sondas1969

Transcripción

sondas1969
Cronología de lanzamientos espaciales 1
Cronología de
Lanzamientos
Espaciales
Año 1969
Copyright © 2009 by Eladio Miranda Batlle. All rights reserved.
Los textos, imágenes y tablas que se encuentran en esta cronología cuentan con la autorización
de sus propietarios para ser publicadas o se hace referencia a la fuente de donde se obtuvieron los
mismos
.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 2
Contenido
1969
Enero
05.01.69
08.01.69
10.01.69
12.01.69
14.01.69
15.01.69
20.01.69
22.01.69
22.01.69
23.01.69
25.01.69
30.01.69
Venera 5 (V-69 #1)
Kosmos (263) (Meteor-1 #(9a))
Venera 6 (V-69 #2)
Kosmos 263 (Zenit-2 #63)
Soyuz 4
Soyuz 5
Zond (7a) (L1 11)
OSO 5
KH-8 19
Kosmos 264 (Zenit-4M #2, Rotor #2)
Kosmos (265) (US-A Test #5)
Isis 1
Febrero
04.02.69 Kosmos (265) (Meteor-1 #(9b))
05.02.69 KH-4B 6 / SSF-C 2
KH-4B 1106 Subsatellite
05.02.69
07.02.69
09.02.69
09.02.69
19.02.69
21.02.69
25.02.69
25.02.69
26.02.69
26.02.69
Intelsat-3 2/ INTELSAT 3 F-3
Kosmos 265 (DS-P1-Yu #18)
TACSAT 1
1969-013B
Luna (15a) /(Lunokhod (1)) (E-8 #1)
L1S #1
L3 Model #1
Kosmos 266 (Zenit-2 #64)
Mariner 6
Kosmos 267 (Zenit-4 #48)
ESSA 9
Marzo
03.03.69 Apollo 9 (CSM 104)
LEM 3 /Apollo 9 SIVB
04.03.69 KH-8 20
05.03.69 Kosmos 268 (DS-P1-Yu #19)
05.03.69 Kosmos 269 (Tselina-O #4)
06.03.69 Kosmos 270 (Zenit-4 #49)
15.03.69 Kosmos 271 (Zenit-4 #50)
17.03.69 Kosmos 272 (Sfera #4)
18.03.69 OV1 17 (P69-1(a))
OV1 18 (P69-1(b))
OV1 19 (P69-1(c))
Orbiscal 2 (OV1 17A, P69-1(d))
18.03.69 1969-025E / 1969-025F
19.03.69 KH-4A 50
SSF-B 14 /
KH-4A 1050 Subsatellite
22.03.69 Kosmos 273 (Zenit-2 #65)
24.03.69 Kosmos 274 (Zenit-4 #51)
26.03.69 Meteor-1 1
27.03.69 Mariner 7
27.03.69 Mars (2b) (M-69 #1)
28.03.69 Kosmos 275 (DS-P1-I #5)
Abril
02.04.69
04.04.69
04.04.69
09.04.69
11.04.69
13.04.69
14.04.69
Mars (2c) (M-69 #2)
Kosmos 276 (Zenit-4 #52)
Kosmos 277 (DS-P1-Yu #20)
Kosmos 278 (Zenit-2 #66)
Molniya-1 11
Canyon 2
Nimbus 3
SECOR 13 (S69-2)
15.04.69 Kosmos 279 (Zenit-4 #53)
15.04.69 KH-8 21
23.04.69 Kosmos 280 (Zenit-4M #3, Rotor #3)
Mayo
02.05.69 KH-4A 51
SSF-B 15KH-4A 1051 Subsatellite
08.05.69 Apollo 10 (CSM 106)
LEM 4
13.05.69 Kosmos 281 (Zenit-2 #67)
20.05.69 Kosmos 282 (Zenit-4 #54)
22.05.69 Intelsat-3 4
23.05.69 Vela 9
Vela 10
OV5 5 (ERS 29, S68-3(a))
OV5 6 (ERS 26, S68-3(b))
OV5 9 (S68-3(c))
27.05.69 Kosmos 283 (DS-P1-Yu #21)
27.05.69 Kosmos 284 (Zenit-4 #55)
Junio
03.06.69 KH-8 22
03.06.69 Kosmos 285 (DS-P1-Yu #22)
04.06.69 Luna (15c)
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 3
05.06.69
14.06.69
15.06.69
21.06.69
24.06.69
27.06.69
28.06.69
OGO 6
Luna (15b) (E-8-5 #1)
Kosmos 286 (Zenit-4 #56)
Explorer 41 (IMP G)
Kosmos 287 (Zenit-2 #68)
Kosmos 288 (Zenit-4 #57)
Biosat 3 (Bios 3)
Julio
03.07.69 L1S #2
L3 Model #2
03.07.69 STV 2
10.07.69 Kosmos 289 (Zenit-4 #58)
13.07.69 Luna 15 (E-8-5 #2)
16.07.69 Apollo 11 (CSM 107)
LEM 5 Apollo 11 SIVB
22.07.69 Kosmos 290 (Zenit-2 #69)
22.07.69 Molniya-1 12
23.07.69 DMSP-4B F3
23.07.69 1969-062B
23.07.69 Kosmos (291) (DS-P1-Yu #23)
24.07.69 KH-4B 7
25.07.69 Intelsat-3 5
31.07.69 Ferret 14 o 13
Agosto
06.08.69 Kosmos 291 (IS-M-GVM)
07.08.69 Zond 7 (L1 12)
09.08.69 OSO 6
PAC 1
12.08.69 ATS 5
13.08.69 Kosmos 292 (Tsiklon #3)
16.08.69 Kosmos 293 (Zenit-2M #4, Gektor #4)
19.08.69 Kosmos 294 (Zenit-4 #59)
22.08.69 Kosmos 295 (DS-P1-Yu #24)
23.08.69 KH-8A 1KH 8-23
27.08.69 Pioneer E
TTS 3 /TETR-C
29.08.69 Kosmos 296 (Zenit-4 #60)
Septiembre
02.09.69
15.09.69
18.09.69
22.09.69
Kosmos 297 (Zenit-4 #61)
Kosmos 298 (OGCh #21)
Kosmos 299 (Zenit-4 #62)
KH-4A 52
SSF-B 16KH-4A 1052 Subsatellite
22.09.69 Ohsumi (#4)
23.09.69 Kosmos 300 (Luna (16a)) (E-8-5 #3)
24.09.69 Kosmos 301 (Zenit-2 #70)
30.09.69 Poppy 6A (NRL-PL 161) 1969-082A
Poppy 6B (NRL-PL 162) 1969-082C
Poppy 6C (NRL-PL 163)…
Poppy 6D (NRL-PL 164)….
Timation 2
Tempsat 2
SOICAL Cone (S69-4(a))…
SOICAL Cylinder (S69-4(b))….
NRL-PL 176
SSF-B 17
Octubre
01.10.69
06.10.69
11.10.69
12.10.69
13.10.69
14.10.69
17.10.69
18.10.69
21.10.69
22.10.69
24.10.69
24.10.69
24.10.69
ESRO 1B (Boreas)
Meteor-1 2
Soyuz 6
Soyuz 7
Soyuz 8
Interkosmos 1 (DS-U3-IK #1)
Kosmos 302 (Zenit-4 #63)
Kosmos 303 (DS-P1-Yu #25)
Kosmos 304 (Tsiklon #4)
Kosmos 305 (Luna (16b)) (E-8-5 #4)
Kosmos 307 (DS-P1-Yu #26)
Kosmos 306 (Zenit-2M #5, Gektor #5)
KH-8A 2
Noviembre
04.11.69
07.11.69
12.11.69
14.11.69
Kosmos 308 (DS-P1-I #6)
Azur
Kosmos 309 (Zenit-2 #71)
Apollo 12 (CSM 108)
LEM 6
15.11.69 Kosmos 310 (Zenit-4 #64)
22.11.69 Skynet 1A
22.11.69 1969-103B
24.11.69 Kosmos 311 (DS-P1-Yu #27)
24.11.69 Kosmos 312 (Sfera #5)
28.11.69 Kosmos (311) (L1E 1)
Diciembre
03.12.69
04.12.69
11.12.69
11.12.69
20.12.69
23.12.69
23.12.69
23.12.69
25.12.69
25.12.69
27.12.69
Kosmos 313 (Zenit-2M #6, Gektor #6)
KH-4B 8
Kosmos 314 (DS-P1-Yu #28)
1969-106B
Kosmos 315 (Tselina-O #5)
Kosmos 317 (Zenit-4MK #1,
Germes #1)
1969-108C
Kosmos 316 (I2P #3)
Interkosmos 2 (DS-U1-IK #1)
1969-110B
Kosmos (318) (Ionosfernaya)
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 4
Enero 1969
Kosmos (263) (Meteor-1 #(9a))
Intento fallido
Venera 5 (V-69 #1)
Venera 6 (V-69 #2)
Venera 5. Otros nombres: 1969-001A, Venus
5, 03642.
Lanzamiento: 5 de enero de 1.969 a las
06:28:00 GMT.
Masa seca en órbita: 1130 kg.
La sonda Venera 5 fue lanzada desde la
nave Tyazheliy Sputnik (en órbita terrestre y
denominada también 69-001C) hacia Venus
para obtener datos atmosféricos. La nave era
muy similar a la Venera 4 pero tenía un
diseño más robusto. Cuando se aproximaba
a la atmósfera de Venus, una cápsula de 405
kgs. conteniendo instrumentos científicos fue
expulsada
de
la
nave
principal.
Durante el descenso hacia la superficie de
Venus, se desplegó un paracaídas para
frenar en lo posible la caída. El 16 de mayo
de 1.969 durante un total de 53 minutos, la
sonda envió a la Tierra datos de la atmósfera
venusiana desde su cara nocturna. La nave
portaba un medallón donde se encontraba
grabado el escudo de armas de la URSS y
un bajorrelieve de Lenin.
Venera 6. Otros nombres: 1969-002A ,
Venus 6, 03648.
Lanzamiento: 10 de enero de 1.969 a las
05:52:00 GMT.
Masa seca en órbita: 1130 kg.
La sonda Venera 6 fue lanzada desde la
nave Tyazheliy Sputnik (en órbita terrestre y
denominada también 69-002C) hacia Venus
para
obtener
datos
atmosféricos.
La nave era muy similar a la Venera 4 pero
tenía un diseño más robusto.
Cuando se aproximaba a la atmósfera de
Venus, una cápsula de 405 kgs. conteniendo
instrumentos científicos fue expulsada de la
nave principal. Durante el descenso hacia la
superficie de Venus, se desplegó un
paracaídas para frenar en lo posible la caída.
El 17 de mayo de 1.969 durante un total de
51 minutos, la sonda envió a la Tierra datos
de la atmósfera venusiana desde su cara
nocturna.
10 January 1969 Venera 6 Program: Venera.
Launch Site: Baikonur . Launch Vehicle:
Molniya 8K78M. Mass: 1,128 kg.
Venera 6 was launched towards Venus to
obtain atmospheric data. When the
atmosphere of Venus was approached, a
capsule weighing 405 kg was jettisoned from
the main spacecraft. This capsule contained
scientific instruments.
During descent
towards the surface of Venus, a parachute
opened to slow the rate of descent. For 51
min on May 17, 1969, while the capsule was
suspended from the parachute, data from the
Venusian atmosphere were returned. The
spacecraft also carried a medallion bearing
the coat of arms of the U.S.S.R. and a basrelief of V.I. Lenin to the night side of Venus.
17 May 1969 Venera 6 lands on Venus
Manned flight: Apollo 10.
Kamanin notes in his diary that the twin
Venus missions mark a new triumph of the
USSR in space, but pale in comparison with
the American launch of Apollo 10. Kamanin
notes there is not one word about the Apollo
10 mission in Pravda.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 5
Kosmos 263 (Zenit-2 #63)
Cosmos 263 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1969-01-12
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4000.0 kg
Soyuz 4
Crew
No.
1
Surname Given name
Shatalov
Vladimir
Aleksandrovich
Job
Commander
Flight
Launch, orbit and landing data
Launch date:
Launch time:
Launch site:
Launch pad:
Altitude:
Inclination:
Landing date:
Landing time:
Landing site:
14.01.1969
07:30 UT
Baikonur
31
173 - 225,3 km
51,72°
17.01.1969
06:50 UT
40 km NW of Karaganda
Launch from Baikonur; landing 40 km
northwest of Karaganda
Planned launch on January 13, was scrubbed
due of bad weather. That was the first time in
Soviet space history. Docking with Soyuz 5
(Soyuz 4 had the active part). The two
spacecrafts were electrical and mechanically
connected , but there was no direct way from
one spaceship to the other. It was the first
docking of manned spacecrafts. Soyuz 5cosmonauts Khrunov and Yeliseyev entered
the Soyuz 4, in a spacewalk. After
pressurisation of the Soyuz 4-capsule they
were greeted by Shatalov. All three
cosmonauts landed with the Soyuz 4spacecraft. Scientific (medical and biological)
and technical experiments were also
performed, but all in all it were tests of lunar
landing techniques.
The landing was 40 km far from the planned
point.
Photos
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 6
Crew
N
o.
1
2
3
Surna
me
Volyn
ov
Yelis
eyev
Khru
nov
Given name
Job
Boris
Valentinovich
Aleksei
Stanislavovich
Yevgeni
Vasiliyevich
Commande
r
Flight
Engineer
Research
Engineer
Flight
Launch from Baikonur; landing 200 km
southwest of Kustanay / 25 km southeast of
Zhitikara.
Soyuz 5
Launch, orbit and landing data
Launch date:
15.01.1969
Launch time:
07:04 UT
Launch site:
Baikonur
Launch pad:
1
Altitude: 198,7 - 230,2 km
Inclination:
51,69°
Landing time: 18.01.1969
Landing time: 07:59 UT
Landing site:
200 km SW of Kustanay
Docking with Soyuz 4, which had the active
part. The two spacecrafts were electrical and
mechanically connected , but there was no
direct way from one spaceship to the other. It
was the first docking of manned spacecrafts.
Soyuz 5-cosmonauts Khrunov and Yeliseyev
entered the Soyuz 4 in a spacewalk on
16.01.1969 (0h 37m). After pressurisation of
the Soyuz 4-capsule they were greeted by
cosmonaut Shatalov in the Soyuz 4-capsule.
Soyuz 4 and 5 separated after 4 hours and
35 minutes docked together. All three
cosmonauts landed with the Soyuz 4spacecraft. Scientific (medical and biological)
and technical experiments were also
performed, but all in all it were tests of lunar
landing techniques.
Volynov remained on Soyuz 5. During the reentry the service module failed to separate
after retrofire resulting in nose-first re-entry,
which would have meant a sure death of the
cosmonaut. So to say in the last moment the
bolts connecting the service module to the reentry capsule finally burned through and the
capsule turned around, heat shield forward,
just before the forward hatch melted. All
capsule propellant was exhausted and the
cosmonaut made a 9-g uncontrolled re-entry,
landing hundreds of kilometres short. It was
one of the hardest landings in space history
and Volynov broke his jaw and lost several
teeth.
Note
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 7
Yeliseyev and Khrunov landed on 17.01.1969
at 06:50 UT with Soyuz 4.
command system provided for 155 groundbased commands. For more information, see
A. W. L. Ball, Spaceflight, v. 12, p. 244, 1970.
Launch Date: 1969-01-22
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 645.0 kg
KH-8 19
Zond (7a) (L1 11) Zond 1969ª
Intento fallido
This mission was intended to be similar to the
Zond 5 and Zond 6 missions, consisting of a
lunar flyby and return to Earth, an unmanned
test of the lunar capsule. The craft was
presumably
equipped
with
automatic
cameras. One of the SL-12/D-1-e stage 2
engines shut down 25 seconds early, causing
the emergency system to abort the flight. The
escape tower brought the Zond cabin down
safely.
OSO 5
The objectives of the OSO satellite series
were to perform solar physics experiments
above the atmosphere during a complete
solar cycle and to map the entire celestial
sphere for direction and intensity of UV, X-ray
and gamma radiation. The OSO 5 platform
consisted of a sail section that pointed two
experiments continually toward the sun and a
wheel section that spun about an axis
perpendicular to the pointing direction of the
sail and carried six experiments. Attitude
adjustments were performed by gas jets and
a magnetic torquing coil. Pointing control
permitted the pointed experiments to scan the
region of the solar disk in a 40- by 40-arc-min
raster pattern. In addition, the pointed section
could be commanded to select and scan a
7.5- by 7-arc-min region near the solar disk.
Data were simultaneously recorded on tape
and transmitted by PCM/PM telemetry. A
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft
Launch Date: 1969-01-22
Launch Vehicle: Titan IIIB-Agena D
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Kosmos 264
Rotor #2)
(Zenit-4M
#2,
Cosmos 264 was a third generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The spacecraft
carried radio astronomy and gamma ray
experiments. It was maneuverable.
Launch Date: 1969-01-23
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
Kosmos (265) (US-A Test #5)
Intento fallido
Isis 1
ISIS 1 was an ionospheric observatory
instrumented with sweep- and fixedfrequency ionosondes, a VLF receiver,
energetic and soft particle detectors, an ion
mass spectrometer, an electrostatic probe, an
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 8
electrostatic analyzer, a beacon transmitter,
and a cosmic noise experiment. The sounder
used two dipole antennas (73 and 18.7 m
long).
The satellite was spin-stabilized at about 2.9
rpm after antenna deployment. Some control
was exercised over the spin rate and attitude
by using magnetically induced torques to
change the spin rate and to precess the spin
axis. A tape recorder with 1-h capacity was
included on the satellite. The satellite could
be
programmed
to
take
recorded
observations for four different time periods for
each full recording period. The recorder data
were dumped only at Ottawa. For non-taperecorded observations, data for the satellite
and subsatellite regions could be acquired
and telemetered when the spacecraft was in
the line of sight of telemetry stations. The
selected telemetry stations were in areas that
provided primary data coverage near the 80deg-W meridian and in areas near Hawaii,
Singapore, Australia, the UK, Norway, India,
Japan, Antarctica, New Zealand, and Central
Africa. NASA support of the ISIS project was
terminated on October 1, 1979.
A significant amount of experimental data,
however, was acquired after this date by the
Canadian project team. ISIS 1 operations
were terminated in Canada on March 9,
1984. The Radio Research Laboratories
(Tokyo, Japan) then requested and received
permission to reactivate ISIS 1. Regular ISIS
1 operations were started from Kashima,
Japan, in early August 1984. ISIS 1 was
deactivated effective January 24, 1990. A
data restoration effort began in the late 1990s
and successfully saved a considerable
portion of the high-resolution data before the
telemetry tapes were discarted.
Foto:Isis 1
Launch Date: 1969-01-30
Launch Vehicle: Delta
Launch Site: Vandenberg AFB, United States
Mass: 241.0 kg
Febrero 1969
Kosmos (265) (Meteor-1 #(9b))
Intento fallido
KH-4B 6 / SSF-C 2
KH-4B 1106 Subsatelite
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Thor Agena D rocket. It was KH-4B (Key
Hole-4B) type spacecraft. This spacecraft had
the best image quality to date.
Launch Date: 1969-02-05
Launch Vehicle: Thor Augmented DeltaAgena D
Launch Site: Vandenberg AFB, United States
Mass: 1700.0 kg
Intelsat-3 2 INTELSAT 3 F-3
INTELSAT 3F-3 was launched by NASA for
Communcations Satellite Corporation.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 9
Foto: Intelsat-3 [Intelsat]
Launch Date: 1969-02-06
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 642.0 kg
satellite communication repeaters with small
surface terminal communication equipment
for highly mobile land,
sea and air forces. This project was led by
the USAF Space and Missile Systems
Organization (SAMSO). It was a cylindrical
shaped aluminum structure with passive
thermal control. It was spin stabilized (54
rpm) to 0.1 deg using new gyrostat technique.
Body mounted solar cells generated 980 W
max.
The vehicle carried two transponders, one at
X-band and one at UHF. The X-band
transponder had a bandwidth of 10 Mhz and
a maximum RF power of 30 watts. The UHF
transponder has a bandwidth of 10Mhz and a
maximum RF output of 230 watts. Provision
was made for cross strapping the UHF and Xband up and downlinks with a reduced usable
bandwidth of 425 kHz. Earth coverage horn
antennas were used at X-band, bifilar helices
were used at UHF.
Kosmos 265 (DS-P1-Yu #18)
Cosmos 265 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-02-07
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 400.0 kg
TACSAT 1
TacSat was designed to experimentally test
and
develop
tactical
communications
concepts for all US military services. The
mission evaluated the feasibility of using
Foto:TACSAT [Boeing BSS
Launch Date: 1969-02-09
Launch Vehicle: Titan III-C
Launch Site: Cape Canaveral, United States
Mass: 640.0 kg
Nominal Power: 980.0 W
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 10
1969-013B
Lifetime:
Launch Date: 1969-02-09
Launch Vehicle: Titan
Launch Site: Cape Canaveral, United States
Kosmos 266 (Zenit-2 #64)
Luna (15a) (Lunokhod (1)) (E-8
#1)
Luna 15 was placed in an intermediate earth
orbit after launch and was then sent toward
the Moon. The spacecraft was capable of
studying circumlunar space, the lunar
gravitational field, and the chemical
composition of lunar rocks. It was also
capable
of
providing
lunar
surface
photography.
After
completing
86
communications sessions and 52 orbits of the
Moon at various inclinations and altitudes, the
spacecraft impacted the lunar surface on July
21, 1969.
Launch Date: 1969-07-13
Launch Vehicle: Proton Booster Plus Upper
Stage and Escape Stages
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 2718.0 kg
L1S #1 / L3 Model #1
Foto; Zond (L1S)
Nation:
Type
/
Application:
Operator:
Contractors:
Equipment:
Configuration:
Propulsion:
U.S.S.R.
Lunar orbit and return
7K-L1S
KTDU-53
Cosmos 266 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1969-02-25
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4000.0 kg
Mariner 6
Mariner 6 and 7 comprised a dual-spacecraft
mission to Mars, the sixth and seventh
missions in the Mariner series of spacecraft
used for planetary exploration in the flyby
mode. The primary objectives of the missions
were to study the surface and atmosphere of
Mars during close flybys to establish the
basis for future investigations, particularly
those
relevant
to
the
search
for
extraterrestrial life, and to demonstrate and
develop technologies required for future Mars
missions and other long-duration missions far
from the Sun. Mariner 6 also had the
objective of providing experience and data
which would be useful in programming the
Mariner 7 encounter 5 days later. Each
spacecraft carried a wide- and narrow-angle
television camera, an infrared spectroscope,
an infrared radiometer, and an ultraviolet
spectroscope. The spacecraft were oriented
entirely to planetary data acquisition, and no
data were obtained during the trip to Mars or
beyond Mars.
Spacecraft and Subsystems
The Mariner 6 and 7 spacecraft were
identical, consisting of an octagonal
magnesium frame base, 138.4 cm diagonally
and 45.7 cm deep. A conical superstructure
mounted on top of the frame held the highgain 1 meter diameter parabolic antenna and
four solar panels, each measuring 215 x 90
cm, were affixed to the top corners of the
frame. The tip-to-tip span of the deployed
solar panels was 5.79 m. A low-gain
omnidirectional antenna was mounted on a
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 11
2.23 m high mast next to the high-gain
antenna. Underneath the octagonal frame
was a two-axis scan platform which held
scientific instruments. Overall science
instrument mass was 57.6 kg. The total
height of the spacecraft was 3.35 m.
The spacecraft was attitude stabilized in three
axes (referenced to the sun and the star,
Canopus) through the use of 3 gyros, 2 sets
of 6 nitrogen jets mounted on the ends of the
solar panels, a Canopus tracker, and two
primary and four secondary sun sensors.
Propulsion was provided by a 223 N rocket
motor mounted within the frame which used
monopropellant hydrazine. The nozzle with 4jet vane vector control protruded from one
wall of the octagonal structure. Power was
supplied by 17,472 photovoltaic cells
covering an area of 7.7 square meters on the
four solar panels. These could provide 800 W
of power near Earth and 449 W at Mars. The
maximum power requirement was 380 W at
Mars encounter. A 1200 W-hr rechargeable
silver-zinc battery was used to provide
backup power. Thermal control was achieved
through the use of adjustable louvers on the
sides of the main compartment.
Three telemetry channels were available for
telecommunications. Channel A carried
engineering data at 8 1/3 or 33 1/3 bps,
channel B carried scientific data at 66 2/3 or
270 bps and channel C carried science data
at 16,200 bps. Communications were
accomplished via the high- and low-gain
antennas via dual S-band travelling wave
tube 10/20 W amplifiers for transmission and
a single receiver. An analog tape recorder
with a capacity of 195 million bits could store
television
images
for
subsequent
transmission. Other science data was stored
on a digital recorder. The command system,
consisting of a central computer and
sequencer (CC&S), was designed to actuate
specific events at precise times. The CC&S
was programmed with a standard mission
and a conservative backup mission befire
launch, but could be commanded and
reprogrammed in flight. It could perform 53
direct commands, 5 control commands, and 4
quantitative commands.
Mission Profile
Mariner 6 was launched from Launch
Complex 36B at Cape Kennedy (Mariner 7
was launched 31 days later). It represented
the first mission launched on the
Atlas/Centaur, (AC20, spacecraft 69-3)
consisting of a 1 1/2 stage Atlas SLV-3C and
a restartable Centaur stage. The main
booster was jettisoned 4 min. 38 sec. after
launch followed by a 7.5 minute Centaur burn
to inject the spacecraft into Mars directascent trajectory. After Mariner 6 separated
from the Centaur the solar panels were
deployed. A midcourse correction involving a
5.35 second burn of the hydrazine rocket
occurred on 1 March 1969. A few days later
the explosive valves were deployed to
unlatch the scan platform. Some bright
particles released during the explosion
distracted the Canopus sensor, and attitude
lock was lost temporarily. It was decided to
place the spacecraft on inertial guidance for
the Mars flyby to prevent a similar
occurrence.
On 29 July, 50 hours before closest
approach, the scan platform was pointed to
Mars and the scientific instruments turned on.
Imaging of Mars began 2 hours later. For the
next 41 hours, 49 approach images (plus a
50th fractional image) of Mars were taken
through the narrow-angle camera. At 05:03
UT on 31 July the near-encounter phase
began, including collection of 26 close-up
images. Due to a cooling system failure,
channel 1 of the IR spectrometer did not cool
sufficiently to allow measurements from 6 to
14 micrometers so no infrared data were
obtained over this range. Closest approach
occurred at 05:19:07 UT at a distance of
3431 km from the martian surface. Eleven
minutes later Mariner 6 passed behind Mars
and reappeared after 25 minutes. X-band
occultation data were taken during the
entrance and exit phases. Science and
imaging data were played back and
transmitted over the next few days. The
spacecraft was then returned to cruise mode
which
included
engineering
and
communications tests, star photography TV
tests, and UV scans of the Milky Way and an
area containing comet 1969-B. Periodic
tracking of the spacecraft in its heliocentric
orbit was also done.
As a historical note, 10 days before the
scheduled launch of Mariner 6 while it was
mounted on top of the Atlas/Centaur booster,
a faulty switch opened the main valves on the
Atlas stage. This released the pressure which
supported the Atlas structure, and as the
booster deflated it began to crumple. Two
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 12
ground crewman started pressurizing pumps,
saving the structure from further collapse.
The Mariner 6 spacecraft was removed, put
on another Atlas/Centaur, and launched on
schedule. The two ground crewman, who had
acted at risk of the 12-story rocket collapsing
on them, were awarded Exceptional Bravery
Medals from NASA.
Science Results
The total data return for Mariners 6 and 7 was
800 million bits. Mariner 6 returned 49 far
encounter and 26 near encounter images of
Mars, and Mariner 7 returned 93 far and 33
near encounter images. Close-ups from the
near encounter phases covered 20% of the
surface.
The
spacecraft
instruments
measured UV and IR emissions and radio
refractivity of the Martian atmosphere.
Images showed the surface of Mars to be
very different from that of the Moon, in some
contrast to the results from Mariner 4. The
south polar cap was identified as being
composed predominantly of carbon dioxide.
Atmospheric surface pressure was estimated
at between 6 and 7 mb. Radio science
refined estimates of the mass, radius and
shape of Mars.
Total research, development, launch, and
support costs for the Mariner series of
spacecraft (Mariners 1 through 10) was
approximately $554 million.
Launch Date: 1969-02-24
Launch Vehicle: Atlas-Centaur
Launch Site: Cape Canaveral, United States
Mass: 411.8 kg
Nominal Power: 449.0 W
Foto:Mariner 6 [NASA]
Kosmos 267 (Zenit-4 #48)
Cosmos 267 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-02-26
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
ESSA 9
ESSA
9
was
a
sun-synchronous
meteorological satellite designed to take and
record daytime earth cloudcover pictures on a
global basis for subsequent playback to a
ground acquisition facility. The spacecraft
was also capable of providing worldwide
measurements of reflected solar and longrange radiation leaving the earth. The
spacecraft has essentially the same
configuration as that of a TIROS spacecraft,
i.e., an 18-sided right prism, 107 cm across
opposite corners and 56 cm high, with a
reinforced baseplate carrying most of the
subsystems and a cover assembly (hat).
Electric power was provided by approximately
10,000 solar cells 1- by 2-cm that were
mounted on the cover assembly and by 21
nickel-cadmium batteries. Two redundant
Advanced Vidicon Camera System (AVCS)
cameras were mounted on opposite sides of
the spacecraft, with their optical axes
perpendicular to the spin axis. Two sets of flat
plate radiometers were also suspended on
opposite sides of the satellite, beneath the
edge of the baseplate. A pair of crosseddipole command receiver antennas projected
out and down from the baseplate. A
monopole telemetry and tracking antenna
extended out from the top of the cover
assembly. The satellite spin rate was
controlled by means of a Magnetic Attitude
Spin Coil (MASC), with the spin axis
maintained normal to the orbital plane
(cartwheel orbit mode) to within plus or minus
1 deg. The MASC was a current-carrying coil
mounted in the cover assembly. The
magnetic field induced by the current
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 13
interacted with the earth's magnetic field to
provide the torque necessary to maintain a
desired spin rate of 9.225 rpm. The
spacecraft performed normally after launch.
The radiometer experiment was terminated in
May 1970. Following the successful launch of
ITOS 1, ESSA 9 was temporarily deactivated.
It was reactivated after ITOS 1 ended its
operations. ESSA 9 was again turned off in
November 1972, with the launching of NOAA
2.
Launch Date: 1969-02-26
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 145.0 kg
Marzo 1969
Apollo 9 (CSM 104)
Tripulantes: James A. McDivitt (CDR),
Russell L. Schweickart (LMP) y David R.
Scott (CMP).
Lanzamiento: 3 de marzo de 1969.
Aterrizaje: 13 de marzo de 1969.
Esta misión orbitó únicamente alrededor de
la Tierra, para comprobar principalmente el
buen funcionamiento del módulo lunar y su
capacidad de navegación.
El Apollo 9 (AS-504), el primer vuelo tripulado
equipado con el módulo lunar (LM-3), fue
lanzado desde la plataforma A del complejo
de lanzamiento 39 del Kennedy Space
Center (KSC) en un cohete Saturn V a las
11:00 a.m. EST (Eastern Standard Time,
Hora Estándar de la Costa Este) del día 3 de
marzo. Originalmente previsto para el 28 de
febrero, el despegue había sido retrasado
para permitir a los tripulantes James A.
McDivitt, David R. Scott y Russell L.
Schweickart recuperarse de una enfermedad
respiratoria vírica poco severa. Después de
una fase de lanzamiento normal, la etapa SIVB colocó a la nave en una órbita de 192'3
por 189'3 kilómetros. Después de las
comprobaciones rutinarias tras la puesta en
órbita, el CSM 104 se separó de la etapa SIVB, dio la vuelta y se acopló con el módulo
lunar (LM). A las 3:08 p.m. EST, el conjunto
de la nave se separó del S-IVB, que fue
colocado después en una órbita de escape
de la Tierra.
El 4 de marzo, la tripulación realizó el
seguimiento de distintos puntos geográficos,
llevó a cabo maniobras de actitud de la nave
(cabeceo, balanceo y guiñada) e incrementó
el apogeo de la órbita mediante el sistema de
propulsión del módulo de servicio.
Al día siguiente, McDivitt y Schweickart
entraron en el módulo lunar a través del túnel
de acoplamiento, evaluaron los sistemas del
LM, emitieron la primera de dos series de
retransmisiones, y encendieron el motor de
descenso del LM. Después, volvieron al
módulo de comando.
McDivitt y Schweickart volvieron al LM el 6 de
marzo.
Después
de
la
segunda
retransmisión, Schweickart realizó un paseo
espacial o EVA (extravehicular activity) de 37
minutos, pasando entre las escotillas del LM
y del CSM, maniobrando con los pasamanos,
sacando fotografías y describiendo las nubes
de lluvia que había sobre KSC en Florida.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 14
El 7 de marzo, con McDivitt y Schweickart de
nuevo en el módulo lunar, Scott separó el
CSM del LM y encendió los retropropulsores
del sistema de control a reacción hasta
situarse a unos 5'5 kilómetros del LM.
Entonces, McDivitt y Schweickart llevaron a
cabo la maniobra de acoplamiento activo del
módulo lunar. El LM atracó sin problemas
con el CSM después de haber estado
distanciados hasta 183'5 kilómetros durante
seis horas y media. Después de que McDivitt
y Schweickart volvieran al CSM, la etapa de
ascenso del módulo lunar fue desprendida.
Durante el resto de la misión, la tripulación
siguió la pista del Pegasus III, un satélite de
detección de meteoritos de la NASA, lanzado
el 30 de julio de 1965; tomaron fotografías
multiespectrales de la Tierra; probaron los
sistemas de la nave y se prepararon para la
reentrada.
El módulo de comando del Apollo 9 amerizó
en el Océano Atlántico, a 290 kilómetros al
este de las islas Bahamas a las 12:01 p.m.
EST. La tripulación fue recogida mediante un
helicóptero y llevada a bordo del barco de
rescate U.S.S. Guadalcanal menos de una
hora después del amerizaje. Los objetivos
principales de la misión habían sido
completados con éxito.
Fragmento traducido del relato de la misión
Apollo 9 proveniente del libro Chariots for
Apollo: A History of Manned Lunar
Spacecraft, de Courtney G Brooks, James M.
Grimwood, Loyd S. Swenson, publicado
como NASA SP-4205 en NASA History
Series, 1979.
Para presenciar el vuelo número 19 de
astronautas norteamericanos al espacio, el
vicepresidente
Spiro
T.
Agnew,
representando a la nueva administración de
Richard Nixon, se sentó en el área de
observación de la sala de control del
despegue, el 3 de marzo de 1969. Él y otros
invitados escucharon la cuenta atrás del
gigante cohete Saturn-Apollo a varios
kilómetros de distancia cerca de la playa de
Florida. Completamente recuperados de sus
cargadas cabezas y moqueantes narices,
McDivitt, Scott y Schweickart estaban en la
cabina de atmósfera mixta del CSM-104.
Respirando oxígeno puro mediante su traje
espacial, intentaban ajustar una válvula de
entrada que parecía tener dos variaciones de
temperatura:
demasiado
caliente
o
demasiado frío. Ése era su único problema.
Menos de un segundo después de la hora
prevista para el lanzamiento (11:00 a.m.
EST), el Apollo 9 comenzó a elevarse
espectacularmente.
En Houston, donde más de 200 periodistas
se habían acreditado para cubrir la misión, el
director de vuelo Eugene F. Kranz y el
director de la misión George H. Hage
observaban las pantallas de sus consolas
mientras McDivitt y el CapCom Stuart Roosa
nombraban los eventos de la secuencia de
lanzamiento. Se produjeron las vibraciones
habituales pero, en general, la etapa S-IC del
cohete Saturn V proporcionó a la tripulación
lo que McDivitt llamó "el paseo de una vieja
señora": un vuelo sin problemas. La sorpresa
llegó cuando sus cinco motores se apagaron.
Sintiéndose como si fueran empujados de
nuevo a la Tierra, la tripulación se precipitó
hacia delante, casi en el panel de
instrumentos. Los motores de la segunda
etapa (S-II) interrumpieron esa situación, y
los apretó de nuevo en sus asientos. Todo
fue bien durante los primeros siete minutos,
cuando el viejo problema de la aceleración
pogo surgió de nuevo. De todas formas, a
pesar de que las vibraciones eran mayores
que las del vuelo de Borman, la tripulación de
McDivitt no tuvo quejas. A los 11 minutos y
13 segundos del lanzamiento, la tercera
etapa S-IVB entró en ignición, y el conjunto
fue colocado en una órbita terrestre de unos
190 kilómetros de altura.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 15
Después de alcanzar la fase orbital, los tres
astronautas recordaron el aviso de Borman
de no salir de sus asientos demasiado
rápidamente y flotar en la cabina. Evitaron
hacer movimientos repentinos con la cabeza,
se movían lentamente de forma deliberada y
tomaron medicamentos, aunque todavía se
sintieron mareados. A pesar de ello, fueron
capaces de realizar sus tareas, comprobando
los instrumentos y extendiendo la sonda de
acoplamiento. Después de varias órbitas, 2
horas y 43 minutos tras el despegue, Scott
activó los cargas explosivas que separaban
el módulo de comando y servicio de la etapa
S-IVB, y comenzaron uno de los pasos más
importantes del viaje lunar. Encendió los
propulsores de actitud y alejó al CSM
Gundrop, lo dio la vuelta y volvió a encender
los propulsores, y se acercó de nuevo al que
llamó el "gran tipo" ("big fellow"). Entonces se
dio cuenta de que el morro del módulo de
comando estaba desalineado con el del
módulo lunar. Scott intentó usar uno de los
propulsores del módulo de servicio para girar
a la izquierda, pero no estaba en
funcionamiento. Los astronautas operaron
varios botones que permitieron usar ese
propulsor y, a las 3 horas y 2 minutos, la
sonda del módulo de comando se introdujo
en el puerto del módulo lunar, siendo
capturado y sujetado fuertemente mediante
pestillos especiales.
Después del acoplamiento, McDivitt y
Schweickart empezaron a prepararse para su
entrada al módulo lunar. En primer lugar,
abrieron una válvula para presurizar el túnel
entre las dos naves. Mientras Scott leía en
voz alta la lista de comprobaciones, McDivitt
y Schweickart quitaron la escotilla del módulo
de comando y comprobaron los 12 pestillos
de seguridad del anillo de acoplamiento para
verificar la hermeticidad. Después conectaron
los cables eléctricos, llamados umbilicales,
que proporcionarían energía del módulo de
comando al LM durante el tiempo que ambos
permanecieran unidos. McDivitt comprobó
cuidadosamente el puerto y no encontró
ninguna anomalía ni grieta. Mientras tanto,
Schweickart echó un vistazo por la ventana
de la nave y no pudo ver el módulo lunar
debido a que no se encontraba iluminado por
la luz del Sol, lo que le asustó. "¡Oh, Dios
mío!" gritó, "Acabo de mirar por la ventana y
no estaba el LM." Scott se rió y dijo que sería
"bastante difícil [que no] tuviéramos el LM ahí
fuera... con Jim en el túnel." McDivitt colocó
de nuevo la escotilla en su lugar hasta que
llegara el momento de volver al módulo lunar.
Aproximadamente una hora después, un
mecanismo de extracción sacó la nave
(CSM-LM) de la etapa S-IVB. El Apollo 9
retrocedió, y la tercera etapa del cohete
Saturn, después de encender sus motores
dos veces, fue colocada rumbo a una órbita
solar.
La tripulación de McDivitt se dedicó entonces
a otra tarea fundamental, encender el
sistema de propulsión del módulo de servicio.
Los astronautas habían usado en otras
misiones un vehículo para colocar a otro en
una órbita más alta, pero nunca una nave tan
grande como el módulo lunar. Unas seis
horas después del comienzo de la misión,
hicieron la primera ignición de prueba, que
duró cinco segundos. Los controladores del
vuelo en Houston consideraron éste como el
más crítico de los encendidos del motor del
módulo de servicio. Scott debió de estar de
acuerdo con ellos, porque dijo, "¡El LM está
todavía ahí, por Dios!" El motor se había
encendido
de
forma
abrupta,
dijo
posteriormente McDivitt; de todas formas,
dada la tremenda masa del complejo, la
aceleración no fue muy importante: llevó los
cinco segundos incrementar 11 metros por
segundo la velocidad de la nave. Dieciséis
horas después de esta corta ignición,
realizaron un segundo encendido del motor,
con una duración de 110 segundos,
incluyendo el giro de la tobera para
comprobar que el piloto automático del
sistema de navegación y guiado era capaz
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 16
de estabilizar la nave. El piloto automático
contuvo el movimiento en menos de cinco
segundos.
Los astronautas vieron incrementada su
confianza en poder manejar su nave. Y esto
era una buena noticia, dado que tenían que
realizar un encendido de 280 segundos de
duración, para incrementar la velocidad en
783 metros por segundo. Esta maniobra
aligeró la carga de combustible del módulo
de servicio en 8.462 kilogramos, lo que
facilitó la tarea de girar el CSM-LM con los
retropropulsores de actitud. También alteró la
trayectoria de la nave y aumentó el apogeo
de la órbita de 357 a 509 kilómetros, para
conseguir un mejor seguimiento desde tierra
y una iluminación óptima durante el
acoplamiento. Scott dijo posteriormente que
tenían la sensación de que los dos vehículos
estaban ligeramente inclinados el uno del
otro en la zona del túnel, pero la maniobra
sólo produjo oscilaciones de menor
intensidad de lo esperado por los
entrenamientos (de un tercio a un medio
menores). Los astronautas se estaban
acostumbrando tanto al sistema de
propulsión que apenas mencionaron su
cuarto encendido. Tal vez estuviesen
pensando ya en su siguiente tarea
importante, en la que dos de ellos pasarían al
módulo lunar Spider y comprobarían sus
sistemas.
Después de levantarse por la mañana y
tomarse el desayuno, McDivitt y Schweickart
se colocaron sus trajes presurizados.
Schweickart
vomitó
de
repente.
Afortunadamente, cerró la boca hasta poder
coger una bolsa. A pesar de que no sentía
especialmente náuseas, tanto él como
McDivitt quedaron ligeramente desorientados
al colocarse sus trajes. Durante unos
segundos, no pudieron distinguir entre arriba
y abajo, lo que les produjo un poco de mareo.
Scott, ya en su traje, abrió la escotilla que
comunicaba con el LM, y quitó la sonda y el
puerto del túnel, para que sus compañeros
pudieran pasar al módulo lunar. Schweickart
se deslizó fácilmente a través del túnel, de 81
centímetros; abrió la última escotilla que
comunicaba con el LM y entró en él,
realizando el primer transbordo entre dos
vehículos espaciales. Después de pulsar
todos los botones necesarios, Schweickart
informó de que el LM era ciertamente
ruidoso, especialmente su sistema de control
ambiental.
McDivitt siguió a Schweickart en el módulo
lunar una hora después. Pasado un corto
rato, habían sacado una cámara de televisión
y estaban retransmitiendo sus actividades a
la Tierra. Después cerraron la escotilla que
les comunicaba con Scott, a la vez que éste
hacía lo propio con la escotilla del CM. Uno
de los eventos clave de las misiones lunares
sería el despliegue del tren de alunizaje del
módulo lunar. Un segundo o dos después de
que Schweickart pulsara el botón, las patas
del
módulo
lunar
se
desplegaron
rápidamente en posición. Tras la separación
de los dos vehículos, el LM rotaría para que
el piloto del módulo de comando pudiera
asegurarse de que las cuatro patas se
encontraban en su posición adecuada.
Schweickart se puso enfermo de nuevo, y
McDivitt pidió una charla privada con el
servicio médico en tierra. Aunque los medios
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 17
de
comunicación
fueron
rápidamente
informados
sobre
el
problema
de
Schweickart, la petición de una discusión
"privada" era como hacer ondear una
bandera roja, lo que tuvo repercusiones,
como una serie de historias poco amistosas.
En esta segunda ocasión, las ganas de
vomitar le vinieron tan de repente como la
primera vez, mientras Schweickart estaba
ocupado en el panel de mandos. Después,
se sintió mucho mejor y se pudo mover por la
cabina sin dificultad, aunque perdió el apetito
(a excepción de líquidos y fruta) para el resto
de la misión.
Tan pronto como estuvo seguro de que los
sistemas estaban operando adecuadamente,
McDivitt pidió a Scott que pusiera al módulo
de comando en control neutral (sin piloto
automático), para que pudiera comprobar el
sistema de dirección del módulo lunar.
McDivitt utilizó los pequeños retropropulsores
para colocar el CSM-LM en la posición
correcta para encender el motor de descenso
regulable del módulo lunar. Segundos
después de encender el motor de descenso,
McDivitt exclamó, "Mirad esa bola de actitud;
Dios mío, prácticamente no tenemos
errores." 26 segundos después, con el motor
a plena potencia, informó de que los errores
eran todavía prácticamente inexistentes. De
hecho, todo se estaba desarrollando tan bien
a mitad del ejercicio (de 371'5 segundos de
duración), que el comandante tuvo hambre
(lo que no era poco común en él). Así que
comió un poco antes de volver al módulo de
comando. Schweickart permaneció detrás de
él para apagar todo y ordenar la cabina antes
de volver con los otros al Gumdrop. El LM
parecía ser una máquina fiable.
Después de que Schweickart hubiera
vomitado en dos ocasiones, McDivitt dudaba
que el piloto del módulo lunar fuera capaz de
hacerse cargo de sus tareas fuera de la
nave. El comandante recomendó a control de
vuelo que su ejercicio se limitara a la
despresurización de la cabina. El control de
vuelo acordó que la actividad extravehicular
consistiría en una salida a la luz del Sol, con
Schweickart llevando el traje espacial y los
tubos umbilicales del módulo lunar, y con las
escotillas del módulo lunar y de comando
abiertas. En el cuarto día del vuelo, mientras
iba hacia el módulo lunar para ponerlo a
punto, Schweickart se sintió más animado de
lo esperado. Cuando se había colocado la
mochila del traje espacial, McDivitt estaba
listo para dejarle hacer más; permanecer en
la entrada, al menos. El control de vuelo le
dijo al comandante que decidiera por sí
mismo. Así que McDivitt aseguró a
Schweickart a la cuerda de nylon que evitaría
que se alejase de la nave.
Una vez que Schweickart había entrado en
esta "tercera nave", como si fuera una unidad
independiente, el control de vuelo realizó una
prueba de comunicaciones con el PLSS
(Portable Life Support System), como lo
llamaron. La conversación a cuatro (entre el
Spider, Gumdrop, el PLSS de Schweickart y
el centro de control en Houston) era mucho
más clara de lo que habían esperado. La
despresurización del módulo lunar se realizó
sin problemas. Schweickart comunicó que su
mochila espacial estaba operando, ya que
podía oír el agua fluyendo mientras miraba
su indicador de presión. Estaba bastante
cómodo. McDivitt tuvo que hacer más fuerza
de la prevista para girar el mecanismo de la
escotilla, y más fuerza aún para moverla de
su posición. Tenía cuidado de mantener la
escotilla abierta hacia dentro, para evitar que
pudiera cerrarse dejando a Schweickart
fuera.
Una vez abierta la escotilla del módulo lunar,
Scott empujó hacia afuera la escotilla del CM.
Schweickart, que ahora se llamaba a sí
mismo Red Rover por su pelo un tanto
pelirrojo, disfrutaba de la vista y estaba tan
bien en los pasadores dorados del exterior de
la plataforma que McDivitt decidió dejarle
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 18
probar los pasamanos. Aguantando con una
mano mientras se movía de aquí para allá,
tomó fotografías y descubrió que los
pasamanos lo hacían todo más fácil que en
las simulaciones, incluso en el entrenamiento
subacuático. No fue a visitar a Scott en el
módulo
de
comando,
pero
ambos
astronautas recuperaron muestras de
experimentos colocados en el casco de la
nave. Scott y Schweickart también tomaron
fotografías el uno del otro, como turistas en
un país extraño (dos de las cuales han sido
reproducidas aquí). Aunque originalmente
estaba previsto que durase más de dos
horas, la excursión al exterior acabó en
menos de una hora, en parte debido a que no
querían cansar a Schweickart después de
sus problemas y también porque tenían
mucho que hacer para estar listos para las
importantes actividades del día siguiente, el
evento principal de la misión: la separación y
el acoplamiento del módulo lunar y el módulo
de comando. Con la escotilla cerrada y su
equipo espacial
quitado,
McDivitt y
Schweickart recargaron la mochila del traje,
ordenaron la cabina y volvieron al módulo de
comando.
En las dos ocasiones en las que habían
pasado al LM, los astronautas llevaban
retraso con respecto al horario previsto. El 7
de marzo, se levantaron una hora antes de lo
normal. También obtuvieron permiso del
control de vuelo para pasar al módulo lunar
sin cascos ni tubos de oxígeno, lo que facilitó
el seguimiento de la lista de procedimientos y
la preparación del módulo para las maniobras
previstas. Poco después, ambas naves
estaban listas. De todas formas, cuando
Scott intentó soltar el módulo lunar, siguió
unido a los mecanismos de captura. Tras
presionar el botón de nuevo, el LM se soltó
del CSM. Mientras, McDivitt observaba la
separación por una de las ventanillas. El
Spider cabeceó entonces 90 grados y guiñó
360º (es decir, dio una vuelta completa), para
que Scott pudiera ver las patas del módulo.
Después
de
alejarse
del
CSM
progresivamente un máximo de 4 kilómetros
durante 45 minutos, McDivitt encendió el
motor de descenso del módulo lunar para
incrementar la distancia a casi 23 kilómetros.
El funcionamiento del motor fue suave hasta
que alcanzó un empuje del 10%. Cuando
McDivitt incrementó el empuje al 20%, el
motor comenzó a oírse bastante. McDivitt
dejó de aumentar el empuje y esperó. En
unos pocos segundos, el resoplido del motor
dejó de oírse. Aceleró hasta el 40% antes de
apagarlo, y no surgieron más problemas.
McDivitt y Schweickart revisaron los sistemas
de la nave y encendieron de nuevo el motor
de descenso, a un 10% de empuje; esta vez
funcionó de manera uniforme. Mientras se
colocaban en una órbita casi circular 23
kilómetros por encima del módulo de
comando, no tuvieron problemas para
localizar al Gumdrop, incluso al alejarse
hasta 90 kilómetros. Desde el CSM, Scott
pudo ver al módulo lunar hasta una distancia
de 160 kilómetros con la ayuda de un
sextante. Estimar la distancia entre ellos era
difícil, pero el radar proporcionaba datos
precisos.
Esta nueva órbita, más alta que la del CSM,
creaba la paradoja asociada con la mecánica
orbital de acelerar para ir más despacio. Al
estar a mayor altura sobre la Tierra (es decir,
más lejos de ella) que el módulo de
comando, el LM tardaba más en dar una
vuelta completa alrededor del planeta. Spider
se fue alejando gradualmente, rezagado
unos 185 kilómetros por detrás de Gumdrop.
Para comenzar el acoplamiento, McDivitt y
Schweickart dieron la vuelta al módulo y
encendieron el sistema de propulsión en
dirección contraria a la del movimiento orbital
para disminuir su velocidad lo suficiente
como para descender por debajo de la órbita
del CSM. Por debajo y por detrás del módulo
de comando, podrían empezar a alcanzarlo
de nuevo. Accionaron el sistema pirotécnico
para deshacerse de la etapa de descenso del
LM. Esta operación produjo una nube de
restos e hizo que su piloto intermitente de
seguimiento fallara. McDivitt comentó que la
separación de la etapa fue "como una patada
en el trasero... pero todo fue bien." La
distancia entre el módulo lunar y el CSM
descendió pronto por debajo de los 124
kilómetros. McDivitt encendió el motor de
ascenso durante tres segundos para
circularizar su órbita y comenzar una
persecución que duraría más de dos horas.
Mientras la distancia entre las dos naves
descendía, McDivitt divisó un muy pequeño
Gumdrop a unos 75 kilómetros.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 19
Aproximadamente una hora después del
encendido del motor de ascenso, McDivitt y
Schweickart encendieron los retropropulsores
de su nave, que brillaron como fuegos
artificiales. "Parece el 4 de julio", comentó
McDivitt (haciendo referencia a la fiesta
nacional de EEUU), y Scott respondió que
podía verlos perfectamente. Sin embargo,
cuando pararon los propulsores, el Spider,
con su luz de seguimiento averiada, era difícil
de ver por Scott. En ese punto, recordando el
problema que tuvieron durante el desacople,
McDivitt le dijo a Scott que se asegurase de
que el módulo de comando estaba listo para
el atraque. Mientras se aproximaba al CSM,
el comandante giró el módulo en todas las
direcciones para que Scott pudiera
inspeccionar su exterior. Más de seis horas
después de abandonar al módulo de
comando, McDivitt colocó firmemente al LM
en el puerto de atraque, y después informó,
"Tengo captura (I have capture)." Los 12
pestillos del puerto de atraque del CM
asieron al LM y lo sujetaron con fuerza. Otra
etapa en el camino hacia la Luna había sido
completada. El módulo lunar podía separarse
del CSM, volver a él y acoplarse sin
problemas.
Antes incluso de pasar al módulo de
comando, McDivitt dijo estar cansado, y listo
para unas vacaciones de tres días. Todavía
pasarían 140 horas antes del amerizaje en el
Océano Atlántico, pero la tripulación había
conseguido ya más del 90% de los objetivos
de la misión. Todavía había tareas por
realizar, como llevar a cabo más encendidos
del motor del módulo de servicio (un total de
ocho durante el vuelo), y desprender la etapa
de ascenso del LM. El control en tierra envió
después al módulo lunar una señal de
encendido del motor para colocarlo en una
órbita de 6.965 por 235 kilómetros de altura.
Los astronautas observaron el alejamiento de
la nave durante un tiempo, y después se
pusieron a trabajar en tareas más mundanas
como comprobar los sistemas, realizar
observaciones de navegación y tomar
fotografías.
Después de 151 revoluciones alrededor de la
Tierra, en 10 días, 1 hora y 1 minuto, el
Apollo 9 amerizó sin problemas en el Océano
Atlántico, al noreste de Puerto Rico, el 13 de
marzo de 1969, completando un vuelo de 6
millones de kilómetros que había costado
aproximadamente 340 millones de dólares.
Menos de una hora después, la tripulación
fue llevada mediante helicóptero a bordo del
barco de rescate U.S.S. Guadalcanal.
Posteriormente, se llevaron a cabo las
celebraciones y los informes de la misión. En
una ceremonia llevada a cabo en
Washington,
con
un
discurso
del
vicepresidente Agnew, los líderes del
proyecto de desarrollo del módulo lunar,
Carroll Bolender, del Manned Spacecraft
Center y Llewellyn Evans, de la empresa
Grumman, fueron reconocidos con la medalla
del servicio excepcional de la NASA y el
premio al servicio público de la NASA,
respectivamente. Los funcionarios de la
NASA se vieron estimulados por la misión
Apollo 9. Ahora estaban listos para el ensayo
final, una misión que llevaría al programa
Apollo de vuelta a las inmediaciones de la
Luna.
LEM 3 Apollo 9 SIVB
Foto:LEM 3[NASA]
KH-8 20
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1969-03-04
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 20
Kosmos 268 (DS-P1-Yu #19)
Cosmos 268 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests
Launch Date: 1969-03-05
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Kosmos 269 (Tselina-O #4)
Cosmos 269 was a Soviet ELINT (Electronic
and Signals Intelligence) satellite launched
from the Plesetsk cosmodrome.
From 1965 to 1967 two dedicated ELINT
systems were tested: the Tselina and the
Navy's US. Both reached service, since the
Ministry of Defence could not force a single
system on the military services.
Tselina was developed by Yuzhnoye and
consisted of two satellites: Tselina-O for
general observations and Tselina-D for
detailed observations. ELINT systems for
Tselina were first tested under the Cosmos
designation in 1962 to 1965. The first TselinaO was launched in 1970. The Tselina-D took
a long time to enter service due to delays in
payload development and weight growth. The
whole Tselina system was not operational
until 1976. Constant improvement resulted in
Tselina-O being abandoned in 1984 and all
systems being put on Tselina-D.
Foto:Tselina-O [Yuzhnoye]
Launch Date: 1969-03-05
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 875.0 kg
Kosmos 270 (Zenit-4 #49)
Cosmos 270 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-03-06
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 271 (Zenit-4 #50)
Cosmos 271 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket
Launch Date: 1969-03-15
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 21
Kosmos 272 (Sfera #4)
Cosmos 272 was a Soviet geodetic satellite
launched from the Plesetsk cosmodrome
aboard a Cosmos 11 rocket.
The Sfera geodetic system covered a broad
development for solving problems in
geodetics, continental drift, and precise
location of cartographic points. The
spacecraft was equipped with measurement
and
signalling
apparatus,
providing
assistance in measuring astronomicalgeodetic points of military topographical
research for the Red Army General Staff. The
satellite allowed improved accuracy for long
range weapons. Reshetnev was the Chief
Designer. Flight tests were from 1968 to
1972. Series flights were from 1973 to 1980.
The Kosmos 3M launcher was used. Colonel
Ye S Shchapov was in charge of Sfera
development. Sfera used the basic KAUR-1
bus, consisting of a 2.035 m diameter
cylindrical spacecraft body, with solar cells
and radiators of the thermostatic temperature
regulating system mounted on the exterior.
Orientation was by a single-axis magnetogravitational (gravity gradient boom) passive
system.
The
hermetically
sealed
compartment had the equipment mounted in
cruciform bays, with the chemical batteries
protecting the radio and guidance equipment
mounted at the centre.
Foto:Sfera [NPO PM]
Launch Date: 1969-03-17
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 600.0 kg
OV1 17 (P69-1(a))
OV1 18 (P69-1(b))
OV1 19 (P69-1(c))
Orbiscal 2 (OV1 17A, P69-1(d))
OV1-17 was one of four research satellites
injected into orbit simultaneously from a
single launch vehicle. The spacecraft was an
81-cm-long cylinder measuring 69 cm in
diameter and was fitted with hemispheric
multifaced solar panel domes on either end.
Proper satellite orientation was maintained by
a gravity-gradient stabilization system
consisting of three 15.5-m-long horizontal
booms forming a 'y' and two 19-m-long
vertical booms. OV1-17 carried a variety of
experiments to measure incoming solar
electromagnetic radiation and the reaction of
such radiation with the earth's outer
atmosphere. Included were instrumentation
for making (1) solar x-ray, particle, and
electric field measurements, (2) horizontal
dayglow and nightglow measurements, and
(3)
extremely
low-frequency
radio
propagation studies. The spacecraft was also
fitted with a meteor trail calibration beacon
and a panel of 14 cadmium-sulfide solar cells
to evaluate the performance and radiation
resistance of such cells in a space
environment. The spacecraft failed to achieve
proper stabilization, thereby reducing the
applicability of data from many of the
experiments. OV1-17 reentered the earth's
atmosphere on March 5, 1970.
This battery powered satellite was actually
the propulsion module of OV1-17. After
separation from OV1-17, this module was
repositioned and was designated OV1-17A.
This spin-stabilized spacecraft, also referred
to as ORBIS CAL 2 carried one experiment
comprising two 6.45-m-long transmitting
antenna beacons and a 6.45-m-long inertia
boom. The two beacons operated at 13.23
and 8.98 MHz and were used by ground
station
personnel
to
study
unusual
transmission by radio waves through the
ionosphere.
The
spacecraft
operated
normally until reentering the earth's
atmosphere on March 24, 1969.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 22
OV1 18: Ionospheric effects, large dish
antenna, auroral electrons detector, VertistatLAV
OV1 19: Radiation belt detectors
Launch Date: 1969-03-18
Launch Vehicle: Atlas
Launch Site: Vandenberg AFB, United States
Mass: 142.0 kg
1969-025E / 1969-025F
Launch Date: 1969-03-18
Launch Vehicle: Atlas
Launch Site: Vandenberg AFB, United States
Kosmos 274 (Zenit-4 #51)
Cosmos 274 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The spacecraft also
carried a science package.
Launch Date: 1969-03-24
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Meteor-1 1
KH-4A 50
SSF-B 14KH-4A 1050
Subsatelite
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Thor Agena D rocket. It was a KH-4A (Key
Hole-4A) type spacecraft. Due to abnormal
rotational rates after revolution 22, the
mission was terminated after a total of three
days of collecting photography.
Launch Date: 1969-03-19
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Kosmos 273 (Zenit-2 #65)
Cosmos 273 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1969-03-22
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Meteor 1-1 was the first fully operational
Russian meteorological satellite and the ninth
meteorological satellite launched from the
Plesetsk site. The satellite was placed in a
near-circular, near-polar prograde orbit to
provide near-global observations of the
earth's weather systems, cloud cover, ice and
snow fields, and reflected and emitted
radiation from the dayside and nightside of
the earth-atmosphere system for operational
use by the Soviet Hydrometeorological
Service. Meteor 1 was equipped with two
vidicon cameras for dayside photography, a
scanning high-resolution IR radiometer for
dayside and nightside photography, and an
actinometric instrument for measuring the
earth's radiation field in the visible and
infrared regions. The satellite was in the form
of a cylinder 5 m long and 1.5 m in diameter
with two large solar panels attached to the
sides. The solar panels were automatically
oriented toward the sun to provide the
spacecraft with the maximum amount of solar
power. Meteor 1 was oriented toward the
earth by a gravity-gradient triaxial stabilization
system consisting of flywheels whose kinetic
energy was dampened by the use of
controlled electromagnets on board that
interacted with the magnetic field of the earth.
The instruments were housed in the base of
the satellite, which pointed toward the earth,
while the solar sensors were mounted in the
top section. The operational 'Meteor' weather
satellite system ideally consists of at least two
satellites spaced at 90-deg intervals in
longitude so as to observe a given area of the
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 23
earth approximately every 6 hr. When within
a communication range, the data acquired by
Meteor 1 were transmited directly to the
ground receiving center in Moscow,
Novosibirsk, or Vladivostok. Over regions
beyond communication range, Meteor 1
recorded the TV and IR pictures and
actinometric data and stored them on board
until the satellite passed over the receiving
centers. The meteorological data received at
these centers were processed, reduced, and
sent to the Hydrometeorological Center in
Moscow where they were analyzed and used
to prepare various forecast and analysis
products. Some of the TV and IR pictures and
analyzed actinometric data were then
distributed to various meteorological centers
around the world. It is believed the satellite
terminated operations in July 1970, when the
transmissions of video and IR data from
Moscow to the United States via the 'cold line'
facsimile link ceased.
Launch Date: 1969-03-26
Launch Vehicle: Modified SS-6 (Sapwood)
with 1st Generation Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 1400.0 kg
Mariner 7
Mariner 6 and 7 comprised a dual-spacecraft
mission to Mars, the sixth and seventh
missions in the Mariner series of spacecraft
used for planetary exploration in the flyby
mode. The primary objectives of the missions
were to study the surface and atmosphere of
Mars during close flybys to establish the
basis for future investigations, particularly
those
relevant
to
the
search
for
extraterrestrial life, and to demonstrate and
develop technologies required for future Mars
missions and other long-duration missions far
from the Sun. Mariner 6 also had the
objective of providing experience and data
which would be useful in programming the
Mariner 7 encounter 5 days later. Each
spacecraft carried a wide- and narrow-angle
television camera, an infrared spectroscope,
an infrared radiometer, and an ultraviolet
spectroscope. The spacecraft were oriented
entirely to planetary data acquisition, and no
data were obtained during the trip to Mars or
beyond Mars.
Spacecraft and Subsystems
The Mariner 6 and 7 spacecraft were
identical, consisting of an octagonal
magnesium frame base, 138.4 cm diagonally
and 45.7 cm deep. A conical superstructure
mounted on top of the frame held the highgain 1 meter diameter parabolic antenna and
four solar panels, each measuring 215 x 90
cm, were affixed to the top corners of the
frame. The tip-to-tip span of the deployed
solar panels was 5.79 m. A low-gain
omnidirectional antenna was mounted on a
2.23 m high mast next to the high-gain
antenna. Underneath the octagonal frame
was a two-axis scan platform which held
scientific instruments. Overall science
instrument mass was 57.6 kg. The total
height of the spacecraft was 3.35 m.
The spacecraft was attitude stabilized in three
axes (referenced to the sun and the star,
Canopus) through the use of 3 gyros, 2 sets
of 6 nitrogen jets mounted on the ends of the
solar panels, a Canopus tracker, and two
primary and four secondary sun sensors.
Propulsion was provided by a 223 N rocket
motor mounted within the frame which used
monopropellant hydrazine. The nozzle with 4jet vane vector control protruded from one
wall of the octagonal structure. Power was
supplied by 17,472 photovoltaic cells
covering an area of 7.7 square meters on the
four solar panels. These could provide 800 W
of power near Earth and 449 W at Mars. The
maximum power requirement was 380 W at
Mars encounter. A 1200 W-hr rechargeable
silver-zinc battery was used to provide
backup power. Thermal control was achieved
through the use of adjustable louvers on the
sides of the main compartment.
Three telemetry channels were available for
telecommunications. Channel A carried
engineering data at 8 1/3 or 33 1/3 bps,
channel B carried scientific data at 66 2/3 or
270 bps and channel C carried science data
at 16,200 bps. Communications were
accomplished via the high- and low-gain
antennas via dual S-band travelling wave
tube 10/20 W amplifiers for transmission and
a single receiver. An analog tape recorder
with a capacity of 195 million bits could store
television
images
for
subsequent
transmission. Other science data was stored
on a digital recorder. The command system,
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 24
consisting of a central computer and
sequencer (CC&S), was designed to actuate
specific events at precise times. The CC&S
was programmed with a standard mission
and a conservative backup mission befire
launch, but could be commanded and
reprogrammed in flight. It could perform 53
direct commands, 5 control commands, and 4
quantitative commands.
Mission Profile
Mariner 7 was launched on a direct-ascent
trajectory to Mars from Cape Kennedy
Launch Complex 36A on an Atlas SLV3C/Centaur (AC19, spacecraft 69-4) 31 days
after the launch of Mariner 6. On 8 April 1969
a midcourse correction was made by firing
the hydrazine moter for 7.6 seconds. On 8
May Mariner 7 was put on gyro control to
avoid attitude control problems which were
affecting Mariner 6. On 31 July telemetry from
Mariner 7 was suddenly lost and the
spacecraft was commanded to switch to the
low-gain antenna. It was later successfully
switched back to the high-gain antenna. It
was thought that leaking gases, perhaps from
the battery which later failed a few days
before encounter, had caused the anomaly.
At 09:32:33 UT on 2 August 1969 Mariner 7
bagan the far-encounter sequence involving
imaging of Mars with the narrow angle
camera. Over the next 57 hours, ending
about 5 hours before closest approach, 93
images of Mars were taken and transmitted.
The spacecraft was reprogrammed as a
result of analysis of Mariner 6 images. The
new sequence called for the spacecraft to go
further south than originally planned, take
more near-encounter pictures, and collect
more scientific data on the lighted side of
Mars. Data from the dark side of Mars were
to be transmitted directly back to Earth but
there would be no room on the digital
recorder for backup due to the added dayside
data. At closest approach, 05:00:49 UT on 5
August, Mariner 7 was 3430 km above the
martian surface. Over this period, 33 nearencounter images were taken. About 19
minutes after the flyby, the spacecraft went
behind Mars and emerged roughly 30
minutes later. X-band occultation data were
taken during the entrance and exit phases.
Science and imaging data were played back
and transmitted over the next few days. The
spacecraft was then returned to cruise mode
which
included
engineering
and
communications tests, star photography TV
tests, and UV scans of the Milky Way and an
area containing comet 1969-B. Periodic
tracking of the spacecraft in its heliocentric
orbit was also done.
Science Results
The total data return for Mariners 6 and 7 was
800 million bits. Mariner 6 returned 49 far
encounter and 26 near encounter images of
Mars, and Mariner 7 returned 93 far and 33
near encounter images. Close-ups from the
near encounter phases covered 20% of the
surface.
The
spacecraft
instruments
measured UV and IR emissions and radio
refractivity of the Martian atmosphere.
Images showed the surface of Mars to be
very different from that of the Moon, in some
contrast to the results from Mariner 4. The
south polar cap was identified as being
composed predominantly of carbon dioxide.
Atmospheric surface pressure was estimated
at between 6 and 7 mb. Radio science
refined estimates of the mass, radius and
shape of Mars.
Total research, development, launch, and
support costs for the Mariner series of
spacecraft (Mariners 1 through 10) was
approximately $554 million.
Foto:Mariner 7 [NASA]
Launch Date: 1969-03-27
Launch Vehicle: Atlas-Centaur
Launch Site: Cape Canaveral, United States
Mass: 411.8 kg
Nominal Power: 449.0 W
Mars (2b) (M-69 #1)
Intento fallido
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 25
Esta
misión
nunca
fue
anunciada
oficialmente. Tras el lanzamiento, a los 51
segundos la cofia que debía dejar al aire la
sonda no se abrió. Además, después de la
correcta evolución de las dos primeras
etapas del cohete, la tercera etapa del Proton
SL-12/D-1-e (también llamado 8K82K, #24001 + 11S824) experimentó un fallo en un
rotor lo que causó que la turbo bomba saliera
ardiendo. El motor dejó de funcionar a los
438,66 segundos y explotó, cayendo los
restos en las montañas Altai.
Foto:DS-P1-I [Yuzhnoye]
Abril 1968
Mars (2c) (M-69 #2)
Kosmos 275 (DS-P1-I #5)
Cosmos 275 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-03-28
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 400.0 kg
This Soviet Mars mission was never officially
announced but has since been identified as a
planned orbiter. The first stage of the Proton
SL-12/D-1-e (8K82K, #233-01 + 11S824)
launcher failed almost immediately. At 0.02
seconds after liftoff, one of the six 11D43 first
stage rockets exploded. The control system
initially compensated for the lost engine and
the launch proceeded on 5 engines until 25
seconds after liftoff at approximately 1 km
altitude the rocket began to tip over to a
horizontal position. The five engines shut
down and the rocket impacted and exploded
41 seconds after liftoff approximately 3 km
from the launch pad.
Spacecraft and Subsystems
This mission was one of two identical probes
launched in the spring of 1969. The payload
was an M-69 class probe (#522) with a
launch mass of 4850 kg. The probe was built
around a spherical propellant compartment
with an inner baffle to separate it into two
isolated partitions. Two solar panel wings with
a total surface area of 7 square meters were
mounted on either side of the compartment. A
2.8 m diameter parabolic dish antenna was
mounted near the top of the probe, along with
three pressurized compartments, the top
compartment holding electronics, the second
the radio and navigation systems, and the
third cameras, a battery, and telemetry
devices. Also mounted on the outside of the
spacecraft were two conical antennas and a
suite of scientific sensors.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 26
The main engine was mounted at the bottom
of the probe and used a turbopump to run on
the nitrogen tetroxide and unsymmetrical
dimethyl hydrazine (UDMH) contained in the
main propellant compartment. Eight thrusters
with their own fuel tanks and 9 helium
pressurization tanks controlled pitch (2
thrusters), yaw (2), and roll (4). Three-axis
stabilization and orientation were achieved
using 2 Sun sensors, 2 Earth sensors, 2 Mars
sensors, a Canopus sensor, gyros, and small
thrusters using pressurized nitrogen gas
stored in ten tanks. Power at 12 amps was
supplied by the solar panels and used to run
the spacecraft directly and charge a
hermetically sealed cadmium-nickel 110 amphour storage battery.
Communications were via two transmitters in
the centimeter band (6 GHz) which operated
at 25,000 W and transmitted at 6000 bits/s
and two transmitters and three receivers in
the decimeter band (790-940 MHz) at 100 W
and 128 bits/s and a 500 channel telemetry
system. The parabolic dish was a directional
high-gain antenna for use as the spacecraft
neared Mars and the low-gain conical
antennas were semi-directional. Thermal
control was achieved through passive screenvacuum insulation and through an active
system in the pressurized compartments
which consisted of a ventilation and air
circulation unit which could run through
radiators exposed to sunlight or in shadow.
The spacecraft scientific payload consisted
primarily of three television cameras
designed to image the surface of Mars. The
cameras had three color filters and two
lenses, a 50-mm lens with a nominal field of
view of 1500 x 1500 km and a 350-mm lens
which had a field of 100 x 100 km. An image
was 1024 x 1024 pixels for a maximum
resolution of 200 to 500 meters. The camera
system consisted of film, a processing unit,
an exposure unit, and a data encoder to
prepare the images for transmission. The
camera could store 160 images. The
spacecraft also carried a radiometer, water
vapor detector, ultraviolet and infrared
spectrometers, a radiation detector, gamma
spectrometer,
hydrogen/helium
mass
spectrometer, solar plasma spectrometer,
and a low-energy ion spectrometer.
Planned Mission Profile
The nominal mission plan was to use the first
three stages of the Proton booster and the
Block-D upper stage to place the spacecraft
into earth parking orbit. The upper stage
would then be reignited after one orbit to
begin the escape sequence. The spacecraft
main engine would then be used for the final
boost to put the spacecraft into Mars
trajectory. The main engine would also be
used for two trajectory correction maneuvers
during the 6 month cruise to Mars. The main
engine would then be used to put the
spacecraft into a 1700 x 34,000 km capture
orbit around Mars with an inclination of 40
degrees and a period of 24 hours.
Photography and other experiments would
take place from this orbit. Then the periapsis
would be lowered to 500 to 700 km for a
nominal three month session of imaging and
data collection from orbit.
Foto:Mars 69 (Videokosmos)
Launch Date: 1969-04-02
Launch Vehicle: Proton Booster Plus Upper
Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), Russia
Mass: 4850.0 kg
Kosmos 276 (Zenit-4 #52)
Cosmos 276 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-04-04
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 27
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 277 (DS-P1-Yu #20)
Cosmos 277 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-04-04
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 400.0 kg
Kosmos 278 (Zenit-2 #66)
Cosmos 278 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1969-04-09
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Molniya-1 11
Molniya 1/11 was a first-generation Russian
communications satellite orbited to test and
perfect a system of radio communications
and television broadcasting using earth
satellites as active transponders and to
experiment with the system in practical use.
The basic function of the satellite was to relay
television programs and long-distance twoway multichannel telephone, phototelephone,
and telegraph links from Moscow to the
various standard ground receiving stations in
the 'Orbita' system. The satellite was in the
form of a hermetically sealed cylinder with
conical ends -- one end contained the orbital
correcting engine and a system of microjets,
and the other end contained externally
mounted solar and earth sensors. Inside the
cylinder were (1) a high-sensitivity receiver
and three 800-MHz 40-w transmitters (one
operational and two in reserve), (2)
telemetering
devices
that
monitored
equipment operation, (3) chemical batteries
that were constantly recharged by solar cells,
and (4) an electronic computer that controlled
all equipment on board. Mounted around the
central cylinder were six large solar battery
panels and two directional, high-gain
parabolic aerials, 180 deg apart. One of the
aerials was directed continually toward the
earth by the highly sensitive earth sensors.
The second aerial was held in reserve.
Signals were transmitted in a fairly narrow
beam ensuring a strong reception at the
earth's surface. The satellite received
telemetry at 1000 MHz. Television service
was provided in a frequency range of 3.4 to
4.1 GHz at 40 w. Molniya 1/11, whose
cylindrical body was 3.4 m long and 1.6 m in
diameter,
was
much
heavier
than
corresponding U.S. COMSATs, and it had
about 10 times the power output of the Early
Bird COMSAT. In addition, it did not employ a
geosynchronous equatorial orbit as have
most U.S. COMSATs because such an orbit
would not provide coverage for areas north of
70 deg n latitude. Instead, the satellite was
boosted from a low-altitude parking orbit into
a highly elliptical orbit with two high apogees
daily over the northern hemisphere -- one
over Russia and one over North America -and relatively low perigees over the southern
hemisphere. During its apogee, Molniya 1/11
remained relatively stationary with respect to
the earth below for nearly 8 of every 12 hr. By
placing three or more Molniya 1 satellites in
this type of orbit, spacing them suitably, and
shifting their orbital planes relative to each
other by 120 deg, a 24-hr/day communication
system could be obtained.
Launch Date: 1969-04-11
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation Upper Stage + Escape
Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 998.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 28
Canyon 2
Canyon was the first series of near
geostationary
ELINT/SIGINT
satellites
launched under the designation AFP-827.
Reportedly they consist of a large (ca. 10 m
diameter) antenna and are three axis
stabilized. The purpose of the Canyon series
is to pinpoint radar locations. For that
purpose they are deployed into a 24 h orbit,
which is not geostationary, so that
triangulations can be made from different
points. They were succeeded by the Chalet /
Vortex series. As the orbital data reported is
not quite consistent, it is unclear, if the
Canyons were deployed directly into the final
orbit by the Agena-D or if they used a apogee
kick motor. Recent analysis by Jonathan
McDowell hints to the first theory, with the
Agena-D remaining attached to the spacecraft
during the first three missions.
Launch Date: 1969-04-13
Launch Vehicle: Atlas-Agena D
Launch Site: Cape Canaveral, United States
Mass: 700.0 kg
Nimbus 3 / SECOR 13 (S69-2)
Nimbus 3, the third in a series of secondgeneration meteorological research-anddevelopment satellites, was designed to
serve as a stabilized, earth-oriented platform
for the testing of advanced meteorological
sensor systems and the collecting of
meteorological data. The polar-orbiting
spacecraft consisted of three major elements:
(1) a sensory ring, (2) solar paddles, and (3)
the control system housing. The solar
paddles and the control system housing were
connected to the sensory ring by a truss
structure, giving the satellite the appearance
of an ocean buoy. Nimbus 3 was nearly 3.7 m
tall, 1.5 m in diameter at the base, and about
3 m across with solar paddles extended. The
torus-shaped sensory ring, which formed the
satellite base, housed the electronics
equipment and battery modules. The lower
surface of the torus ring provided mounting
space for sensors and telemetry antennas.
An H-frame structure mounted within the
center of the torus provided support for the
larger experiments and tape recorders.
Mounted on the control system housing,
which was located on top of the spacecraft,
were sun sensors, horizon scanners, gas
nozzles for attitude control, and a command
antenna. Use of the attitude control
subsystem (ACS) permitted the spacecraft's
orientation to be controlled to within plus or
minus 1 deg for all three axes (pitch, roll, and
yaw). Primary experiments consisted of (1) a
satellite infrared spectrometer (SIRS) for
determining the vertical temperature profiles
of the atmosphere, (2) an infrared
interferometer spectrometer (IRIS) for
measuring the emission spectra of the earthatmosphere system, (3) both high- and
medium-resolution
infrared
radiometers
(HRIR and MRIR) for yielding information on
the distribution and intensity of infrared
radiation emitted and reflected by the earth
and its atmosphere, (4) a monitor of
ultraviolet solar energy (MUSE) for detecting
solar UV radiation, (5) an image dissector
camera system (IDCS) for providing daytime
cloudcover pictures in both real-time mode,
using the real time transmission system
(RTTS), and tape recorder mode, using the
high data rate storage system, (6) a
radioisotope thermoelectric generator (RTG),
SNAP-19, to assess the operational capability
of radioisotope power for space applications,
and (7) an interrogation, recording and
location system (IRLS) experiment designed
to locate, interrogate, record, and retransmit
meteorological and geophysical data from
remote collection stations. Nimbus 3 was
successful and performed normally until July
22, 1969, when the IRIS experiment failed.
The HRIR and SIRS experiments were
terminated on January 25, 1970, and June
21, 1970, respectively. The remaining
experiments continued operation until
September 25, 1970, when the rear horizon
scanner failed. Without this horizon scanner,
it was impossible to maintain proper
spacecraft attitude, thus making most
experimental observations useless. All
spacecraft operations were terminated on
January 22, 1972. More detailed information
can be found in "The Nimbus III User's
Guide" (TRF B03409), available from
NSSDC.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 29
Launch Date: 1969-04-15
Launch Vehicle: Titan IIIB-Agena D
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Kosmos 280 (Zenit-4M #3,
Rotor #3)
Cosmos 280 was a third generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The spacecraft
carried weather experiments. It was
maneuverable.
Foto:Nimbus B [NASA]
SECOR 13 provided geodetic position
determination
measurements.
It
was
launched from the White Sands Missile
Center on the same Thor-Agena rocket with
Nimbus 3.
Launch Date: 1969-04-14
Launch Vehicle: Thor-Agena
Launch Site: Vandenberg AFB, United States
Mass: 575.6 kg
Kosmos 279 (Zenit-4 #53)
Cosmos 279 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-04-15
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
KH-8 21
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1969-04-23
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6300.0 kg
Mayo 1969
KH-4A 51 SSF-B 15 / KH-4A
1051 Subsatelite
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Thor Agena D rocket. It was a KH-4A (Key
Hole-4A) type spacecraft. Imagery of both
pan camera records is soft and lacks
crispness and edge sharpness.
Launch Date: 1969-05-02
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Apollo 10 (CSM 106) / LEM 4
Crew Eugene Cernan / John Young
Thomas Stafford Lift Off Saturn V
May 18, 1969 / 12:49 a.m. EDT
KSC, Florida
Complex 39-B Splash-down May 26, 1969
12:52 p.m. EDT
Pacific Ocean Duration 8 days, 0 hours,
3 min., 23 seconds
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 30
Module were tested during the separation
including
communications,
propulsion,
attitude control and radar. The Lunar Module
and Command Module rendezvous and
redocking occurred 8 hours after separation
on May 23. Thirty-one lunar orbits were
achieved.
All systems on both spacecraft functioned
nominally, the only exception being an
anomaly in the automatic abort guidance
system aboard the Lunar Module. In addition
to extensive photography of the lunar surface
from both the Lunar Module and Command
Module, television images were taken and
transmitted to Earth. The Apollo 10
Command Module "Charlie Brown" is on
display at the Science Museum, London,
England.
Kosmos 281 (Zenit-2 #67)
Cosmos 281 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
This spacecraft was the second Apollo
mission to orbit the Moon, and the first to
travel to the Moon with the full Apollo
spacecraft, consisting of the Command and
Service Module, named "Charlie Brown," and
the Lunar Module, named "Snoopy." The
primary objectives of the mission were to
demonstrate crew, space vehicle and mission
support facilities during a human lunar
mission and to evaluate Lunar Module
performance
in
cislunar
and
lunar
environment. The mission was a full "dry run"
for the Apollo 11 mission, in which all
operations except the actual lunar landing
were performed.
On May 22, Thomas Stafford and Eugene
Cernan entered the Lunar Module and fired
the Service Module reaction control thrusters
to separate the Lunar Module from the
Command Module. The Lunar Module was
put into an orbit to allow low-altitude passes
over the lunar surface, the closest approach
bringing it to within 8.9 kilometers (5.5 miles)
of the Moon. All systems on the Lunar
Launch Date: 1969-05-13
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 282 (Zenit-4 #54)
Cosmos 282 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-05-20
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Intelsat-3 4
INTELSAT 3F-4 was launched by NASA
for Communications Satellite Corporation.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 31
Intelsat 3 spacecraft were used to relay
commercial
global
telecommunications
including live TV. Three of the 8 satellites in
the series (F1, F5, F8) were unusable due to
launch vehicle failures, and most of the
remainder did not achieve their desired
lifetimes. F2 operated for 1.5 years, F3 was
partially operational for 7 years, F4 lasted 3
years, F6 survived 2 years, and F7 remained
usable for 16 years.
Intesat-3 spacecraft were spin stabilized with
a despun antenna structure (34 inch tall
antenna). Hydrazine propulsion system with 4
thrusters and 4 tanks. Passive thermal
control. Body mounted solar cells produced
178 W peak, 9 AHr NiCd batteries. The
payload consisted of two transponders using
12 watt TWTA amplifiers for multiple access,
1500 voice circuits or 4 TV channels.
Vela 9 / Vela 10
OV5 5 (ERS 29, S68-3(a))
OV5 6 (ERS 26, S68-3(b))
OV5 9 (S68-3(c))
Vela 5A was one of two spin-stabilized,
polyhedral satellites that comprised the fifth
launch in the Vela program. The orbits of the
two satellites on each launch were basically
circular at about 17 earth radii, inclined at 60
deg to the ecliptic, and spaced 180 deg apart,
thus providing a monitoring capability of
opposite sides of the earth. The objectives of
the satellites were (1) to study solar and
cosmic X rays, extreme ultraviolet radiation
(EUV), solar protons, solar wind, and
neutrons, (2) to carry out research and
development on methods of detecting nuclear
explosions by means of satellite-borne
instrumentation, and (3) to provide solar flare
data in support of manned space missions.
Vela 5A, an improved version of the earlier
Vela series satellites, had better command
capabilities,
increased
data
storage,
improved power requirements, better thermal
control of optical sensors, and greater
experimentation weight. Power supplies of
120 W were provided by 22,500 solar cells
mounted on 24 of the spacecraft's 26 faces.
A rotation rate of 78 rpm during transfer orbits
and 1 rpm after final orbit insertion
maintained nominal attitude control. Eight
whip antennas and four stub antenna arrays
at opposite ends of the spacecraft structure
were used for ground commands and
telemetry.
Foto:Intelsat-3 [Intelsat]
Launch Date: 1969-05-22
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 647.0 kg
Foto:Vela 9, Vela 10 and spin module [USAF]
Launch Date: 1969-05-23
Launch Vehicle: Titan III-C
Launch Site: Vandenberg AFB, United States
Mass: 259.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 32
OV5 5: Boom mounted magnetometer, 7
particle detectors, LVF receiver
OV5 6: Solid state detectors, Faraday cup,
magnetic
spectrometer,
fluxgate
magnetometer
OV5 7: Solar X-ray detectors
OV5 8: Vacuum friction experiments
OV5 9: VLF receiver, solar X-ray detector, 4
particle detectors
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1969-06-03
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Kosmos 285 (DS-P1-Yu #22)
Kosmos 283 (DS-P1-Yu #21)
Cosmos 283 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-05-27
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 250.0 kg
Kosmos 284 (Zenit-4 #55)
Cosmos 284 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-05-29
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Junio 1969
KH-8 22
Cosmos 285 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-06-03
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Luna (15c)
Intento fallido
OGO 6
OGO 6 was a large observatory instrumented
with 26 experiments designed to study the
various interrelationships between, and
latitudinal distributions of, high-altitude
atmospheric parameters during a period of
increased solar activity. The main body of the
spacecraft was attitude controlled by means
of horizon scanners and gas jets so that its
orientation was maintained constant with
respect to the earth and the sun. The solar
panels rotated on a horizontal axis extending
transversely through the main body of the
spacecraft. The rotation of the panels was
activated by sun sensors so that the panels
received
maximum
sunlight.
Seven
experiments were mounted on the solar
panels (the SOEP package). An additional
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 33
axis, oriented vertically across the front of the
main body, carried seven experiments (the
OPEP package). Nominally, these sensors
observed in a forward direction in the orbital
plane of the satellite. The sensors could be
rotated more than 90 deg relative to the
nominal observing position and more than 90
deg between the upper and lower OPEP
groups mounted on either end of this axis. On
June 22, 1969, the spacecraft potential
dropped
significantly
during
sunlight
operation
and
remained
so
during
subsequent
sunlight
operation.
This
unexplained shift affected seven experiments
which made measurements dependent upon
knowledge of the spacecraft plasma sheath.
During October 1969, a string of solar cells
failed, but the only effect of the decreased
power was to cause two experiments to
change their mode of operation. Also during
October 1969, a combination of manual and
automatic attitude control was initiated, which
extended the control gas lifetime of the
attitude control system. In August 1970, tape
recorder (TR) no. 1 operation degraded, so
all recorded data were subsequently taken
with TR no. 2. By September 1970, power
and
equipment
degradation
left
14
experiments operating normally, 3 partially,
and 9 off. From October 14, 1970, TR no. 2
was used only on Wednesdays (world days)
to conserve power and extend TR operation.
In June 1971, the number of "on"
experiments decreased from 13 to 7, and on
June 28, 1971, the spacecraft was placed in
a spin-stabilized mode about the yaw (Z) axis
and turned off due to difficulties with
spacecraft power. OGO 6 was turned on
again from October 10, 1971, through March
1972, for operation of experiment 25 by The
Radio Research Laboratory, Japan. For
additional information see J. E. Jackson and
J. I. Vette, OGO Program Summary, NASA
SP-7601, Dec. 1975.
969 a las 04:00:47 GMT
· Masa seca en órbita: 5.700 kg.
Se trataba de una nueva misión para traer
muestras de vuelta desde la Luna pero siguió
un destino similar a la sonda anterior. El
aterrizador o Moonscooper estaba formado
por una etapa de descenso con una base de
3,96 metros de diámetro que contenía los
retrocohetes, la instrumentación y los
tanques de combustible, así como un brazo
robotizado. En la parte superior se
encontraba una unidad con forma cilíndrica
donde estaban los instrumentos principales y
en la parte superior estaba situada la etapa
de ascenso.
Esquema de las sonda de retorno lunares
soviéticas
Esta etapa de ascenso contenía los cohetes
de ascenso y la cápsula esférica de retorno
con el contenedor de muestras hermético. El
compartimento tenía una apertura por donde
el brazo robótico colocaría las muestras
lunares. El conjunto de descenso tenía una
altura total de 4 metros y un peso de 1880
kilogramos.
Por razones desconocidas el cohete Proton
encargado de lanzamiento explotó en el
lanzamiento.
Launch Date: 1969-06-05
Launch Vehicle: Thor-Agena
Launch Site: Vandenberg AFB, United States
Mass: 631.8 kg
Kosmos 286 (Zenit-4 #56)
Luna (15b) (E-8-5 #1)
Cosmos 286 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
· Fecha de lanzamiento: 14 de junio de 1.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 34
Launch Date: 1969-06-15
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Explorer 41 (IMP G)
Explorer 41 (IMP-G) was a spin-stabilized
spacecraft placed into a high-inclination,
highly elliptic orbit to measure energetic
particles, magnetic fields, and plasma in
cislunar space. The line of apsides and the
satellite spin vector were within a few
degrees of being parallel and normal,
respectively, to the ecliptic plane. Initial local
time of apogee was about 1300 h. Initial
satellite spin rate was 27.5 rpm. The basic
telemetry sequence was 20.48 s. The
spacecraft functioned very well from launch
until it decayed from orbit on December 23,
1972. Data transmission was nearly 100% for
the spacecraft life except for the interval from
November 15, 1971, to February 1, 1972,
when data acquisition was limited to the
vicinity of the magnetotail neutral sheet.
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-06-27
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Biosat 3 (Bios 3)
Biosatellite 3 was flown to conduct intensive
experiments to evaluate the effects of
weightlessness with a pigtail monkey on
board. The spacecraft deorbited after 9 days
because the monkey's metabolic condition
was deteriorating rapidly. The monkey
expired 8 hours after the spacecraft recovery,
presumably from a massive heart attack
brought on by dehydration
Launch Date: 1969-06-29
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 1546.0 kg
Launch Date: 1969-06-21
Launch Vehicle: Delta
Launch Site: Vandenberg AFB, United States
Mass: 175.0 kg
Kosmos 287 (Zenit-2 #68)
Cosmos 287 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1969-06-24
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Foto:Biosat 3 [NASA]
Julio 1969
L1S #2 / L3 Model #2
Intento fallido
STV 2
Kosmos 288 (Zenit-4 #57)
Cosmos 288 was a second generation, high
resolution Soviet photo surveillance satellite
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 35
Luna 15 fue colocada en una órbita de
aparcamiento terrestre tras el lanzamiento y
posteriormente enviada hacia la Luna
mediante la cuarta etapa del cohete ProtonK. La nave se colocó en órbita lunar el 16 de
julio y comenzó a estudiar el espacio
circumlunar, el campo gravitatorio y la
composición química de la superficie.
Además portaba una cámara para realizar
fotografías de la superficie. Tras completar
86 sesiones de comunicaciones con la Tierra
y 52 órbitas a diferentes alturas e
inclinaciones, la nave impactó contra la
superficie el 21 de julio de 1969,
posiblemente en un intento por tomar tierra
para traer muestras lunares. Justo el mismo
día de la llegada de la misión tripulada Apollo
11.
Foto:STV 1
STV (Satellite Test Vehicle)
Nation:
Type
/
Application:
Operator:
Contractors:
Europe
Vehicle evaluation
ELDO
Fiat Aviazione
Kosmos 289 (Zenit-4 #58)
Cosmos 289 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-07-10
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Foto: Módulo de ascenso devolviendo las
muestras a la Tierra
Apollo 11 (CSM 107)
LEM 5 /Apollo 11 SIVB
Luna 15 (E-8-5 #2)
· Otros nombres: 1969-058A, Lunik 15,
04036
· Fecha de lanzamiento: 13 de julio de 1.969
a las 02:54:42 GMT
· Masa seca en órbita: 5.718 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 36
Apolo 11 es el nombre de la misión espacial
que los Estados Unidos enviaron al espacio
el 16 de julio de 1969; fue la primera misión
tripulada en llegar a la superficie de la Luna.
El Apolo 11 fue impulsado por un cohete
Saturno V, desde la plataforma LC 39A; y
lanzado a las 9:32 hora local del complejo de
Cabo Kennedy, en Florida (Estados Unidos).
Oficialmente se conoció a la misión como
AS-506.
Nombre de la misión: Apolo 11
Nombre de los módulos:
Módulo de mando: Columbia
Módulo lunar: Eagle
Número de tripulantes: 3
Rampa de lanzamiento: Centro Espacial
Kennedy, Florida LC 39A
Despegue: 16 de julio de 1969
13:32:00 UTC
Alunizaje: 20 de julio de 1969
20:17:40 UTC
Mar de la Tranquilidad
0° 40' 26.69" N,
23° 28' 22.69" E
Tiempo AEV lunar: 2 h 31 min 40 s
Tiempo en la superficie de la Luna:
21 h 36 min 20 s
Cantidad de muestras: 21.55 kg
Aterrizaje: 24 de julio de 1969
16:50:35 UTC
13°19′N 169°9′O / 13.317, -169.15
Duración: 195 h 18 min 35 s
Tiempo en órbitas lunares: 59 h 30 min 25.79
s
Masa:
MC: 30,320 kg
ML: 16,448 kg
Foto de la Tripulación
La tripulación del Apolo 11 estaba compuesta
por el comandante Neil A. Armstrong, de 38
años y comandante de la misión; Edwin E.
Aldrin Jr., de 39 años y piloto del LEM,
apodado Buzz; y Michael Collins, de 38 años
y piloto del módulo de mando.
La denominación de las naves, privilegio del
comandante, fue Eagle para el módulo lunar
y Columbia para el módulo de mando.
El comandante Neil Armstrong fue el primer
ser humano que pisó la superficie de nuestro
satélite el 20 de julio de 1969 al Sur de Mar
de la Tranquilidad, (Mare Tranquilitatis). Este
hito histórico se retransmitió a todo el planeta
desde las instalaciones del Observatorio
Parkes (Australia). Inicialmente el paseo
lunar iba a ser retransmitido a partir de la
señal que llegase a la estación de
seguimiento de Goldstone (California,
Estados Unidos), perteneciente a la Red del
Espacio Profundo, pero ante la mala
recepción de la señal se optó por utilizar la
señal de la estación Honeysuckle Creek,
cercana a Canberra (Australia).[1] Ésta
retransmitió los primeros minutos del paseo
lunar, tras los cuales la señal del observatorio
Parkes fue utilizada de nuevo durante el
[2]
resto del paseo lunar. Las instalaciones del
MDSCC en Robledo de Chavela (Madrid,
España) también pertenecientes a la Red del
Espacio Profundo, sirvieron de apoyo durante
[3] [4]
todo el viaje de ida y vuelta.
El 24 de julio, los tres astronautas amerizaron
en aguas del Océano Pacífico poniendo fin a
la misión.
Armstrong, Collins y Aldrin
Cronología del vuelo
Despegue del Apolo 11
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 37
El 18 de junio, tres semanas antes del
lanzamiento, comienza la carga de
queroseno tipo RP-1 en la primera etapa del
Saturno V, un trabajo que termina seis días
después. El 15 de julio, ocho horas antes de
la hora prevista para el lanzamiento y para
evitar pérdidas por evaporación, se procede
al bombeo de oxígeno líquido (LOX) e
hidrógeno líquido (LH2) en los tanques de las
tres etapas del cohete. Estos últimos
propelentes, son almacenados a altas
presiones y a bajas temperaturas, por lo que
se los denomina genéricamente criogénicos.
una vez consumían su combustible. Esto es
lo que ocurrió durante el despegue del Apolo
11:
Cuando los cinco motores F-1 de la primera
etapa se encienden, los sistemas de
refrigeración se encargan de arrojar varias
toneladas de agua sobre la estructura
metálica del cohete para protegerla del calor.
Con la enorme vibración, se desprende la
escarcha que recubre el cohete, por efecto
de las bajísimas temperaturas a las que se
mantienen los propergoles dentro de los
tanques.
Cuando el Saturno V alcanza el 95% de su
empuje total, los cuatro ganchos que retienen
el cohete saltan hacia atrás; con una ligera
sacudida el cohete se despega de la
plataforma y comienza a elevarse, mientras
los cinco últimos brazos de la plataforma se
desplazan hacia un lado para no entorpecer
el lanzamiento del cohete. Para entonces los
motores F-1 ya consumen quince toneladas
de combustible por segundo.
A las 10:32 de la mañana en Cabo Kennedy
el Saturno V abandona la rampa de
lanzamiento.
Durante la misión la tripulación establecerá
contacto verbal con el centro de control en
Houston ya que una vez que el Saturno V
despega, Cabo Kennedy traspasa el control a
Houston.
El Saturno V despega
El 16 de julio, los astronautas Neil Armstrong,
Buzz Aldrin y Michael Collins, son llevados
hasta la nave para proceder a su posterior
lanzamiento. Mientras, el ordenador del
Complejo
39
realiza
las
últimas
comprobaciones y verifica que todos los
sistemas funcionan. El director de vuelo,
Gene Kranz, verifica las recomendaciones
del ordenador y consulta a los miembros de
su equipo. Entonces comienza la secuencia
de ignición.
Ciento sesenta segundos después, los
motores de cebado de la segunda etapa se
ponen en marcha ya que los cinco potentes
F-1 de la primera etapa han agotado su
combustible y se desprende del cohete,
iniciándose la segunda etapa que consta de
cinco motores J-2, cuya tarea es que el
Saturno V sigua ganando altura cada vez a
mayor velocidad.
También se produjo la separación de la torre
de escape de emergencia situada junto con
la cubierta protectora del módulo de mando,
ya que el Saturno V no presentaba
problemas técnicos y podía continuar con su
salida del campo gravitacional terrestre.
Los cohetes Saturno V, constaban de varias
fases que se iban desprendiendo de la nave
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 38
Nueve minutos después del lanzamiento, los
cinco motores J-2 de la segunda etapa se
encuentran separándose del resto de la
nave. Después las turbo bombas de la
tercera etapa envían combustible a su único
motor, el mecanismo de ignición se dispara y
el cohete vuelve a acelerar. Doscientos
segundos después el motor se apaga y los
astronautas comienzan a notar la ausencia
de gravedad; el Apolo 11 está en órbita.
pequeños detonadores explosivos similares a
los que se usan para separar las sucesivas
etapas agotadas. El LEM se separa del S-IV
B y tras una complicada maniobra que
ejecuta
la
tripulación
utilizando
los
propulsores de posición quedan los dos
vehículos ensamblados. Esta maniobra dura
alrededor de una hora. Después se
desprende la tercera etapa y se prosigue con
la misión.
De la Tierra a la Luna
El Apolo 11 realizará durante tres días la
supervisión de los aparatos de navegación,
correcciones
de
medio
rumbo
y
comprobaciones
de
los
diversos
instrumentos. Durante dos días, el Apolo 11
va perdiendo velocidad regularmente debido
a la atracción de la Tierra y cuando llega a la
gravisfera lunar, situada a las cinco sextas
partes del recorrido entre la Tierra y la Luna,
el vehículo, que avanza a una velocidad de
3.700 km/h comienza de nuevo a acelerar
hasta los 9.000 km/h, impulsada por la
gravedad lunar. El Apolo 11 se encamina a
esta velocidad hacia la Luna en una
trayectoria denominada trayectoria de
regreso libre, la cual permite a la nave pasar
orbitando por detrás de la Luna y volver a la
Tierra sin que sea necesario efectuar un
encendido de motor.
El módulo de mando y el módulo lunar
permanecen unidos todavía a la tercera
etapa denominada S-IV B. Según las normas
de las misiones lunares, las naves Apolo
deben permanecer tres horas en una órbita
llamada órbita de aparcamiento a 215 km de
altura. La tripulación emplea este tiempo en
estibar los equipos, calibrar instrumentos y
seguir las lecturas de navegación para
comprobar que la trayectoria que siguen es la
correcta.
En el control de misión verifican la
localización de la nave, dan instrucciones a
los astronautas y reciben los datos de quince
estaciones de rastreo repartidas por todo el
planeta, que han de estar perfectamente
coordinadas.
Una vez que el Apolo 11 completa la
segunda órbita a la Tierra y los astronautas
terminan de realizar sus tareas, Houston da
la orden para poner rumbo a la Luna.
Después de orientarse de forma precisa, la
tercera etapa pone en marcha su motor con
las sesenta toneladas de combustible que
aún permanecen en los tanques. El cohete
acelera gradualmente hasta alcanzar los
45.000 km/h esta maniobra recibe el nombre
inyección trans-lunar, y por su dificultad es el
segundo punto crítico de la misión.
Cuando se agota el combustible de la tercera
etapa, comienza otra parte crítica de la
misión. El módulo lunar permanece oculto
bajo un carenado troncocónico entre la
tercera etapa y el módulo de servicio. Hay
que iniciar la maniobra de transposición y
colocar al LEM delante del módulo de
mando. El carenado que protege al LEM se
fragmenta en cuatro paneles usando
El cuarto punto crítico de la misión es la
ejecución de una maniobra conocida como
inserción en órbita lunar o LOI. La trayectoria
de regreso libre es útil cuando hay problemas
al efectuar la LOI. Esta maniobra se realiza
en la cara oculta de la Luna cuando no hay
comunicación posible con Houston y consiste
en un encendido de motor para efectuar una
frenada y colocarse así en órbita lunar.
Desde tres inyectores distintos, comienzan a
fluir tres productos químicos distintos para
mezclase en la cámara de combustión e
iniciar el frenado denominado frenado
hipergólico. Estos tres productos (hidracina,
dimetilhidrazina y tetróxido de nitrógeno) se
llaman hipergólicos por su tendencia a
detonar siempre que se mezclan. A
diferencia del combustible sólido, el
combustible criogénico o el keroseno que
necesitan una chispa o ignición para liberar la
energía que almacenan sus enlaces
moleculares, el combustible hipergólico
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 39
obtiene su energía de una reacción catalítica
de repulsión que tienen los productos entre
sí. Este combustible es empleado por el
Apolo 11 para todas sus maniobras una vez
ha perdido la tercera etapa que utiliza
combustible criogénico (LOX y LH2).
El motor funciona durante cuatro minutos y
medio, y luego se apaga automáticamente. El
comandante Neil Armstrong verifica en el
panel de control del módulo de mando la
lectura de Delta-v que se refiere al cambio de
velocidad y observa que el frenado
hipergólico ha situado al Apolo 11 a una
velocidad correcta para abandonar la
trayectoria de regreso libre y situarse en
órbita lunar. También comprueba las lecturas
del pericintio, esto es el máximo
acercamiento a la superficie lunar y el
apocintio que es el máximo alejamiento. Las
lecturas indicaban que el Apolo 11 orbitaba la
Luna con un pericintio de 110 km y un
apocintio de 313 km. En un par de
revoluciones ajustarán la órbita hasta
convertirla en una circunferencia casi
perfecta. Poco más de media hora después
de desaparecer por el hemisferio oculto del
satélite, las comunicaciones con Houston se
restablecen y la tripulación confirma que el
Apolo 11 se encuentra orbitando la Luna.
―El Águila ha alunizado‖
El comandante Neil Armstrong y el piloto del
LEM Buzz Aldrin pasan del módulo de mando
al LEM. Completada la decimotercera órbita
lunar y cuando están en la cara oculta con
las
comunicaciones
con
Houston
interrumpidas, Mike Collins, piloto del
Columbia, acciona el mecanismo de
desconexión y el Eagle comienza a
separarse de su compañero de viaje. Con
unos cuantos disparos de los propulsores de
posición, el Columbia se retira, permitiendo al
Eagle realizar la complicada maniobra de
descenso hacia la superficie lunar. Esta
maniobra comienza con un encendido de
quince segundos con el motor trabajando al
10%, seguido de quince segundos más al
40%. Con este encendido consiguen
abandonar la órbita de la Luna e iniciar una
lenta caída hacia la superficie.
El LEM sigue ahora una trayectoria de
Hohmann casi perfecta y en unos cuantos
minutos llegan a la vertical del lugar previsto
para el alunizaje. A quince kilómetros de la
superficie, control de misión indica que todo
está listo para la maniobra de descenso final
o PDI, consistente en activar por segunda
vez el motor del LEM.
El Eagle se aleja del Columbia
Todos
los
sistemas
funcionan
con
normalidad. Neil Armstrong dispara una corta
ráfaga de impulsos con los propulsores de
posición para realizar un proceso que se
repite en todos los encendidos hipergólicos.
Los propulsores de posición son accionados
para empujar el combustible hipergólico al
fondo del depósito y así eliminar burbujas o
bolsas de aire en un proceso llamado merma.
Tres segundos después el motor principal del
LEM entra en ignición y este funciona al 10%
durante veintiséis segundos mientras el
sistema de control automático estabiliza
correctamente la nave. Después el motor del
LEM despliega toda su potencia.
El ordenador trabaja ahora según su
programa 63 que es el modo totalmente
automático. Siete minutos después de
iniciada la secuencia de descenso y a una
altura aproximada de seis kilómetros de la
superficie, Neil Armstrong introduce en el
ordenador el programa número 64. Con este
programa, el empuje del motor desciende
hasta un 57% y el LEM se sitúa en posición
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 40
horizontal. El sitio exacto de alunizaje, se
encuentra a menos de veinte kilómetros al
Oeste.
Aproximadamente
en
esos
momentos, el oficial de guiado comunica al
director de vuelo que el LEM viaja a más
velocidad de la programada. Este hecho
podía causar el aborto del alunizaje pero el
director de vuelo decide seguir con los
procedimientos de alunizaje.
Debido a esto el LEM sobrepasa el lugar
donde debería haber alunizado. Al parecer, el
ordenador les está conduciendo hacia un
gran cráter con rocas esparcidas a su
alrededor que causarían serios daños al
módulo si el alunizaje se produjese en esa
zona. Armstrong desconecta el programa 64
e introduce el 66. Este programa de control
semiautomático controla el empuje del motor
pero deja en manos de la tripulación el
movimiento de traslación lateral del LEM. El
comandante desliza el módulo lunar en
horizontal por la superficie buscando un lugar
adecuado para el alunizaje mientras Aldrin le
va leyendo los datos del radar y el ordenador.
El LEM pierde altura gradualmente. A menos
de dos metros de la superficie, una de las
tres varillas sensoras que cuelgan de las
patas del LEM, toca el suelo.
El Eagle recorre el último metro en una suave
caída gracias a la débil gravedad lunar. El
terreno ha resistido bien el peso del aparato y
todos los sistemas funcionan.
Houston…aquí base tranquilidad, el Águila
ha alunizado
Al sur del Mare Tranquilitatis y a unos
noventa kilómetros al este de dos cráteres
casi gemelos denominados Ritter y Sabine,
concretamente en las coordenadas 0º40'27"
Norte y 23º28'23" Este; es donde se halla en
estos momentos la base lunar, denominada
Tranquillitatis Statio, consistente en el LEM y
su
tripulación.
Realizadas
las
comprobaciones
pertinentes,
Armstrong
solicita
permiso
para
efectuar
los
preparativos de la primera actividad
extravehicular o EVA. Houston lo autoriza.
La única posibilidad de peligro para la misión
era la sonda automática Luna 15, que,
lanzada el 13 de julio, había estado en órbita
lunar de 100 por 129 km y 25º de inclinación
y corría riesgo de interferir en la órbita del
Apolo, que era de 112 por 314 km y
posteriormente de 99,4 por 121 km y 78º de
inclinación. La misión de esta sonda era el
alunizaje suave y recogida de muestras que
luego enviaría de forma automática a la
Tierra.
Cinco horas y media después del alunizaje,
los astronautas están preparados para salir
del LEM. El primero en hacerlo es Armstrong,
quien mientras desciende por las escaleras
activa la cámara de televisión que
retransmitirá imágenes a todo el mundo. Una
vez hecho esto, describe a Houston lo que
ve, y al pisar el suelo a las 2:56 del 21 de
julio de 1969 (hora internacional UTC), dice
la famosa frase: "Un pequeño paso para un
hombre, un gran salto para la Humanidad".
En Houston son las 15:17 del 20 de julio de
1969. El Eagle está posado sobre la
superficie del satélite. En el momento del
contacto el motor de descenso posee sólo
unos 30 segundos de combustible restante,
alunizando a 38 m de un cráter de 24 m de
diámetro y varios de profundidad.
Un gran salto
Grabación de la famosa frase que pronunció
Armstrong al pisar la luna por primera vez:
«It's one small step for [a] man, one giant
leap for mankind» (Un pequeño paso para un
hombre, un gran salto para la humanidad).
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 41
sin cierta dificultad para clavarla en el suelo
selenita e inician una conversación telefónica
con el presidente de los Estados Unidos
Richard Nixon:
Aldrin saluda la bandera
El reloj de Houston señala las 22:56. En un
primer momento
por
seguridad
los
astronautas iban unidos a un cordón
enganchado al LEM. Al ver que no corrían
ningún peligro se deshicieron de él.
Armstrong toma fotografías del paisaje
aledaño y más tarde muestras del suelo
lunar. Entretanto Buzz Aldrin se prepara para
salir del LEM de la misma manera que su
comandante, el segundo de a bordo baja por
la escala, y establece diálogo con Houston:
- ―Quizás para Neil fuera un pequeño paso,
pero para mí ha sido un bonito salto.‖
Mientras en Houston ríen, Buzz Aldrin
contempla a su alrededor y continúa
hablando:
―Bonito…bonito...
Una
magnífica
desolación‖
Los astronautas se percatan de la baja
gravedad y comienzan a realizar las tareas
que les han encomendado, instalar los
aparatos del ALSEP, descubrir una placa con
una
inscripción
que
conmemora la
efemérides, después el comandante instala
una cámara de televisión sobre un trípode a
veinte metros del LEM. Mientras tanto Aldrin
instala un detector de partículas nucleares
emitidas por el Sol, esto es una especie de
cinta metalizada sobre la que incide el viento
solar que posteriormente deberán trasladar al
LEM para poder analizarla en la Tierra al
término de la misión. Más tarde ambos
despliegan una bandera norteamericana, no
Huella del astronauta Buzz Aldrin.
- ―Hola Neil y Buzz, les estoy hablando por
teléfono desde el despacho oval de la Casa
Blanca y seguramente esta sea la llamada
telefónica más importante jamás hecha,
porque gracias a lo que han conseguido,
desde ahora el cielo forma parte del mundo
de los hombres y como nos hablan desde el
Mar de la Tranquilidad, ello nos recuerda que
tenemos que duplicar los esfuerzos para
traer la paz y la tranquilidad a la Tierra. En
este momento único en la historia del mundo,
todos los pueblos de la Tierra forman uno
solo. Lo que han hecho los enorgullece y
rezamos para que vuelvan sanos y salvos a
la Tierra‖
Armstrong contesta a su presidente:
- ―Gracias señor presidente, para nosotros es
un honor y un privilegio estar aquí.
Representamos no solo a los Estados
Unidos, sino también a los hombres de paz
de todos los países. Es una visión de futuro.
Es un honor para nosotros participar en esta
misión hoy‖.
Por último instalan a pocos metros del LEM
un sismómetro para conocer la actividad
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 42
sísmica de la Luna y un retrorreflector de
rayos láser para medir con precisión la
distancia que hay hasta nuestro satélite.
Mientras esto sucede, Michael Collins sigue
en órbita en el módulo de mando y servicio
con un ángulo muy rasante. Cada paso en
órbita, de un horizonte a otro, sólo dura 6
minutos y medio pero desde semejante altura
no es capaz de ver a sus compañeros. Cada
dos horas ve como cambia la Luna y también
observa como orbita debajo de su cápsula la
sonda soviética Luna 15 en dos ocasiones.
cristal destinado a efectuar mediciones desde
nuestro planeta de la distancia Tierra-Luna,
un sismómetro para registrar terremotos
lunares y la caída de meteoritos, así como
una pantalla de aluminio de 15 por 3 dm
destinada a recoger partículas del viento
solar.
El primero en regresar al módulo lunar es
Aldrin, al que sigue Armstrong. Después los
dos astronautas duermen durante 4:20 h,
Después de 13 horas el comandante se
produce el despegue, el motor de la etapa de
ascenso entra en ignición abandonando su
sección inferior en la superficie, y se dirige
hacia el Columbia
A las 19:34 del 21 de julio, el módulo de
ascenso se eleva desde la Luna hacia su cita
con C.S.M. Siete minutos después del
despegue, el Eagle entra en órbita lunar a
cien kilómetros de altura y a quinientos
kilómetros del Columbia. Lentamente y
utilizando los propulsores de posición, se van
acercando ambos vehículos hasta que tres
horas y media después vuelan en formación.
El comandante efectúa la maniobra final con
el Eagle y gira para encararse con el
Columbia. Se acerca hasta que los garfios de
atraque actúan y ambos módulos quedan
acoplados. El módulo de ascenso es
abandonado, cayendo sobre la superficie
lunar.
Armstrong después del histórico paseo
La EVA dura más de 14 horas, durante las
cuales los astronautas realizan importantes
experimentos científicos: instalan un ALSEP
con varios experimentos, una bandera
norteamericana de 100 por 52 cm, dejan un
disco con los mensajes y saludos de todas
las naciones del mundo, las medallas
recibidas de las familias de Yuri Gagarin y
Vladímir Komarov, las insignias del Apolo en
recuerdo de Virgil Grissom, Edward White y
Roger Chaffee, fallecidos en el incendio de la
nave Apolo 1, sellan con un tampón el primer
ejemplar del nuevo sello de correos de 10
centavos y recogen 22 kg de rocas lunares.
Los aparatos que han llevado son: un
reflector láser con más de 100 prismas de
Regreso a casa
El transbordo de las muestras y la
desconexión de parte de los sistemas del
módulo Eagle, ocupa a la tripulación durante
dos horas, y cuando se sitúan en sus
puestos, se preparan para abandonar al
Eagle en la órbita de la luna. A las 6:35 del
22 de julio encienden los motores del módulo
iniciando el regreso a la Tierra. Es la
maniobra denominada inyección trans-tierra,
que consiste en un encendido hipergólico de
dos minutos y medio y que sitúa al Columbia
en una trayectoria de caída hacia la Tierra
que concluirá en sesenta horas.
Durante el viaje de regreso se realizan leves
correcciones de rumbo.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 43
meteoro sobre la atmósfera terrestre
alcanzando temperaturas de 3000 °C.
Unos minutos después de la pérdida de
comunicaciones, se reciben en Houston las
primeras señales procedentes de la nave. A
ocho kilómetros se abren los dos primeros
paracaídas para estabilizar el descenso. A
tres kilómetros, estos son reemplazados por
tres paracaídas piloto y los tres paracaídas
principales de veinticinco metros de diámetro.
Por fin consiguen amerizar a las 18:50 del 24
de julio, exactamente 8 días, 3 horas, 18
minutos y 35 segundos después de que el
Saturno V abandonó la rampa del Complejo
39.
La cápsula en el Pacífico
Houston les informa de que hay posibilidades
de temporal en la zona prevista para el
amerizaje y redirigen al Apolo 11 a una zona
con tiempo estable, concretamente a
1.500 km al sudoeste de las islas Hawai,
donde serán recogidos en el Océano Pacífico
por los tripulantes del portaaviones USS
Hornet, un veterano de la Segunda Guerra
Mundial, tras efectuar 30 órbitas a la Luna.
Los equipos de recuperación se preparan
para recoger a la tripulación del Apolo 11. A
unos kilómetros por encima, el módulo de
mando con la tripulación en él, se ha
separado del módulo de servicio y se
preparan para la reentrada. En esta parte de
la misión no hacen falta motores de frenado
puesto que es el rozamiento el que se
encarga de disminuir la velocidad de la
cápsula desde los 40.000 km/h actuales a
unos pocos cientos, de modo que puedan
abrirse los paracaídas sin riesgo de rotura.
Hay que tener en cuenta que la reentrada es
un proceso en el que la inmensa energía
cinética de la cápsula se disipa en forma de
calor haciendo que esta alcance una
elevadísima temperatura.
Por efecto de esta elevada temperatura, se
forma una pantalla de aire ionizado que
interrumpe totalmente las comunicaciones
con la nave. Ésta se precipita como un
Esta misión fue un rotundo éxito para el
gobierno estadounidense comandado por el
Presidente Richard Nixon, y un homenaje a
su inductor, el Presidente John Kennedy que
no pudo disfrutar del mismo tras ser
asesinado en 1963.
Kosmos 290 (Zenit-2 #69)
Cosmos 290 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1969-07-22
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Molniya-1 12
Molniya 1/12 was a first-generation Russian
communications satellite orbited to test and
perfect a system of radio communications
and television broadcasting using earth
satellites as active transponders and to
experiment with the system in practical use.
The basic function of the satellite was to relay
television programs and long-distance twoway multichannel telephone, phototelephone,
and telegraph links from Moscow to the
various standard ground receiving stations in
the 'Orbita' system. The satellite was in the
form of a hermetically sealed cylinder with
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 44
conical ends -- one end contained the orbital
correcting engine and a system of microjets,
and the other end contained externally
mounted solar and earth sensors. Inside the
cylinder were (1) a high-sensitivity receiver
and three 800-MHz 40-w transmitters (one
operational and two in reserve), (2)
telemetering
devices
that
monitored
equipment operation, (3) chemical batteries
that were constantly recharged by solar cells,
and (4) an electronic computer that controlled
all equipment on board. Mounted around the
central cylinder were six large solar battery
panels and two directional, high-gain
parabolic aerials, 180 deg apart. One of the
aerials was directed continually toward the
earth by the highly sensitive earth sensors.
The second aerial was held in reserve.
Signals were transmitted in a fairly narrow
beam ensuring a strong reception at the
earth's surface. The satellite received
telemetry at 1000 MHz. Television service
was provided in a frequency range of 3.4 to
4.1 GHz at 40 w. Molniya 1/12, whose
cylindrical body was 3.4 m long and 1.6 m in
diameter,
was
much
heavier
than
corresponding U.S. COMSATs, and it had
about 10 times the power output of the Early
Bird COMSAT. In addition, it did not employ a
geosynchronous equatorial orbit as have
most U.S. COMSATs because such an orbit
would not provide coverage for areas north of
70 deg n latitude. Instead, the satellite was
boosted from a low-altitude parking orbit into
a highly elliptical orbit with two high apogees
daily over the northern hemisphere -- one
over Russia and one over North America -and relatively low perigees over the southern
hemisphere. During its apogee, Molniya 1/12
remained relatively stationary with respect to
the earth below for nearly 8 of every 12 hr. By
placing three or more Molniya 1 satellites in
this type of orbit, spacing them suitably, and
shifting their orbital planes relative to each
other by 120 deg, a 24-hr/day communication
system could be obtained. The satellite
probably ceased trransmitting in December
1970. It reentered teh atmosphere on June
18, 1971, after 696 days in orbit.
Launch Date: 1969-07-22
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation Upper Stage + Escape
Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 1750.0 kg
DMSP-4B F3
The cylindrically shaped Block 4 satellites
incorporated two new one-inch diameter
vidicon cameras, video (2), a large capacity
tape recorder, and an all-digital command
subsystem with magnetic core memory,
giving fully progammable coverage of either
direct readout or readout of recorded data
without interference. Nominal satellite spin
rate was decreased to reduce smear,
permitting a higher resolution TV system for
improved picture quality. Dual cameras and a
high capacity recorder provided complete
daily coverage of the entire northern
hemisphere and tactical coverage anywhere
on the earth. An improved IR 'C' system was
incorporated on this spacecraft. The Defence
Meteorological Satellite Program's Block 4
space segment consisted of satellites in 450
nautical mile sun-synchronous polar orbits
each carrying a payload of meteorological
sensors. Primary cloud imaging sensors
capable of globally viewing the earth in the
visible and infrared spectrums were carried
by every satellite. The ascending node of the
satellites was either in the early morning time
period or at mid-day. THe final data product
was a film product directly usable for imagery
analysis. Originally part of a classified system
of USAF weather satellites, the spacecraft
mission was not revealed until March 1973.
Launch Date: 1969-07-22
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 195.0 kg
1969-062B
Launch Date: 1969-07-23
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Kosmos (291) (DS-P1-Yu #23)
Lanzamiento fallido
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 45
KH-4B 7
This US Air Force photo surveillance
satellite was launched from Vandenberg
AFB aboard a Thor Agena D rocket. It was
a KH-4B (Key Hole-4B) type spacecraft.
The forward camera failed on pass 1 and
remained inoperative throughout the rest of
the mission.
Cosmos 291 was one of a series of Soviet
earth satellites whose purpose was to study
outer space, the upper layers of the
atmosphere, and the earth. Scientific data
and measurements were relayed to earth by
multichannel telemetry systems equipped
with space-borne memory units. Although
Cosmos 291 was a maneuverable satellite, it
did not move out of its initial low orbit.
Launch Date: 1969-07-24
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Launch Date: 1969-08-06
Launch Vehicle: Tsiklon
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
Intelsat-3 5
Zond 7 (L1 12)
Intelsat 3 F-5 was launched by NASA for
Communications Satellite Corporation. It was
the 4th increment of COMSAT's operational
commercial communications satellite system.
The 3rd stage malfunctioned and the satellite
did not achieve the desired orbit.
Launch Date: 1969-07-26
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 647.0 kg
Ferret o 13
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. The Ferrets
catalogued Soviet air defence radars,
eavesdropped on voice communications, and
taped missile and satellite telemetry.
Launch Date: 1969-07-31
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 1500.0 kg
Agosto 1969
Kosmos 291 (IS-M-GVM)
Zond 7 was launched towards the moon from
a mother spacecraft (69-067B) on a mission
of further studies of the moon and
circulmunar
space,
to
obtain
color
photography of the earth and the moon from
varying distances, and to flight test the
spacecraft systems. Earth photos were
obtained on August 9, 1969. On August 11,
1969, the spacecraft flew past the moon at a
distance of 1984.6 km and conducted two
picture taking sessions. Zond 7 reentered the
earth's atmosphere on August 14, 1969, and
achieved a soft landing in a preset region
south of Kustanai.
Launch Date: 1969-08-07
Launch Vehicle: Proton Booster Plus Upper
Stage and Escape Stages
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5979.0 kg
OSO 6 / PAC 1
OSO 6 was the sixth in a series of satellites
designed
to
conduct
solar
physics
experiments above the earth's atmosphere
during a complete solar cycle. The primary
objectives of OSO 6 were the acquisition of
high spectral-resolution data within the 1 to
1300 A range, the observation of solar X-rays
in the 20 to 200 keV range, and the
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 46
observation of high-energy neutron flux in the
20 to 130 MeV range. Seven experiments
were carried on the spacecraft. Two of these
were located in the sail portion and were
designed to point toward the sun. The
remaining five experiments were mounted in
compartments of the nine-sided rotating
wheel section and scanned the solar disk
every 2 s when the spacecraft was in
sunlight.
The
spacecraft
measured
approximately 112 cm in diameter and about
96 cm in height. The spacecraft was spinstabilized after launch, and gas jets mounted
on the sail section kept the spacecraft
positioned so that its spin axis was normal to
the sun vector within plus or minus 3.5 deg.
Servomotors drove the sail in a direction
opposite to the spinning wheel so that the sail
faced the sun during the sunlight portion of
the orbit. OSO 6 was the first in the series
that could offset point to any one of 16,384
points on a 128 by 128 point grid. With the
spacecraft pointing at the sun center, large
rasters of 46 by 46 arc-min could be
performed. Small rasters, 7.5 by 7 arc-min,
could be performed on any offset point but
not outside the bounds of the 46 by 46 arcmin. The spacecraft was launched on August
9, 1969. All seven experiments were turned
on for continuous operation by orbit 75 on
August 14, 1969. The spacecraft was retired
on December 31, 1972. For more information,
see R. N. Watts, Sky and Teles., v. 38, p.
230, 1969.
PAC-A (Package Attitude Control) was a
NASA satellite launched from Cape
Canaveral aboard a Delta N rocket along with
OSO 6. It performed semi-active gravity
gradient stabilization tests.
Launch Date: 1969-08-09
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 647.0 kg
ATS 5
ATS
5
was
an
equatorial-orbiting,
synchronous-altitude technology satellite
intended to test various communications and
earth observational systems. Also included
on board were particle, electric field, and
magnetic field experiments. Because of a
malfunction, the intended gravity-gradient
stabilization mechanism could not be
deployed, and ATS 5 was stabilized in a
spinning mode about the spacecraft Z axis at
approximately 71 rpm. All experiments that
depended on the planned gravity-gradient
stabilization were adversely affected to
varying degrees, and the mission was
declared a failure. However, some of the
science experiments, including the magnetic
field monitor and the particle experiments,
returned usable data. ATS 5 was positioned
at about 105 deg W longitude over the
eastern Pacific Ocean
ATS-5, the last spacecraft in the
Hughes/NASA ATS program, was launched
August 12, 1969, in a near-perfect trajectory
for insertion into synchronous orbit. Although
injected
successfully
into
orbit,
the
spacecraft's reverse spin (counterclockwise)
prevented successful deployment of the 124
foot gravity gradient booms for the
stabilization experiment. However nine of the
other 13 experiments aboard the spacecraft
returned useful data. ATS-5 was retired in
March 1984.
Launch Date: 1969-08-12
Launch Vehicle: Atlas-Centaur
Launch Site: Cape Canaveral, United States
Mass: 821.0 kg
Kosmos 292 (Tsiklon #3)
Cosmos 292 was a prototype Soviet
navigation satellite. The shipboard installation
consisted of the Tsunami system, composed
of the Sirius radio station, the Signal antenna
stabilisation
platform,
the
Konus-4
omnidirectional antenna, and the Kvant-L
antenna. First trial were conducted with a
Project 680 vessel of the Black Sea fleet and
showed a position error of 3 km, which was
intolerable. A large part of the problem was
with inaccuracies in the software models
available for predicting the spacecraft
ephemerides. Work by the KIK Centre
resulted in a 10 to 30 times improvement in
this accuracy, incorporating new information
on the gravitational anomalies and geoid of
the earth. Use of the revised software in 1969
showed an average error of 100 m over a five
day period. Further improvement required a
better mapping of the earth's gravitational
anomalies. Testing of Tsiklon would continue
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 47
through 1972 before an adequate operational
system
could
be
designed.
The
Parus/Tsiklon-B production system began
flight tests in 1974.
Tsiklon used the basic KAUR-1 bus,
consisting of a 2.035 m diameter cylindrical
spacecraft body, with solar cells and radiators
of the thermostatic temperature regulating
system mounted on the exterior. Orientation
was by a single-axis magneto-gravitational
(gravity gradient boom) passive system. The
hermetically sealed compartment had the
equipment mounted in cruciform bays, with
the chemical batteries protecting the radio
and guidance equipment mounted at the
centre).
Launch Date: 1969-08-14
Launch Vehicle: Kosmos-3
Launch Site: Plesetsk, U.S.S.R
Mass: 775.0 kg
Kosmos 293
Gektor #4)
(Zenit-2M
Kosmos 295 (DS-P1-Yu #24)
Cosmos 295 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-08-22
Launch Vehicle: Kosmos-2I
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
KH-8A 1 / KH 8-23
#4,
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Cosmos 293 was a third generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The spacecraft
carried a science package
.
Launch Date: 1969-08-16
Launch Vehicle: Soyuz
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5900.0 kg
Kosmos 294 (Zenit-4 #59)
Cosmos 294 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-08-19
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Foto:KH-8A 26 [USAF]
Launch Date: 1969-08-23
Launch Vehicle: Titan IIIB-Agena D
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 48
Pioneer E / TTS 3 /TETR-C
Otros nombres: PIONE
Fecha de lanzamiento: 27 de agosto de
1.969 a las 21:59:00 GMT
La sonda Pioneer E fue la quinta misión de
esta serie de orbitadores solares de giro
estabilizado
que
permitían
obtener
mediciones
de
los
fenómenos
interplanetarios en puntos distantes del
espacio. Entre sus experimentos se
encontraban estudiar los iones positivos y los
electrones del viento solar, la densidad de
electrones interplanetarios (experimentos de
propagación de radio), los rayos cósmicos
solares y galácticos, el campo magnético
interplanetario, el polvo cósmico y los
campos eléctricos. Debido a un fallo
hidráulico en la primera etapa del cohete la
nave nunca llegó hasta la órbita, por lo que
se decidió destruirlo a los 484 segundos del
lanzamiento.
Cosmos 296 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-08-29
Launch Vehicle: Soyuz
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Septiembre 1969
Kosmos 297 (Zenit-4 #61)
Cosmos 297 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-09-02
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 298 (OGCh #21)
Cosmos 298 was a Soviet Fractional Orbital
Bombardment System (FOBS) system test
satellite launched from the Baikonur
Cosmodrome aboard a Tsiklon rocket. It
contained a nuclear warhead launched into
orbit, where it could remain until deorbited
onto target with little warning.
Foto:Pioneer 6 [NASA]
Launch Date: 1969-08-27
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 148.0 kg
Kosmos 296 (Zenit-4 #60)
Launch Date: 1969-09-15
Launch Vehicle: Tsiklon
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5000.0 kg
Kosmos 299 (Zenit-4 #62)
Cosmos 299 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 49
Launch Date: 1969-09-18
Launch Vehicle: Soyuz
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
KH-4A 52 / SSF-B 16KH-4A
1052 Subsatelite
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Thor Agena D rocket. It was a KH-4A (Key
Hole-4A) type spacecraft. This was the last of
the KH-4A missions. All camera systems
operated satisfactorily.
Launch Date: 1969-09-22
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Ohsumi (#4)
Kosmos 300 (Luna (16a)) (E-85 #3)
· Otros nombres: 1969-080A, 04104
· Fecha de lanzamiento: 23 de septiembre de
1969 a las 14:07:36 GMT
· Masa seca en órbita: 5.600 kg
De nuevo otro intento por conseguir una
sonda que se posara en la Luna suavemente
para enviar muestras de vuelta a la Tierra.
Tras llegar hasta la órbita terrestre con
aparente normalidad, la etapa Block D del
cohete lanzador Proton SL-12/D-1-e falló y la
nave
quedó
en
órbita
terrestre.
La sonda era similar a las misiones
anteriores. La nave tenía cuatro tanques de
combustibles esféricos, toberas y patas de
aterrizaje, colocadas en una base de 4
metros de anchura. La cápsula de retorno era
esférica y la etapa de ascenso estaba
colocada en la parte superior. Un brazo
robótico (posiblemente dotado de taladrador)
debía coger las muestras y almacenarlas en
la cápsula para su envío a la Tierra. Tras
quedar en órbita terrestre fue bautizada como
Cosmos 300.
Kosmos 301 (Zenit-2 #70)
Cosmos 301 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1969-09-24
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Foto:Ohsumi [ISAS]
Nation:
Japan
Type
/ Technology
Application:
Operator:
ISAS
Poppy 6A (NRL-PL 161) /1969-082A
Poppy 6B (NRL-PL 162) /1969-082C
Poppy 6C (NRL-PL 163)/ Poppy 6D
(NRL-PL 164)…./Timation 2
Tempsat 2/SOICAL Cone (S694(a))…/SOICAL Cylinder (S694(b))….
NRL-PL 176/SSF-B 17
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 50
Poppy was the follow-on ELINT system,
which succeeded the "Galactic Radiation and
Background" (Grab) ELINT satellite system.
The Naval Research Laboratory (NRL)
proposed and developed Poppy, an
electronic intelligence (ELINT) satellite
system in 1962. Poppy's mission was to
collect radar emissions from Soviet naval
vessels. The primary organizations that
supported the Poppy Program included NRO,
NSA, NRL, the Naval Security Group, the Air
Force Security Service, the Army Security
Agency and the Office of Naval Intelligence.
The Poppy Program was a component of the
NRO Program C and NRL designed,
developed, and operated Poppy satellites
within Program C. NRO Program A provided
launch support for Poppy. NSA received,
analyzed, and reported findings derived from
the intercepted radar signals from Poppy. The
Naval Security Group, with support from Air
Force Security Service and Army Security
Agency, coordinated field operations and
maintained and operated Poppy ground sites.
The Poppy Program operated from
December 1962 through August 1977. A total
of seven Poppy satellites launched into space
from 1962 to 1971. The launch dates are as
follows: Dec. 13, 1962, June 15, 1963, Jan.
11, 1964, March 9, 1965, May 31, 1967,
Sept. 30, 1969, and Dec. 14, 1971. Poppy's
average useful life on orbit was 34 months.
The Naval Research Laboratory's (NRL's)
Naval Center for Space Technology (NCST)
conceived the Timation (Time / Navigation)
program in 1964 and launched the Timation 1
satellite in 1967 and the Timation 2 satellite in
1969. Timation proved that a system using a
passive ranging technique, combined with
selected high-performance crystal oscillator
clocks, could provide the basis for a new and
revolutionary navigation system with threedimensional coverage (longitude, latitude,
and altitude) throughout the world. NCST's
Timation program paved the way for what
eventually became the Global Positioning
System (GPS).
Foto:Timation 1 [NRL]
SOICAL was a military surveillance
calibration spacecraft launched by the US Air
Force from Vandenberg AFB aboard a Thor
Agena-D rocket.
Launch Date: 1969-09-30
Launch Vehicle: Thor Augmented DeltaAgena D
Launch Site: Vandenberg AFB, United States
Mass: 60.0 kg
Octubre 1969
ESRO 1B (Boreas)
Foto:Poppy (later Version) [NRO]
ESRO 1/Boreas was an 80 kg, cylindrically
shaped, solar cell powered spacecraft
carrying eight scientific experiments chosen
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 51
to measure a comprehensive range of auroral
effects. The measurements included auroral
luminosity, ionospheric composition and
temperature, and the flux and energy spectra
of trapped and precipitated energetic particles
(electrons from 1 to 400 KeV, protons from 1
KeV to 30 MeV). The satellite was
magnetically stabilized and was launched into
a low nearly circular orbit on October 1, 1969,
resulting in a rather short lifetime of only 52
days. Even so, during this period, a large
amount of onboard tape recorder and realtime data were recovered. These data are
particularly valuable in correlative studies with
the identical satellite ESRO 1/Aurorae that
was launched October 3, 1968, into a similar
orbit, and operated until June 26, 1970.
Foto:ESRO 1A (Aurorae) [ESA]
Launch Date: 1969-10-01
Launch Vehicle: Scout
Launch Site: Vandenberg AFB, United States
Mass: 80.0 kg
Meteor-1 2
Meteor 1-2 was the second fully operational
Russian meteorological satellite and the tenth
meteorological satellite launched from the
Plesetsk site. The satellite was placed in a
near-circular, near-polar prograde orbit to
provide near-global observations of the
earth's weather systems, cloud cover, ice and
snow fields, and reflected and emitted
radiation from the dayside and nightside of
the earth-atmosphere system for operational
use by the Soviet Hydrometeorological
Service. This was the first satellite of the
Meteor series to be placed in a high orbit -about 240 km higher than most other Metero
launches. Other high orbit flights were made
by Meteor 10, 11, and 12. Meteor 2 was
equipped with two vidicon cameras for
dayside photography, a scanning highresolution IR radiometer for dayside and
nightside photography, and an actinometric
instrument for measuring the earth's radiation
field in the visible and infrared regions. The
satellite was in the form of a cylinder 5 m long
and 1.5 m in diameter with two large solar
panels attached to the sides. The solar
panels were automatically oriented toward
the sun to provide the spacecraft with the
maximum amount of solar power. Meteor 1
was oriented toward the earth by a gravitygradient
triaxial
stabilization
system
consisting of flywheels whose kinetic energy
was dampened by the use of controlled
electromagnets on board that interacted with
the magnetic field of the earth. The
instruments were housed in the base of the
satellite, which pointed toward the earth,
while the solar sensors were mounted in the
top section. The operational 'Meteor' weather
satellite system ideally consists of at least two
satellites spaced at 90-deg intervals in
longitude so as to observe a given area of the
earth approximately every 6 hr. When within
communications range, the data acquired by
Meteor 1 were transmitted directly to the
ground receiving centers in Moscow,
Novosibirsk, or Vladisvostok. Over regions
beyond communication range, Meteor 1
recorded the TV and IR pictures and
actinometric data and stored them on board
until the satellite passed over the receiving
centers. The meteorological data received at
these centers were processed, reduced, and
sent to the Hydrometeorological Center in
Moscow where they were analyzed and used
to prepare various forecast and analysis
products. Some of the TV and IR pictures and
analyzed actinometric data were then
distributed to various meteorological centers
around the world.
Launch Date: 1969-10-06
Launch Vehicle: Modified SS-6 (Sapwood)
with 1st Generation Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 1440.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 52
spacecraft with Soyuz 7 and Soyuz 8 but no
rendezvous, due to a failure in the
rendezvous electronics in all three spacecraft,
so there was only an approaching. First
vacuum welding in space by Kubasov using
welding construction "VULKAN". The crew
tested three different methods of welding.
The weld quality was said to be in no way
inferior to that of Earth based welds. Several
scientific und technical experiments were also
performed.
Soyuz 6
Launch, orbit and landing data
Launch date:
Launch time:
Launch site:
Launch pad:
Altitude:
Inclination:
Landing date:
Landing time:
Landing site:
Crew
No
.
1
2
11.10.1969
11:10 UT
Baikonur
31
186,2 - 222,8 km
51,68°
16.10.1969
09:53 UT
180 km NW of Karaganda
Surnam
e
Shonin
Kubaso
v
Given
name
Georgi
Stepanovic
h
Valeri
Nikolayevic
h
Job
Comm
ander
Flight
Enginee
r
Flight
Soyuz 6 was piloted by cosmonaut G.
Shonin, Commander, and cosmonaut V.
Kubasov, Flight Engineer. The announced
mission objectives included (1) checkout and
flight test of space borne systems and the
modified structure of the Soyuz craft, (2)
further inprovement of the control, orientation,
and orbital stabilization systems and
navigation aids, (3) debugging the piloting
systems by orbital maneuvering of the
spaceships in relation to one another, (4)
testing of a system for control of the
simultaneous flight of three spacecraft, (5)
scientific observations and photographing of
geological-geographical
subjects
and
exploration of the earth's atmosphere, (6)
studying circumterrestrial space, and (7)
conducting experiments of engineering
research and biomedical importance. Stable
two-way
radio
communications
was
maintained between the spaceships and the
ground stations, and TV coverage was
broadcast from the ships during flight. The
most significant objective was testing
alternate methods for welding using remote
handling equipment in the high vacuum and
weightless conditions of outer space. In
Soyuz 6, the welding unit had the name
Vulcan and was controlled remotely by
electric cable. Of the three types of welding
tried (low pressure compressed arc, electron
beam, and arc with a consumable electrode),
electron beam was the most successful.
Soyuz 6 also performed group flight with
Soyuz 7 and Soyuz 8, but it did not dock with
either spacecraft.
Launch from Baikonur; landing 180 km
northwest
of
Karaganda.
It was to have rendezvoused with Soyuz 7
and Soyuz 8 and to have taken spectacular
motion pictures of the Soyuz 7 - Soyuz 8
docking. It became a joint mission of three
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 53
Crew
Foto:Soyuz 6
Launch Date: 1969-10-11
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6577.0 kg
Soyuz 7
Launch, orbit and landing data
Launch date:
12.10.1969
Launch time:
10:44 UT
Launch site:
Baikonur
Launch pad:
1
Altitude:
207,4 - 225,9 km
Inclination:
51,68°
Landing date: 17.10.1969
Landing time: 09:25 UT
Landing site:
155 km NW of Karaganda
No.
Surname
Given name
Job
1
Filipchenko
Anatoli
Vasiliyevich
Commander
2
Volkov
Vladislav
Nikolayevich
Flight
Engineer
3
Gorbatko
Viktor
Vasiliyevich
Research
Engineer
Flight
Launch from Baikonur; landing 155 km
northwest of Karaganda.
The main goals of this mission in the official
version were to test spacecraft systems and
designs, manoeuvring of space craft with
respect to each other in orbit, and to conduct
scientific, technical and medico-biological
experiments in a group flight
Group flight wih Soyuz 6 and Soyuz 8; no
docking, only approaching (until 500 m to
Soyuz 8). The planned docking maneuver
with Soyuz 8 was not accomplished (failure of
rendezvous electronics).
The landing was without any problems, even
a warning light panel showed 'ASP' automatic landing sequence.
Soyuz 7 was launched one day after Soyuz 6.
On board were cosmonauts A. Filipchenko,
Commander, Flight Engineer V. Volkov, and
Research Engineer V. Gorbatko. The ship
was involved in group flight with Soyuz 6 and
Soyuz 8. Docking did not occur, and the ship
landed 5 days after launch. The announced
mission objectives included (1) checkout of
the Soyuz craft, (2) further improvement of
the control, orientation, and orbital
stabilization systems and navigation aids, (3)
debugging the piloting systems by orbital
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 54
maneuvering of the spaceships in relation to
one another, (4) testing of a system for
control of the simultaneous flight of three
spacecraft, (5) scientific observations and
photographing of geological-geographical
subjects and exploration of the earth's
atmosphere, (6) studying circumterrestrial
space, and (7) conducting experiments of
engineering research and biomedical
importance. Stable two-way radio
communications was maintained between the
spaceships and the ground stations, and TV
coverage was broadcast from the ships
during flight.
Launch Date: 1969-10-12
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6000.0 kg
Soyuz 8
Crew
N
o.
Surname
1
Shatalov
Vladimir
Aleksandrovich
Commander
2
Yeliseyev
Aleksei
Stanislavovich
Flight
Engineer
Given name
Job
Flight
Launch, orbit and landing data
Launch date:
Launch time:
Launch site:
Launch pad:
Altitude:
Inclination:
Landing date:
Landing time:
Landing site:
13.10.1969
10:19 UT
Baikonur
31
204,5 - 223,7 km
51,68°
18.10.1969
09:09 UT
145 km N of Karaganda
Launch from Baikonur; landing 145 km north
of Karaganda.
The main goals of this mission in the official
version were to test spacecraft systems and
designs, manoeuvring of space craft with
respect to each other in orbit, and to conduct
scientific, technical and medico-biological
experiments in a group flight.
Group flight with Soyuz 6 and Soyuz 7; no
docking, only approaching (until 500 m to
Soyuz 7); planned docking maneuver with
Soyuz 7 was not accomplished (failure of
rendezvous
electronics).
The landing proceeds normally.
Photos
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 55
Cosmodrome), U.S.S.R
Mass: 6646.0 kg
Interkosmos 1 (DS-U3-IK #1)
Soyuz 8 was piloted by V. Shatalov,
Commander, and A. Yeliseyev, Flight
Engineer. The announced mission objectives
included (1) checkout and flight test of space
borne systems and the modified structure of
the Soyuz craft, (2) further improvement of
the
control,
orientation,
and
orbital
stabilization systems and navigation aids, (3)
debugging the piloting systems by orbital
maneuvering of the spaceships in relation to
one another, (4) testing of a system for
control of the simultaneous flight of three
spacecraft, (5) scientific observations and
photographing of geological-geographical
subjects and exploration of the earth's
atmosphere, (6) studying circumterrestrial
space, and (7) conducting experiments of
engineering
research
and
biomedical
importance.
Stable
two-way
radio
communication was maintained between the
spaceships and the ground stations, and TV
coverage was broadcast from the ships
during flight. Soyuz 8 was a part of the group
flight of Soyuz 6, 7, and 8, and resembled
Soyuz 6 in that it was an active ship designed
to move toward the passive Soyuz 7. Soyuz 8
was equipped with full docking apparatus and
for some hours flew very close to Soyuz 7.
No docking occurred. The flight was safely
terminated.
Launch Date: 1969-10-13
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Intercosmos 1 was designed to study solar
ultraviolet and x-ray radiation and the effects
of these types of radiation on the structure of
the earth's upper atmosphere. This
spacecraft, a cooperative effort, carried
instruments supplied by the German
Democratic Republic, the U.S.S.R., and the
Czechoslovak Socialist Republic. Scientists
from the People's Republic of Bulgaria, the
Hungarian People's Republic, the Polish
People's Republic, and the Socialist Republic
of Romania participated in the receipt and
interpretation of data.
Launch Date: 1969-10-14
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Foto:Interkosmos 1
Kosmos 302 (Zenit-4 #63)
Cosmos 302 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-10-17
Launch Vehicle: Soyuz
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 56
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 303 (DS-P1-Yu #25)
Cosmos 303 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-10-18
Launch Vehicle: Kosmos-2I
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Kosmos 304 (Tsiklon #4)
Cosmos 304 was a prototype Soviet
navigation satellite. The shipboard installation
consisted of the Tsunami system, composed
of the Sirius radio station, the Signal antenna
stabilisation
platform,
the
Konus-4
omnidirectional antenna, and the Kvant-L
antenna. First trial were conducted with a
Project 680 vessel of the Black Sea fleet and
showed a position error of 3 km, which was
intolerable. A large part of the problem was
with inaccuracies in the software models
available for predicting the spacecraft
ephemerides. Work by the KIK Centre
resulted in a 10 to 30 times improvement in
this accuracy, incorporating new information
on the gravitational anomalies and geoid of
the earth. Use of the revised software in 1969
showed an average error of 100 m over a five
day period. Further improvement required a
better mapping of the earth's gravitational
anomalies. Testing of Tsiklon would continue
through 1972 before an adequate operational
system
could
be
designed.
The
Parus/Tsiklon-B production system began
flight tests in 1974.
Tsiklon used the basic KAUR-1 bus,
consisting of a 2.035 m diameter cylindrical
spacecraft body, with solar cells and radiators
of the thermostatic temperature regulating
system mounted on the exterior. Orientation
was by a single-axis magneto-gravitational
(gravity gradient boom) passive system. The
hermetically sealed compartment had the
equipment mounted in cruciform bays, with
the chemical batteries protecting the radio
and guidance equipment mounted at the
centre
Launch Date: 1969-10-21
Launch Vehicle: Kosmos-3
Launch Site: Plesetsk, U.S.S.R
Mass: 795.0 kg
Kosmos 305 (Luna (16b)) (E-85 #4)
· Otros nombres: 1969-092A, 04150
· Fecha de lanzamiento: 22 de octubre de
1969 a las 14:09:59 GMT
· Masa seca en órbita: 5600 kg
Siguiente intento por conseguir una sonda
que se posara en la Luna suavemente para
enviar muestras de vuelta a la Tierra. Tras
lograr llegar hasta la órbita terrestre con
aparente normalidad, la etapa Block D del
cohete lanzador Proton SL-12/D-1-e falló y la
nave quedó en la órbita de nuestro planeta.
La nave era similar a las misiones anteriores.
Tenía cuatro tanques de combustibles
esféricos, toberas y patas de aterrizaje,
colocadas en una base de 4 metros de
anchura. La cápsula de retorno era esférica y
la etapa de ascenso estaba colocada en la
parte
superior.
Un
brazo
robótico
(posiblemente dotado de taladrador) debía
coger las muestras y almacenarlas en la
cápsula para su envío a la Tierra. Tras
quedar en órbita terrestre fue bautizada como
Cosmos 305.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 57
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5600.0 kg
Kosmos 307 (DS-P1-Yu #26)
Esquema del retorno de
muestras a la Tierra
This flight was an attempted lunar sample
return mission. After successful insertion into
Earth orbit, the block D rockets of the SL12/D-1-e Proton launcher failed, leaving the
spacecraft in geocentric orbit. The design
was similar to the other Luna sample return,
or "Moonscooper" missions. The craft
consisted of four spherical fuel tanks and
nozzles, thrusters, and landing legs set in a 4
meter wide base. A spherical sample return
capsule and ascent stage sat atop the
structure. A robot arm to collect samples
(perhaps with a drill) and then place them in a
hatch in the return capsule was attached to
the base. After failing to leave Earth orbit, the
mission was designated Cosmos 305.
Beginning in 1962, the name Cosmos was
given to Soviet spacecraft which remained in
Earth orbit, regardless of whether that was
their intended final destination. The
designation of this mission as an intended
planetary probe is based on evidence from
Soviet and non-Soviet sources and historical
documents. Typically Soviet planetary
missions were initially put into an Earth
parking orbit as a launch platform with a
rocket engine and attached probe. The
probes were then launched toward their
targets with an engine burn with a duration of
roughly 4 minutes. If the engine misfired or
the burn was not completed, the probes
would be left in Earth orbit and given a
Cosmos designation.
Launch Date: 1969-10-22
Launch Vehicle: Proton
Cosmos 307 was a Soviet DS type military
satellite launched from the Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-10-24
Launch Vehicle: Kosmos-2I
Launch Site: Kapustin Yar, U.S.S.R
Mass: 250.0 kg
Kosmos 306
Gektor #5)
(Zenit-2M
#5,
Cosmos 306 was a third generation, low
resolution Soviet photo surveillance
satellite launched from the Baikonur
cosmodrome aboard a Soyuz rocket.
Launch Date: 1969-10-24
Launch Vehicle: Soyuz
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5700.0 kg
KH-8A 2
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1969-10-24
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Noviembre 1969
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 58
Kosmos 308 (DS-P1-I #6)
Cosmos 308 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-11-04
Launch Vehicle: Kosmos-2I
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Azur
The magnetically aligned spacecraft GRS-A,
launched into a near-polar orbit in November
of 1969, was a product of a joint effort by
NASA-GSFC
and
the
German
Bundesministerium fur Wissenschaftliche
Forschung (BMWF) and had as its primary
purpose the acquisition of terrestrial radiation
belt data. Specifically, the scientific mission of
the spacecraft was as follows: (1) to scan the
energy spectra of inner zone protons and
electrons, (2) to measure the fluxes of
electrons of energy greater than 40 keV that
are parallel, antiparallel, and perpendicular to
the magnetic lines of force over the auroral
zone and to measure associated optical
emission, and (3) to record solar protons on
alert. After about 24 hours in orbit, a
command system instability developed and
persisted intermittently throughout the flight.
The tape recorder failed on December 8,
1969. Prior to this failure, the German project
office estimated that 85-90% of the expected
data had been obtained. All experiments
were operating normally until the spacecraft
telemetry system malfunctioned in early July
1970.
Foto:Azur [NASA]
Launch Date: 1969-11-08
Launch Vehicle: Scout
Launch Site: Vandenberg AFB, United States
Mass: 70.7 kg
Kosmos 309 (Zenit-2 #71)
Cosmos 309 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days. The first flight was
with a Nauka external experiment container.
The spacecraft deployed a science capsule
Launch Date: 1969-11-12
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 5900.0 kg
Apollo 12 (CSM 108) /LEM 6
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 59
Estadísticas de la Misión
Nombre de la misión:Apolo 12
Nombre de los módulos:
Módulo de mando:Yankee Clipper
Módulo lunar:Intrepid
Número de tripulantes:3
Rampa de lanzamiento:
Centro Espacial Kennedy, Florida
LC 39A
Despegue:14 de noviembre de 1969
16:22:00 UTC
Alunizaje:19 de noviembre de 1969
06:54:35 UTC
3° 0' 44.60" S
23° 25' 17.65" W
Oceanus Procellarum/Mare Cognitium
Tiempo AEV lunar:
1º: 3 h 56 min 03 s
2º: 3 h 49 min 15 s
Total: 7 h 45 min 18 s
Tiempo en la superficie de la Luna:
31 h 31 min 11.6 s
Cantidad de muestras:
34.35 kg (75.729 lb)
Amerizaje:24 de noviembre de 1969
20:58:24 UTC
15°47′S 165°9′O / -15.783, -165.15
Duración:10 días 4 h 36 min 24 s
Número de órbitas lunares:45
Tiempo en órbitas lunares:88 h 58 min11.52s
Apogeo:189.8 km
Perigeo:185 km
Apoluna:257.1 km
Periluna:115.9 km
Periodo:88.16 min
Inclinación órbita:32.54°
Masa:CSM 28.838 kg;LM 15.235 kg
Foto de la Tripulación
I-D: Conrad, Gordon y Bean
Apolo 12 fue la sexta misión tripulada del
programa Apolo de la NASA, y la segunda
que alunizó en la Luna. Lanzada unos meses
después del Apolo 11, el Apolo 12 alunizó en
el Oceanus Procellarum, muy cerca de la
sonda estadounidense Surveyor 3, posada
en la Luna desde abril de 1967, y los
astronautas trajeron algunas piezas de esta
sonda de vuelta a la Tierra para su estudio,
entre ellas la cámara fotográfica.
Tripulación
Charles Conrad (Voló en las
Gemini 5, Gemini 11, Apolo 12 y
Comandante. Richard Gordon
Gemini 11 y Apolo 12), Piloto.
Alan Bean (Voló en: Apolo 12 y
Piloto del módulo lunar.
misiones:
Skylab 2),
(Voló en:
Skylab 3),
Tripulación de Reemplazo
David Scott, Comandante.
Alfred Worden, Piloto.
James Irwin, Piloto del Módulo Lunar.
Tripulación de soporte
Gerald Carr (voló en Skylab 4)
Edward Gibson (voló en Skylab 4)
Paul Weitz (voló en Skylab 2, STS-6)
Directores de Vuelo
Gerald Griffin, Equipo dorado (Gold team)
Pete Frank, Equipo naranja (Orange team)
Cliff Charlesworth, Equipo verde (Green
team)
Milton Windler, Equipo marrón (Maroon team)
Parámetros de la Misión
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 60
Sitio de alunizaje: W 3.01239 S - 23.42157 W
o
3° 0' 44.60" S - 23° 25' 17.65" W
Acople LM — CSM [
Desacople: 19 de noviembre, 1969 –
04:16:02 UTC
Reacople: 20 de noviembre, 1969 – 17:58:20
UTC
EVAs [editar]
Comienzo del 1er EVA: 19 de noviembre,
1969, 11:32:35 UTC
Conrad — EVA 1
Salida a la superficie: 11:44:22 UTC
Regreso al LM: 15:27:17 UTC
Bean — EVA 1
Salida a la superficie: 12:13:50 UTC
Regreso al LM: 15:14:18 UTC
Final del 1er EVA: 19 de noviembre, 15:28:38
UTC
Duración: 3 horas, 56 minutos, 03 segundos
Comienzo del 2º EVA: 20 de noviembre,
1969, 03:54:45 UTC
Conrad — EVA 2
Salida a la superficie: 03:59:00 UTC
Regreso al LM: 07:42:00 UTC
Bean — EVA 2
Salida a la superficie: 04:06:00 UTC
Regreso al LM: 07:30:00 UTC
Final del 2º EVA: 20 de noviembre, 07:44:00
UTC
Duración: 3 horas, 49 minutos, 15 segundos
Anecdotario
Se cuenta que en su primer descenso Pete
Conrad: 'Uau tío, esto ha sido un (paso)
pequeño para Neil, pero sin embargo ha sido
un paso muy grande para mi' ('Whoopie!
Man, that may have been a small one for
Neil, but that's a long one for me. — Pete
Conrad (era un poco más pequeño de
estatura que Armstrong) expresión que lanzó
al pisar la luna por primera vez. Conrad
mencionó "su frase" a la periodista Oriana
Fallaci un tiem
Fopto:LEM 6 ascent stage [NASA]
Kosmos 310 (Zenit-4 #64)
Cosmos 310 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-11-15
Launch Vehicle: Soyuz
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Skynet 1A
Skynet, a British military satellite, was
launched from Cape Canaveral on a Delta
rocket. It was placed in a geostationary orbit
and was designed to provide secure voice,
telegraph and fax links between UK military
headquarters and ships and bases in the
Middle and Far East. The 422 kg satellite was
cylindrical in shape, 810 mm high and 1370
mm in diameter. It was spin stabilized with an
despun antenna platform. It was believed to
have operated for less than one year.
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 61
Kosmos 312 (Sfera #5)
Foto:Skynet 1A
Launch Date: 1969-11-22
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 535.0 kg
1969-103B
Launch Date: 1969-11-24
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 1500.0 kg
Kosmos 311 (DS-P1-Yu #27)
Cosmos 311 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Cosmos 312 was a Soviet geodetic satellite
launched from the Plesetsk cosmodrome
aboard a Cosmos 11 rocket.
The Sfera geodetic system covered a broad
development for solving problems in
geodetics, continental drift, and precise
location of cartographic points. The
spacecraft was equipped with measurement
and
signalling
apparatus,
providing
assistance in measuring astronomicalgeodetic points of military topographical
research for the Red Army General Staff. The
satellite allowed improved accuracy for long
range weapons. Reshetnev was the Chief
Designer. Flight tests were from 1968 to
1972. Series flights were from 1973 to 1980.
The Kosmos 3M launcher was used. Colonel
Ye S Shchapov was in charge of Sfera
development. Sfera used the basic KAUR-1
bus, consisting of a 2.035 m diameter
cylindrical spacecraft body, with solar cells
and radiators of the thermostatic temperature
regulating system mounted on the exterior.
Orientation was by a single-axis magnetogravitational (gravity gradient boom) passive
system.
The
hermetically
sealed
compartment had the equipment mounted in
cruciform bays, with the chemical batteries
protecting the radio and guidance equipment
mounted at the centre.
Launch Date: 1969-11-24
Launch Vehicle: Kosmos-3
Launch Site: Plesetsk, U.S.S.R
Mass: 600.0 kg
Kosmos (311) (L1E 1)
Intento fallido
Launch Date: 1969-11-24
Launch Vehicle: Kosmos-2I
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 62
1969-106B
Diciembre 1969
Kosmos 313
Gektor #6)
(Zenit-2M
#6,
Cosmos 313 was a third generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1969-12-03
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 5700.0 kg
KH-4B 8
This US Air Force photo surveillance satellite was
launched from Vandenberg AFB aboard a Thor
Agena D rocket. It was a KH-4B (Key Hole-4B) type
spacecraft. The cameras operated satisfactorily and
the mission carried 811 ft. of aerial color film added to
the end of the film supply.
Launch Date: 1969-12-04
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Kosmos 314 (DS-P1-Yu #28)
Cosmos 314 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1969-12-11
Launch Vehicle: Kosmos-2I
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Launch Date: 1969-12-11
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 1500.0 kg
Kosmos 315 (Tselina-O #5)
Cosmos 315 was a Soviet ELINT (Electronic
and Signals Intelligence) satellite launched
from the Plesetsk cosmodrome.
From 1965 to 1967 two dedicated ELINT
systems were tested: the Tselina and the
Navy's US. Both reached service, since the
Ministry of Defence could not force a single
system on the military services.
Tselina was developed by Yuzhnoye and
consisted of two satellites: Tselina-O for
general observations and Tselina-D for
detailed observations. ELINT systems for
Tselina were first tested under the Cosmos
designation in 1962 to 1965. The first TselinaO was launched in 1970. The Tselina-D took
a long time to enter service due to delays in
payload development and weight growth. The
whole Tselina system was not operational
until 1976. Constant improvement resulted in
Tselina-O being abandoned in 1984 and all
systems being put on Tselina-D.
Launch Date: 1969-12-20
Launch Vehicle: Kosmos-3
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Kosmos 317 (Zenit-4MK #1,
/Germes #1)
Cosmos 317 was a third generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The spacecraft
carried charged particle experiments. It was
maneuverable
Launch Date: 1969-12-23
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass: 6300.0 kg
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 63
electron temperature probes, and Langmuir
probes.
1969-108C
Launch Date: 1969-12-23
Launch Vehicle: Modified SS-9 (SCARP) or
SS-13 (SCRAG) with Orbital and
Maneuverable
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Kosmos 316 (I2P #3)
Cosmos 316 left some debris in its
intermediate orbit, and its carrier rocket and
payload maneuvered to an extremely
eccentric orbit. It decayed naturally, but major
portions of the spacecraft fell in the American
midwest in Oklahoma, Kansas, and Texas.
Some of these pieces were several feet in
maximum dimension, weighed scores of
pounds, and were of very great thickness. In
accordance with international agreements
that call for the mutual return of recovered
objects, the pieces were offered to the Soviet
Union but not accepted.
Launch Date: 1969-12-23
Launch Vehicle: Tsiklon
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 3640.0 kg
Interkosmos 2 (DS-U1-IK #1)
This spacecraft was in the shape of a short
right cylinder less than one meter in height
and diameter. One end of the cylinder was
terminated with a hemispherical structure and
the
other
with
a
curved
surface
(approximately one-quarter of a sphere).
Various appendages protruded from the
spacecraft. Battery power was used to
eliminate electromagnetic effects from the
solar cells. Attitude was not controlled, but
was detected by magnetic field and optical
(sun) detectors. Real or recorded data were
available. The spacecraft operated for 56
days collecting data from a total of 109 orbits.
The spacecraft carried an ionospheric
beacon, spherical ion probes, high-frequency
Foto:Interkosmos 8
Launch Date: 1969-12-25
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 325.0 kg
1969-110B
Launch Date: 1969-12-25
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 1500.0 kg
Kosmos (318) (Ionosfernaya)
Intento fallido
Launch Date: 1969-12-27
Launch Vehicle: Soyuz
Launch Site: Plesetsk, U.S.S.R
Mass:
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 64
Referencias
(1) http://Sondasespaciales.com
(2) http://notesp.blogspot.com/
(3) http://space.skyrocket.de/home.htm
(4) http://es.wikipedia.org/wiki/Wikipedia:Portada
(5) http://www.nasa.gov/
Bibliogafia







The Complete Book of Spaceflight / David Darling / John Wiley & Sons, Inc.
http://www.nasa.gov/centers/kennedy/shuttleoperations/archives/2005.html
http://www.planet4589.org/space/jsr/jsr.html
http://www.spacefacts.de/english/flights.htm
http://es.wikipedia.org/wiki/Misiones_del_Programa_STS
http://claudelafleur.qc.ca/Spacecrafts-2008.html
http://spaceflightnow.com/news/n0812/25glonass/
Eladio Miranda Batlle
[email protected]
Cronología de lanzamientos espaciales 65
Edición: Eladio Miranda Batlle
Nro. 165
2009
Nro. 165
2009
Edición: Eladio Miranda Batlle
Eladio Miranda Batlle
[email protected]

Documentos relacionados