados y de los
pilares, correspondientes a cada una de las líneas.
Adecuación de la instalación eléctrica existente: transformador
DM3, cuadros eléctricos de líneas.
La energía eléctrica producida alimenta a las barras de distribución
donde se conectan los transformadores para el consumo interno
de la energía eléctrica de la planta. La tensión de generación del
alternador después del transformador de bloque es de 25kV y la de
autoconsumo de 380 V.
Aunque no ha habido un aumento de potencia consumida por la
planta como consecuencia del aumento de capacidad térmica, se
ha aprovechado que la mayor parte de consumidores y motores
de los hornos-caldera iban a ser nuevos para establecer una nueva
distribución de cargas entre las tres unidades de transformación
y distribución (DM1, DM2 y DM3) que permita disponer de un sistema con los consumos más equilibrados y una mayor flexibilidad
en cuanto a poder realizar reparaciones sin tener la necesidad de
parar la planta.
Para ello se sustituyó el transformador de reserva de 630 kVA por
uno de 2000kVA. El cuadro de distribución correspondiente (DM3),
y el aparellaje asociado por otro dimensionado para los nuevos valores de potencia.
Además, la actuación realizada en las unidades de horno–caldera requirió la sustitución completa de los centros de control
de motores (CCM) de cada línea, por unos nuevos de Siemens
tipo cubículos extraíbles previstos para dar alimentación a todos los nuevos consumidores eléctricos de potencia incluidos en
el alcance del cambio de las parrillas y del sistema de extracción
de escorias, además de los consumidores existentes que no han
sido sustituidos.
Although there was no increase in plant power consumption
as a result of the increased thermal capacity, advantage
was taken of the fact that the majority of the consumers
and engines of the furnace-boilers were going to be new
for the purpose of establishing a new distribution of loads
between the three transformer and distribution units (DM1,
DM2 and DM3). This facilitates a system with more balanced
consumption and greater flexibility in terms of undertaking
repairs without shutting down the plant.
For this purpose, the 630 kVA standby transformer was
replaced by a 2000 kVA transformer, and the corresponding
switchboard (DM3) and associated switchgear was also
replaced by equipment sized for the new power values.
Moreover, the work carried out on the furnace-boiler units
required the complete replacement of the Motor Control
Centres (MCC) of each line. The existing MCCs were substituted
for new Siemens withdrawable cubicle type MCCs, which
supply all the new power consumers associated with the
change of grates and the slag extraction system, in addition to
the existing consumers that were not replaced.
Project scheduling and investment
In order to execute the project with greater cost control and
quality, the scope of the basic design, drawn up by engineering
company Recuperación de la Energía S.A, was divided into
different stages. These stages were classified as three main
initiatives in accordance with function: initiatives for the
water-steam cycle, initiatives for steam generation and
initiatives associated with combustion.
The project was carried out over the period 2008-2014, with
a strategy of causing the minimum possible impact on the
waste treatment service of the metropolitan area of Barcelona.
Sala cuadros BT | BT electrical room
FuturEnviro | Marzo March 2015
Generación de Energía
Power Generation
10000
Ciclo Agua-Vapor
Water-Steam Cycle
8000
Combustión
Combustion
6000
4000
2000
0
2008
2009
El proyecto se ha ejecutado en el período 2008-2014, bajo la premisa de afectar el mínimo posible al servicio de tratamiento de residuo del área metropolitana de Barcelona. En este sentido se han
aprovechado las paradas anuales programadas de línea y de planta, y se ha funcionado en distintos intervalos de tiempo con dos de
las tres líneas de combustión.
La inversión total del proyecto ha sido de treinta tres millones trescientos treinta mil euros (33.330.000€). En el siguiente cuadro se
muestra la distribución principal de las distintas actuaciones en
miles de euros durante los años de ejecución.
Resultados
•Adecuación de la planta a las necesidades y objetivos del nuevo
Programa de gestión de residuos municipales de Cataluña.
Como resultado de la realización del proyecto se ha conseguido
adecuar la planta para tratar el residuo con un poder calorífico
más alto garantizando la misma cantidad de toneladas tratadas
al año 360.000 t/año. Si no se hubiera llevado a cabo la adecuación las toneladas de tratamiento anuales se habrían reducido,
como mínimo, a 300.000 t/año. Este hecho, consolida uno de los
objetivos principales del proyecto: conservar la misma capacidad
nominal de tratamiento.
•Mejora de la eficiencia energética de la planta.
Con la misma cantidad de residuos tratados, se incrementa la
producción de energía eléctrica anual a 200.000MWh, equivalente al consumo de una población de 100.000 habitantes. La
potencia nominal de la planta aumenta en 8MW, hasta un total
de 31,75MW. Consecuentemente se cumple con el segundo objetivo de la adecuación, la optimización del rendimiento energético,
adaptando el ciclo termodinámico para aprovechar al máximo el
incremento de la energía calorífica de este nuevo residuo.
•Ampliación del vapor disponible para el suministro a la red de frío
y calor
Al haber aumentado la producción de vapor de 120 t/h a 150 t/h,
se obtiene más vapor disponible para poder suministrar a la red
de frío y calor Fòrum y 22@ de Barcelona.
•Sostenibilidad económica y operativa
Se apuesta por la continuidad del servicio que presta la instalación, se inicia un nuevo período de vida útil con un horizonte temporal de 25 años, y se garantizan los puestos de trabajo
directos e indirectos asociados a esta
actividad.
•Gestión más sostenible del residuo
Obtención de una gestión de los residuos más sostenible, reduciendo la
disposición final y optimizando la valorización energética del residuo.
www.futurenviro.es
2010
2011
2012
2013
2014
Año / Year
Programmed annual line and plant shutdowns were availed
of and the plant operated during different periods with two of
the three combustion lines in operation.
Total investment in the project amounted to thirty three
million, three hundred and thirty thousand euro (€33,330,000).
The table shows the main cost distribution of the different
initiatives in thousands of euro, over the period in which the
project was carried out.
Results
• The adaptation of the plant to the requirements and
objectives of the new Catalan municipal waste management
programme.
As a result of the project, the plant has been adapted to treat
waste with a higher calorific value, whilst ensuring that the
same quantity of waste is treated per annum (360.000 t/
annum). If the adaptation work had not been undertaken,
the quantity of waste treated would have fallen to 300,000
t/annum at best. This means that one of the main project
objectives was achieved, that of maintaining the same
nominal treatment capacity.
Planta de valorización energética de Sant Adrià de Besòs | Sant Adrià de Besòs waste-to-energy plant
12000
• Enhanced energy efficiency at the plant.
With the same quantity of treated waste, the annual
electricity output of the plant has been increased to 200,000
MWh, equivalent to the consumption of a population of
100,000. The nominal installed capacity of the plant has
increased by 8 MW, to a total of 31.75 MW. Therefore, the
second objective of the adaptation of the facility has been
achieved; optimisation of energy production, adapting the
thermodynamic cycle to fully avail of the increased calorific
value of the new waste.
•Increasing the steam available for the supply of the district
heating and cooling network
By increasing the production of steam from 120 t/h to 150
t/h, more steam is available to supply the district heating and
cooling network of the Fórum and 22@ areas of Barcelona.
•Economic and operational sustainability
A commitment has been made to the continuity of the
service provided by the facility. The plant has begun a new
lifecycle with a horizon period of 25 years and the direct
and indirect employment afforded by the facility has been
guaranteed.
Noelia Marcuello
Ingeniera de Planta
Plant Engineer
•More sustainable waste
management
More sustainable waste
management is achieved,
with a reduction in landfilling
and optimisation of energy
recovery.
FuturEnviro | Marzo March 2015
Para efectuar la ejecución del proyecto con un mayor control de costes y
de la calidad, se dividió el alcance del
proyecto básico, realizado por la ingeniería Recuperación de Energía, S.A.,
en distintos lotes que se clasificaron
en tres actuaciones principales según
su funcionalidad: actuaciones para el
ciclo agua-vapor, actuaciones para la
generación de vapor y actuaciones sobre la combustión.
Miles de euros / Thousands of euro
Cronología e inversión
41

Documentos relacionados