completo

Transcripción

completo
1
Virtual Archaeology Review
VOLUMEN 2
NÚMERO 4
MAYO 2011
VAR. Volumen 2 Número 4. ISSN: 1989-9947
ISSN Mayo
1989-9947
1989
2011
VIRTUAL
ARCHAEOLOGY
Virtual Archaeology Review REVIEW
RE VIEW
2
EQUIPO EDITORIAL
EDITORIAL TEAM
Directores / Directors
ISSN 1989-9947
Alfredo Grande
INNOVA CENTER. European Center for Innovation in Virtual Archaeology
Sevilla. España.
Edita/ Edit
Víctor Manuel López-Menchero Bendicho
Laboratorio de Arqueología, Patrimonio y Tecnologías Emergentes (LAPTE).
Universidad de Castilla-La Mancha. Ciudad Real. España
Consejo de Redacción / Editorial Board
Maurizio Forte
School of Social Sciences, Humanities and Arts.
University of California, Merced. USA
Bernard Frischer
IATH. Institute for Advanced Technology in the Humanities.
University of Virginia. USA
Michael Ashley
CHI. Cultural Heritage Imaging, USA
Daniel Pletinckx
Visual Dimension bvba, Ename, Belgium
Alan Chalmers
The Digital Laboratory, WMG
University of Warwick, UK
Eva Pietroni
CNR Institute of Technologies Applied to Cultural Heritage.
Rome, Italy
Laboratorio de Arqueologia, Patrimonio
y Tecnologias Emergentes (LAPTE)
Departamento de Historia
Facultad de Letras
Universidad de Castilla-La Mancha
Avda. Camilo Jose Cela s/n
13071 - Ciudad Real - España
Lucrezia Ungaro
Sovrintendenza ai Beni Culturali del Comune di Roma.
Roma. Italy
Jorge Onrubia Pintado
Laboratorio de Arqueología, Patrimonio y Tecnologías Emergentes (LAPTE).
Universidad de Castilla-La Mancha. Ciudad Real. España
Francisco Seron
GIGA. Advanced Computer Graphics Group. Computer Science Department,
University of Zaragoza. Spain
Luis A. Hernández Ibáñez
VIDEA LAB. Grupo de Visualización Avanzada en Arquitectura, Ingeniería
Civil y Urbanismo. Universidade a Coruña. A Coruña. España.
Juan Carlos Torres
GIIG, Grupo de Investigación en Informática Gráfica.
Universidad de Granada. Granada. España.
VAR. Volumen
2 Número 4. ISSN: 1989-9947
Volumen
2
Mayo 2011
Número 4
Sevilla 1 mayo de 2011
Colaboradores/ Colaborators
3
Virtual Archaeology Review
CONTENIDOS
Coastal Carolina University, Conway, South Carolina, USA.
1.CYBER-ARCHAEOLOGY AND CULTURAL TRANSMISSION
Maurizio Forte
University of California, Merced. USA
Páginas 7-18
2.ART AND SCIENCE IN THE AGE OF DIGITAL REPRODUCTION:
FROM MIMETIC REPRESENTATION TO INTERACTIVE VIRTUAL REALITY
Bernard Frischer
Departments of Classics and Art History, University of Virginia. USA
Páginas 19-32
3.VIRTUAL ARCHAEOLOGY AS AN INTEGRATED PRESERVATION METHOD
Daniel Pletinckx
Visual Dimension bvba, Ename, Belgium
Páginas 33-37
4.ARCHAEOLOGICAL RESEARCH AND 3D MODELS (RESTITUTION, VALIDATION AND SIMULATION)
L'USAGE SCIENTIFIQUE DES MODÈLES 3D EN ARCHÉOLOGIE.
DE LA VALIDATION À LA SIMULATION
Robert Vergnieux
ARCHEOVISION. Institut Ausonius – Université Bordeaux – CNRS. France.
Páginas 39-43
5.VIRTUAL REPRESENTATION OF EGYPTIAN CULTURAL HERITAGE
Fathi Saleh
CULTNAT. El Cairo. Egipto.
Páginas 45-48
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
4
Virtual Archaeology Review
6.CONCERNING THE PARADOX OF PARADATA. OR, “I DON’T WANT REALISM; I WANT MAGIC!”
Richard C. Beacham
King’s Visualisation Lab. King’s College, University of London. U.K.
Páginas 49-52
7.QUÉ HACER CON UN MODELO ARQUEOLÓGICO VIRTUAL.
APLICACIONES DE LA INTELIGENCIA ARTIFICIAL EN VISUALIZACIÓN CIENTÍFICA.
Juan A. Barceló y Oriol Vicente
Universitat Autònoma de Barcelona. Barcelona. España.
Páginas 53-57
8.BETWEEN THE REAL AND THE VIRTUAL:
3D VISUALIZATION IN THE CULTURAL HERITAGE DOMAIN - EXPECTATIONS AND PROSPECTS
Sorin Hermon and Loukas Kalisperis
STARC y CaSToRC. The Cyprus Institute. Cyprus
Páginas 59-63
9.PROPUESTA PARA PROFUNDIZAR EN LA CARTA DE LONDRES Y MEJORAR SU APLICABILIDAD
EN EL CAMPO DEL PATRIMONIO ARQUEOLÓGICO
Víctor Manuel López-Menchero
Grupo MAP. Universidad de Castilla-La Mancha. España
Páginas 65-69
10.HACIA UNA CARTA INTERNACIONAL DE ARQUEOLOGÍA VIRTUAL. EL BORRADOR SEAV
Víctor Manuel López-Menchero Bendicho y Alfredo Grande
Grupo MAP. Universidad de Castilla-La Mancha. España
Páginas 71-75
ALTAIR4 Multimedia. Roma. Italia.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
5
Virtual Archaeology Review
INNOVA CENTER. European Center for Innovation in Virtual Archaeology. Sevilla. España.
11.ITÁLICA FUTURA: DOCUMENTACIÓN,
PRESERVACIÓN E INTERPRETACIÓN DIGITAL DE LA CIUDAD ROMANA.
Alfredo Grande y José Manuel Rodríguez Hidalgo
INNOVA CENTER. European Center for Innovation in Virtual Archaeology. Sevilla España
Páginas 77-87
12.ENABLING ARCHAEOLOGICAL HYPOTHESIS TESTING IN REAL TIME USING THE REVEAL
DOCUMENTATION AND DISPLAY SYSTEM
Donald H. Sanders
The Institute for the Visualization of History, Inc., Massachusetts, USA
Páginas 89-94
13.PRACTICAL 3D RECONSTRUCTION OF CULTURAL HERITAGE ARTEFACTS
FROM PHOTOGRAPHS – POTENTIALS AND ISSUES
Dieter W. Fellner
Fraunhofer IGD and GRIS, TU Darmstadt, Germany
Páginas 95-103
14.UNA VISIÓN VIRTUAL DE LA ARQUITECTURA DE AL-ANDALUS.
QUINCE AÑOS DE INVESTIGACIÓN EN LA ESCUELA DE ESTUDIOS ÁRABES
Antonio Almagro Gorbea
Escuela de Estudios Árabes. CSIC. Granada. España.
Páginas 105-114
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
6
Virtual Archaeology Review
15.A.R.T. ANCIENT ROME TOUR 2.0 UPGRADED HOW NERO SAVED ROME
Stefano Moretti and Alessandro Furlan
ALTAIR4 Multimedia. Roma. Italia.
Páginas 115-121
16.RICOSTRUIRE L’ANTICO. DAL MUSEO DELLA CIVILTÀ ROMANA AL MUSEO DEI FORI IMPERIALI
Lucrezia Ungaro
Sovrintendenza ai Beni Culturali del Comune di Roma. Italia.
Páginas 123-126
17.ASHES2ART NOW AND TOMORROW: DELPHI, ALEXANDRIA AND THE RED SEA
Arne R. Flaten
Coastal Carolina University, Conway, South Carolina, USA
Páginas 127-130
18.CURRENT PRODUCTIONS CARNUNTUM, GERMAN LIMES AND RADIOPAST
Michael Klein
7REASONS, Vienna. Austria
Páginas 131-137
19.LA REALIDAD VIRTUAL Y EL ANÁLISIS CIENTÍFICO:
DE LA NUBE DE PUNTOS AL DOCUMENTO ANALÍTICO
Mercedes Farjas, Ernesto Moreno y Francisco J. García Lázaro
Universidad Politécnica de Madrid. Madrid. España.
Páginas 139-144
20.3D-COFORM: MAKING 3D DOCUMENTATION
AN EVERYDAY CHOICE FOR THE CULTURAL HERITAGE SECTOR
Denis Pitzalis, Jaime Kaminski and Franco Niccolucci
STARC, The Cyprus Institute, Nicosia, Cyprus.
University of Brighton Business School, Brighton, UK.
Páginas 145-146
21.YACIMIENTOS ARQUEOLÓGICOS DE LA SIERRA DE ATAPUERCA:
UN SISTEMA INALÁMBRICO Y COMPUTERIZADO DE REGISTRO DE DATOS DE CAMPO.
Antoni Canals i Salomó y David Guerra Rodríguez
IPHES. Universitat Rovira i Virgili (URV), Tarragona, España
Páginas 147-150
22.VIRTUAL ARCHAEOLOGY AND MUSEUMS, AN ITALIAN PERSPECTIVE
Augusto Palombini and Sofia Pescarin
Istituto per le Tecnologie Applicate ai Beni Culturali, CNR, Roma. Italia.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Páginas 151-154
7
Virtual Archaeology Review
Cyber-Archaeology: Notes on the simulation of the past
Maurizio Forte
Premio Tartessos 2009
School of Social Sciences, Humanities and Arts, University of California, Merced. USA
This paper is an updated version of what I published in the Proceedings of VSMM 2008 Conference in Cyprus.
Resumen
Trece años después de la publicación del libro "Arqueología virtual" (Forte, 1996, 97) es el momento de volver a discutir sobre la definición, los conceptos clave y
algunas nuevas tendencias y aplicaciones de la arqueología virtual. El presente documento analiza la introducción del término "cyber-arqueología" en relación con el
proceso de simulación derivado de la interconexión y la retroalimentación multivocal y entre los usuarios / actores y ecosistemas virtuales. En este nuevo contexto de
mundos cibernéticos, es más adecuado hablar de simulación del pasado que de reconstrucción del pasado. La multivocalidad de la simulación abre nuevas
perspectivas en el proceso de interpretación, no imponiendo la última reconstrucción, sino sugiriendo, evocando, simulando múltiples resultados, y no "el pasado",
sino un potencial pasado.
Nuevos modelos epistemológicos de la arqueología cibernética deben ser investigados: Que ocurre en un entorno inmersivo de arqueología virtual cuando cada usuario
es "materializado" en el espacio cibernético? La ontología de la información arqueológica, o la cibernética de la arqueología, se refiere a la interconectividad de todas
las relaciones que produce el dato, el código de envío, y su transmisibilidad. Porque depende de las interrelaciones, por su propia naturaleza, la información no
puede ser neutral con respecto a la forma en que se procesa y percibe. De ello se deduce que el proceso de conocimiento y la comunicación han de ser unificadas y
representadas por un único vector. La información 3D se considera como el núcleo del proceso de conocimiento, porque propicia la retroalimentación, entre el
usuario, el científico y el ecosistema. Se argumenta que la Realidad Virtual (tanto fuera de línea como en línea) representa un posible ecosistema, que es capaz de
ser anfitrión de los procesos de conocimiento y comunicación tanto de arriba a abajo como de abajo a arriba. En estos términos, el pasado se genera y codifica por
"un proceso de simulación". Así, desde las primeras fases de adquisición de datos sobre el terreno, las metodologías técnicas así como las tecnologías que usamos,
influyen de manera decisiva en todas las fases de interpretación y comunicación. A la luz de estas consideraciones, ¿cuál es la relación entre la información y la
representación? ¿Cuánta información quedará incluida en el modelo digital? ¿Qué clase y cuántas ontologías deberían ser elegidas para permitir una
transmisibilidad aceptable? De hecho, la comunicación arqueológica debe ser entendida como una fase de validación de todo el proceso cognitivo de comprensión del
conocimiento, y no como una simple adición a la investigación, o como un compendio de los datos prescindible.
Palabras Clave:
CYBER-ARCHAEOLOGY, INTERACTIVIDAD.
Abstract
Thirteen years after the book “Virtual Archaeology” (Forte, 1996, 97) it is time to re-discuss the definition, the key concepts and some new trends and
applications. The paper discusses the introduction of the term “cyber-archaeology” in relation with the simulation process deriving from the inter-connected and
multivocal feedback between users/actors and virtual ecosystems. In this new context of cyber worlds, it is more appropriate to talk about simulation of the past
rather than reconstruction of the past. The multivocality of the simulation opens new perspectives in the interpretation process, not imposing the final reconstruction,
but suggesting, evocating, simulating multiple output, not “the past” but a potential past.
New epistemological models of cyber archaeology have to be investigated: what happens in a immersive environment of virtual archaeology where every user is
“embodied” in the cyber space? The ontology of archaeological information, or the cybernetics of archaeology, refers to all the interconnective relationships which the
datum produces, the code of transmission, and its transmittability. Because it depends on interrelationships, by its very nature information cannot be neutral with
respect to how it is processed and perceived. It follows that the process of knowledge and communication have to be unified and represented by a single vector. 3D
information is regarded as the core of the knowledge process, because it creates feedback, then cybernetic difference, among the interactor, the scientist and the
ecosystem. It is argued that Virtual Reality (both offline and online) represents a possible ecosystem, which is able to host top-down and bottom-up processes of
knowledge and communication. In these terms, the past is generated and coded by “a simulation process”. Thus, from the first phases of data acquisition in the
field, the technical methodologies and technologies that we use, influence in a decisive way all the subsequent phases of interpretation and communication. In the light
of these considerations, what is the relationship between information and representation? How much information does a digital model contain? What sorts of and
how many ontologies ought to be chosen to permit an acceptable transmittability? Indeed, our Archaeological communication ought to be understood as a process of
validation of the entire cognitive process of understanding and not as a simple addendum to research, or as a dispensable compendium of data.
Key words:
CYBER-ARCHAEOLOGY, INTERACTIVITY.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
8
Virtual Archaeology Review
1. Introducción
1.0. About Cyber-Archaeology
Thirteen years after the first edition of the book I edited “Virtual
Archaeology”, this definition is popularized and we can count
thousands of applications all over the world. What happened in
all this period? Are this term and its implications still
appropriate?
In 1996 I was describing virtual archaeology (fig.1) as “process
of acquisition, restoration and re-presentation of archaeological
data assisted by computers” (Forte, 1996). If this definition can
well represent that period, we can also say that the 90’s were
representing a “visual age” in the domain of digital-virtual
technologies in archaeology. This visuality was principally linked
to the simple exploration and rendering of 3D graphic models,
without involving complex interactions or behaviors in the
cyber-space. This visual virtual archaeology was principally
aimed to reconstruction process, without a real emphasis on the
relations between the given information (for example the
excavations) and the final 3D re-composition. Nowadays, I think
we are passing from the first visual-virtual archaeology to a
second age of cyber-archaeology. Why cyber? What is the main
difference? Below we try to distinguish better the two areas of
research and communication:
Virtual Archaeology. Visualization Process, 3D
mapping, Passive Users, Individual Environments,
Migration from Analog to Digital
Cyber Archaeology Simulation Process, Feedback,
Behaviors, Content Providers, Collaborative
Environments, communication from Digital to
Digital.
common, constituting a very time consuming and not linear
process. Today the massive use of 3D scanners, GISs, remote
sensing technologies and so on, characterizes the flux of data
from a digital domain to another digital domain. In short, this
new digital pipeline involves all the processes keeping possibly
all the data in the same circuit of digital pre-processing,
processing and post-processing: all in digital.
In fig. 2 I try to analyze the digital metabolism of the
informational process from the fieldwork/data-entry to the
various communication and transmission processes. Processing,
interpretation, validation, interaction, feedback, cultural
transmission, virtual communities, enaction-embodiment,
constitute not a temporal sequence, but a possible circuit of
cybernetic information. The information co-evolves according to
different ontologies and it interacts with the environment. The
cybernetic circle is based on the active role of the user as
principal actor of the system and on the 3D interactions within
the cyber-environment. In short the cybernetic circle produces a
simulation process which is aimed to the simulation of the past
and not on its reconstruction. The distinction between
simulation and reconstruction characterizes the era of cyberarchaeology as science of the simulation of the past, a potential
past.
Figura 2 The cybernetic circle
Figura 1. Virtual Archaeology (ed. by M.Forte)
There is not a real contraposition between the two terms (virtual
and cyber), given the overlapping areas, but it is possible to
identify specific characterizations. For examples in the 80s and
90s the conversion from analogue to digital data was very
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
This cybernetic past can be seen also as a rhizome (Deleuze,
Guattari, 1987), a map, an informational code. The rhizome is a
map and not a tracing. “What distinguishes the map from the
tracing is that it is entirely oriented toward an experimentation in
contact with the real. The map does not reproduce an
unconscious closed contact with the real. The map does not
reproduce an unconscious closed in upon itself; it constructs the
unconscious. It fosters connections between fields, the removal
of blockages on bodies without organs, the maximum opening
of bodies without organs onto a plane of consistency. It is itself
a part of the rhizome. The map is open and connectable in all ot
is dimensions; it is detachable, reversible, susceptible to constant
modification.” (Deleuze, Guattari, 1987).
In the theory of rhizome I particularly like the metaphor of the
puppet. “Puppet strings, as a rhizome or multiplicity, are tied not
to the supposed will of an artist or puppeteer but to a
multiplicity of nerve fibers, which form another puppet in other
dimensions connected to the first: "Call the strings or rods that
9
Virtual Archaeology Review
move the puppet the weave. It might be objected that ITS
MULTIPLICITY resides in the person of the actor, who
projects it into the text. Granted; but the actor's nerve fibers in
turn form a weave. And they fall through the gray matter, the
grid, into the undifferentiated […]” (fig.3).
I think that the multiplicity represented by the nerve fibers of the
puppet can well define and display the simulation process
occurring in the multivocal interpretation of the past. The
interaction depends on the inter-connection of any single
element and the environment. The simulation creates a metamodel through a multiplicity of feedbacks, actions and output.
Therefore the metaphor of rhizome can be considered pertinent
on the reticular development of the information and on the
cybernetic circuit of cultural transmission.
totally covered by a permanent roof which prevents
the public to have a clear and complete overview of it.
The villa is therefore difficult to understand either its
archaeological structure and as in its historical and
cultural value.
2.
The recontextualization of landscapes, objects and
monuments concerning the Ancient “Via Flaminia”
and the Roman National Museum
3.
The virtual reconstruction which aims at effectively
communicating complex data throughout a direct and
detailed view of the entire area in different
archaeological phases.
Figura4 Virtual Museum of the Ancient Via Flaminia (Roman
National Museum).
Fig. 3 Puppets and Rhizomes
1.1. The case of the Villa of Livia and the Virtual
Museum
In January 2008, in Rome, the virtual multiuser Museum of
Ancient Via Flaminia was open at the National Roman Museum
(Museo Nazionale delle Terme di Diocleziano). One of the key
archaeological sites reconstructed at different levels in the system
is the famous Villa of Livia, wife of the emperor Augusts,
located in the North-East part of Rome (Forte et alii, 2006,
Forte, 2008). The virtual reality system consists in a virtual room
provided with four interactive platforms. Users explore and
share the virtual space through avatars: with their actions they
create a virtual "show" which can be seen from the audience on
a central stereo screen (fig.4).
On the main screen, through a general “script”, different visual
and informative contents show what happens in the virtual
environment through the movements of the users/avatars. The
"Virtual Museum of the ancient via Flaminia" and particularly
the reconstruction of the Villa of Livia Drusilla (fig.5) is the first
archaeological project developed through several media and
technologies at the same time. The project's final aims are:
1.
The reconstruction of a very important archaeological
area, even if nowadays its consumption is very limited
to the public: although open to the public, the villa is
located out of the traditional touristic routes and
Figure 5: the archaeological site of the Villa of Livia (Rome). The coverage
thwarts the comprehension of the monument
1.2. Methodology
The archaeology of the third millennium is able to process,
interpret and communicate much more data and information
than in the last two centuries. Are we aware of how much data
can be produced and disseminated in this era? And how much
fast is this process? In the 90’s most part of research projects in
virtual archaeology were technologically oriented; now we think
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
10
Virtual Archaeology Review
that in the third millennium they should be cybernetic-oriented.
These informative-cybernetic models represent the focus of the
methodology of validation and the scientific-cultural content we
would like to send to the future.
But we have to pay attention: most part of what we study is
relativized from subjective interpretation, then discretized from
the output restrictions (ex. paper’s space, color and resolution of
photos, limits of drawing, accuracy of data, etc.) but not fully
perceived in a path of final validation. The capacity to transmit
knowledge and interpretation depends on a complexity of
diverse factors: format, accuracy, argument, induction-deduction,
communication, context, ontology. The object of knowledge
transmission is what is perceived processed and finally
communicated according to a constructivist logic (Watzlawick,
1985). To Piaget the organization is always the result of a
necessary interaction between conscious intelligence and the
environment (Piaget, 1980).
A path of research archaeological exclusively of taxonomic type
(mostly bottom-up) is not ever complete, since it is not aimed to
the comprehension and communication of the context, while, on
the contrary, a syntagmatic approach, based on a chain of codes,
meanings and relations, is strongly perceivable and reconnect the
original code with the context (Antinucci, 2004). In the field of
the ecological thinking it can be explained as a relationship mapterritory (Bateson, 1972, 1979), where the map represents the
information code (Korzybski, 1941) and the territory the
information not yet coded. For example the archaeological
landscape is a territory, while the ancient landscape is a map
(Forte, 2003, 2005). Every archaeological context had from its
origin a strong information-communication autopoietic content,
which is able to produce meanings in its society, since the
message is easily understood in its original context. Because of
the spatial-temporal decontextualization, major part of this
autopoietic code was lost; this is due to the missing meanings
(for the observer and consumer) of the cultural and natural
landscape and all the artificial relations with monuments and
human actions. The archaeological research has from a long time
enormous difficulties to face the scientific validation processes
of the datum, mainly restricted to excavation reports or written
publications. In terms of scientific validation how much is it
possible to reconstruct of the long process of archaeological
interpretation? Is the quality and quantity of produced
information sufficient to validate the entire scientific pipeline?
The final response is in the validation system of data, in the
transparency of interpretation processes, visualization and
interaction and in the ability to codify and transmit information.
In these terms we can consider Virtual Archaeology a cybernetic
process and not a technological outcome. Our work was inspired
by the second cybernetics of Gregory Bateson (1904-1980), by
the study of relations between information, environment,
organisms, ecosystem (Bateson, 1967), anthropology and ecology
of culture (Ingold, 2000), by the concept of affordance-relation of
the Gibson’s thinking (Gibson, 1999). Following these premises
we have studied the relationship between system and context of
archaeological information. In particular we pay more attention
to the cybernetic model (who follows rules of information
transmission) than to the computerized model. The cybernetic
model makes informative models, while the computerized model
develops mainly tools of data processing. Therefore the
cybernetic model represents a simulation process, an open
virtual connective space where the information is generated by
feedback’s relations and by interaction.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
In this paper I use the term “cyber-archaeology”, preferred to
“virtual archaeology” since I need to explain the complex
ecological process/feedback used in the interaction with a virtual
environment. Then I use the term “embodiment” to indicate the
properties of interaction in a multiuser immersive virtual
environment (Biocca, 1997; Gallese, 2005).
The creation of the “Virtual Museum of Ancient Via Flaminia in
Rome, open in January 2008 (Forte, 2008), constitutes a good
premise for discussing the role of cyber-(virtual)-archaeology in
this digital age.
2.1. Cyber Archaeology
2.0. Virtual Archaeology
In the last decade the concept of Virtual Archaeology was
discussed and popularized (Forte, 1997) with the description of
many different scenarios. Most part of the discussions was
focused on the value and potentiality of the digital
reconstruction but I think that not enough attention was paid to
the potentiality of the behavioral simulation processes. It is quite
easy to follow the reconstruction process in an activity of digital
modeling, but it is very difficult to explore the mental abilities of
interaction in the cyperspace: here any action and feedback can
produces new models of knowledge and interpretative processes.
This condition of simulated and increased reality can be defined
“hype-reality” (Baudrillard, 1994): for Baudrillard this kind of
simulation is “more real than real”. Even if the Baudrillard’s
interpretation of hyper-reality is very negative (the danger is that
the Virtual can cancel the Real), this vision can help us to
understand that the virtual represents a “dense”, augmented
information.
According to Maturana and Varela the specific dynamics of
interaction and embodiment are able to increase the capacities of
learning. The feeling of immersion in the virtual world is
generated by a multisensorial involvement and by the inclusion
of the user in the 3D space (Richardson, Montello, Hegarty,
1999).
It is through the mind-body that it is possible to know the virtual
world and, to a lower level, models and information are
processed. The virtual reality systems, as cognitive technology,
interpret successfully an enactive approach to the cognition,
such as computer and artificial intelligence interpret the
cognitive hypothesis ”(Morganti, Riva, 2006). The enactive
cognitivism discusses the dichotomy between intern and extern:
therefore cognition is an action “embodied” (Varela et alii 1991).
In terms of enaction, the cognition depends on perceptualmotor experience and these capacities belong to a wider
biological psychological and cultural context.
Thus the issue of the information’s acquisition would be
identified in the circularity between action and experience and
between action and knowledge (Varela et alii 1991). Every
existing object in the world depends on this perceptual-motor
interaction. The object takes shape because of our activity and
therefore we and the object take shape together (Varela, 1999,
66). The exchange of information in a virtual environment can
be totally considered an exchange of information organismenvironment.
11
Virtual Archaeology Review
In the evaluation of the cyber archaeological applications it is
fundamental to know the epistemological commensurability. The
increased information, its “density” constitutes the focus of a
research path of virtual archaeology. In this assumption cyber
archaeology is a system of communication and validation of the
research approaches bottom-up and top-down; it is a syllogis of
data and dynamic evidence not deductable by logics of feedback,
that is behaviors able to generate other behaviors, actions
making contexts and information. In the bottom-up approach
we identity the operations of information input, in the top-down
phases the actions of representation and mental patterning of
information (Forte et alii, 2006).
Cyber Archaeology can represent today a research path of
simulation and communication, whose ecological-cybernetic
relations organism-environment and informative-communicative
feedbacks constitute the core, but they have to be still fully
investigated (Forte, 2007).
Yet if the cybernetic model is the focus, as example of
interactive behavior, it is possible to study the relations between
observers and models (both inter-connected). This aspect was in
part discussed in the volume “Virtual Reality in Archaeology”
(Forte, 2000): “It is useful, in fact, to notice that the major part
of VA applications so far developed do not have important
archaeological “contents”, nor, as would be worthwhile, respond
to precise questions. Instead they tend to float in a generically
popular and multimedial sphere, or they are used as
technological exercises or as a means of rendering the
archaeology more spectacular; completely separate from the
research context and from the exegesis of the data. Noticeable
gaps are represented by the fact that the models are not
“transparent” in respect to the initial information (what were the
initial data?) and by the use of the peremptory single
reconstruction without offering alternatives (it could have been
like this but we can also offer other models...).
between mind and ecosystem. To see in transparency means to
verify the reliability of the work of virtual archaeology and to
understand its development from the starting point to the final
model. The issue then of the rigidity of the reconstruction (is
there one reconstruction or many possible reconstructions?) can
be solved in the relation of interaction between observer and
model, namely in the dynamics of learning within the virtual
ecosystem (Forte, 2007). The virtual reconstruction as research
and communication process is always a selection between many
possible reconstructions and it cannot represent ever the
definitive solution for the archaeologist’s job.
Cybernetic archaeology should become mainly the workshop of
scientific research, an active and measurable space where to
compare datasets, models, hypotheses, archives, a cyber space of
interactive knowledge.
2.1 Cybernetic models and reconstructions
A simple correspondence virtual archaeology=reconstruction of
the ancient world seems, in some terms, reductive, or, otherwise,
oversized, utopian. Reductive because it seems finalized to the
methods of structural architectural recomposition and not to the
study of processes and relations between architectureenvironment-organisms. Utopian because reconstructing the
ancient world is interesting as method, but not realizable in a
single process. Finally the transmission of an interactive and
cybernetic model should allow also the future communities of
scientists to continue our work, correcting our errors and
suggesting new archaeological interpretations.
In epistemological sense the ancient world cannot be reproduced
and reconstructed, but in the attempt to recompose the context
it is possible to codify the relations/affordances which the spacetime has canceled. In short we could say that cyber archaeology
is aimed to the construction of spatial-temporal relations able to
reconnect the territory with the “map”, the archaeological
landscape with the ancient landscape, following a validated and
transparent methodological path.
The communication of any artifact or ecosystem depends on the
transmitted and connected code. The reconnection of the
relationship map-territory gives us the capacity of interpreting
the past getting a major amount of information through the
mutual interaction between observer and environment, where
the same observer is part of the virtual ecosystem (Schroeder,
1997).
3. 3D Information
Figure 6: The virtual reconstruction in transparency of the frescos of the villa
overlapped to the laser scanner model
Two issues over all: transparency of data and peremptory of the
reconstruction are not enough considered in the process of
multidisciplinary research (Forte, Pescarin, Pietroni, 2006). The
transparency of data is a crucial issue because it involves the
validation process and all the data entry until to the final
architectural modeling. Understanding all the work allows to
increase the cybernetic “difference” in the learning activity
3.0 3D Environment
If our deeper knowledge of the environment is based from the
perception of spatial coordinates and of the third dimension, a
3D digital ecosystem should be able to communicate a major
amount of information and, mainly, to increase the dynamics of
learning. The modality of perception and mental representation
of the models contribute to the mediated knowledge of the
world.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
12
Virtual Archaeology Review
The Villa of Livia was fully documented by a time of flight’s
laser scanner (fig.6): it means that a laser spot of a few
millimeters makes almost in real time a model of the Villa. At the
beginning the model is around several millions of points, then,
after the optimization and decimation in meshes and polygons is
a few thousands of points. From this analysis it is possible to
understand that new methodologies of archaeological research
return us an amount of data much greater than in the past. This
involves a different ontological phase, diverse perceptual levels
and complex forms of communication. What can we do with all
this digital? What happens between representation and
knowledge? How much are we influenced by aestheticperceptive properties of the model? Communication and
information of a model depend substantially on the interaction,
namely we have to imagine a dynamic process modified by the
movement, light, perspective, geometry and from all the
relations with the environment. For example in fig.7 we can see
two different versions of a wall (with plaster and painted
decoration) of the Villa of Livia. The high resolution model
corresponds to a model of 46.145 polygons generated from a
point cloud taken by a laser scanner, while model at low
resolution is reduced to 1237 polygons with a normal mapping
processing. The visual perception of the two models is very
similar, but do they communicate the same kind of information?
It depends on the final aim and representation: if we want to
make a detailed analysis of the geometry of the model (structural
calculations, measurements, volumes, etc.), the version with 1237
polygons would be not enough. On the contrary, if we explore
the model in real time, this perception could be enough for a
first interpretation.
Difference. We learn through the difference: a difference
generating a difference is an idea; a bit, that is an information
unit (Bateson, 1979). The more is the difference between actor
and ecosystem, the more is the capacity of exchange and
communicates information. The representation in 3D creates a
major difference in cybernetic sense; it means that interacting
with datasets in 3D we develop a major exchange with the
cybernetic ecosystem.
Space. The 3D space is inter-connected and homogenizes
relations and objects in the same scale and size.
Multisensoriality. Virtual reality is multimodal and partially
multisensorial (it is mainly based on audio-video). In any case
even a partial involvement of our senses increases the perception
of the three dimensions and characterizes the sense of place.
Light. The 3D navigation develops the sense of embodiment, the
sense of space and the environmental properties. Different light
conditions need a more complex reading of information and
augment the capacity of environmental learning.
Transparency. The reconstructive process can be validated from a
sequence of 3D worlds overlapping and spatially compatible.
Connectivity. The spatial information in a three dimension
multiplies its communication model in a conceptual network of
links.
Accuracy. The characterization of space depends on the spatial
accuracy and on the abilities of representation and consumption
of the models.
Cyber-realism. Setting and sense of place are correlated with the
qualities of photo-realism or from the expectations of the
observer in the virtual environment. The expectations of realism
increase the level of familiarization and embodiment in the
virtual environment.
MUDs and social communication. The agents within the system, for
example avatars or subjective interactions, can learn through an
unconscious imitation, following others’ movements and by
spatial sharing.
3.1 Cybernetic model
Figura 7: Normal map’s application. Virtual reconstruction of a wall in
high (left) and low (right) resolution
The perception in 3D spaces is a dynamic phenomenon and
concerns firstly behaviors and effects. We list the main items:
Feedback. Each action in the virtual space involves a result and a rule
of learning.
Behaviors. In the cyberspace it is possible to define pre-ordered and
not pre-ordered events (for example the 3D navigation). Both
categories enrich the virtual ecosystem, embodiment and
capacities of learning.
Embodiment. Ability to see the body as a place of knowledge
processing in the dynamics of the virtual. The places of
embodiment are also those of the hyper-real, of the augmented
space, of the digital ecosystem.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
The cybernetic model of the Villa of Livia is a system of
relations created by the real time interaction and navigation. It
means that at theoretic level the cybernetic model does not have
a preordered quantity of information, but it is progressively
enriched by the explorations, integrating what is observing and
what is observed (Forte, 2007).
The importance of the cybernetic model in comparison with the
computational one is absolute, like the difference between logic
and mathematics. For the cybernetics the information is the
capacity of the organization level and complexity of a structure,
in the sense that if a whole is random, it is not necessary to give
some instruction for reproducing it (Wiener, 2001).
If the feedback constitutes the focal point of the informative
dynamics, the description of the context is given from the
relations. In a complex system the relations between elements
are more important than the elements themselves (Forte, 2007).
The logic of a virtual reality system is similar to an anthill: each
action can exchange a small amount of information with the
13
Virtual Archaeology Review
system, but in holistic sense the sum of several actions makes a
more intelligent and evolved exchange. The logic of the anthill
can explain the holistic interpretation of the villa of Livia in the
cyberspace. In the exploration of the space of the villa, room by
room, area by area, we progressively arrive to recompose the
logic and connective unit of the monument as a coherent and
working structure.
One more important issue regards the criteria for selecting non
verbal communication and not explicit codes. Many relations in
the cyberspace do not have a name or a label, but transmit
information in the dynamic of the system. The communication
happens between movement, interaction and representation
(Wiener, 1948). In the archaeological landscape, partially visible
and readable in the modern landscape, the code is represented
by an interpretation of the past aimed to the reconstruction of
the ancient landscape (Forte, 2005).
verb 'enact'. First is 'to enact' in the sense of 'to portray, to bring
forth something already given and determinant of the present',
as in a stage actor enacting a role. (Varela et al. 1991). The
reciprocity of informative processes is the principle through
which the observer is part of the virtual system, increasing its
self-organizing capacity.
Each action in a virtual environment involves a feedback; the
effect of this feedback is the perceptual-motor learning (bottomup). In the case, for example, of a linear transmission of
information (for example through a book), we have a symbolicreconstructive learning (top-down). In cybernetic sense this
mechanism can be described as in-out, or from the internal to
the external environment, from the interaction to the learning.
In effect, the brain-training of the observer-actor, determined by
the feedback of the system, allows an evolution to the use of the
system with active and passive imitative processes. Active, when
the observer learns from what he/she is doing, passive, when
he/she learns from action of other users/observers.
3.2 3D Models in Archaeology
Figura 8: 3D visualization of a detail of a wall of the Villa, room 23, with
plaster, frescos and chromatic components
This code is the map of the territory (Bateson, 1979), the
interpretation key. Following these premises, the virtual
reconstruction of the Villa of Livia is a simulation process: hence
“the Villa” does not exist by itself, but the complex of potential
and real relations linked with it exists, as affordance. The
transparency of graphic materials used in the Virtual has allowed
seeing trough the models, so that to have an easy structural
comparison with the archaeological remains on site (figs.7-8). In
this way the virtual anastylosis is interpreted as integration of the
remaining architectural models.
The enactive vision introduces the definition of an embodied
mind in the environment; for this reason it is an appropriate
approach to a virtual ecosystem. In fact there is a strong link
between world and observer: "A history of structural coupling
that brings forth a world. This is the term for the reciprocal
process by which an observer educes unities from her medium
within the limits of her phenomenology (i.e., as constrained by
her embodiment) and the ontogenic coupling results in
incremental regularization in the structure of the observer (her
embodiment)” (Varela et al., 1991, 206). Then: "The fundament
of an enactive account is not an objective ontological substrate,
but the phenomenology of the individual defines enaction in
terms of two intertwined and reciprocal factors: (1) the influence
of an actor's embodiment in determining the trajectory of
behaviors; and (2) the historical transformations which generate
emergent regularities in the actor's embodiment”. These two
aspects can be mapped onto two different usages of the English
The balance of the last decades of archaeological research in the
use of 3D documentation/representation in terms of scientific
investigation is quite critical in terms of models distribution and
public accessibility. The use of 3D models was typically oriented
to display final reconstructions and not to discuss in detail the
scientific interpretation. On the contrary, 3D modeling should
constitute a bridge between knowledge and communication. It is
remarkable to say that archaeological excavations using 3D
technologies in the phases of acquisition and reconstruction are
still a few. Therefore the documentation process is fragmented
in many different ontologies (totally analog, partially digital and
analog), where the 3D information is often missing.
A key problem in archaeology is that there is a strong gap
between data capturing and data accessibility, because there is a
very small percentage of information really open, communicated
and public. The separation-segmentation of information in
different domains (linear texts, models, spaces, maps,
taxonomies, etc.) decreases the level of knowledge and does not
validate the interpretation process. So the risk is to construct
huge quantity of information free from any reliability and
communication processes. It is a big challenge for the future of
ICT and for the field of virtual heritage to plan the possible
guidelines of cultural communication, and it is quite urgent to
discuss about methods, technologies and epistemologies.
This shared knowledge constructs new differences and feedback,
validates or criticizes models and cybernetic territories through
simulation processes, creating unique opportunities of
discussion and advanced forms of knowledge.
The most interesting perspective of this research project and
innovative approach is in the redefinition of a virtual-cyberarchaeology as collaborative simulation process able to
reconstruct the past through embodied communities of
users/scientists. This distributed mind in the cyber space maybe
represents the new frontier of our capacity of learning,
understanding, communicating and transmitting culture.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
14
Virtual Archaeology Review
4. Cyber Reconstruction
4.0 The Virtual Reconstruction of Villa of Livia
In the case of the Villa of Livia it is possible to access to the
information’s digital archive constituted by reconstructions,
comparative models and graphic libraries. In short, the model is
an open space aimed to grow and to be updated in the future, on
the basis of further investigations on site or in post-processing.
For what it concerns the issue of the reliability and congruity of
the reconstruction three gradients (visualized with different
nuances) have been conceived. The darkest nuance indicates a
reconstruction which is totally scientific and reliable while the
lightest indicates an evocative reconstruction that is based
exclusively on generic cultural models of reference. In this way
the virtual system is defined as a simulation environment and not
as a simple virtual maquette, reproduction in scale of a hypothetic
“original”, just because this original cannot exists.
Virtual Anastylosis: it deals with reconstruction of the ancient on
an architectural and formal base in which the monumental space
is privileged in respect to other possible simulations. In this case
volumes and architectural forms are privileged in respect to
materials, colours and textures. The Virtual Anastylosis can be
also the first step to proceed to more complex reconstructions.
Evocative Models. In the evocative models the objective is to
reconstruct by macro classifications, by comparative analyses
without much attention to the relations with the data from
fieldwork and to the spatiality of the information. In this
category are included the graphic 3D libraries, the serial
contextualized architecture of landscapes and every generic
modal but identifiable in the cultural attribution.
In fact, the creation of maquettes is closer to the idea of replicas
than to the model of interactive simulation. The scientific
coherence of the model in fact depends also from the faculty to
distinguish the different ontologies of data: in situ, reconstructed,
simulated, comparatives, dynamics, etc. It would be in fact too
authoritative saying “this was the Villa of Livia in I cent. A.D.”,
while the simulation enables the coexistence of different
hypothesis and models of reconstruction especially in relation to
the special context and to the landscape.
In practice the dynamics of simulation in a cybernetic process
permits the combination of a high number of factors, behaviors,
artifacts, ecosystems whose focus lies in the process and not in
the single element or in the formalization of unique elaboration.
The research prospective of cyber archaeology is therefore of a
holistic and constructivist type: the reality of information is in
the perception, in the capacity to identify the possible realities
not THE REALITY. The Villa of Livia, as a model of
knowledge is segmented in different domains: the villa in situ
(figs.8-9), the villa through the sources and the excavation
documentation, the villa and the landscape, the villa’s
reconstruction, the perception, the communication, the relations,
the environment, all these and much more is the Villa of Livia
Drusilla. The Villas of Livia therefore constitutes the ontology of
information to interpret and communicate in reciprocity of
intents of communication. A fundamental, I believe, mistake of
virtual archaeology or maybe its original sin, was to separate the
domains of knowledge and observation (what we know and we
see today) from those of the hypothetic reconstruction, with the
result of leaving visible and usable only the final state of the
dialectic of interpretation.
For example the location of a site in the landscape, either in its
original geo-context or in the relations with the ecosystem,
multiplies the faculties of contextualizing the connection with
other elements of the environment (figs.8-9), natural or artificial,
as the parts of a monument are broadly speaking interconnected
with its structure.
The methodologies of reconstruction in virtual archaeology, in
particular with reference to the Villa of Livia can be classified
schematically in this order:
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figura 9. 3D model of the Villa of Livia by laser scanning data
Figura 10. Villa of Livia, 3D reconstruction of the garden in the
Republican age.
Hybrid models. They are models in which the reconstructed part
(how the monument was in ancient times) integrates in
transparency also the structures still preserved in situ. The
hybridization is obtained from the coexistence of two
architectural classes, real and reconstructed. In the model of the
villa this hybridization makes easy the interpretation of the
monumental structures (foundations and walls, fig.6).
15
Virtual Archaeology Review
Holistic reconstructed models. In this case the reconstruction
integrates the architectural models, the textures and the furniture
(fig.10). The simulation plans an integral reconstruction of the
ancient villa.
Behaviors and organisms. They constitute the principal activities of
avatars and agents: they can be active behaviors determined
from users and passive behaviors identified as hypermedia links.
For example an avatar-user meets a character in the virtual world
which starts a movie or a tale.
Landscapes (fig.11). The artificial structures are fully integrated in
the landscape and in the environment, whose physiography,
vegetal coverage and ecological relations are reconstructed.
Natural and artificial landscapes are not separated domains, but
they are part of the same ecosystem.
Finally, the cybernetic reconstruction of the Villa of Livia (fig.13)
is characterized by the following features: transparency and
hybridization of the models, affordances, reliability and
validation of the reconstruction, geo-spatiality, behaviors, 3D,
embodiment, MUD.
Figura11: Villa of Livia recontextualized in the ancient Roman landscape.
4.1. Archaeopedia 3D
The increasing amount of 3D models, worlds and data in
archaeology put new questions and mainly serious problems of
accessibility. In particular the consumption of 3D interactions
and behavioural models within the scientific community of
archaeologists is quite low and disappointing. The usability and
operability of these data and cyber spaces depend substantially
by the availability of specific repositories and networks. Starting
from these premises, at the University of California, Merced we
have launched the project Archaeopedia 3D (fig.12).
The goal of this proposal is to establish a world-leading network
of virtual heritage and collaborative environments in California
(fig.12), by connecting pilot centers across five UC Campuses
which will demonstrate to the world novel high-end techniques
for collaborative learning in virtual heritage. The effort will
enable the design, use, and study of collaborative environments
for students, scholars and visitors. These collaborative
environments will allow users to interact and learn in rich 3D
virtual spaces, places where they can exchange data and
information of cultural and multidisciplinary content. Immersive
environments that permit scholars to collaboratively interpret
reconstructed heritage artefacts, sites and landscapes will
transform the study of history and archaeology.
The proposed activity will be based on participatory learning
according to the integration of different immersive systems
(Powerwall, Teleimmersive, Visualization Portal) and 3D web
virtual environments. The production of 3D content for cultural
heritage purposes has become exponential, with thousands of
applications worldwide. However, very few are accessible,
sharable and validated. This situation has an adverse impact on
the interpretation process, in the sense that the virtualsimulation-reconstruction process remains an isolated experience
without a public consumption, even within the scientific
communities. In order to improve this situation, this proposal’s
goal is to create the necessary specific infrastructure where to
discuss and improve interpretations in real time using threedimensional tools, spaces and interfaces: virtual worlds,
experimental labs, and simulation environments for collaborative
work.
The proposed network of Virtual Heritage Centers has the
potential to lead to valuable discoveries and improved
technologies in the area of virtual archaeology but also virtual
environments for learning and collaboration. A promising new
direction in learning environments is emerging from the use of
MUDs (multiuser domains) and collaborative environments
where many users/avatars and digital communities can interact
each other and exploring in the same time virtual worlds.
4.2 Scenario
Figura12 The network of ArchaeoPedia 3D across the UC campuses
As today’s humanities scholars amass ever more digital
information as the chief byproduct, or even product, of their
research, the need for tools to access this data in fast-yetmeaningful ways will be fundamental to an education in the
humanities. At the cutting edge of research, 3D laser scanning,
remote sensing, global positioning systems (GPS) and
geographic information systems (GIS), photogrammetry, and
computer modeling have been used to collect and document
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
16
Virtual Archaeology Review
data on significant cultural heritage sites. Virtual reconstructions
integrate the complex layers of archaeological, historical, and
cultural data and provide the tools for scholars to visualize,
analyze, and test hypotheses on the data. Yet despite the
development of interactive technologies and virtual reality (VR)
environments online and in a growing number of art and
entertainment venues, adoption of VR technology for
humanities research has not kept pace and there are few
examples of 3D e-learning and e-communication. The display,
sound, and information-retrieval capabilities of the virtual
learning environment will allow scholars and students to
experience information with a level of immediacy and fluency
unheard of just a few years ago; more importantly, it will allow
scholars and students to readily make connections between
disparate pieces of information that would take years to make
without this type of technology. Therefore, new conclusions
about the relationship between the complex and many layered
natural and human-built physical environment, on the one hand,
and human action, on the other, will be possible.
It seems hence quite evident as the methodology of the
archaeological research has to provide adequate epistemological
tools for understanding the cognitive geometry of a cybernetic
model. In the dynamics of interactive communication, all this
complex of information is cyber archaeology and it belongs to
an innovative process of reticular learning, where the observer is
part of the ecosystem. We think one has to go towards a diverse
formalism of scientific research in archaeology, rethinking the
information domain.
In the reticular learning which is distributed through dynamic
and interactive models, the cybernetic frame moves from the flat
area of the display to embrace the environment and the observer
in a diverse cognitive and perceptive logic, maybe still to be
defined; but it is there, close to the margins of chaos, that the
knowledge starts.
5.0 Conclusions
The core of a cybernetic model in archaeology is the simulation
relational process and the epistemological approach adopted. In
this paper we have tried to redefine the role and the definition of
virtual-cyber archaeology as a cybernetic simulation process. The
focus of this process would be not in the reconstruction itself,
but in the multiple relations and “differences” produced by the
interaction between users, environment and behaviors.
It is quite urgent therefore to plan that, in the mid of the digital
era and with so many powerful tool of information processing,
the scientific process in archaeology has to be review, mainly in
the relationship between knowledge and communication. The
importance of the new tools and technologies used in
archaeology creates still unexplored ontologies: remote sensing
data, laser scanning models, photogrammetric models, virtual
models, simulation environments. All this produces an
enormous amount of data, whose scientific content is difficult to
understand. What are the relations between acquired and
represented data? Which capacities of analysis, interaction and
simulation? How much information does a cyber model
communicate?
The case study of the Villa of Livia has created a remarkable
amount of models related with the architecture, landscape, and
ecosystem. It has integrated the detailed reconstruction of the
archaeological landscape (the site today) with the simulation of
the ancient landscape (the site in Roman times). This study has
suggested new paths in the integration of field technologies, new
models of study and communication, until to the virtual
museum, the last step of this holistic interpretation. All this is
aimed to define a diverse model of knowledge and
communication, nomadic, open, accessible and finally definable
as ecological digital process. The spatial sharing in a MUD space
stimulates imitative and mutual information processes, catalyzing
the cultural transmission.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figura 13: Villa of Livia, Southern part, room 6.
Acknowledgments
The Virtual Museum of the Ancient Via Flaminia was supported
by Arcus spa and managed by CNR-ITABC (scientific direction)
and National Roman Museum in Rome. All this activity was the
result of my former job as director of the Virtual Heritage Lab
of CNR-ITABC. A special thank is due to all the extraordinary
personnel of the Virtual Heritage Lab with which I spent my last
two years of research in Italy.
17
Virtual Archaeology Review
References
ANTINUCCI, A., 2004, Comunicare il museo, Laterza, Roma, 2004.
BAUDRILLARD J.. 1994, Simulacra and Simulation, Ann Arbor: University of Michigan Press, 1994.
BATESON, 1967, “Cybernetic explanation”, in SEM, 410.
BATESON, 1972, Steps to an Ecology of Mind , San Francisco, Chandler Press.
BATESON G., 1979, Mind and Nature. A Necessary Unit, Dutton, New York.
BIOCCA F. 1997, The cyborg’s dilemma: Progressive embodiment in virtual environments, Journal of Computer-Mediated
Communication, vol. 3, n. 2, 1997.
DELEUZE G., GUATTARI, F., 1987, A Thousand Plateaus: Capitalism and Schizophrenia, University of Minnesota Press, 1987
FORTE, M. 1997, (ed. by) Virtual Archaeology, (forward by Colin Renfrew) Thames & Hudson Ltd, 1997 (1st edition 1996, Milan).
FORTE, M., 2000, About virtual archaeology: disorders, cognitive interactions and virtuality, in Barcelo J., Forte M., Sanders D., 2000 (eds.), Virtual
reality in archaeology, Oxford, ArcheoPress (BAR International Series S 843), 247-263.
FORTE M., 2003, Mindscape: ecological thinking, cyber-anthropology, and virtual archaeological landscapes, in “The reconstruction of Archaeological
Landscapes through Digital Technologies” (eds. M.Forte, P.R.Williams), Proceedings of the 1st Italy-United States Workshop, Boston,
Massachussets, USA, November 1-3, 2001, BAR International Series 1151, Oxford, 2002, 95-108.
FORTE M., 2005, A Digital “Cyber” Protocol for the Reconstruction of the Archaeological Landscape: Virtual Reality and Mindscapes in Recording,
Modeling and Visualization of Cultural Heritage (eds: E.Baltsavias, A.Gruen, L.Van Gool, M.Pateraki) Published by Taylor & Francis /
Balkema ISBN 0 415 39208 X, 339-351, 2005.
FORTE et alii, 2006; M.Forte, S.Pescarin, E.Pietroni, C.Rufa, 2006, Multiuser interaction in an archaeological landscape: the Flaminia Project, in
(M.Forte, S.Campana, eds.by) From Space to Place, Proceedings of the 2nd International Conference on Remote Sensing in Archaeology,
Rome, December 4-7, 2006, BAR International Series 1568, Archaeopress, Oxford, 2006, 189-196.
FORTE, M, Pescarin, S. Pietroni, E., 2006, Transparency, interaction, communication and open source in Virtual Archaeology, in (M.Forte,
S.Campana, eds.by) From Space to Place, Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, Rome,
December 4-7, 2006, BAR International Series 1568, Archaeopress, Oxford, 2006 535-540.
FORTE, M., 2007, Ecological Cybernetics, Virtual Reality and Virtual Heritage, in “Theorizing Digital Cultural Heritage. A Critical Discourse”
(Edited by Fiona Cameron and Sarah Kenderdine), MIT Press, Cambridge, MA, 389-407.
FORTE M., 2008 (ed.), La Villa di Livia. Un percorso di ricerca di archeologia virtuale, L’Herma, Rome, 2008.
GALLESE, V. 2005, Embodied simulation: From Neurons to Phenomenal Experience, “Phenomenology and the cognitive sciences”, 4,
23-48.
GIBSON, J. J., 1999. Un approccio ecologico alla percezione visiva (Il Mulino: Bologna).
INGOLD, T., 2000, The perception of the Enviroment. Essays in livelihood, dwelling and skill, London and New York, Routledge.
KORZYBSKI A., 1941, Science and Sanity, Science Press, New York, 1941.
MATURANA, H, Varela, F., 1980, Autopoiesis and Cognition: the Realization of the Living, Boston Studies in the philosophy of science,
Cohen, Robert S., And Marx W. Wartofsky (eds.), vol. 42, Dordecht (Holland): D. Reidel Publishing Co., 1980.
MATURANA, H, Varela, F., 1992, The Tree of Knowledge: the Biological Roots of Human Understanding, Boston: Shambhala, 1987,
(Revised Edition: same publisher, 1992).
MELLET-D'HUART D., 2006, A Model of (En)Action to approach Embodiment: A Cornerstone for the Design of Virtual
Environments for Learning, in Win W. & Hedley N., Eds. Journal of Virtual reality, special issue on education. Springer London. Volume
10, Numbers 3-4 / December, 2006. Pp. 253-269. 2006.
Morganti, F. Riva, G. 2006, Conoscenza, comunicazione e tecnologia: Aspetti Cognitivi della RV, Milano: LED
Piaget, J. (1980). Adaptation and Intelligence. London: University of Chicago Press.
RICHARDSON, A. E., MONTELLO, D. & HEGARTY, M. 1999, Spatial knowledge acquisition from maps, and from navigation in real
and virtual environments, in Memory & Cognition, 27, 741-750.
SCHROEDER, R., 1997, Networked Worlds: Social Aspects of Multi-User Virtual Reality Technology, Sociological Research Online, vol. 2, no. 4.
TAYLOR, M.C. 2005, Il momento della complessità. L’emergere di una cultura in rete. Codice edizioni: Torino.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
18
Virtual Archaeology Review
VARELA et al., 1991, VARELA, F., THOMPSON, E. - ROSCH, E. The Embodied Mind. Cognitive Science and Human Experience, MIT Press,
Cambridge, 1991.
VARELA F.J., 1999, “Quattro linee guida per il futuro della conoscenza”, in Argonauti nella Noosfera. Mente e cuore verso nuovi spazi di
comunicazione, Vol. 2, strutture ambientali n.118/dicembre 1999, Atti della XXV ed. delle Giornate internazionali di studio promosse dal
Centro Ricerche Pio Manzù.
WATZLAWICK, P. (ed.) (1985) The invented reality. New York, Norton.
WIENER, N., 1948, Cybernetics, or control and communication in the animal and the machine. Cambridge, Massachusetts: The Technology Press;
New York: John Wiley & Sons, Inc., 1948.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
19
Virtual Archaeology Review
Art and Science in the Age of Digital Reproduction:
From Mimetic Representation to Interactive Virtual Reality
Bernard Frischer
Premio Tartessos 2009
Departments of Classics and Art History, University of Virginia. USA
Resumen
Este artículo sitúa a las humanidades digitales en general y a la arqueología virtual en particular dentro del largo contexto de la evolución de las artes y las ciencias
desde la antigüedad a través de la Edad Media y del Renacimiento hasta el presente, el período posmoderno.
Palabras Clave:
ARQUEOLOGIA VIRTUAL, C.P. SNOW’S TWO CULTURES, ARTES Y CIENCIAS.
Abstract
This paper places the digital humanities generally and virtual archaeology in particular into the larger context of the evolution of the arts and sciences from antiquity
through the Middle Ages and Renaissance to the present, postmodern period.The argument is made that the basis of virtual reality representations of cultural objects
is not primarily mimetic but interactive and that in this sense virtual archaeology reflects larger trends in contemporary science and the arts.
Key words:
VIRTUAL ARCHAEOLOGY, C.P. SNOW’S TWO CULTURES, ARTS AND SCIENCES
1 Introduction:
C. P. Snow’s “Two Cultures”
C. P. Snow’s famous Rede Lecture, “The Two Cultures,” was
given in 1959, so this year is the fiftieth anniversary of a talk that
had an enormous impact on its age. Given how influential that
the lecture has been, we will undoubtedly see many
retrospective assessments in the coming months. I want to
begin with Snow because the thesis of his lecture relates directly
to the topic I plan to address today: the art of science, the
science of art, or, as we might paraphrase it, the interrelationship
of science and art. As you will see when I reach my conclusion,
I believe that this interrelationship has direct bearing on our
activity as virtual archaeologists who strive to remain true to the
exact science of antiquity even as we try to take advantage of the
new technology of digital graphic arts as powerful tools of
illustration and discovery.
It is best to begin, then, with Snow’s own summary of his thesis.
To quote him:
In our society…we have lost even the pretence of a
common culture. Persons educated with the greatest
intensity we know can no longer communicate with
each other on the plane of their major intellectual
concern….This is serious for our creative, intellectual
and, above all, our normal life….The most pointed
example of this lack of communication [concerns]
two groups of people, representing what I have
christened ‘the two cultures.’ One of these contain[s]
scientists, whose weight, achievement and influence
did not need stressing. The other contain[s] the
literary intellectuals….In the condition of our age…
Renaissance man is not possible. But we can do
something. The chief means open to us is
education….There is no excuse for letting another
generation be as vastly ignorant, or as devoid of
understanding and sympathy, as we are ourselves.
(Snow 1969: 60-61)
So Snow posited two cultures that cannot communicate with
each other and glare at each other with ill-concealed hostility.
One culture consists of scientists, the other of what he called
“literary intellectuals.” Snow did not take sides in this division:
as a writer and a scientist, his goal was to help bridge the gap,
not in his own generation but in the next. And his means of
doing that was educational reform: budding scientists need to
study more humanities; students of the humanities need to learn
something about math and science.
Snow’s Rede Lecture grew out of some very particular
circumstances, and it was explicitly aimed at England and its
educational system in the 1950s. He did not contrast scientists
and artists, as our theme might have required, but scientists and
“literary intellectuals.” This is another example of how Snow’s
thesis is rooted in a very specific situation. But despite these
features, I think that Snow’s famous lecture is a good point of
departure for this paper. For all its particularism, Snow’s talk
does raise the perennial question of the relationship between the
arts and the sciences and does so in the most extreme fashion:
instead of seeing that relationship as nuanced across a wide
spectrum of human behavior, he sees it as one characterized by
hostility, lack of communication, and incomprehension. I would
like to argue that Snow exaggerated the problem of the “two
cultures” in 1959 when he gave his lecture, and he is even more
wrong today—at least if we examine the question not, as Snow
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
20
Virtual Archaeology Review
did, on the level of the interpersonal interactions of specific
scientists and literary intellectuals at the high tables of
Cambridge and Oxford, but on the more profound level of the
nature of art and of science.
the Ionian thinkers such as Thales, philosophy has embraced
both what we today call “science” and the “arts.”
So our terms “art” and “science” have a history, and when we
use them, they carry with them traces of that history. If we want
to say anything useful about “the art of science and the science
of art” and avoid terminological confusion or ambiguity, we will
need to understand that history, at least in its broad strokes.
And so we must start with a definition of terms. What do we
mean by “art” and by “science”?
2 Defining Our Terms
3 The Ancient Model
Let me avoid answering that for a moment by citing a passage in
Passage to Modernity, a wonderful book by Louis Dupré, who was
Professor of Philosophy and Religion at Yale:
The Renaissance idea that the sciences and arts are synonymous
goes back to antiquity. Our word “art” derives from the Latin
ars, which the Romans used to translate the Greek term techne—
the root of our word “technology.” “Science” derives from the
Latin word scientia, a translation of the Greek term episteme.
Scientia and episteme simply meant “knowledge”—knowledge
about anything, not specifically about atoms, molecules, stars,
life forms, etc., as it does today. Aristotle (Post An. 100a)
understood episteme to mean a body of knowledge about existing
things that are unchanging and eternal. Knowledge of such
things can be codified, taught, and learned (Nic. Eth. 1139b).
Complementary to, but less precise than episteme is techne. Techne
is the knowledge of things that might exist (but do not
necessarily exist) and that are brought into existence not by
themselves but by an efficient cause that is their maker (Nic.
Eth. 1140a). Such things might be actions or objects. Thus,
Aristotle divides techne into two branches, the practical,
concerned with actions, and the “poetic,” concerned with
objects. A techne involves logos, or a “rational quality” (hexis meta
logou) which must be applied in accordance with the truth
(alethous; Nic. Eth. 1140a). So a techne has a necessary relationship
to episteme, the study of the truth about unchanging and eternal
things. For Aristotle and, as Dupré rightly noted, for the Greeks
generally, knowledge is possible because nature is infused with
Logos, or Reason, and humans are first and foremost rational
creatures. This means that for the Greeks, the work of knowing
is mimetic: to know something is to be able to describe it
accurately in its essentials, which is to say its rational elements.
…artists of the early Renaissance continued to view
themselves as creating in unison with nature: mind
and nature relate harmoniously to one another. As a
microcosmos, the person occupies a central position
within nature. According to Leonardo, the mind
recognizes itself in the natural form upon which it
then bestows its own formal perfection….
Observation of nature’s forms must conspire with
creative imagination to realize the truth of nature.
Because of the aesthetic importance of observation,
Leonardo…considers science and art united. Thus
he…concludes that painting is a science, indeed the
higher one, since it intuitively reveals the unique,
internal structure of its object, which cannot be
learned as other sciences can (Dupré, 1993: 49; cf.
Kuhn, 1970: 161).
I start with Leonardo da Vinci and the Renaissance because I
want to challenge any presupposition you may have that “art”
and “science” have unambiguous significations and are natural
and eternal opposites. In fact, the contrary is the case. Until the
late 19th century when the term “physical sciences” was first
coined, “art” and “science” were synonyms. We still hear a faint
echo of this when we talk about “the art of solving puzzles, or
“the art of computer game design,” to cite just two of thousands
of hits that I got when Googling the phrase “the art of…” We
also hear it when John Ziman, the distinguished theoretician of
contemporary science, calls science “the art of the soluble”
(Ziman, 1978: 28) and we can detect the synonymy in the title of
Martin Kemp’s book, The Science of Art. Optical Themes in Western
Art from Brunelleschi to Seurat (Kemp, 1990). It may not be
irrelevant to note that Kemp is one of our greatest experts on da
Vinci. Also pertinent is the fact that since its very origins with
Hence for Aristotle and the Greeks, the key tool in the
knowledge worker’s toolkit is logic. As we will see, other tools
came later. I will call this notion of what knowledge is and what
tool is suited to discover it the Ancient Model (see figure 1),
anticipating my invocation in section 4 of Alfred Crosby’s use of
the term New Model for the period 1250 to 1600.
Ancient Model: Logic
Greek
Latin
English
τέχνη
Ars1
Art
Scientia1
Knowledge
πιστήµη
Goal: mimetic representation of reality
Figure 1. The Ancient Model.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
21
Virtual Archaeology Review
be sure, was not without his medieval predecessors such as
Roger Bacon in the thirteenth century. Like Bacon, Galileo
held that mathematics was “the gate and key” to knowledge
about the physical world (Crosby, 1997: 68). Unlike Bacon,
Galileo had many students and lived in the age of
Gutenberg.
In the Hellenistic and Roman periods, Aristotle’s sharp
distinction between episteme and techne was lost, and the terms
came to be used interchangeably. Thus, in his influential book
on education, the late-antique writer Martianus Capella called
the following the seven “liberal” arts, that is the subjects that
any free-born (liber) man ought to have mastered: Grammar,
Dialectic (or Logic), Rhetoric, Geometry, Arithmetic,
Astronomy and Music. So, for Capella and in western
universities until the seventeenth century, the arts included
disciplines such as mathematics and astronomy that we today
naturally consider sciences. Thus when Galileo came to the
University of Padua in 1592, he was hired as an “artista,” a
professor of the art of mathematics, having been recruited by
Antonio Riccoboni, the professor of Humanities.
So Galileo’s readership and influence were far-flung.
It was Galileo who started a new paradigm of scientific
research based on the apparently simple idea that you could
quantify key characteristics of matter such as force, energy
and mass (figure 2). What had held things up? Aristotle and
the Ancient Model!
In his Metaphysics, Aristotle denied point-blank that math could
be applied to physics. Mathematics is “theoretical” and
concerns what is eternal and immovable. But physics deals with
things constantly moving and perishing, which are anything but
immovable and eternal (Met. 1026a; see, in general, Crosby,
1997: 12-14). For a Bacon or Galileo to be possible, a new
model of knowledge was needed.
When you finished your bachelor’s degree in one of these arts,
you then were eligible to proceed to the master’s and doctorate
in the faculties of medicine, theology, or law. Whatever you
studied at whatever level, you had to be highly proficient in
Latin and Greek, since all the textbooks in all disciplines were
texts by ancient writers such as Aristotle, Cicero, and Galen (on
the concept of the “arts” see Kristeller, 1990: 163-227; on the
medieval university, see Le Goff, 1993: 65-166 and Leff, 1992;
on the Renaissance university, see Grendler, 2002). At this
phase, then, it would not make sense to talk about “the art of
science and the science of art,” since art meant science.
Alfred W. Crosby, in his excellent book, The Measure of Reality.
Quantification and Western Society, 1250-1600, sees this New
Model gradually evolving in tandem with the introduction of
the money economy in the thirteenth and fourteenth centuries.
Crosby quotes a fourteenth century scholar at Oxford who
wrote that “every saleable item is at the same time a measured
item.” Even time came to have a price once it could be divided
into units smaller and more absolute than the ancient hour,
whose value fluctuated seasonally and geographically until the
invention of mechanical clocks around the 1270s (Crosby,
1997: 84). Within a few centuries, Kepler would compare the
universe to a vast clockwork. The new device had given birth
to a new and powerful metaphor (Crosby, 1997: 110-111). And
let us not forget that Copernicus wrote a treatise on money in
which he anticipated the quantity theory of money and even
Gresham’s Law. The New Model, then, is based in part on the
addition of a second tool to the knowledge worker’s toolkit.
Next to logic, we now have applied mathematics.
To be clear about our use of these terms, let us call this Art1
and Science1, and we can say that:
Art1 = Science1
Both operated under the Ancient Model of knowledge
primarily obtained through the tool of logic and aimed at a
mimetic description of reality.
4 The New Model
When did this paradigm of the branches of knowledge break
down, and why? Perhaps the key figure was Galileo, who, to
New Model: Logic, Mathematics, Visualization
Greek
Latin
English
τέχνη
Ars2
Art
Scientia2
Knowledge
πιστήµη
Goal: mimetic representation of reality
Figure 2. The New Model.
Why could mathematics not have been used as a knowledgeproducing tool in antiquity? Crosby is undoubtedly correct in
attributing this to the simple fact that in antiquity “its symbols
and techniques were inadequate” (Crosby, 1997: 110-111). A
new symbolism was required. With Roman numerals, even the
procedure of addition was time-consuming. And then there was
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
22
Virtual Archaeology Review
the lack of the concept of zero. It took until the sixteenth
century for the Arabic system of numbers and notation to come
into widespread use in Europe. Until then, we should not be
surprised to find the knowledge-worker’s toolkit to be limited to
logic alone.
Further progress came in the early 1400s with the rediscovery
Ptolemy’s Geography, with its map of the world, which divided
the earth into the familiar system of latitude and longitude. This
gridding of the earth allowed maps to become more and more
accurate and introduced the idea that space, like time, could be
divided into small units and measured with precision—not that
Ptolemy did: his calculations were, in fact, far from accurate,
which explains why when Columbus got to the New World, he
thought he was already at the islands off the coast of China,
some 10,000 miles away (Crosby, 1997: 97-98). A second work
of Ptolemy, rediscovered around the same time was his He
Megiste Syntaxis, better known by its Arabic title of Almagest. This
work presented a detailed geocentric model of the heavens. Its
inelegant use of epicycles inspired Copernicus in the sixteenth
century to propose his heliocentric model. Here it is important
to note three things. First, Copernicus did not primarily base his
argument on new observations. Second, Copernicus felt licensed
to propose the heliocentric model because it had already been
developed in antiquity by Aristarchus of Samos. Hence, his
attack on Ptolemy does not constitute an early skirmish in the
Battle of the Ancients and the Moderns, which was to break out
in France in the next century. It is rather a case of one ancient
authority pitted against other ancient authorities. Since none of
the heliocentric texts survived, in a sense Copernicus was
philologically recon-structing the line of argument they could
have made. Finally, for Copernicus, the criterion of success in
his enterprise was less truth than beauty. As he wrote about his
geocentric predecessors, “…they [could not] elicit or
deduce…the structure of the universe and the true symmetry of
its parts. On the contrary, their experience was just like some
one taking from various places hands, feet, a head, and other
pieces, very well depicted, it may be, but not for the
representation of a single person; since these fragments would
not belong to one another at all, a monster rather than a man
would be put together from them” (Copernicus 1978). As
Robert Westman (2008) has noted, Copernicus’ image is based
on the opening lines of Horace’s Art of Poetry, which compares a
bad poem to the painting of a monster with the head of a
woman, neck of a horse, wings of a bird, and tail of a fish.
Copernicus sees the strength of his alternative theory in the fact
that it can connect the old data points in a new way so as to
make the picture of the universe symmetrical and beautiful
rather than monstrous and ugly. The root of this new criterion
of truth comes from the fifteenth-century Neoplatonic
philosophy of Marsilio Ficino. As Dupré showed, in Ficino’s
thought, Nature is an aesthetic work, and hence to perceive the
truth of Nature is to perceive its beauty (Dupré 1993: 200-202).
Oddly, Copernicus’ De revolutionibus had an unintended
contribution to make to the progress of knowledge:
unbeknownst to its dying author, Copernicus’ text was edited by
the theologian Andreas Osiander when it was being prepared
for the printer in Nuremberg in 1543. Osiander added a preface
that most readers thought must have been written or at least
authorized by Copernicus himself. In this text, Osiander called
the heliocentric theory a hypothesis which “need not be true nor
even probable; it is sufficient if the calculations agree with the
observations” (quoted apud Gingerich 2005: 139). Osiander thus
introduced the powerful concept that a scientific theory could
be proposed not as a mimetic representation of reality but as a
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
thought-experiment or jeu d’esprit (on Osiander’s preface see
Kusukawa, 1999).
A key moment in the formation of what Crosby calls the New
Model occurred in the early seventeenth century. That is when
Galileo did three things that were to have a powerful effect on
science down to the present day. He violated Aristotle’s
injunction against applying mathematics to the study of physical
objects. Although he made some errors, Galileo undertook
experiments to establish the time-squared law for uniformly
accelerated change. He also concluded that objects retain their
velocity unless a force—such as friction—acts upon them,
refuting the generally accepted Aristotelian hypothesis that
objects “naturally” slow down and stop unless a force acts upon
them. Galileo also showed the power of observation by using
the new invention of the telescope to visualize the heavens,
making new discoveries (such as the four, large moons of
Jupiter) that are impossible for the unaided eye to see. And so a
third tool entered the knowledge-worker’s toolkit: visual devices
such as microscopes and telescopes to bring within the range of
human vision objects too small or distant to be perceivable.
Once again, the reason for the absence of these tools from the
Ancient Model is obvious: they did not yet exist.
I have noted that Osiander’s preface to Copernicus’ De
revolutionibus characterizes the purpose of the work as a mere
hypothesis, not a claim that the heliocentric model is an accurate
mimesis of the solar system. This softer claim is actually not
very characteristic of practitioners of the New Model. More
typical is Galileo, who wrote, for example, in the Starry Messenger,
“I have observed the nature and material of the Milky Way.
With the aid of the telescope this has been scrutinized so
directly and with such ocular certainty that all the disputes
which have vexed philosophers through so many ages have
been resolved, and we are at last freed from wordy debates
about it” (Galilei, 1957: 49). “Wordy debates” are, of course,
Galileo’s disparaging way of referring to the use of logical
reasoning alone. Armed with the new tool of the telescope, the
knowledge-worker in the age of the New Model can forward a
very strong claim to understanding the precise characteristics of
his object of study.
Galileo’s contemporary, Kepler, was able to improve on
Copernicus’ heliocentric model by replacing Copernicus’ circular
orbits of the planets with ellipses, arriving at this correct
conclusion solely by use of mathematics and the data of Mars’
orbit. Within fifty years of the deaths of Kepler (1630) and
Galileo (1642), Newton, in the Principia mathematica (1687) was
able to take Galileo’s terrestrial laws of motion and apply them
to heavenly bodies such as the Moon and the planets, thereby
giving a principled explanation for Kepler’s observations about
planetary motion (cf. Kline, 1967: 337-339).
By the beginning of the eighteenth century, Crosby’s new
quantitative-visual model had been firmly established as
Newton’s work swept all before it, as Feingold has reminded us
in his recent book The Newtonian Moment. But the term for this
branch of knowledge was still philosophy, or natural
philosophy, not “science.” Not surprisingly, the full title of
Newton’s classic work was the Philosophiae Naturalis Principia
Mathematica, or The Mathematical Principles of Natural Philosophy.
For the sake of terminological clarity, let us call this “Science2.”
As we have seen, the chief characteristics of science2 are
quantification, visualization, model-ing, and experimentation.
Note that these are not always all utilized, but they are all in the
scientist’s toolkit. For example, in the field of astronomy,
23
Virtual Archaeology Review
experiments were not possible for Copernicus, Kepler, Galileo
and Newton. At best, they could quantify, observe, model and
run thought experiments.
If in the seventeenth century natural philosophy embraced the
new tools of quantification and visualization, then we may well
wonder if there was already a foreshadowing of C.P. Snow’s
opposition of what we today would call art and science.
Surprisingly, the answer is no.
Art itself was evolving in the same direction. Indeed, the move
toward the new model actually occurred in what we now call the
arts before it occurred in the sciences, and so we now change our
nomenclature for “art,” too. Starting from fifteenth-century
Florence, painting had undergone what William Ivins has called
“the rationalization of sight.” By this concept—which has been
quite influential among scholars of New Media—he means that
the imprecise sense of perspective found in much of Roman
painting and European Gothic painting, starting with Pietro
Cavallini and Giotto, had undergone a revolution with Leon
Battista Alberti’s formalization of Brunelleschi’s discovery of a
simple but logical scheme for pictorial perspective (Ivins, 1975:
9; on Brunelleschi and Alberti, see [anon.], 2006: 371-378).
According to Ivins, Alberti’s innovation came from a shift of
sensibility: for the Greeks, geometric properties were ultimately
derived from the sense of touch, not vision. This can be
exemplified by the key issue of perspective painting: the
treatment of parallel lines. In Euclid, parallel lines, by definition,
never meet. “If we get our awareness of parallelism through
touch, as by running our fingers along a simple molding,” writes
Ivins, “there is no question of the sensuous return that parallel
lines do not meet. If, however, we get our awareness of
parallelism through sight, as when we look down a long
colonnade, there is no doubt about the sensuous return that
parallel lines do converge and will meet if they are far enough
extended” (Ivins, 1975: 8). The famous Albertian window used
in perspective painting since the mid fifteenth century reflects
exactly the same powerful combination of tools seen 150 years
later in the work of Galileo, Kepler, and Newton: mathematics
and visualization. And as in the work of those natural
philosophers, the criterion for success was, of course, beauty
and the goal the mimetic representation of Nature.
The invention of perspective was not simply a technical
innovation useful for painters and architects. By a circuitous
route that started with the engineer-architect Girard Desargues
and his student Blaise Pascal in the seventeenth century, it led in
the nineteenth century to the development of projective
geometry, of which Euclidean and non-Euclidean geometries
are special cases (Kline, 1967: 232-249). As Morris Kline put it,
“this subject born of art makes its primary contribution to
mathematics as an art” (Kline, 1967: 248). Of course, this story
about how modern geometry developed in the positive
interaction of fine artists and scientists has many, many more
twists and turns. Those interested can be referred for the details
to the splendid account in Martin Kemp’s book, The Science of
Art, whose premise is (to quote the Introduction) “that there
were special kinds of affinity between the central intellectual and
observational concerns in the visual arts and the sciences in
Europe from the Renaissance to the nineteenth century”
(Kemp, 1990: 1).
Crosby’s “New Model,” which we have called science2, is first
attested two centuries earlier in the fine art of painting, whose
theoretician was Leon Battista Alberti and whose poster boy
was Leonardo da Vinci. At this point, then, we also must
distinguish this sense of the word “art” from art1. We have
called it art2. Here, again, we find that art and science are not
polar opposites, as they were in Snow’s essay. Of course, we are
now using the word “art” in the sense of the “fine arts,” not in
the sense of art1, the traditional liberal arts of Grammar, Logic,
Rhetoric, etc. That sense was not to develop before Vasari, who
in his Lives of the Most Excellent Painters, Sculptors and Architects,
coined the term “le arti del disegno,” the “arts of design,” or what
the French were to call the beaux arts and what we call in English
the “fine arts.” Since the universities had no place for them,
painters, sculptors and architects banded together in academies,
of which the first was started in 1563 by Vasari himself in his
native Florence (cf. Kristeller, 1990: 181-183).
At this point, we can begin to detect a divergence between the
old liberal artists and the new fine artists and natural
philosophers. The liberal artists show few signs of rebelling
against what Crosby called the Old Model that was prequantitative and non-visual. There are, to be sure, some
exceptions such as Pierre de la Ramée, better known as Petrus
Ramus, who developed a new, anti-Aristotelian logic in mid
sixteenth-century Paris and who loved to make his points
through the use of illustrative diagrams (Ong, 1958). Ramus’
influence is hotly debated: Walter Ong downplayed it (Ong,
1962: 79-80; see also Sellberg, 2006); Ernst Cassirer and, more
recently, Timothy Reiss, see a direct line connecting Ramus to
Bacon, Galileo and ultimately to Frege (Reiss, 2000: 54-55).
On the other hand, even the old artists of grammar, rhetoric,
logic, and ethics were somewhat affected by the spirit of the age,
which, after all was the Renaissance and the time when
humanism flourished. For the humanists studying the Greek
and Latin authors, it was not yet possible to use the tool of
quantification, let alone of experimentation. For that, we have to
await the late twentieth century and the development of the
fields of quantitative linguistics, literary stylometrics, and virtual
archaeology. But it was possible to challenge ancient authority,
as Galileo did; and by the early nineteenth century it would be
possible to visualize textual data in the form of the genealogy of
manuscripts, or the discipline we call stemmatics (Bordalejo,
2006).
As in the case of the fine arts, in challenging ancient authority
the liberal artists were far ahead of the scientists. Probably the
greatest challenge made by a Humanist to ancient authority
occurred in 1440 when Lorenzo Valla used legal, linguistic and
historical arguments to challenge the authenticity of the
Donation of Constantine. This was a key text upon which the
primacy and power of the Bishop of Rome rested because in it
the Emperor Constantine the Great allegedly gave Pope
Sylvester I and his successors ownership of property in Rome,
Italy, and in other provinces of the Roman empire including
Judea, Greece, and Africa. Valla’s challenge set off a chain
reaction that, as noted by Hans Küng (1996), caused a paradigm
shift in Christianity. Before Valla, authority flowed from the
Pope in Rome. After Valla, Martin Luther and John Calvin,
authority was rooted in the Bible. No wonder that in sixteenthcentury Italy, there was a saying: “scuola di grammatica, scuola
di eresia” (see the chapter with this title in Seidel-Menchi, 1987),
or, “school of humanities, school of heresy.”
As for the visualization tool called stemmatics, it took centuries
of groundwork by philologists following in the wake of
humanists such as Valla and Erasmus until the breakthrough
could occur in 1850 with the publication of Karl Lachmann’s
edition of the ancient Latin poet Lucretius. Lachmann was able
to show the family descent of the surviving manuscripts and to
take an imaginative leap beyond the surviving witnesses of the
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
24
Virtual Archaeology Review
text to derive the characteristics of their common ancestor, or
what we call the archetype. Lachmann was able to show that this
lost manuscript, called Omega, contained 302 pages with 26 lines
to a page. He was also showed that the archetype was a copy of
a manuscript written in a minuscule hand, which in itself was a
copy of a manuscript of the 4th or 5th centuries written in rustic
capitals. These results were astounding and constituted a kind of
reverse-engineering of the thousand-year process of scribal
copying. Since Lachmann, the use of a genealogical table to
visualize the family relationships of the manuscripts of ancient
authors has become a standard practice. Sometimes the picture
that emerges can be quite complicated. But precisely for that
reason visualization has proven to be a useful technique in the
field of stemmatics because it makes apparent emergent
properties that might otherwise get lost in the overwhelming
mass of data (cf. West, 1973: 7-59). In the field of archaeology,
we had to wait over a century for a similar breakthrough in data
visualization. I refer to the Harris matrix, which was invented in
1973 (Harris, 1989). We might note that in the field of the old
liberal arts, the criterion of success was never beauty, a concept
not part of the humanists’ critical vocabulary before the
development of the new field of aesthetics in the eighteenth
century (Kristeller, 1990: 186, 196-204).
fashion. Some of the major features that a detailed version of
this paper would have to delve into include the development of
the modern research university by Wilhelm von Humboldt; the
resulting explosion of specialized knowledge with an attendant
breakdown in communication, ultimately leading to C.P. Snow’s
two-culture thesis (for the influence of the Germanic model in
the U.S.A. see Lucas, 2006: 177-181); rapid progress in basic
scientific knowledge leading to what can be called the M o d e r n
Model for science; and inevitable repercussions positive and
negative on the artists of both the ancient and of the modern
model. If language reflects consciousness, then it is doubtless
significant that it was toward the end of the nineteenth century
that the term “science” in its contemporary sense replaced the
ancient term “natural philosophy” still used by Galileo, Newton,
and all the other early modern researchers in this field.
Let us start with what, for lack of a better term, I have called the
Modern Model (figure 3). Crosby’s account ends in 1600 so we
should not be surprised that by the late 19th century his New
Model had been replaced. The key development this time is less
the addition of new tools to the knowledge-worker’s toolkit than
the end to which they are employed. Instead of the mimetic goal
of the arts and sciences of the New Model, now scientists
understood their tasks to be not so much modeling reality as
exploring the properties and limits of the models themselves. We
may simplify and say that play replaces mimesis, though we
hasten to note that play can be a very serious thing, as scholars
of play (Smith, 1984; Huizinga, 1955) and a popular cultural
critic such as Steven Johnson—author of the popular book
Everything Bad Is Good for You (2005)—would insist.
5 The Modern Model
As noted, Lachmann lived in the nineteenth century, and this
was the time when Crosby’s New Model started to pass out of
Modern Model: Logic, Mathematics, Visualization, Thought Experiments
Greek
Latin
English
τέχνη
Ars3
Art
Scientia3
Knowledge
πιστήµη
Goal: playful representation
Figure 3. The Modern Model.
“Science3” is what we may call this new, ludic kind of science,
of which Osiander was the harbinger.
An early influential exponent of the Modern Model was the late
nineteenth-century physicist Ernst Mach, who wrote:
If ordinary ‘matter’ must be regarded merely as a
highly natural, unconsciously constructed mental
symbol for a relatively stable complex of sensational
elements, much more must this be the case with the
artificial hypothetical atoms and mole-cules of
physics and chemistry. The value of these implements
for their special, limited purposes is not one whit
destroyed. As before, they remain eco-nomical ways
of symbolizing experience. But…we are on our guard
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
now, even in the province of physics, against overestimating the value of our symbols (Mach, 1914:
310).
So for Mach, as for Ockham and the nominalists of medieval
philosophy (Dupré, 1990: 39-40), the work of scientists is a
mental construct, and it is going too far to take concepts like
atoms and molecules as really existing parts of reality. Of
course, in Mach’s lifetime, atoms could not yet be seen under
the microscope. That was not to happen until the
development in the twentieth century of the electron
microscope and the One-Ångstrom Microscope. Moreover,
as a brilliant student of optical illusions, Mach had reason to
distrust the evidence of the senses. And if Mach downplayed
25
Virtual Archaeology Review
the role of observation, he also was dismissive of logic as a
tool of discovery.
Thus syllogism and induction do not create new knowledge,
but merely make sure that there is no contradiction between
our various insights and show clearly how these are
connected, and lead our attention to different sides of some
particular insight, teaching us to recognize it in different
forms. Obviously, then, the genuine source from which the
enquirer gains knowledge must lie elsewhere (cited apud
Pojman, 2008).
So in his version of the Modern Model, the emphasis
necessarily falls on mathematics and modeling. The poster
boy for this was, of course, Albert Einstein.
As Science3 developed and succeeded, it caught the interest of
government, especially in time of war. The most obvious
example is the Manhattan Project, which gave us the atom
bomb and proved that Einstein’s famous thought experiments
of roty years earlier were very serious and deadly games indeed.
The atomic bomb reminds us that the game of the modern
model was one that was not arbitrary and purely fanciful but
was played according to the rules of the “falsifiability” principle
of Karl Popper (Popper, 1965). It also reminds us that by now
science had evolved from the activity of isolated indivudals or
small research groups into a large-scale, collaborative Enterprise.
According to the US government, at its peak, the Manhattan
Project
employed
more
than
130,000
people
(www.cfo.doe.gov/me70/manhattan/retro spect. htm). In the
era of Big Science (Weinberg, 1961), collaborative research by
teams of researchers has become the norm. Scientific papers no
longer have a single author, and lists of dozens or hundreds of
co-authors are by no means unusual.
Meanwhile, other knowledge-workers were implicitly operating
on the assumption that if scientific research is a mental
construct, then it need not necessarily take its point of departure
from observations of reality but can become a self-reflexive
activity. By “self-reflexive” I mean that it can take the methods
and procedures of science and imagine what would happen if
the reality-based constraints were removed. The clearest
example of this is non-Euclidean geometry, which was
developed in the 1820s and 30s by Bolyai and Lobachevsky. It
takes as its point of departure the assumption that parallel lines
do meet and works out the consequences. Bolyai “ends his work
by mentioning that it is not possible to decide through
mathematical reasoning alone if the geometry of the physical
universe is Euclidean or non-Euclidean; this is a task for the
physical sciences” (anon., 2009A). Of course, twentieth-century
physics did find that in certain respects the universe is nonEuclidean and that non-Euclidean geometry—especially as
developed by Riemann—is thus very useful. But in terms of the
research program of the Modern Model, that is almost beside
the point. In the early twentieth century, we can cite the
mathematics of David Hilbert, who held that “mathematics
is…a series of games” (Anglin, 1996).
In the fine arts, too, a major shift had occurred away from
mimesis toward ludic self-reflexivity, which we may call Art3.
This is doubtless related to the invention of the daguerreotype
in the 1830s and the even better calotype, invented by William
Henry Fox Talbot in the 1840s. Now, for reality to be outputted
through the use of optics or optical theory no longer required
the assistance of an artist. Instead, visual data could pass
through a lens and be recorded directly onto a photographic
plate or film. Stereographic photographs were even given the
status of “wholly reliable transcriptions of retinal images,
themselves unfailing equivalents to the external world they
signified” (Schiavo, 2003: 127). As Walter Benjamin (1968) put
it, “photography freed the hand of the most important artistic
functions which henceforth devolved only upon the eye looking
into a lens.” And, as Benjamin also noted, once freed, the hand
of the artist no longer had to operate as the last cog in the wheel
of mimesis. Instead, it could carry out the commands of the
artist, who replaced the doctrine of mimesis with that of “l’art
pour l’art, that is, with a theology of art” (Benjamín, 1968). Like
Modern Science, modern art becomes ludically self-reflexive,
more about itself than about nature. The history of modern art
thus becomes the history of an ever-changing series of
doctrines—Impressionism gives way to Cubism, Cubism to
Dadaism, Dadaism to Surrealism, Surrealism to Abstract
Expressionism, and on and on without stop, let us hope—at
least if you enjoy the show as much as I do!
And what about artists in the original sense of humanists in the
fields of grammar, rhetoric, and logic? Here, too, we can detect
the Modern Model. This is particularly the case in philosophy,
hermeneutics, and the sociology of knowledge, the foundational
fields that inspire the day-to-day work of specialists in the
various humanistic subdisciplines. All three are based on the
same key idea found in Mach and in modern fine arts that the
name of the game is reflexivity. In philosophy, one thinks here
of Wittgenstein’s late Philosophical Investigations, where the
concept of the “Sprachspiel,” or “language game,” plays a key
role. The Mach of modern humanists was perhaps the
Heidelberg philosopher, Hans-Georg Gadamer, who died in
2002. His key work was published in 1960 with the ironic title,
Wahrheit und Methode, “truth and method.” The irony consists in
the fact that, as was the case in Mach’s system, in Gadamer’s
there is no method in the humanities that leads us to true
knowledge in the sense of a mimetic repre-sentation of reality.
Each individual lives in a set of particular historical
circumstances that determine his behavior and outlook. When
another individual—say a scholar in the humanities—looks back
and tries to understand a text, painting, or other creation left by
someone who lived in a different set of circumstances, there is
no possibility of a completely shared understanding. This does
not mean that we cannot understand a text, painting, or other
human creation; only that we cannot understand it as its original
author intended. We always understand it in our own way, no
matter how much we try to be “objective,” that is, to employ an
historical method. Moreover, the work of art has a special
property: it evokes a response in us and issues a challenge to us.
Through interpreting a great intellectual achievement of the
past, we do not simply express who we were before we opened
the title page; we become transformed in our dialogical
encounter with the object we are studying. In Gadamer, the
work of art thus functions as Nature does in Mach: it is subject
to interpretation, to what we might call “modeling,” but not to
straightforward mimetic transcription by a knowledge-worker in
the manner of Galileo confidently describing the Milky Way, or
Harris meticulously sorting out the relationships of all the
stratigraphic deposits on an archaeological site.
6 The Postmodern Model
I conclude with our situation today, which is characterized by a
Postmodern Model (figure 4). Like all preceding models, this
model is not all-pervasive but sits atop archaic survivals of its
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
26
Virtual Archaeology Review
predecessors, giving rise to a rich if seemingly contradictory
state of affairs characterized both by neo-skepticism and neopositivism in the arts and sciences. In the Postmodern model,
the goal is no longer primarily play constrained by rules but
playful, ironic self-consciousness. And its new discovery tool is
informatics, an outgrowth of the Computer Revolution that
started before World War II and took off in the post-war
period. Informatics has been defined as “the study of the
structure, algorithms, behavior, and interactions of natural and
artificial systems that store, process, access and communicate
information” (Wikipedia, “Informatics,” seen June 15, 2009).
The science that results from using this new tool we may call
Science4.
the experimental results. But when this breaks down, a crisis and
a “paradigm shift” inevitably occur. Moreover, the crisis may
not arise only from discrepant data but from a change in world
view. The world is seen differently, and different things are seen
in the world. The paradigm shift involves a new metaphor that
reorganizes the scene and exerts itself by force of its beauty, its
aesthetics (Kuhn, 1970: 155).
Applying the lessons of Gestalt psychology—traceable to Mach’s
work on optical illusions—Kuhn shows how scientific
revolutions can also arise from new ways of interpreting the text
of Nature—something that Gadamer might have noted was an
inevitable feature of the human condition. So the evolution of
science is inevitable and unrelenting. This might lead to the
depressing thought that all scientific knowledge is relative, that
is, temporary. In the second edition of his book (1970), Kuhn
tackled that head-on and came up with a Gadamerian answer:
yes, in a sense all science is relative, but from the point of view
of an individual or a particular generation of scientists you can
still achieve the best theory possible given the state of the
evidence and the compatibility of the theory with all other
dominant theories in related branches of science. Relativity will
mainly occur after your death, and even if it occurs while you are
still alive, that is nothing to get depressed about because,
according to Kuhn, scientists at heart are “puzzle-solvers”
(Kuhn, 1970: 35-42, 206). Like devotees of crossword puzzles,
they get pleasure from confronting ever-new puzzles to solve. I
need hardly point out that puzzles are games, so Kuhn’s theory
has a strong ludic element. I would characterize it as
simultaneously neoskeptical and neopositivistic. For the
individual, it presents a view of science in which positive
knowledge can be obtained; looking at the longue durée, Kuhn’s
picture is skeptical about the persistence of any single brick in
the structure of knowledge.
If Crosby was the theoretician of the New Model, then Thomas
Kuhn with his influential “paradigm theory” of science plays
that role for the postmodern model. According to Kuhn’s
famous book, The Structure of Scientific Revolutions, first published
in 1962, previous understanding of what science is was too
often determined by reading textbooks (Kuhn, 1970: 10: Ziman,
1978: 38-42), not the actual communications of scientists.
When we approach science through textbooks, everything is
compendious and clear. Science marches ever onward and
upward without error or detour. But that gives a very artificial
sense of what science is really about, how it really happens. If
the data of the theoretician of science focus on the process
rather than the product, what is striking is less the neatness and
positive results of science than its messiness and tentativeness.
No discovery or theory is ever final; everything is subject to
doubt, the requirement of replication, and the fate of
reintegration into a new theory, or what Kuhn termed a
“paradigm.” Science is made by knowledge-workers organized
into communities that are self-validating. Within these
communities, all goes well during periods of what Kuhn calls
“normal science” when a reigning paradigm accords well with
Postmodern Model: Logic, Mathematics, Visualization, Thought Experiments, Informatics
Greek
Latin
English
τέχνη
Ars4
Art
Scientia4
Knowledge
πιστήµη
Goal: interactive representation
Figure 4. The Postmodern Model.
Of course, since Kuhn’s book appeared, the scientists have
continued solving the crossword puzzle of Nature with no sign
of any slowdown caused by mental depression. To the contrary,
the collaborative teams characteristic of Big Science in the
Modern Model have become what Caroline Wagner calls the
Invisible College of massive numbers of scientists dispersed
around the world linked by the Internet where they apply grid
computing to ambitious collaborative projects (Wagner, 2008:
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
1-14). The central, enabling role of informatics in such new
scientific projects is striking.
The field of physics gives us an excellent example: CERN’s
Large Hadron Collider, or LHC. In the LHC, two beams of
hadrons will shoot in opposite directions through the
accelerator. When the beams collide, the energy will be high
enough to simúlate conditions in the early universe. The
particles that are generated may confirm or force revision of the
Standard Model. These collisions are detected by sensors whose
27
Virtual Archaeology Review
data are digitally expressed and processed at a rate of an
estimated 300 GB/second, 27 TB/day, or 15 PB/year. They are
so massive that they have to be culled for “interesting events” at
an estimated rate of 300 MB/second in order to be processed
by software and made available to thousands of scientists tied
remotely to CERN through the LHC Computing Grid
(http://public.web.cern.ch/public/en/LHC/ LHC-en.html, seen June
10, 2009). In other words, in postmodern physics, scientists
study not the immediate sensory presentations of Nature but
their digital representation. If these are created in a methodical,
accurate way, the results can be no less valid than what can be
learned from their real-world equivalents. But, of course, in
postmodern science, the real-world objects of study are
generally not subject to direct observation and manipulation
because of constraints of time, distance, or scale.
Physics is not the only field where we can see this informatic
turn. With the decipherment of the human genome, humanity
has become self-conscious of its own coding and integration
into the biosphere. The new fields of bioinformatics and
computational biology have emerged in recent decades at the
very center of the life sciences, bringing us such research
programs as genomic sequencing, comparative genomics, and
the modeling of biological systems, to name just a few hot areas.
This is because, as with the LHC’s subatomic particles, the
genomic code is understood not directly but through its digital
representations, and these are analyzed computationally. Thus,
with the introduction of informatics, biology moves from a
discipline primarily devoted to observation and experimentation
to one reliant for new advances on the manipulation and
analysis of digital data and models.
As with the previous three models, we once again find parallel
developments in the fine and liberal arts. Specialized shows such
as Ars Electronica and SIGGRAPH regularly feature the work
of digital artists. They are also gaining access to our major
museums. In 2008, the foyer to the Getty Center featured Tim
Hawkinson’s Überorgan, a large multimedia structure combining
balloons, pipes, and music. The music is based on hymns,
fragments of which are randomly activated by sensors as viewers
pass by the installation. The artist describes it as follows:
…the switches reinterpret the [musical] score. One
would kind of flip-flop the orientation of the notes to
the keyboard so that what's normally played at the
high end is played at the low end. Another switch is
the key that it's played in. All these switches are being
activated kind of spontaneously just by viewers going
through the space so there's no telling when it's going
to shift. And so it really is played out a different way
each time someone passes through (Hawkinson,
2008).
As those of us who have been fortunate enough to experience it
can attest, the Überorgan plays for us and with us. Those who
have not seen it can enjoy it vicariously on YouTube. Works of
art like the Überorgan are excellent emblems of the informatic
and interactive spirit of our age, which they both reflect and
help to create. They also exemplify irony, as does much of body
and performance art of the past several decades: they can never
be repeated and only rarely preserved or documented. If one of
the original drives behind the creation of art was an individual’s
desire to leave a mark or to create a monument recording his
existence, then postmodern art does not fulfill this basic human
need. But what postmodern art is good at doing is transcending
the boundary betwen the individual artist and his audience.
Now, the audience participates in the performance and helps
co-create the art as it is experienced in ever new ways. And
postmodern art also clearly illustrates how the boundaries
between science, art, and technology have become very blurred.
We may call it Art4.
Play: The Video Games World was an enormous show with over
300 video games held at the Palazzo delle Esposizioni in Rome
in 2002. In the summer of 2008, the Vancouver Art Museum
held a show dedicated in part to video games as art, with
exhibition of games such as the Sims, Grand Theft Auto, and
Super Mario World. Increasingly, the game is not only the spirit
of art, as it was in the Modern Model, but its very content. But
in contrast to pre-digital games, the new games are interactive,
with shifts of situation caused either by the human players, the
randomized algorithms of the game, or both. The new
postmodern aesthetic is thus no longer based on the traditional
concept of mimetic content wrapped in a static, simple and
symmetrical Beauty, on Kant’s notion of the aesthetic
experience as “disinterested contemplation” by an isolated
viewer (Kant, 1982, para. 1-22). It is grounded instead on the
aesthetic object’s ability to engage through dynamism,
adventure, imagination, and curiosity-arousal in a social context.
One might make the case that the new aesthetic is indeed a
conscious and enthusiastic embrace of Horace’s monster, an
impulse, “to destroy beauty,” as the artist Barnett Newman
characterized modern art in 1948 (apud M. J. Milliner). But we
must also note that the new aesthetic is also Gadamerian in
emphasizing the dialogical relationship of the observer, the
other, and the art-object.
We should note in this regard that along with the new aesthetics
is a complementary new anthropology associated with the
discovery of mirror neurons by neuroscientists. In brief, a
mirror neuron is:
…a neuron which fires both when an animal acts and
when the animal observes the same action performed by
another animal (especially by another animal of the same
species). Thus, the neuron ‘mirrors’ the behavior of
another animal, as though the observer were itself
acting. These neurons have been directly observed in
primates, and are believed to exist in humans and other
species including birds. In humans, brain activity
consistent with mirror neurons has been found in the
premotor cortex and the inferior parietal cortex ([anon.,
2009B].
The first consequence of this discovery is the realization that
mimesis is itself a game—indeed the first, constitutive primate
game, which begins in humans in the first minutes after birth
(Iacoboni, 2008: 47, 49). The second is that there is no isolated
individual but only a constant redefinition of the individual self
as it interacts with another self (Iacoboni, 2008: 133, 257). The
third is that intersubjectivity is neurological (Iacoboni, 2008:
152, 155, 262-265). The fourth is that interactivity—whether
real or virtual—is an essential part of what makes us human.
This fact alone justifies the enormous project currently
underway to make our media interactive (see Svanaes, 2000) and
suggests that the future of virtual archaeology is bright indeed.
The interactive digital cultural object is an expression and agent
of our sense of cultural identity. With this realization comes a
duty: it is incumbent on us as virtual archaeologists to
understand the phrase “our sense of cultural identity” in as
cosmopolitan a way as possible. Otherwise, the wonderful tool
of interactive digital cultural objects can quickly become a
weapon used by one particular culture to promote itself against
all the others (Frischer, 2006).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
28
Virtual Archaeology Review
In the humanities we have passed through the neoskeptical
phase of poststructuralism when theoreticians like Jacques
Derrida and Umberto Eco have wondered whether there is any
method or criterion to limit how we interpret a work of art; or
if, as Eco asked, it is “open-ended universe where the
interpreter can discover infinite interconnections” (Eco, 1992:
39-40). But next to this skepticism run riot we also have
something akin to the Large Hadron Collider, the so-called
digital humanities generally and virtual archaeology in particular.
Of course, since we are talking about the humanities, long the
poor cousin of academic disciplines, we are comparing a
mountain to a mouse in terms of the scale of the enterprise and
its cost.
The digital humanities can be defined as the application of
information technology as an aid to fulfill the humanities’ basic
tasks of preserving, reconstructing, transmitting, and
interpreting the human record. The striking thing about this
new field is how it has revolutionized many humanistic
disciplines, making them resemble the natural sciences more
than ever before in their long history. A case in point concerns
collaborative research, something very rare in the humanities as
recently as ten or twenty years ago. Now collaborative projects
are sprouting up all over. The most impressive example is, of
course, Wikipedia, started by Jimmy Wales in 2001. It proves
what can be done, and how fast it can be done, when you invite
the collaboration of just about everyone who is literate and
speaks one of the world’s major languages.
Digital humanists utilize advanced technology in various ways.
Perhaps the most obvious way is simply the conversion of their
objects of study—texts, paintings, buildings, and even whole
cities—to digital format. Generally, this is quite simple and
straightforward, and involves use of a new device that has
revolutionized the field of archaeology: the 3D scanner. But
sometimes 3D digitization is very difficult, as, for example,
happened with our institute’s complex project to digitize the
Plastico di Roma antica, a enormous physical model of Rome in
320 CE (Guidi, Frischer, et al., 2007; Guidi, Frischer, et al.,
2008). And even 2D digitization can sometimes still pose
enormous challenges, as happens when you are trying to
recover an ancient text scratched off a medieval manuscript,
covered with another text, and then further damaged by fire. In
pre-digital times, the only way such a scratched-off text—or
“palimpsest”—could be read was if enough of the original
letters survived that it could still be seen; or, if not, if you could
pick up any faint traces through the use of ultraviolet light. But
in the last decade, multispectral imaging has been employed with
great success on a range of manuscripts. The most impressive
example I can cite is the project to recover the texts of
Archimedes and other ancient authors under the text of a
thirteenth century monk’s prayer book. Besides the normal
difficulties encountered in reading any palimpsest, this particular
medieval book presented the additional challenge that it was
“charred by fire [and] devoured by mold” (Netz and Noel, 2007:
4). To read it, the humanist team of Reviel Netz and William
Noel had to obtain the use of a powerful beam of synchrotron
X-rays from the Stanford Linear Accelerator Center.
Scanning an object like a text or painting generally does not
require such innovation and advanced hardware, but now that
we have so many tens of thousands of digital representations of
the artifacts humanists study, it is possible and even acceptable
for the first time for humanists to use the tools of quantitative
analysis, data-mining, modeling, and visualization. That is, like
our colleagues in the sciences, we are able to make new
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
discoveries by using digital technology to manipúlate and
analyze the digitized representations of the objects we study.
Last year, I co-edited a book of pioneering studies showing how
our new 2D and 3D technologies can act not simply as
representations of knowledge but as tools for new discoveries
(Frischer, Dakouri-Hild 2008). As an example, I would cite
David Koller’s project to scan in 3D and algorithmically
reconstruct the 1200 fragments of an amazing map of ancient
Rome made in about A.D. 210 at the enormous scale of 1:240.
Thus far, Koller has published more than 20 joins (Koller et al.,
2005; Koller et al., 2006; Koller, 2008), an amazing feat when
you consider that scholars have been using traditional
methods—their eyes and hands—to find joins for over four
hundred years, so you would think that there are not still very
many discoveries to be made.
The application of information technology in the humanities has
also resulted in qualitative change to the way in which humanists
have understood their central tasks of preserving, transmitting,
and interpreting the cultural monuments of the past. Thus, from
the Alexandrian librarians to Lachmann and other Classicists
working in the Age of Gutenberg, philology was focused on
reconstruction of the earliest version of an author’s text and,
ideally, of the autograph itself. This goal is understandable from
many points of view, not least of all technological: when a text
must be written in ink on a piece of papyrus or printed in ink on
a piece of paper, then each word must be indelibly correct with
respect to some base text. So the editor must make a single
choice of which phase in the often long history of a text he will
use as his base text. For the past twenty-two hundred years,
since the Alexandrian librarian-editors Zenodotus and
Callimachus, this choice has almost always come down in favor
of the author’s autograph or at least (if this is lost) the closest
copy to the autograph. But in this decade, a new approach to
philological editing has been developed—appropriately enough
for Homer, the touchstone of the Alexandrians. Called a
“multitext,” this is a method that takes full advantage of one of
the prime differences between print and digital publication, viz.,
the letters displayed on a computer monitor can be almost
instantaneously changed. Based at the Center for Hellenic
Studies in Washington, D.C., the “Homer Multitext” (Dué and
Ebbott, 2007) has been described as follows:
Instead of choosing between variants and ‘plus verses’
in an attempt to recover the ipsissima verba of Homer,
we include them in a multitext format that embraces
the fluidity of the textual traditions of the Iliad and
Odyssey. The ideal medium for a multitext of Homer
is not a traditional printed text but an electronic, webbased edition. Unlimited in its ability to handle
complex sets of variants, an electronic multitext offers
critical readers of Homer the opportunity to consider
many possible texts at various stages of transmission.
It allows the reader to select and navigate between
multiple modes of transmission, and to recover a
more accurate and accessible picture of the fluidity of
the textual traditions in their earliest stages
(www.stoa.org/chs/).
One can easily predict that the multitext approach to editing will
spread throughout the humanities. It is based on the valid
insight that, in the end, the author’s autograph (still worth
striving to reconstruct, even with the multitextual approach, as a
valid stage in the history of the text!) is simply one of many
versions, each of which has its validity, history, and impact.
Indeed, what makes a text “classic” is, among other features,
29
Virtual Archaeology Review
precisely the fact that its textual transmisión is long and
complex: that is to say, the text has repeatedly become fixed and
influential in different versions in ever-changing cultural
situations. Digital technology is the perfect support for editing a
text that does full justice to its classic stature.
In the humanities, as in the fine arts and physical sciences, digital
technology is not only used to provide tools of discovery and
communication but also interactive feedback. The work of
digital humanities scholarship is never finished any more than is
Hawkinson’s Überorgan, a game of Grand Theft Auto, or an
experiment in genomics or physics. The virtualizing of reality,
and—via the virtual communities enabled by the Internet—of
ourselves—means that we can study both Nature and its digital
representation with equal confidence; indeed, we can no longer
distinguish between the direct presentations of the senses and
the processed presentations of our hardware, since today almost
nothing is unprocessed (Frischer, 2008). True to our nature
constituted by mirror neurons, we can enter into an endless loop
of dialogue with our data, our virtual data, and our virtual
colleagues. The endless dialogue that for Gadamer and
Modernism played itself out between interpreter and object of
interpretation from historical situation to situation now has
become an embedded feature of postmodern culture. Or at least
we have the opportunity to do so if we design our digital
projects in ways that are “wiki”-based, which is to say open to
contributions and modification by our users. In the case of
virtual archaeology, this is the reason that my research team has
been studying how we might create the world’s first online, peerreviewed journal in which digital archaeologists can publish their
3D digital models of cultural heritage monuments and sites in
such a way that they can be run in real time. We call the
proposed journal “SAVE,” which stands for “Serving and
Archiving Virtual Environments” (www.iath.virginia.edu/
save/).
There are already several outlets where scholars can publish
articles about their 3D models, illustrated by still shots or screen
captures of video fly-throughs. SAVE will offer scholars the
opportunity of publishing their models to the Internet with full
interactivity, so that users can explore them at will. It will also
offer peer-review, and require all models to be accompanied by
metadata, documentation, and a related article or monograph
explaining the history of the monument and its state of
preservation, as well as an account of the modeling project itself.
SAVE will furthermore provide secure transmission of the 3D
models over the Internet, thereby protecting contributors'
intellectual property.
SAVE is based on the model of "prosumption," a blurring of
the gap between producers and customers in a situation where
"customers participate in the creation of products in an active
and ongoing way" (Tapscott and Williams, 2006: 126). The
classic example cited by Tapscott and Williams is Second Life,
which "has no preset script—and few limitations on what
players can do. Residents create just about everything, from
virtual storefronts and nightclubs to clothing, vehicles, and other
items for use in the game" (ibid.).
SAVE might be thought of as Second Life for scholars. If
Second Life harnesses human imagination to create a fictional
world primarily for purposes of collaborative diversion and
entertainment, SAVE intends to harness human creativity,
disciplined by historical methodology, to recreate, with the
greatest possible fidelity, the historical cultures that once actually
existed across the globe. Thus the project of SAVE can be
understood to mean collaboratively building up a virtual spacetime machine that, absent true time travel, will offer scholars,
students, and the general public the best opportunity we are ever
likely to have to visualize the lost monuments and worlds of the
past. That this activity is often carried on under the sign of
“serious games” and “virtual worlds” is an indication of how
closely the presuppositions of virtual archaeology reflect the
Zeitgeist of the postmodern age.
So now, no less than in previous centuries, the boundaries
between the arts and sciences are porous. For the first time on
any large scale, scientists, technologists, artists and humanists
are collaborating on projects that are epic in scale or in impact.
On a more profound level, the similarity of the arts and sciences
in tools and methods is becoming closer than ever. Of course,
this does not mean that there are not exceptions. Indeed, this
does not mean that the collaboration and similarity of which I
speak is still exceptional. Earlier models in the sciences and
arts—even the Ancient Model—continue to be applied by
individual scholars. The adoption of the Postmodern Model is
occurring at different rates in different fields and in different
locations. But that there is a Post-modern Model more or less
with the features I have described seems to me undeniable.
I think it is safe to conclude by asserting that if C. P. Snow were
alive to observe how things have evolved since he gave the Rede
Lecture fifty years ago, he would be very pleased, indeed, by this
convergence between the arts and sciences. His lecture set off a
debate in many countries about the need for general education
requirements, interdisciplinary studies, and the like. By the
1970s, the reforms Snow called for were largely in place, at least
in the United States. The timing could not have been better.
When the Information Revolution occurred in the last decades
of the twentieth century, a cadre of knowledge-workers was in
place who had the training and values needed to apply what they
had learned to exploit the new opportunities for communication
and discovery afforded by digital technology.
So, I conclude by affirming that we owe a great debt of gratitude
to C. P. Snow for his largely successful effort to open the door
separating the disciplines of the sciences from those of the arts,
but I must also note that, in the light of the relationship of art
and science in the western world since the ancient Greeks, this
door was relatively easy to push open.
Acknowledgements
An earlier version of this paper was given on September 27, 2008 as the keynote address at the Jefferson Fellows Forum for
Interdisciplinary Dialogue, held at the Miller Center of the University of Virginia. I wish to thank Jefferson Scholars Foundation for the
invitation to speak and the audience for a lively discussion which enabled me to improve my argument. For helpful discussions of the
issues raised here, I thank my wife, Jane Crawford, and the following friends and colleagues: Kim Dylla, David Koller, and Vasily Rudich.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
30
Virtual Archaeology Review
References
ANON. (2006): “L’invenzione della prospettiva,” in L’uomo del rinascimento. Leon Battista Alberti e le arti a Firenze tra ragione e bellezza.
Mandragora. Florence. pp. 371-378.
ANON. (2009A): “Non-Euclidean Geometry,” [online] http://en.wikipedia.org/wiki/Non-euclidian_geometry [Consulted: 4-3-09].
ANON. (2009B): “Mirror Neuron,” [online] http://en.wikipedia.org/wiki/Mirror_neurons [Consulted 4-6-09].
ANGLIN, W. S. (1996): Mathematics. A Concise History and Philosophy, corrected second printing edition. Springer Verlag. New York.
BENJAMIN, Walter (1968): “The Work of Art in the Age of Mechanical Reproduction,” in Illuminations. Essays and Reflections, edited and
with an Introduction by Hannah Arendt. Shocken Books. New York, p. 217-252; [online] www.marxists.org/reference/subject/
philosophy/works/ge/benjamin.htm [Consulted: 9/1/08].
BORDALEJO, Barbara (2006): “Stemmatics,” [online] www.textualscholarship. org/stemmatics/index.html [Consulted: 9-1-08].
BORGMAN, Christine L. (2007): Scholarship in the Digital Age. Information, Infrastructure, and the Internet. MIT Press. Cambridge, MA.
COPERNICUS, Nicholas (1978): On the Revolutions, edited by Jerzy Dobrzycki with translation and commentary by Edward Rosen.
Palgrave. Baltimore.
CROSBY, Alfred W. (1997): The Measure of Reality. Quantification and Western Society, 1250-1600. Cambridge University Press. Cambridge.
DUÉ, Casey and Ebbott, Mary (2007): “The Homer Multitext Project,” [online] http://chs.harvard.edu/chs/homer_multitext
[Consulted: 4-5-09].
DUPRÉ , Louis (1993): Passage to Modernity. Yale University Press. New Haven.
ECO, Umberto (1992): Interpretation and Overinterpretation. Cambridge University Press. Cambridge.
FEINGOLD, Mordechai (2004): The Newtonian Moment. Oxford University Press. New York.
FIORANI, Francesca (2004): “Leonardo da Vinci & His Treatise on Painting,” [online] www.treatiseonpainting.org/ [Consulted: 4-5-09].
FRISCHER, Bernard (2006): “New Directions for Cultural Virtual Reality. A Global Strategy for Archiving, Serving and Exhibiting 3D
Computer Models of Cultural Heritage Sites,” Virtual Retrospect 2005 (Biarritz, 2006) 168-175, [online]
www.iath.virginia.edu/~bf3e/revision/pdf/ VR_Frischer2005.pdf .
FRISCHER, Bernard (2008): “From Digital Illustration to Digital Heuristics,” in Beyond Illustration: 2D and 3D Technologies as Tools of
Discovery in Archaeology, edited by Bernard Frischer and Anastasia Dakouri-Hild, BAR International Series 1805. Archaeopress. Oxford, pp
v-xxiv.
FRISCHER, Bernard and Anastasia Dakouri-Hild, editors. (2008). Beyond Illustration: 2D and 3D Technologies as Tools of Discovery in
Archaeology, BAR International Series 1805. Archaeopress. Oxford.
GADAMER, Hans-Georg (1960): Wahrheit und Methode. Grundzüge einer philosophischen Hermeneutik. J.C.B. Mohr (Paul Siebeck).Tübingen.
GALILEI, Galileo (1957): “The Starry Messenger,” in Stillman Drake, editor and translator, Discoveries and Opinions of Galileo. Doubleday.
New York, pp. 21-58.
GINGERICH, Owen (2005): The Book Nobody Read. Walker Publishing. New York.
GRANT, James (2008): “The Buck Stopped Then,” The New York Times, September 24, 2008, p. A31.
GRENDLER, Paul F. (2002): The Universities of the Italian Renaissance. Johns Hopkins University Press. Baltimore and London.
GUIDI, Gabriele, Frischer, Bernard, et al. (2007): “Rome Reborn—Virtualizing Ancient Imperial Rome,” [online],
www.commission5.isprs.org/3darch07/pdf/guidi_etal.pdf [Consulted: 4-1-09].
GUIDI, Gabriele, Frischer, Bernard, et al. (2008): “Virtualising Ancient Imperial Rome: From Gismondi's Physical Model to a New
Virtual Reality Application,” International Journal of Digital Culture and Electronic Tourism 1, nos. 2-3, pp. 240-252.
HARRIS, Edward C. (1989): Principles of Archaeological Stratigraphy. Academic. London.
HAWKINSON, Tim (2008). Interview of Tim Hawkinson, [online] www.pbs.org/art21/artists/hawkinson/clip2.html [Consulted: 9-108].
HUIZINGA, Johan (1955): Homo ludens. A Study of the Play Element in Culture. Beacon Press. Boston.
IACOBONI, Marco (2008): Mirroring People. The New Science of How We Connect with Others. Farrar, Strauss and Giroux. New York.
IVINS, William Mills (1973): On the Rationalization of Sight, with an Examination of Three Renaissance Texts on Perspective. Da Capo Press. New
York.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
31
Virtual Archaeology Review
JOHNSON, Steven (2005): Everything Bad Is Good for You. Penguin Group. New York.
KANT, Immanuel (1982): The Critique of Judgment, translated by James Creed Meredith. Oxford University Press. Oxford.
KEMP, Martin (1990): The Science of Art. Optical Themes in Western Art from Brunelleschi to Seurat. Yale University Press. New Haven and
London.
KLINE, Morris (1967): Mathematics for the Nonmathematician. Dover. New York.
KOLLER, David and Levoy, Marc (2005): “Computer-aided Reconstruction and new Matches in the Forma Urbis Romae,” Bullettino
Della Commissione Archeologica Comunale di Roma, Supp. 15, pp. 103-125.
KOLLER, David, Trimble, Jennifer, Najbjerg, Tina, Gelfand, Natasha, and Levoy, Marc, (2006): “Fragments of the City: Stanford’s
Digital Forma Urbis Romae Project,” Proc. Third Williams Symposium on Classical Architecture, Journal of Roman Archaeology Suppl. 61, pp. 237252.
KOLLER, David (2008): “Virtual Archaeology and Computer-aided Reconstruction of the Severan Marble Plan,” in Beyond Illustration: 2D
and 3D Technologies as Tools of Discovery in Archaeology, edited by Bernard Frischer and Anastasia Dakouri-Hild, BAR International Series
1805. Archaeopress. Oxford, pp. 125-133.
KRISTELLER, Paul O. (1990): “The Modern System of the Arts,” in Renaissance Thought and the Arts. Princeton University Press.
Princeton, pp. 163-227.
KUHN, Thomas (1970): The Structure of Scientific Revolutions, second edition. University of Chicago Press. Chicago.
KÜNG, Han (1996): Christianity: Essence, History, and Future. Continuum International Publishing Group. New York.
KUSUKAWA, Sachiko (1999): “Copernicus’ Book,” [online] www.hps.cam.ac.uk/starry/ coperbooks.html [Consulted: 9-1-08].
LE GOFF, Jacques (1993): Intellectuals in the Middle Ages, translated by T.L. Fagan. Harvard University Press. Cambridge, MA.
LEFF, Gorden (1992): “The Trivium and the Three Philosophies,” in A History of the University in Europe, volume 1: Universities in the Middle
Ages, general editor Walter Rüegg, edited by H. De Ridder-Symoens. Cambridge University Press. Cambridge, pp. 307-335.
LUCAS, Christopher J. (2006): American Higher Education. A History, second edition. Palgrave. New York.
MACH, Ernst (1914): The Analysis of Sensations and the Relationship of the Physical to the Psychical, translated by C. M. Williams. The Open
Court Publishing Company. Chicago and London.
NETZ, Reviel and William Noel (2007): The Archimedes Codex. Da Capo Press. Philadelphia.
MILLINER, Matthew J. (2008): “Apophatic Beauty,” September 10, 2008, [online] www. firstthings.com/onthesquare/?p=1166
[Consulted: 9-1-08].
NEWTON, Isaac (1687): Philosophiae naturalis principia mathematica. Royal Society. London.
ONG, Walter (1958): Ramus, Method, and the Decay of Dialogue. Harvard University Press. Cambridge, MA.
ONG, Walter (1962): The Barbarian Within. Macmillan. New York.
POJMAN, Paul (2008): “Ernst Mach,” in Stanford Encyclopedia of Philosophy [online] http://plato.stanford.edu/entries/ernst-mach/
[Consulted: 9-1-08].
POPPER, Karl (1965). The Logic of Scientific Discovery. Harper Torchbooks. New York.
REISS, Timothy (2000). “From Trivium to Quadrivium: Ramus, Method, and Mathematical Technology,” in The Renaissance Computer,
edited by Neil Rhodes, Jonathan Sawday (Routledge, London: 2000), pp. 45-58.
SCHIAVO, Laura Burd (2003): “From Phantom Image to Perfect Vision,” in New Media, 1740-1915, edited by Lisa Gitelman and
Geoffrey B. Pingree. MIT Press. Cambridge, MA and London, pp. 113-138.
SEIDEL-MENCHI, Silvana (1987): Erasmo in Italia, 1520-1580. Bollati Boringhieri. Turin.
SELLBERG, Erland Sellberg (2006): “Petrus Ramus,” in Stanford Encyclopedia of Philosophy, [online]
http://plato.stanford.edu/entries/ramus/ [Consulted: 9-1-08].
SMITH, Peter K., editor (1984): Play in Animals and Humans. Basil Blackwell. Oxford.
SNOW, C.P. (1969): “The Two Cultures: A Second Look,” in The Two Cultures: and A Second Look. Cambridge University Press.
Cambridge.
SVANAES, Dag (2000): Understanding Interactivity - Steps to a Phenomenology of Human-Computer Interaction. Ph.D. (Dr.Philos.) in Computer
Science, NTNU, Trondheim.
TAPSCOTT, Don and Williams, Anthony D. (2006): Wikinomics: How Mass Collaboration Changes Everything. Portfolio. New York.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
32
Virtual Archaeology Review
WAGNER, Caroline (2008): The New Invisible College. Brookings Institution Press. Washington, D.C.
WEINBERG, Alvin M. (1961): “Impact of Large-Scale Science on the United States,” Science 134, no. 3473, pp. 161-164.
WEST, Martin L. (1973): Textual Criticsm and Editorial Technique. Teubner. Stuttgart.
WESTMAN, Robert (2008): “Copernicus,” Encyclopedia Britannica, [online] http://search.eb.
com/shakespeare/print?articleId=105759&fullArticle=true&tocId=8437.
WOIT, Peter (2006): Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law. Basic Books. New York.
ZIMAN, John (1978): Reliable Knowledge. Cambridge University Press. Cambridge.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
33
Virtual Archaeology Review
Virtual Archaeology as an Integrated Preservation Method
Daniel Pletinckx
Premio Tartessos 2009
Visual Dimension bvba, Ename, Belgium
Resumen
Este documento se centra en la arqueología virtual como una actividad científica, que cumple con la Carta de Londres y con la Carta de la UNESCO sobre la
preservación del Patrimonio Digital, como una actividad sostenible, y como una actividad de integración para estructurar y preservar toda la información
relacionada.
Palabras Clave:
ARQUEOLOGÍA VIRTUAL, CARTA DE LONDRES, PRESERVACIÓN DIGITAL
Abstract
This paper focuses on virtual archaeology as a scientific activity, that complies with the London Charter, as a sustainable activity, that complies with the
UNESCO Charter on the Preservation of Digital Heritage, and as an integration activity to structure and preserve all related information.
Key words:
VIRTUAL ARCHAEOLOGY, LONDON CHARTER, DIGITAL PRESERVATION
1. Context
Virtual archaeology is more than visualising the human made
structures that have disappeared and that are known partially
through excavations, iconography, written sources or oral
history. We are convinced that virtual archaeology complements
perfectly documentation and conservation efforts and even can
act as an integration activity to bring all information together in a
structured way that allows long term preservation.
Virtual archaeology has a problem of credibility and scientific
rigour, as it lacks a widely supported methodology on how to
turn its sparse sources into 3D models. The London Charter
has outlined the methodology how this issue can be overcome in
its various aspects. The InMan methodology, as developed
within the European EPOCH project, provides a full
implementation of the London Charter that easily can be
implemented by the archaeological community.
Virtual archaeology has also a problem of long term preservation
of its results. Not only is the lack of 3D standards an important
issue, but also the interpretation of the sources needs a form that
can be preserved over time, in connection to the 3D models.
3D documentation of still existing archaeological remains or
building elements is an important part of collecting the necessary
sources for a virtual archaeology project. New developments
allow to do this documentation phase, including obtaining
correct measures and groundplans, in 3D from photography
only, with free tools. This is also important when restoring
archaeological remains, of which older phases are reconstructed
in a virtual way, as the original state, the restored state and
eventual in between states can be recorded easily through this
photomodeling technique.
We state that virtual archaeology, as it needs all related sources
to come to the most probable virtual reconstruction of historical
structures, needs to position itself as an integration activity to
structure and preserve all related information.
2. Workflow
The methodology to create virtual archaeology is changing
significantly. Not only has a large set of useful tools become
available and reliable, but the experiences, successes and failures
of the starting phase of virtual archaeology have made clear that
it is much more than building 3D models only. Most
publications until now have focused on the technical aspects of
creating virtual 3D models of lost, human made structures and
digitising existing structures, but the key elements are
appropriate tools, a reliable and well understood workflow and a
successful integration into the relevant institutes and
organisations.
This paper elaborates on the sustainable implementation of
virtual archaeology, not as a push-action (“what can we do with
the available technology ?”) but as a pull-action (“what do we
need as archaeologist ?”).
Hence, we don’t focus on
presentation aspects only, but merely on the research and
documentation issues that an archaeologist needs to deal with
when creating virtual archaeology.
A first step into the creation of virtual archaeology is the
creation of 3D documentation of still existing archaeological
remains or building elements. The easy creation of a 3D
textured model in a few hours, without complex digitisation
devices, relying on only photography skills and a visually
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
34
Virtual Archaeology Review
oriented processing, has the potential to change this
documentation phase substantially.
A second step in the creation of virtual archaeology is the
documentation of the creation process itself, where different
sources need to be evaluated, correlated and turned into the
most probable hypotheses. Following a well documented,
standardised methodology and making the results of this process
open for peer review are crucial elements for virtual archaeology
to obtain scientific credibility, in which publication of virtual
archaeology results is an inevitable part.
A third step is the long term preservation of the results and all its
sources in a structured way, which provides the opportunity to
use the virtual archaeology process as an integration process and
central hub. We state that results, derived from cultural heritage
objects (such a digitisations or virtual archaeology) should be
preserved in the same way as the objects themselves.
3. 3D Documentation
3D documentation of still existing archaeological remains or
building elements is an important part of collecting the necessary
sources for a virtual archaeology project. New developments
allow to do this documentation phase, including obtaining
correct measures and groundplans, in 3D from photography
only. One of these developments is the combination ARC3D –
MeshLab, which was made available within EPOCH, a
European Network of Excellence on the use of ICT in cultural
heritage (EPOCH). Both tools, which are available for free,
yield a fully operational method to digitise most sites,
monuments and objects through photography only, reducing the
cost significantly while producing stunning results in a short
time.
ARC3D (ARC3D) is in fact fully automatic photogrammetry, it
recognises the objects in the photographs and calculates the 3D
surface directly from the photographs.
The extensive
calculations needed to do this are performed on a computer
cluster over the internet. In other words, the 3D reconstruction
process is implemented as a webservice, the user only needs a
normal PC and an internet connection to upload the images.
The ARC3D results are returned over the internet and processed
on a normal PC by MeshLab (MESHLAB). The processing is
simple, intuitive and straight forward (NILSSON, 2007).
A major advantage of ARC3D is that is can be used with any
uncalibrated camera, even with zoom lenses, as the software
calculates the lens parameters automatically from the images. In
other words, there is no need for special or calibrated cameras,
and any lens from wide angle lenses to extreme telelenses can be
used, giving all flexibility that is needed to make optimal
photographs, from overviews to detail shots.
A second major advantage is that 3D results derived from one
set of photographs are in the same coordinate system, in other
words there is no need for time consuming and error prone
alignment of different views, as is the case with all other
scanning techniques such as laser scanning. Typically, the
outside of a church building will need 50 to 100 different laser
scans, hence all these scans need to be aligned with each other,
taking at least two days of work. The same building can be
digitised through ARC3D with 1 to 3 sets of photographs, hence
zero to one hour of alignment, resulting in major time and cost
savings.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
A third major advantage is that the digitisation process is image
based, and that the images are linked automatically to the 3D
model. In laser scanning, linking images to the 3D model nearly
always needs a separate alignment procedure that takes time and
effort. This means that the subtle light conditions within a
building can be visualised in 3D, providing an extraordinary
experience when exploring the building virtually. As the
information is three-dimensional, the 3D model can be
visualised on the new generation of 3D screens that provide
stereoscopic viewing for groups of people without glasses (very
well suited for display in museum and visitor centre context).
The correlation processes in the ARC3D reconstruction process
also yield a quality measure of how good each point of the object
has been reconstructed. By discarding points with a lower
quality when turning the ARC3D results into 3D models in
MeshLab, an automatic cleaning of the results is obtained.
Practice shows that good photography allows nearly automatic
workflow in which no manual cleaning of the data is necessary,
yielding substantial savings in time and costs.
The digitised 3D models are metrically correct and undistorted
but lack exact scale and orientation as this cannot be derived
directly from photographs. Adding correct dimensions to an
ARC 3D model requires simple scale and orientation
transformation, that can be defined by measuring a few points
on the object (preferably through surveyor techniques). In other
words, ARC3D reconstructions can be used also to measure
precisely such building elements without physical access to those
elements. Also, no reference targets, which are common
practice in laser scanning and similar techniques, are necessary,
yielding extra savings in time and costs.
As putting a digital camera up in the air is much easier than
other scanning devices, major cost and time savings can be
realised compared to other scanning techniques. Simple
technologies such as masts, balloons or UAVs can be used to
bring the camera up to the appropriate height or viewpoint. As
ARC3D also can make 3D reconstructions of landscapes, it can
be used to digitise the site of a historical building or excavation.
This is not only useful for documentation and presentation
purposes but also for preparation and planning of restoration
works or site management.
Another major advantage is the scale independency of the
method as we can digitise a site or a small object of a few
centimetres through the same methodology and production
process. This yields major cost savings as for laser scanning, at
least four different types of scanner are needed to deal with this
scale range (the same holds for other scanning techniques).
However, the most important advantage is that the digitisation
methodology can be integrated easily into the existing structure
of heritage institutions as most of these organisations do have a
photography department, do have a long term cooperation
agreement with a professional photographer or do have
employees with sufficient photography skills. As most of the
required knowhow to make efficient and successful 3D models
through this methodology are professional photography skills,
while the computer processing is simple and easy to standardise,
the integration in these departments is quite straight forward.
We have developed and tested detailed workflows for both
outdoor and indoor digitisation of buildings, and for on site
digitisation of objects in monuments and museums (avoiding
transport of the objects and the inherent insurance fees and
administration).
Through several digitisation projects of
buildings and objects, we have acquired a substantial body of
35
Virtual Archaeology Review
practical experience, supported by the required equipment
(portable photo studio, zeppelins, photomasts, ...) to ensure a
flawless and efficient digitisation project. For example, the
outdoors of a historic building typically takes one full day from
photography to a finalised 3D model, which can go to two days
when using extensive ballooning.
represents the correct interpretation of the data. It is exactly this
interdisciplinary cooperation that is the kernel of successful
virtual archaeology. But this labour intensive, complex process
needs guidelines to live up to the expectations of the
archaeological community and to gain the necessary credibility as
a scientific method.
These guidelines haven been created in 2006 by a large group of
computer based visualisation experts as the London Charter
(LONDON CHARTER) and is based on a preparatory work
from scholars since the middle of the 90s (BEACHAM, 2006).
The Charter is been discussed in regular meetings and refined
accordingly (currently version 2.1).
Figure 1. Full 3D model of San Miguel church in Terrassa, Catalunia,
Spain, made in one day
(ground level photographs : Pol Mayer)
A first implementation framework called InMan, based upon the
London Charter, has been published shortly after
(PLETINCKX, 2008) and is being used in commercial computer
based visualisations and virtual archaeology projects. This
InMan (interpretation management) framework provides a step
by step workflow on how to structure and evaluate the sources
we use in the interpretation process, how to ‘correlate’ the
sources to define the kind of reliable information that they can
provide to the interpretation process, and to create hypotheses
that lead to the most probable reconstruction. This framework
also proposes a simple, wiki based platform to document this
structured interpretation process and to open it up to peer
review and scholarly discussion. The InMan methodology has
been published as an EPOCH knowhow book (PLETINCKX,
2007).
We are convinced that virtual archaeology needs to gain
scientific credibility by adopting such methodologies, and by
using computer based visualisation as a research tool. In the
past, virtual archaeology has been seen too much as a
communication tool, with too little attention to scientific
background and incorporation of all available research.
Figure 2. Balloon to photograph buildings for
3D reconstruction (Aurea Imaging)
4. Credibility
Virtual archaeology, as the methodology to visualise human
made structures, brings together many skills, ranging from
archaeological interpretation over digitisation of sources to
creation of 3D models. This means in nearly all cases that
virtual archaeology is teamwork, in which interdisciplinarity is
the crucial success factor. In the past, we have seen too much
virtual archaeology where the archaeologists did not have the
knowledge to provide the appropriate data to 3D modelers while
the 3D modelers did not have the knowledge to ask the right
questions to the archaeologists to create a correct 3D model that
Figure 3. Virtual reconstruction of the belfry of Roeselare, Belgium, from
unpublished sources
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
36
Virtual Archaeology Review
5. Preservation
One of the major problems of virtual archaeology is the long
term preservation. If we analyse specific virtual archaeology
projects, we have to conclude that most of them are ephemeral.
This is due to several reasons. As most virtual archaeology
projects are focused on the images and animation sequences that
result from the 3D model, there is little attention to safeguard
the 3D model and its associated files (texture files,
georeferencing, documentation on the file structure, …). In
other words, as the imagery gets visibility, it has a chance to get
integrated in backup and digital preservation schemes, while the
3D models and associated files remain under the control of their
creators and risk to get lost on unstructured, unregistered CDROMs or crashed harddrives.
Secondly, the swift evolution of 3D software makes that most
3D file formats don’t have a lifespan of more than five years.
Most people creating virtual archaeology only keep their files in
the file format of the 3D software but forget to save their work
in open file formats that have a longer lifespan and higher
compatibility. Without digital preservation procedures, these
files become obsolete and unreadable quite fast.
Thirdly, understanding and interpreting historical sources is a
long and slow process, that is prone to be biased by the current
society. Further research yields improved insights and more
information about historical issues. These can have an impact
on the interpretation of data, resulting in other or better
visualisations of the past. If we want this to happen to the
virtual archaeology reconstructions we make today, we need to
create our models and their associated data in such a way that
they still make sense in 10, 20 or 100 years from now.
Finally, when analysing the virtual archaeology projects we have
realised in the last ten years, we see that most projects are based
on unpublished sources, most of them resulting from
excavations. Some countries, such as the Netherlands, have
rules and quality norms on publishing excavation results, but
most countries still lack such regulatory framework. In other
words, a virtual reconstruction project is a kind of publication of
the unpublished results. In most cases however, the 3D models
are ‘orphaned’ as no reference can be made to the unpublished
data, hence these 3D models or the derived imagery become
easily obsolete or disconnected as soon as the implicit context
(website, people that did the research, research project)
disappears. Those virtual reconstructions loose much of their
significance as soon as it becomes unclear what they represent.
The UNESCO Charter on the Preservation of the Digital
Heritage (UNESCO) gives a clear priority to digitally born data,
such as virtual archaeology data. The InMan methodology,
presented in the previous chapter, proposes to use a very simple
wiki approach, hosted by a responsible cultural heritage
organisation, to achieve not only the easy wiki access and the
peer review, but also to have central backup and migration
procedures that could prevent the data to become inaccessible or
unreadable for a significant amount of time.
An important project that will realise this goal in 2009 is SAVE,
which stands for ‘Serving and Archiving Virtual Environments’
(SAVE) and packages the update and preservation process as a
peer reviewed digital journal in which you can publish your
virtual archaeology results. This project is a spin-off of the
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Rome Reborn project and relies on many years of experience in
both virtual reconstruction and cooperation between scholars
and 3D experts.
Finally, the London Charter, currently version 2.1 (LONDON
CHARTER), highlights as one of the charter principles the longterm sustainability of the virtual archaeology results.
6. Integration
There are many different areas in which virtual archaeology
results can be used, we only name a few that are less known. In
restoration for example, a physical anastylosis can be prepared
by a digital one, in which can be defined which remains fit
together and can be used in the anastylosis, and which parts need
to be completed by additional elements. Another use in
restoration is the creation of a 4D virtual model (several 3D
models that show the evolution of a structure) to decide how to
conduct the restoration to show the different phases in an
optimal way.
Such 4D models can also be very useful for site management as
the reconstructions, based upon partial archaeological data, are
in fact the best possible prediction of the archaeological remains
that still could be present on the site, so that optimal
preservation or minimal disturbance of the possible remains can
be implemented. 4D models are also ideal ways to present a
research synthesis, both for public display or research purposes.
In any way, appropriate virtual archaeology can only be done if
all related sources about a structure or place are collected,
structured, analysed and correlated. This also means that virtual
archaeology is the activity that brings together all information
about a structure or place. If we succeed in storing this
information in an organised, sustainable way, then we turn
virtual archaeology into an integration activity of cultural
heritage information.
This means that, when calculating the budget of a virtual
archaeology project, appropriate funds need to be allocated to
integrate all sources into a common database structure, to
document the interpretation process and to translate the useful
3D files into file formats that are open and are expected to have
a long lifecycle (VRML, X3D, COLLADA, ...).
Europeana, the European digital library, integrates the
collections of many cultural heritage institutions in Europe and
has proven to be very successful and appealing to a wide
audience (EUROPEANA). Major efforts are under way to also
integrate 3D and archaeology into Europeana.
Virtual
archaeology should also become a part of the Europeana
collection and can do so if we succeed to turn it into structured
and integrated activity.
7. Conclusions
Major developments in documentation techniques of cultural
heritage through photomodeling, and in structuring and
preserving the virtual reconstruction process based upon the
London Charter can turn virtual archaeology into a central
activity that integrates all related data in a common database, and
makes archaeology a much more open and accessible science.
37
Virtual Archaeology Review
Acknowledgements
I would like to thank the organisations that have given me the opportunity to do virtual archaeology projects since 1997 for their
cooperation and trust. I would also like to thank many colleagues for the inspiring discussions and innovative ideas : Franco Niccolucci,
Sorin Hermon, Richard Beacham, Hugh Denard, Bernie Frisher, Maurizio Forte, Sofia Pescarin, Eva Pietroni, Nick Ryan, Luc Van Gool,
Paolo Cignoni, Marco Callieri, Kate Fernie and many others.
References
ARC3D webservice (http://www.ARC3D.be/ )
BEACHAM Richard, DENARD Hugh and NICCOLUCCI Francesco (2006), “An Introduction to The London Charter”
(http://www.londoncharter.org/introduction.html )
EUROPEANA (http://dev.europeana.eu/ )
FORTE, Maurizio, ed. (2007), “La Villa di Livia, un percorso di ricerca di archeologia virtuale”,
l’Erma di Bretschneider, ISBN 8882654613.
LONDON CHARTER (http://www.londoncharter.org/ )
MESHLAB software (http://meshlab.sourceforge.net/ )
NILSSON, David (2007), “The ARC 3D Webservice”, EPOCH Knowhow book,
available at http://www.her-it-age.net/ , ISBN 978-91-85960-05-7
PLETINCKX, Daniel (2008), “An EPOCH Common Infrastructure Tool for Interpretation Management”, EPOCH Technical Report,
available at http://www.epoch.eu/ in the section Tools.
PLETINCKX, Daniel (2007), “Interpretation Management, How to make sustainable visualisations of the past”, EPOCH Knowhow book,
available at http://www.her-it-age.net/
SAVE project (http://www3.iath.virginia.edu/save/ )
UNESCO Charter on the Preservation of Digital Heritage, http://unesdoc.unesco.org/images/0013/001331/133171e.pdf , p. 80-83
All URLs have been verified on April 15, 2009.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
38
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
39
Virtual Archaeology Review
Archaeological research and 3D models
(Restitution, validation and simulation)
L'usage scientifique des modèles 3D en archéologie.
De la validation à la simulation.
Robert Vergnieux
Premio Tartessos 2009
ARCHEOVISION: Plate-forme Technologique 3D
Institut Ausonius – Université Bordeaux – CNRS. France.
Abstract
Devant la profusion de production 3D il devient important d’identifier en quoi les modèle numériques 3D peuvent être des outils d’aide à la recherche scientifique
.Illustrer un programme de recherche avec des images ne synthèse peut créer l’illusion que les images, par l’immédiateté de leur perception par tous prouvent et
justifient les restitution présentées. Il n’en est rien. La démarche de restitution est complexe, pluridisciplinaire et nécessite des années de recherche. Les modèles 3D
réalisés doivent être stockés au sein de silos de données pérennes.
Key words:
RESTITUTION, MODÈLISATION, ARCHEOLOGIE,
1. La restitution des sites archéologiques en
image de synthèse
Le domaine de l’archéologie se prête particulièrement bien à la
production d’image de synthèse. Le fait que les sites majeurs du
patrimoine culturel sont souvent en partie, voir intégralement,
détruits font qu’ils se prêtent merveilleusement bien à cette
activité qui consiste à restituer les monuments tels qu’ils devaient
être au moment de leur apogée. En effet l’immédiateté de
l’impact visuel que produisent ces images facilite grandement la
valorisation patrimoniale en alimentant l’imaginaire collectif par
des supports visuels. De nombreuses initiatives de ce type ont vu
le jour grâce à la démocratisation des moyens de production
informatique. De plus en plus de logiciels permettent aux
amateurs de modéliser les sites du patrimoine de façon assez
simple. Livres, magasines, productions télévisuelles et
multimédia se nourrissent d’images et de films numériques
restituant en 3D les lieux patrimoniaux de la planète. L’éventail
de ces productions est immense allant d’illustrations purement
graphiques à des restitutions « pierre à pierre » d’édifices
antiques. Devant la grande diversité des productions il me
semble important de revenir ici sur un point fondamental qui est
d’identifier en quoi les modèles 3D de la recherche scientifique
diffèrent des autres modèles.
2. Images de synthèse et modèles 3D pour la
valorisation.
Produites pour illustrer un propos documentaire ou bien une
opération de valorisation d’un site du patrimoine les images de
synthèse ont pour objectif de favoriser la compréhension visuelle
d’un site archéologique aujourd’hui fort détruit. Dans un souci
d’efficacité, seules seront finalisées les parties utiles pour
atteindre cet objectif. Les images peuvent être directement
construites sur un support 2D, images d’infographie souvent
obtenues à partir d’une vue photographique du site sur laquelle
seront « ajoutées » les restitutions 3D supposées (figure 1). Dans
le meilleur des cas, un modèle numérique 3D sera élaboré mais
l’effort de restitution ne portera que sur certains points du site.
Seule les parties qui figureront dans le « cadre » seront finalisées.
Il est souvent possible de se contenter d’une restitution de
«l’épiderme» du site.
Figure 1. Production d’illustration 3D sans validation. Les volumes sont
graphiquement placés sur une image 2D (d’après DE FRANCISCIS,
1995).
Expliciter les parties qui ne seront pas visibles sera considéré
comme pure perte. Les détails des structures internes (salles,
couloirs de circulation, pièces techniques etc) ne seront ni
commentées, ni représentées, ni même évoquées. Si une vue, ou
survol de l’ensemble du site est retenu alors c’est le niveau de
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
40
Virtual Archaeology Review
précision qui se verra réduit. Les films d’animation coûtent chers
à la production et vouloir finaliser jusque dans le détail ces
restitutions les mettrait hors de portée des financements de la
valorisation. Descendre dans les détails 3D entraîne non
seulement du temps de modélisation supplémentaire mais fait
exploser les temps de calcul de production des images de
synthèse. Le temps consacré à la recherche archéologique pour
approcher la restitution des détails passe souvent alors au second
plan. Remarquons également qu’il en va de même avec la
production d’image de restitution par le dessin ou l’aquarelle qui
repose sur la main d’un artiste. Seul les éléments pris en compte
dans les vues finales sont traités. Tous ce qui est hors champ est
ignoré. Selon le temps consacré tant pour la réalisation matérielle
que pour la validation scientifique, ces images produites seront
plus ou moins précises selon le niveau de détail retenu. Le temps
passé à la validation des structures et à leurs détails est considéré
comme secondaire. Toutes ces productions ont pour
caractéristique d’avoir pour seul et unique objectif la production
d’images et non pas la compréhension des sites antiques, ou la
mise en place d’un véritable outil de recherche.
3. Les modèles 3D comme outils d’aide à la
recherche
Il est à noter que de nombreuses productions d’images sont
également commanditées en marge des programmes de
recherche au titre de l’illustration. En général, à partir de
publication grand public les sociétés d’infographie élaborent,
avec conscience, une restitution d’un site antique qui sera
ponctuellement validée par un scientifique. Cette illustration est
une façon d’attirer l’attention du lecteur où spectateur encore
une fois par l’immédiateté de l’image, même si cette dernière ne
peut être qu’une approximation. Mais restituer des édifices
disparus est un véritable programme de recherche à part entière.
Construit à partir des relevés archéologiques des vestiges encore
en place, il s’agit ici non plus de produire une ou plusieurs vues
ou séquences animées mais bien de réaliser à l’échelle 1/1 un
modèle numérique 3D « double » virtuel du site. Ce type de
recherche repose sur une équipe scientifique identifiable
spécialiste du domaine. Le travail commence impérativement par
l’identification de la zone archéologique concernée ainsi qu’un
choix des époques concernées. L’équipe pilotant le projet de
restitution doit également ce fixée un objectif précis. Est-ce que
la restitution est un but en soi ? Ou bien est-elle le moyen
d’arriver à d’autres informations ? Si oui lesquelles ? Par
exemple si l’on considère le phare d’Alexandrie de très
nombreuses restitutions en ont été d’ores et déjà proposées.
Certaine ont été réalisées pour illustrer des documentaires,
d’autres pour des productions multimédia, d’autres encore pour
être publiées dans revues. Or toutes ses restitutions sont
présentées le plus souvent sans qu’il soit possible d’identifier ni
les auteurs, ni ceux qui ont conçu, ou pour le moins, décidé les
hypothèses présentées. De même il est impossible d’identifier sur
quelle documentation les restitutions se sont appuyées.
Un autre aspect différencie les modèles 3D pour l’illustration de
ceux conçus scientifiquement : c’est le niveau de détail auquel ils
sont réalisés. Lorsque un modèle 3D est mise en œuvre pour
restituer l’état d’un site antique à un instant donné, il est
indispensable de réaliser un modèle 3D qui puisse faire figurer
toutes les ensembles structurants des constructions qui le
composent. Une colonnade ne peut se réduire à une simple
texture plaquée sur un simple volume parallélépipédique. Certes
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
cela donnera une illusion visuelle mais cela ne permettra pas de
valider les possibilités physiques réelles d’insertion par exemple
de ces colonnes à cet endroit précis dans l’architecture. Une
validation à ce niveau de détail est indispensable dans le
processus de restitution des sites antiques. C’est à dire que tout
élément restitué doit être non seulement justifié quant à son
existence mais encore doit-il être testé quant à sa possibilité
réelle d’insertion à l’endroit supposé. Dans la démarche
scientifique que cette action représente, il est nécessaire de
conserver tous les argumentaires précis des décisions de
restitution ainsi que leur niveau de certitude (VERGNIEUX,
2008b). Contrairement aux images d’illustration, ils restent par
endroit des incertitudes sur les restitutions. Il est fondamentale
de les identifier car elles représentent autant de problèmes
scientifiques qu’il faudra tenter résoudre un jour. Dans bon
nombre des restitutions élaborées à seule fin d’illustration il est
consternant de voir surgirent de nulle part des modèles 3D
présentés comme s’ils étaient l’unique solution alors que les
discussions sur les variantes possibles ne sont même pas
évoquées. Un élément souvent absent de ces productions est
l’identification de la phase chronologique retenue. En effet tous
ces vestiges proviennent de sites qui ont eu leur propre vie et ils
ne sont pas figés dans le temps. Par exemple les innombrables
restitutions du phare d’Alexandrie ne précisent jamais la date
retenue alors que nous savons que ce monument a fortement
évolué au cours des siècles. Toutes ces questions sont évacuées
lors de la production de ces images. Tout se passe comme si elles
ne nécessitaient aucun travail de réflexion. Ces restitutions
procèdent de l’affirmation. A l’inverse l’objectif méthodologique
des modèles 3D est de pouvoir soulever toutes les questions de
validation que pose le travail de restitution. C’est pour cela il est
donc bien nécessaire de construire des modèles 3D les plus
détaillés possible, sans quoi cette démarche de validation ne peut
se faire.
Figure 2. Modèle de travail, version V1/V2 ville d’Amarna (anr
ATON3D).
Pour pouvoir revendiquer, au travers de ces images, la moindre
pertinence historique il faut pouvoir rendre accessible une
«traçabilité» des arguments ayant servi à la restitution. Il faut
revenir sur une procédure scientifique minimum pour produire
ces images.
Les images de synthèse issues de modèles numériques 3D ne
sont donc pas toutes du même calibre. Si c’est la liberté de
chacun de restituer les sites antiques, les scientifiques ont
également le droit d’utiliser les modèles numériques 3D à des fin
de recherche. Mais il ne faut pas confondre ces deux démarches
qui sont diamétralement opposées bien que les images finales sur
papier glacée puissent sembler faussement proches. Dans un cas
les productions visuelles ont pour rôle de crédibiliser des
affirmations faiblement, voir pas du tout étayées par les sources
anciennes. Dans l’autre cas c’est utiliser ces modèles 3D comme
41
Virtual Archaeology Review
outil d’aide à la recherche autorisant une approche fine et
rigoureuse des hypothèses de restitution. Malheureusement ces
procédures scientifiques sont peu usitées laissant la place à de
nombreux projets de restitution « affirmant » par le biais de
l’imagerie virtuelle leur forme sans les avoir pour le moins
étayées mais seulement « pensées ». Deux chartes déjà ont été
définies pour essayer de cadrer ces productions, mais elles se
préoccupent principalement d’éthique sans aborder les
problèmes de fond que pose la méthode scientifique de
restitution (Ename, 2005 et 2007 ; London Charter 2.1, 2009).
Empereur ont livré des blocs provenant de la porte
monumentale du phare. L’un de ces blocs, linteau de la porte
monumental, sera alors lié plus en profondeur dans la
nomenclature
3D
du
phare
et
dans
ce
cas
à :</Alexandrie/baie/phare/base/porte-1/linteau>.
Nous
voyons donc que parallèlement à l’indexation 3D des sources par
le biais d’une nomenclature il faut s’interroger sur la nature de
l’information apportée par les différentes sources anciennes pour
la compréhension des volumes disparus.
Selon le niveau de la nomenclature 3D concerné, il sera possible
de modéliser en 3D jusqu’aux composants mais à d’autre
endroit du site seuls les secteurs seront attestés sans pouvoir en
connaître la forme exacte. Un secteur peut être attesté par des
données iconographiques qui nous renseignent sur son existence
et ses formes générales sans offrir d’information de détail.
Par contre si un élément archéologique épars est retrouvé (c’est
le cas pour un linteau de la porte du phare d’Alexandrie par
exemple) alors la modélisation de cet élément peut être fait avec
une grande précision. En fonction de la nature de leur
contribution à la démarche de restitution il est possible de classer
les documents (figure 5).
a) Vestige archéologique in situ
(dont les témoins négatifs)
b) Vestige archéologique épars
Figure 3. Phare d’Alexandrie, modèle de travail, version V1
(Archéotransfert).
c) Attestation iconographique
d) Attestation textuelle
e) Complément
4. Des procédures minimum liées aux objectifs
de recherche.
(document en relation avec un site similaire)
f) Hypothèse antérieure de restitution.
Figure 4. Liste de sources documentaires classées par type.
Tout objectif scientifique se fixant de restituer l’architecture d’un
site du patrimoine doit dans un premier temps comme pour
toute recherche, identifier l’intégralité de la documentation
existante sur le sujet. Cette documentation doit aussi être
organisée car elle sera indispensable pour toutes les opérations
de réflexion autour de la restitution. Il s’agit en fait, d’extraire de
cette documentation tout ce qui peut apporter une information
même minime sur la compréhension d’une des unités qui
composent l’ensemble. Pour cela il est nécessaire de s’appuyer
sur une hiérarchie des volumes à restituer. Ainsi nous
organisons pour chaque site archéologique au cœur d’une
procédure de restitution une nomenclature indispensable pour
désigner toutes les unités devant être restituées. Elle se compose
de six niveaux pour chaque site
</site/quartier/zone/secteur/composant/élément>.
La nomenclature permet d’identifier quelles sont les données
archéologiques utilisées et à quel niveau de la hiérarchie elles ont
justifié les solutions retenues. En effet un texte antique peut livré
par exemple des informations sur la hauteur de la base du phare
d’Alexandrie à une date donnée sans fournir cependant de détail
sur la façon dont il est bâti. Ce document doit donc être retenu
comme alimentant l’argumentaire au niveau du « secteur » qui est
alors le second étage du phare
< /Alexandrie/baie/phare/etage_1/>. Mais pour continuer
avec cet exemple, les fouilles sous-marines menées par Jean-Yves
A partir de ce constat il devient alors possible de classer les
unités architecturales restituées en fonction de leur degré de
validation. Cela se fait en fonction du nombre et de la nature des
documents connus et cela pour chaque niveau de la hiérarchie.
Par exemple dans le cas de la restitution du Circus Maximus de
Rome au IVe siècle après J.-C., la restitution des édifices placés
sur la Spina au centre de la piste a pu être faite grâce aux
attestations iconographiques et textuelles (GOLVIN, 2008). Les
attestations iconographiques comme les vestiges archéologiques
peuvent fournir des détails précieux concernant le niveau des
«éléments» de la nomenclature.
5. Du modèle 3D aux simulations.
En fait le travail de modélisation 3D s’il permet de restituer au
plus proche les édifices antiques il favorise également le potentiel
de simulation. L’archéologie s’attache à comprendre les sociétés
anciennes, l’une des voies est d’étudier le fonctionnement des
édifices qu’elles nous ont laissés. Mais pour en comprendre ces
fonctionnements il est nécessaire des les restituer avec la plus
grande exactitude. C’est uniquement à cette condition qu’il
devient par exemple possible de comprendre comment se
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
42
Virtual Archaeology Review
déroulaient les courses de chars dans les cirques romains
(NELIS-CLEMENT & RODDAZ, 2008) ; de comprendre
comment fonctionnait une machinerie hydraulique de période
romaine; ou encore le déroulement d’un rituel dans un temple
égyptien (VERGNIEUX, 2008a). Cependant ici encore il faut
être prudent. L’image ne doit pas servir à illustrer des
affirmations mais, comme dans le cadre de la restitution des
volumes, la simulation des mouvements passe par une validation
précise de tous les mouvements et des gestes tant en en validant
les possibilités physiques que leur faisabilité technique
(VERGNIEUX, 2004, 2006, 2008).
Ce n’es pas l’archéologie qui doit être au service de la restitution
numérique 3D mais c’est bien l’inverse qui fait sens ? C’est à dire
que les outils de modélisation et la réalité virtuelle sont au service
des programmes de recherches ayant pour objectif de
comprendre les civilisations du passés par l’étude de leurs
constructions et au travers elles sur la façon dont elles les ont fait
fonctionner. A ce titre les modèles 3D issus de restitutions
scientifiques doivent être pérennisés car leur durée de vie doit
permettre à tout moment de venir les utiliser soit pour des
opérations scientifiques (restitutions, simulations) soit pour des
opérations de validation (images et films de synthèse,
prototypage etc).
Figure 6. Modèle de travail sur le mécanisme d’une machine hydraulique
romaine.
Figure 5. Phare d’Alexandrie, donnée iconographique attestant de
l’inclinaison des fenêtres sur la rampe intérieure.
Figure 7. Etude d’éclairage solaire dans le circus maximus de Rome au IV° siècle.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
43
Virtual Archaeology Review
References
De Franciscis (1995): Pompéï – Les monuments autrefois et aujourd’hui; reconstructions graphiques Vision s.r.l. , Roma 1995.
Ename (2005): Charte Icomos Ename pour l’interprétation des sites patrimoniaux (juillet 2005)
(http://www.inp.rnrt.tn/Convention/Html/ICOMOS%20Charte%20Ename%205-07-05.htm)
Ename (2007): Charte Icomos – Itinéraires Culturels (2007) ;
(http://www.international.icomos.org/quebec2008/charters/cultural_routes/FR_Charte_Itineraires_Culturels_Proposition_version_definitive.pdf)
Golvin J.- Cl. (2008) : L’exploiration des images antiques : problèmes de méthodologie ; in Nelis-Clément J. & Roddaz M. (2008) ; p. 243260.
London Chater 2.1 (2009): The London Charter for the Computer-Based Visualisation of Cultural Heritage, 7 February 2009;
(http://www.londoncharter.org/docs/london_charter_2_1_en.pdf)
Nelis-Clément J. & Roddaz M. (2008) : Le cirque Romain et son image ; acte du Colloque ocotbre 2006 Bordeaux, Ausonius Editions,
Mémoire n°20, Bordeaux 2008.
Vergnieux R. (2004), Editeur scientifique en collaboration avec C. Delevoie des Actes du Colloque Virtual Retrospect 2003, Collection
Archéovision aux éditions Ausonius, Bordeaux 2004.
Vergnieux R. (2006) :, Editeur scientifique en collaboration avec C. Delevoie des Actes du Colloque Virtual Retrospect 2005, Collection
Archéovision aux éditions Ausonius, Bordeaux 2006.
Vergnieux R. (2008a): L’usage de la 3D en archéologie, in Strudwick N. (2008), p. 147-154.
Vergnieux R. (2008b) :Origine et usage de la réalité Virtuelle à l’Institut Auonius et les premiers travaux sur le Circus Maximus ; in NelisClément J. & Roddaz M. (2008), p. 235-242.
Vergnieux R. (2008c) :, Editeur scientifique en collaboration avec C. Delevoie des Actes du Colloque Virtual Retrospect 2007, Collection
Archéovision aux éditions Ausonius, Bordeaux 2008.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
44
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
45
Virtual Archaeology Review
A Virtual Representation of the Egyptian Cultural Heritage
Fathi Saleh
Premio Tartessos 2010
CULTNAT. Center for Documentation of Cultural and Natural Heritage. El Cairo. Egipto.
Abstract
In Egypt, the Center for Documentation of Cultural and Natural Heritage (CULTNAT) is treating cultural heritage in a holistic approach whether regarding
the diversity of themes of cultural heritage or in the case of museums, the presence of objects in the different museums both within the country or abroad (a sort of
global virtual museum). The establishment of CULTNAT marks a unique experience in the application of the latest innovations in the world of
telecommunications and information technology towards heritage issues. CULTNAT’s main mandate is to document the various aspects of Egypt's tangible and
intangible cultural heritage as well as its natural heritage.
INTRODUCTION
Egypt the birthplace of civilization is outpouring a tremendous
wealth of cultural artifacts, which are of world importance. It is
known that a large number of monuments and sites representing
the world cultural heritage is found in Egypt. For mankind
Egyptian civilization contributed in a very important manner to
the making of our history and beliefs. To the Egyptians it
represents a national pride and roots and from a scientific
prospective it is a source of continuous international interest.
human civilization, monitors the development of human
livelihood, and represents a cultural and a natural heritage of
national and international value. To achieve this goal,
CULTNAT is making use of the most up-to-date information
technology and is working in collaboration with national and
international specialized organizations. The Center also aims to
increase public awareness of Egypt's cultural and natural heritage
through the dissemination of information using all available
media, as well as building capacities of professionals in the field
of documentation and management of cultural and natural
heritage.
Egypt’s wealth in archeological sites, architectural styles, arts,
folklore and natural beauty is reflected in CULTNAT's various
programs as follows:
I. THE CULTNAT PROGRAMS
The recent development in the field of information technology
and telecommunications: networks, internet, multimedia
etc…has played an important role in disseminating knowledge
and facilitating the exchange of information.
These developments have also changed our knowledge,
appreciation and perception of heritage, our own as well as those
of other nations worldwide. Telecommunications and
information technology have not only provided tools for the
documentation, preservation and management of this heritage,
but they have also created a sense of closeness between people
of various backgrounds, and a feeling of living in a global village
where easy access to one’s own heritage and that of his
neighbors thousands of miles away is possible.
In Egypt, the establishment of the Center for Documentation of
Cultural and Natural Heritage (CULTNAT), which is affiliated
with the Bibliotheca Alexandrina and supported by the Ministry
of Communications and Information Technology, marks a
unique experience in the application of the latest innovations in
the world of telecommunications and information technology
towards heritage issues.
CULTNAT’s mandate is to document the various aspects of
Egypt's tangible and intangible cultural heritage as well as its
natural heritage. This heritage encompasses various aspects of
Fig 1: The Center for Documentation of Cultural and Natural Heritage
building, Smart Village, Egypt
The Archeological Map of Egypt
Normally we can not separate museum objects from the location
where it was found, which is usually an archeological site
(provenance). That is why sometimes we look at the object as
part of a collection and sometimes we look at it as related to its
archeological site, like in the case of the archeological map of
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
46
Virtual Archaeology Review
Egypt project. The archeological map of Egypt is the first
complete inventory of all archeological sites in Egypt in a
Geographic Information System (GIS) linked to an exhaustive
database of the archeological sites, monuments and artifacts
found all over Egypt.
The information is organized into three consecutive levels: The
first is the national one, showing all sites on a large scale map of
Egypt and providing basic information about each site; in
addition, choosing a certain site one can ask for the collection of
objects that moved from this site to a specific museum. At the
second level, a detailed map shows the site and its components
along with more information about the different components of
the site, while the third level provides the complete data of the
monument with a plan of the structure and images. For a
number of monuments, each wall is depicted with the relief or
paintings along with the translation of the hieroglyphs, while for
others, a 3-D model is available with the possibility of a virtual
visit. The amount of data collected so far and integrated in the
program could furthermore be used for a wide variety of
products, including archeological atlases, guides, CDs etc.
Fig 2 & 3 : The Archeological Map of Egypt : levels 1 and 2
Fig 4 & 5 : The Natural Map of Egypt
The Architectural Heritage of Egypt
The purpose of this program is to document the nineteenth and
twentieth century architectural heritage of Egypt, starting with
the Downtown area of Cairo as a pilot project and continuing
with more parts of Cairo and other cities. This project
constitutes a Geographic Information System (GIS) with an
easy to browse database that includes extensive photographic
documentation, all published material for each inventoried
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
building, in addition to historic documents, maps and archival
material.
The Natural Heritage of Egypt
The documentation of Egypt’s natural heritage is a multidisciplinary program aiming to document and disseminate
information on the natural heritage of Egypt. The program
involves the collection of all data available on protected areas
47
Virtual Archaeology Review
and their components including detailed information on the
Flora, Fauna, geological formations and the related cultural
features. The data is further used to create a digital natural map
of Egypt in Geographic Information System (GIS). For the
dissemination of information, a series of books, CDs and
postcards were produced on various subjects related to the
natural heritage.
The Egyptian Folklore
Egypt’s living traditions are embedded in a deep and colorful
source stemming from various cultures that have enriched it
over the millennia. CULTNAT is undertaking the task of
documenting these traditions. A systematic approach is adopted
in the compilation process and aims to build up the most
comprehensive and inclusive library of scientific and audio-visual
material. The library is designed to include a rich array that
covers ethnological activities, popular themes, traditional
festivities, celebrations, folktales, proverbs and cycles of life.
The Musical Heritage of Egypt
Collaboration between CULTNAT, the Egyptian Supreme
Council of Antiquities and IBM Corporation, led to the
development of a premier website, "Eternal Egypt"
www.eternalegypt.org, to showcase a selection of Egypt’s
treasures and cultural heritage on the Internet, to the global
audience, using state-of-the-art technologies. The website covers
the different eras of the Egyptian civilization: Pharaonic, GrecoRoman, Coptic and Islamic. It comprises of descriptions of
events, characters, museums objects, as well as historical sites,
wrapped in a variety of stories covering attractive topics. The
descriptive information is available in three languages, Arabic,
English and French, and is supported by an innovative text-tospeech technology to generate the audio narrations, by 2D highresolution images, tours and panoramic views of many sites as
well as 3D models of various objects.
Within this website, one can investigate several collections that
are present in different museums. For the Pharaonic period one
can investigate the collection at the Cairo museum and the
Luxor museum. For the Greco-Roman period the collections of
the Greco-Roman museum in Alexandria can be viewed, for the
Coptic period the collections of the Coptic museum in old Cairo
(Fustat) can be explored and finally for the Islamic period the
collection of the Islamic art museum in Cairo can be examined.
CULTNAT aims to provide a better understanding of both our
musical heritage and arts that have greatly developed during the
earliest part of the twentieth century and which are in very
serious danger of being lost forever. This is achieved through
documenting, classifying and analyzing this heritage. The Arabic
music information system consists of three levels: the first level
focuses on documenting basic information related to composers,
lyrics, singers, modes, forms, and rhythms. The second level
compiles the complete works of artists’ with original lyrics,
scores, audio and video clips whenever possible. The third level
is a multimedia upgrade that targets the production of
documented audio-visual deliverable based on the collected data
as well as a detailed musical analysis of selected pieces by
professional critics.
The Photographic Memory of Egypt
At the turn of the twentieth century, the Middle East and Egypt
in particular, became a destination that attracted a large number
of pioneer photographers. Their works documented such vivid
topics as archeological sites and excavations, local architecture,
landscapes in addition to social life and daily activities of the
local community. The program aims to make such rare
collections available for researchers, curators, and admirers of
old photography online, in addition to producing a number of
publications including books and CDs.
The Scientific Islamic Manuscripts Heritage
The manuscript documentation program aims to document
scientific Islamic manuscripts available in various institutions
and private collections on the national and regional level, in
order to build an electronic encyclopedia of manuscripts on
sciences and mathematics that were produced during the peak of
the Islamic period.
II. ETERNAL EGYPT ON THE WEB
Fig 6 : The homepage for www.eternalegypt.org
In addition, there is a facility to go thematically through the
whole collection like for example the investigation of woman
representation along history; it is possible to retrieve objects
regarding this subject from different collections. Alternatively,
one can choose to see the relation between certain objects and
other objects, sites and subjects, following which a diagram
appears in a tree format that has the selected objects in the
center with links to different objects, sites and subjects. Going
one step further one might choose to navigate along this tree
from one object to another then the new object becomes the
center of the diagram and consequently the center of the
diagram links to other objects, sites or subjects. Once an object
or site is in the center of the diagram, one can obtain from the
database information about this object as well as high resolution
images and sometimes a 3-D model. For some objects, a 3-D
model was built through the use of a laser scanner and a
turntable. This allows the investigation of the object from all
sides and also allows electronic restoration of the object such as
adding missing parts, cleaning surfaces or retouching colors.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
48
Virtual Archaeology Review
For most of the objects, a very high resolution image is obtained
which allows multiple zooming allowing for investigating the
details of the different parts of the image. For very specific
objects, a simulation through animation of its function is
available. Some examples are the fire lighter that was used at the
time of the ancient Egyptians and the astrolabe that was used at
the time of the Arabs.
III. THE GLOBAL EGYPTIAN MUSEUM
(GEM WEBSITE)
As we have seen, eternalegypt.org web site is treating the
different collections within the different Egyptian museums in a
collective way. It does not extend beyond Egyptian territories.
There is another approach that took place between CULTNAT
and the Dutch Center for Computer-aided Egyptological
Research (CCER), which is directed by the eminent professor of
Egyptology Prof. Dr. Van der Plas, to address the different
Egyptian collections in other European museums in what is
known as the Global Egyptian Museum (GEM).
This website presents the Egyptian Treasures from various
European museums. Scientific object information, hieroglyphic
texts and full color images of the objects are offered in an
interactive way. As part of the project scope the current set of
ten museums will be enlarged with other collections from
worldwide museums.
There are two main functions in the website the Basic Mode
which is geared towards the interested public and the Advanced
Mode which opens up the full database and offers detailed
scholarly information to professionals and amateurs.
The hyperlinked glossary of over 400 entries explains
Egyptological words and concepts, illustrated with pictures and
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
line drawings. Scholarly information about gods, kings, dynasties,
archaeological sites, etc., is given in a user-friendly way.
The guided tour presents several objects from each collection
with a spoken commentary.
There are many rotating objects and panoramas throughout the
site.
The user interface and most of the supplied information on this
website is available in seven languages: Dutch, English, French,
German, Italian, Portuguese and Spanish.
CONCLUSION
A holistic approach to the museum collections was developed by
the Center for Documentation of Cultural and Natural Heritage
(CULTNAT). This approach included incorporation of the
compilation of different collections within the content of its
different developed programs addressing the various aspects of
documenting of the cultural and natural heritage of Egypt. This
is reflected more specifically within the archeological map of
Egypt program, which relates objects to its site of origin. In
addition, the collections are addressed in a second way within
the premiere website eternalegypt.org which relates the objects
of different Egyptian museums to each other and to sites and
subjects as well as using different imaging technologies to
investigate each object. Finally, the Egyptian collections in
different European museums were treated in a global approach
using a developed thesaurus in seven languages and addressing
collections in ten European museums jointly with the collections
in the Egyptian museum.
49
Virtual Archaeology Review
Concerning the Paradox of Paradata.
Or, “I don’t want realism; I want magic!”
Richard C. Beacham
King’s Visualisation Lab. King’s College, University of London. U.K.
Abstract
Traditional written historical investigation and analysis have from the beginning consisted of a sometimes unstable mixture of fact and conjecture, hard evidence and
inspired imagination. To encourage 3-D modelling of cultural heritage artefacts to be taken seriously as historical scholarship this inevitable and ambiguous balance
can be highlighted and to a significant degree documented and modulated by London Charter principles. This enhances the scholarly integrity of these models as
examples of serious research based historical investigation, and helps avoid the dangers of inflated or unverified “media hype” which can compromise or discredit
such work .
Key words
LONDON CHARTER, PARADATA, 3-D MODELLING
1. Defining our terms
Paradox is “a statement or proposition that seems selfcontradictory or absurd but in reality expresses a possible truth”.
Paradata according to the London Charter (employing the term
coined by my CVL colleague, Drew Baker) is “Information
about human processes of understanding and interpretation of
data objects. Examples of paradata include descriptions stored
within a structured dataset of how evidence was used to interpret
an artefact, or a comment on methodological premises within a
research publication. It is closely related, but somewhat different
in emphasis, to ‘contextual metadata’, which tend to
communicate interpretations of an artefact or collection, rather
than the process through which one or more artefacts were
processed or interpreted.”
So what might be thought of in our context here, as paradoxical
about paradata? We can approach this by briefly considering
two terms conveniently uttered in the quotation in my title by
Blanche Dubois in Tennessee Williams’ work of 1947, A Streetcar
Named Desire; “I don’t want realism; I want magic.” She goes on
to say, by way of defining “magic”; “Yes, yes, magic. I try to give
that to people. I do misrepresent things. I don't tell truths. I tell
what ought to be truth.”
So when we speak about the (possibly paradoxical?) quality of
paradata, and its role in the 3-D modelling and documentation
process whose nature and methodology is defined and stipulated
by the London Charter, where am I suggesting that “realism” or
“magic” come in, and what might be the relationship between
them?
Magic is “the art of producing illusions as entertainment by the
use of sleight of hand, deceptive devices”. We should perhaps
usefully bear in mind Arthur C. Clarke's Third Law: "Any
sufficiently advanced technology is indistinguishable from
magic." And its corollary: "Any technology distinguishable from
magic is insufficiently advanced". Is this a proposition that those
of us working in the area of 3-D modelling, need to take to
heart? And if so, does such an aspiration serve to further
underscore the central importance of paradata, to enable those
viewing the results of our technology, to be able to discern facts
from fiction, or if you will, magic from realism?
This brings us to our final term, realism. Amongst various
choices, perhaps the definition most appropriate to our topic
here would be: “treatment of forms, colours, space, etc., in such
a manner as to emphasize their correspondence to actuality or to
ordinary visual experience”
(http://dictionary.reference.com/browse/realism).
Alternatively, for a working definition of realism, we might turn
to the 1951 US Popular Culture TV series Dragnet. It began
with the announcement: “The story you are about to see is true.
Only the names have been changed to protect the innocent."
As its protagonist, Sergeant Joe Friday, famously said: "All we
want are the facts, ma'am, just the facts".
2. Looking at History
The relationship between realism and magic is not always as one
might think at first, a straightforward dichotomy of opposites,
but can involve as well a rather more subtle cognitive blending
of various and ostensibly incongruent mental conceptions (and
visual perceptions), and this blending itself has an extensive
history in the history of “history” or more accurately, in
historiography.
The writing of history from the very beginning, as pointed out
and practiced by Herodotus (who has been called both the
“Father of History”, as well as the “Father of Lies”), was to a
significant degree itself a form of creative writing. Often he gives
several alternative but incompatible versions of the same event,
with a nod towards what we might now term “paradata”. “This
is what they say, but in my opinion it is just one of those tall
stories of the Egyptians”.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
50
Virtual Archaeology Review
Antiquity, for us – all of us -- is itself an imagined construct. A
great “Lost Continent” populated by cultural, aesthetic and
imaginative notions and associations, cluttered with our current
and accumulated histories, and to use a plain word: scholarly
“make-believe”. We visit that Continent via the mind’s eye (or
the computer screen) bearing with us an enormous amount of
cultural “luggage”; lots of steamer trunks and extravagant
hatboxes. We return too, in the company of ghosts; rather like
persistent holiday acquaintances, we can’t shake them off.
The greatest of these encumbrances is history itself; indeed the
very “idea of history”. One definition of realism according to
Webster’s Dictionary is, “Fidelity to nature or to real life;
representation without idealization, and making no appeal to the
imagination; adherence to the actual fact”. Such a
characterisation is analogous to the view asserted by Otto von
Ranke in the 19th Century that history was first and last
dependent upon objective facts: “das Ding an sich” (the thing
itself); “wie es eigentlch gewesen” (as it essentially was); a phrase
which we post-positivist know-it-alls (adamantly insisting that in
facts we know nothing) -- cannot hear without smiling, or use
without blushing. (VON RANKE, 1874: VII).
R. G. Collingwood, in the middle of the last century, as he so
ingeniously merged history into philosophy, asserted instead that
the idea of history was indeed a history not of pure facts, but of
thought, and consequently could not remain untouched by the
imagination. He saw “The objective fact as the inseparable
correlative of the subject’s thought”. (COLLINGWOOD, 1924:
287). Such thought is generated in the first instance by our
confrontation when we perceive the facts: “In perception we are
immediately aware of our object, which is a concrete and
therefore historical fact: perception and history are identical. But
the immediacy of perception does not exclude mediation; it is
not abstract immediacy (sensation) but implicitly contains an
element of mediation (thought)… History is thus as a specific
form
of
experience,
identical
with
perception.”
(COLLINGWOOD, 1924: 204-205).
As Collingwood went on to point out (235), thought, in facing
the facts, seeks of course to make sense of them, and ultimately
to tie them together into comprehensive knowledge and
understanding. This was essential; otherwise the contemplation
of historical events risks becoming mere entertainment. “Take
away the conception of a universal history in which every special
history finds its place and its justification, and you have
committed the first and deepest sin against history, you have
confused it with art: you have denied it any concern with truth
and made it a mere thing of the imagination”.
3. Looking at Looking
Collingwood confessed early in his career, “I have found in my
historical inquiries that I can never determine the exact truth
about any historical fact, but have to be content with an account
containing a large and unverifiable amount of what I know to be
conjecture.” (COLLINGWOOD, 1925: 146) And this brings us
face to face with the sort of issues that we confront in fashioning
virtual reconstructions of historical artefacts, and by extension
with the role that the London Charter may provide in helping us
both to be aware of, and to address them. Our 3-D modelling
might in an ideal form aspire to depict “wie es eigentlich
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
ausgesehen hat” (as it essentially appeared). But we know that
just as Collingwood could identity no pure fact, untouched by
conjecture, the same is true of our efforts to indentify the facts,
as we convey them visually, of spatial structure and appearance.
We are all aware how easily – and how often –some
practitioners, including, it must be said, from time to time even
established and reputable scholars, have been tempted by the
publicity and hype of “Virtual Reality” as an element of popular
culture, to slip into what might be called the “B. T. Barnum”
syndrome, in which scholarship takes second place to
showmanship. Models are produced and launched with media
hype, articles in the press, and the like, and in the process, too
often questions of accuracy and the scholarly basis for such
models are displaced by the undeniably compelling “magic” of
them. In the long run, although such dubious scholarship may
draw attention (and even vital funding) to those creating the
models, ultimately it carries the risk of discrediting the integrity
of the research-based process which must be fundamental if
such 3-D models are to be perceived and taken seriously by
scholars as the extraordinarily valuable “publications” they
undoubtedly have the potential to be.
Seneca described the “arts of entertainment (ludicrae) which give
amusement to the eye and ear… Amongst these you may count
the engineers (machinatores) who contrive a structure that soars up
by itself, or floors that rise silently into the air, and many other
unexpected devices such as objects that fit together which come
apart, or things separate which automatically join together, or
objects which stand erect then slowly collapse. The eyes of the
ignorant are astonished by such things” (Epist. Mor. 88.22).
Scholars who have pursued such aspects of “show business” in
the field of 3-D modelling are at least in a venerable tradition
and company. Cicero also called attention to the particularly
compelling and seductive nature of visualisation even for those
with what he called “oculos eruditos (educated eyes): "you stand
gaping spell-bound ….when I see you gazing and marvelling and
uttering cries of admiration, I judge you to be the slave of every
foolishness (Paradoxa Stoicorum, 5.38.2.)
4. Making Space
The ‘”London Charter” initiative seeks to establish what is
required for 3-D visualisation to be, and to be seen to be, as
intellectually rigorous and robust as any other research method.
As Franco Niccolucci (together with me one of the Chairs of the
London Charter initiative) has pointed out, “this document and
the related activity is a much needed milestone as far as the use
of 3-D visualization in archaeological interpretation, presentation
and reconstruction is concerned. After several years of
theoretical debate on this issue, the Charter finally proposes
robust and authoritative guidelines for this important
interdisciplinary subject and has to be seen in the context of
what has become a constant burning issue in 3-D visualisation
circles: ‘transparency’”.
(http://www.londoncharter.org/history.html)
Transparency is crucial if 3-D visualisation is to “mature” as a
research method and acquire widespread acceptance within
subject communities. In particular, it must be possible for those
communities to evaluate the choice of a given visualisation
method, and how it has been applied in a particular case without
51
Virtual Archaeology Review
having to rely exclusively on the “authority claims” of the
author, however eminent, experienced (or media-savvy”) s/he
might be. A significant amount of work has been done in this
area, and there is now an extensive bibliography on this and
related issues. There had been a number of previous initiatives
in the field. They included:
In order to ensure the intellectual integrity of computer-based
visualisation methods and outcomes, relevant research sources
should be identified and evaluated in a structured and
documented way.
The establishment of the CAA Virtual Archaeology Special
Interest Group (VASIG), that first met in Sweden 2001.
Sufficient information should be documented and disseminated
to allow computer-based visualisation methods and outcomes to
be understood and evaluated in relation to the contexts and
purposes for which they are deployed.
The founding of the Cultural Virtual Reality Organisation
(CVRO) launched at the Virginia Association of Science
Teachers (VAST) in November 2000 (and which now
appears to be inactive).
The publication of the British Arts and Humanities Data
Service Guide on creating and using virtual reality.
the publication of the AHDS “CAD” guide.
In July 2005 the Visualisation Lab at King’s College London
began a project called “Making Space”. Its objective was to
investigate “a methodology for tracking and documenting the
cognitive process in 3-D visualisation-based research”, funded
by the ICT Strategy Projects scheme of the British Arts and
Humanities Research Council. My colleague Drew Baker
proposed the term “paradata” (which we discussed earlier) to
denote the intellectual capital generated during research, and
highlighted that a great deal of the information essential for the
understanding and evaluation of 3-D visualisation methods and
outcomes is currently being lost. The project subsequently
convened a Symposium and Expert Seminar at the British
Academy and the Centre for Computing in the Humanities at
King’s College London in February 2006. Over a two-day
symposium, 50 delegates debated various approaches to the issue
of transparency and, on the third day, a smaller group of experts
produced the first “discussion document” phase of the draft
London Charter.
Aims of the London Charter
The objective is to establish the London Charter as an EU and
international benchmark. The initiative does not aim to make
radical new proposals. Rather, it seeks to consolidate the major
principles which have been published by diverse authors, but not
yet fully taken up by the community. That is why the idea of a
“Charter” seemed appropriate. It is also why it is important that
it should emerge out of, and evolve through, discussions within
the target communities. The fundamental principles (each
elaborated in further detail within the body of the Charter) are:
Principle 1- Implementation
The principles of the London Charter are valid wherever
computer-based visualisation is applied to the research or
dissemination of cultural heritage.
Principle 2 - Aims and Methods
A computer-based visualisation method should normally be used
only when it is the most appropriate available method for that
purpose.
Principle 3 - Research Sources
Principle 4 - Documentation
Principle 5 - Sustainability
Strategies should be planned and implemented to ensure the
long-term sustainability of cultural heritage-related computerbased visualisation outcomes and documentation, in order to
avoid loss of this growing part of human intellectual, social,
economic and cultural heritage.
Principle 6 - Access
The creation and dissemination of computer-based visualisation
should be planned in such a way as to ensure that maximum
possible benefits are achieved for the study, understanding,
interpretation, preservation and management of cultural heritage.
5. The Future of the Past
The London Charter is being widely translated and taken up
throughout the community of modellers, funders, and cultural
heritage stakeholders, to provide guidelines for assessing project
proposals prior to their funding; for the actual modelling process
itself; and to review and evaluate work upon its completion. It
represents the broadest consensus on the principles that should
underwrite heritage visualisation, and has the potential for wide
take-up and dissemination, and indeed for extension into
additional modelling or visualisation environments. Currently
Martin Blazeby of King’s Visualisation Lab and Beatrice
Rapisarda of the University of Pisa’s Informatica Umanistica
programme are the Principal Investigators leading a 9-month
collaborative project to take the principles of the Charter into
the Second Life online virtual world. The project is funded by
The British Council and the Italian Minestero dell’Universita e
della Reicerca under the Cultural Heritage Conservation theme
of the 2008-9 British-Italian partnership programme for young
researchers. It will address the complex tasks of developing
usable tools and guidelines for implementing Charter guidelines
into Second Life, as well as establishing visual conventions, e.g.
for distinguishing in a 3-D reconstruction of an historical
artefact between what is known and what remains hypothetical.
These are necessary to enable the historical and intellectual
validity of heritage visualisations within the Second Life platform
to be communicated and evaluated and will provide a model for
the development of guidelines, tools and visual conventions for
other MUVEs. The project outcomes will thus have widereaching relevance and impact within both cultural heritage and
heritage informatics communities.
At the same time that we conscientiously pursue “reality” using
Charter as a major “reality checking” instrument, it is important
that we retain a due regard and openness -- if not to the
expectation of “magic” -- then at least to the appearance of new
and surprising discoveries that our work in this still relatively
unexplored realm of 3-D modelling may uncover. As in any field
of research (and particularly, as we have noted, in the case of
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
52
Virtual Archaeology Review
history) we must be prepared from time to time to lose our
moorings from the strictest (and safest) readings of the texts, or
interpretation of the physical evidence, to see where possibly we
might intimate new insights and in the process, create new
knowledge. We rarely have the knowledge we need fully to
understand the ancient phenomena we presume to discuss -there are vast black holes and vacuums. But it is important to
remember, that such vacuums do NOT mean that "nothing" was
there: something was. Joined up -- or even lateral -- thinking
(and the new forms of knowledge that it can enable) very often
in the absence of direct connections and absolutely safe
conjunctions of meanings, requires us to make some imaginative
leaps in the dark; always as securely as possible, and with safety
nets in place (qualifications, an indication where fact ends and
hypothesis begins etc.). It may be of course that the fleeting fact
we are trusting to find on the opposite trapeze will not join
hands with us, and we will plunge like Icarus to the earth. But
just as often we may actually, as we leap out into the dark, almost
magically find something there to catch and hold us, and even
dazzle the eyes of our onlookers.
Acknowledgements
I am indebted to Dr. Hugh Denard, the Associate Director of the King’s Visualisation Lab, for his substantial contribution to this article,
and for his role as head of the London Charter Secretariat responsible for its drafting and publication. With Drew Baker and Anna
Bentkowska-Kafel he is the editor of Paradata. Intellectual Transparency in Historical Visualization, forthcoming from Ashgate Publishing
Company.
References
COLLINGWOOD, R. G. (1924): Spectaclum Mentis. Oxford University Press. Oxford.
COLLINGWOOD, R. G. (1925): "Some Perplexities About Time", in Outlines of a Philosophy of Art. Oxford.
VON RANKE, L. (1874): Geschichte der romanischen und germanischen Völker von 1494 bis 1514. Leipzig.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
53
Virtual Archaeology Review
Qué hacer con un modelo arqueológico virtual.
Aplicaciones de la inteligencia artificial en visualización
científica.
Juan A. Barceló y Oriol Vicente
Universitat Autònoma de Barcelona. Barcelona. España.
Resumen.
Durante años, los artistas han colaborado con los arqueólogos para “reconstruir” todos esos elementos antiguos que no se han preservado en el registro arqueológico,
y han proporcionada a la arqueología ilustraciones artísticas del pasado. Lamentablemente, las modernas “visualizaciones infográficas” no han modificado esta
actitud. Hay cientos de miles reconstrucciones infográficas de antiguos edificios y objetos prehistóricos, pero la mayoría de ellas resultan inútiles. Alternativamente,
proponemos un enfoque distinto en donde la visualización por ordenador se define como la deducción lógica automatizada de de propiedades visuales de los objetos
tridimensionales captadas instrumentalmente. Proponemos una estructura general basada en investigaciones recientes en Inteligencia Artificial.
Palabras clave:
ARQUEOLOGÍA, VISUALIZACIÓN, INTELIGENCIA ARTIFICIAL, SIMULACIÓN.
Abstract.
For years, artists have collaborated with archaeologists in order to “reconstruct” all those ancient things not preserved in the archaeological record, and they have
provided archaeologists with artistic depictions of the past. Regrettably, modern “computer visualizations” do not modify this attitude. There are thousands of
“computer reconstructions” of ancient monuments and prehistoric objects available today, but most of them are absolutely useless. Alternatively, we propose a
different approach where computer visualization is defined as the automatic logical deduction of visual properties of three-dimensional objects instrumentally
acquired. A general framework inspired in modern artificial intelligence is here proponed.
Key words:
ARCHAEOLOGY, VISUALIZATION, ARTIFICIAL INTELLIGENCE, SIMULATION
Introducción
Puede resultar paradójico, pero el actual éxito mediático de las
reconstrucciones arqueológicas por medios infográficos revela
un profundo vacío teórico en nuestra disciplina. Aquella manera
tradicional de expresar los resultados de la investigación
arqueológica bajo la forma de exposiciones de artefactos y/o de
monografías más o menos ricas en material gráfico, se han
sustituido por “imágenes imaginadas”, secuencias animadas
imposibles de cosas antiguas sublimadas por el mero hecho de
aparecer dentro de un ordenador. Si antaño la palabra impresa
otorgaba el marchamo de autenticidad a lo que se podía llegar a
decir, ahora, la “informaticidad” de una imagen le otorga peso
específico y garantía de autenticidad. “Lo ha hecho el
ordenador”, por lo tanto debe ser “científico”, dicen los medios
de comunicación.
Reunidos en Londres el 5 de marzo de 2006, muchos expertos
en este tema pretendieron discutir
el “valor” de una
reconstrucción virtual. Claro que entre esos “expertos” una
mayoría estaba constituida, precisamente, por los infógrafos que
nos han metido de cabeza en la confusión. La Carta de Londres
para la visualización computarizada del patrimonio cultural
(http://www.londoncharter.org/) pretende elaborar un conjunto de
principios que aseguren que la visualización del patrimonio
cultural se lleva a cabo como un trabajo intelectual y
técnicamente riguroso así como metodológicamente mucho más
sólido. Parte de una afirmación fundamental, pocas veces tenida
en cuenta: “No debe asumirse que el método de visualización
computarizada sea siempre el método más apropiado para
afrontar los objetivos de investigación y divulgación del
patrimonio cultural”. Insiste en que debiera resultar evidente
para los usuarios qué es lo que cada visualización computarizada
trata de representar. Sin embargo, confunde objetivo (lo que se
pretende) con objetividad (lo que se ha obtenido como
resultado). No es tanto una cuestión de delimitar las
informaciones de partida y el grado de incertidumbre de la
representación final, como plantearse qué estamos
representando. El conflicto nace de no reconocer expresamente
que la imágen o modelo reconstruido no constituye la respuesta
a ningún problema concreto.
Los consejos que emanan de la carta de Londres resultan, por un
lado, obvios, y por otro, claramente insuficientes. Por
descontado que todos esos expertos reunidos para sentar las
bases de la “calidad” de los modelos infográficos no pretendían
enseñar a todo el mundo cómo hacer su trabajo. El problema
nace de la propia arqueología, de los mismos especialistas que
dicen estudiar el patrimonio cultural, pero lo único que hacen es
imaginarlo, creyendo que el objeto –sea real o virtual- constituye
una explicación de sí mismo.
Si Indiana Jones buscaba tesoros para enviarlos a los museos, los
ciber-arqueólogos del presente buscan basura visual
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
54
Virtual Archaeology Review
(arqueológicamente obtenida) para convertirla en atractivas
imágenes. Explicar el pasado pareciera reducirse a la
reconstrucción de aquello que está roto, a convertir la evidencia
arqueológica en el presente en una imagen más o menos fiel de
cómo fue en el pasado. Pero ¿cree alguien que eso significa
explicar qué hicieron en el pasado, cómo lo hicieron, por qué lo
hicieron?
Creemos que la Carta de Londres tiene su utilidad, pero pasa
sólo por encima del auténtico problema. No se trata de
encontrar formas de “validar la reconstrucción”, sino de definir
realmente para qué sirve la visualización.
Obviamente no creemos que el “método” sea el culpable. No
son los ordenadores ni los programas de modelado de sólidos,
de animación de secuencias, de renderizado de texturas los
responsables de que no sepamos para qué sirven realmente todas
esas bonitas imágenes que parecen más reales que la realidad
misma. Tenemos un importante conflicto con la noción misma
de “visualización” que la carta de Londres no resuelve. Por
muchos consejos que demos acerca de cómo visualizar la
“incertidumbre”, seguimos sin sentar las bases de para qué sirve
esa visualización de lo que no se puede ver en el presente, pero
que creemos existió en el pasado.
La respuesta pasa por una reflexión acerca de las diferencias
entre explicación y divulgación, cosa que no hace la declaración
de Londres. Ya que la arqueología moderna confunde objeto con
explicación, la ciber-arqueología hace lo mismo con la imagen
del objeto. Nos olvidamos que en ámbitos más formalizados que
el nuestro, como la medicina o la física, la visión por
computador ha sido definida como la deducción lógica
automática de estructuras y propiedades de los objetos
tridimensionales, captadas a través de una o varias imágenes y el
reconocimiento de los objetos a través de estas propiedades. Por
consiguiente el uso específico de la visión computerizada en la
investigación del patrimonio cultural no debería ser la
reproducción de la realidad tal y como parece ser a nuestra vista,
sino una forma de traducir la datos percibidos sensorialmente en
un modelo explicativo de los mismos. No deberíamos crear
bonitas e imaginativas ilustraciones del pasado, sino que debiera
ser posible usar la geometría para explicar algunas de las
propiedades de los datos: las propiedades relativas a su tamaño,
forma, textura, tiempo y localización. Por lo tanto, el objetivo de
un modelo arqueológico virtual debiera consistir en proveer de
un vehículo para la experimentación con datos arqueológicos y la
predicción de fenómenos históricos.
La declaración de Londres es muy incompleta en ese aspecto.
¿De qué manera podemos completarla?
Visualizar el razonamiento
“El razonamiento seguido a la hora de elegir un determinado
método de visualización computarizada y no otro, debe quedar
perfectamente documentado y ser divulgado con objeto de
facilitar la evaluación de las actividades metodológicas y para
facilitar el seguimiento de posteriores actividades” (Carta de
Londres, 4.7). El problema es ¿cómo “documentar” ese
razonamiento?
Tradicionalmente el razonamiento suele expresarse en largas y
retóricas expresiones verbales, que narran ciertas cosas que el
autor quiere comunicar. Sin embargo, las palabras no son causas,
ni las frases expresan mecanismos. Todo “razonamiento”
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
implica una mecánica concreta de producción de conocimiento,
y las narraciones verbales se quedan muy lejos a la hora de
caracterizar esa mecánica.
¿Podemos “visualizar” la manera de producir el conocimiento?
Creemos que esta es la cuestión clave a la hora de definir una
ciber-arqueología. Las tecnologías de la información no deben
ser meras herramientas de comunicación, sino útiles de
producción del conocimiento. Muchos de los objetivos
implícitos en la declaración de Londres pueden realizarse si
partimos del supuesto que el objetivo propio de la tecnología
aplicada al estudio del patrimonio cultural es su explicación
(automatizada). Sólo una vez que esa explicación se ha
producido, podremos visualizarla para poder expresarla. La
imagen virtual no es la explicación, sino que, como las palabras
de un texto, expresa la explicación. La explicación es un
constructor lógico, dinámico, y como tal debiera poder ser
“visualizada”.
La arqueología debe resolver la cuestión del porqué el registro
arqueológico observable es como es en términos de cómo los
humanos lo produjeron. Y las tecnologías de la información
debieran ayudarnos, ya sea por medio de imágenes o sin ellas.
La Ciber-arqueología consiste por tanto de una cadena compleja
de visualizaciones: modelos geométricos de la realidad captados
por sensores automáticos que deben ser procesados por
mecanismos lógicos que nos permitan inferir los procesos
causales responsables de esa peculiar geometría, esto es, cómo
las acciones de los hombres y mujeres del pasado convirtieron
ciertas materias naturales en evidencias materiales con
determinadas propiedades visuales de tamaño, forma, textura,
composición y localización.
Una vía para resolver el problema consistiría en “visualizar” el
modo de producir “mecánicamente” explicaciones funcionales
y/o productivas, antes que “visualizar” objetos. El objetivo no
sería pues la reconstrucción, ni tan sólo el proceso físico de la
reconstrucción, sino el problema inverso que va del objeto
original al proceso de trabajo que en el pasado produjo/utilizó
ese objeto y que explica por qué tiene la apariencia que tiene. Si
se ha documentado arqueológicamente como una serie de
fragmentos, ¿por qué se rompió? Si no ha aparecido
fragmentado, ¿por qué tiene la forma que tiene? ¿qué acto de
trabajo, qué intención productiva o de uso fue responsable de
que una materia prima haya adoptado esta forma final? En otras
palabras, antes que el objeto debemos visualizar las acciones que
pudieron haber sido realizadas sobre él, dada su estructura física
y la estructura física del agente que interactuó con él. La
estructura física del objeto y la acción del agente establecen
conjuntamente las causas inmediatas de las características
percibidas.
Así, por ejemplo, para visualizar el “conocimiento” arqueológico
y la producción de conocimiento acerca del uso de un vaso
prehistórico, tendremos que representar por medio de
secuencias animadas de cambio y modificación las distintas
fuerzas que hayan actuado sobre el elemento en el pasado, por
ejemplo, ponerlo de pie, levantarlo, etc. En el caso de un
recipiente o contenedor cerámico:
(1) ENTRADAS: por ejemplo, ponerlo de pie, asirlo, etc
(2) SALIDAS: por ejemplo, el transporte de líquidos
(3) ESTADOS: características físicas del vaso, por
ejemplo, su forma
(4) PRIMERA RELACIÓN CAUSAL:
por ejemplo, el levantamiento (entrada) actúa en su forma
55
Virtual Archaeology Review
(estado) → transmitiendo el líquido (salida)
(5) SEGUNDA RELACIÓN CAUSAL:
por ejemplo, el levantamiento (entrada) actúa en su forma
(estado) → pero la forma no cambia (dinámica: el próximo
estado).
Inteligencia Artificial y razonamiento inverso
Nos encontramos con la aparente paradoja de que para resolver
la mayor parte de problemas –arqueológicos o no-, deberíamos
visualizar (conocer) la solución de antemano, de manera que la
mecánica de explicar se reduzca a la selección objetiva de la
mejor solución de entre un conjunto de soluciones posibles. La
única manera de conocer la causa dada información visual sobre
los efectos consiste en elegir cual de entre una serie finita de
causas conocidas produjo los efectos observados con mayor
probabilidad que las demás.
El lector quizás se sorprenda por esta caracterización, típica de la
Inteligencia Artificial y de la robótica. Los problemas
arqueológicos son definidos comúnmente como “el efecto
material de la acción social ocurrida en el pasado que queremos
explicar pero no sabemos cómo”. Ahora parece ser que el
pasado es conocible si y sólo si ya lo conocemos.
En realidad no hay nada extraño en ésta aproximación.
Haciendo uso del conocimiento previo, podemos diseñar un
sistema computerizado capaz de inferir, desde datos sensoriales,
qué es lo que da sentido a esos datos. La explicación ocurre
cuando un input perceptual coincide con una definición
contenida en la memoria perceptual de cada uno de los eventos
causales que el sistema espera reconocer o identificar. Esta visión es
también coherente con una concepción de las teorías científicas
como una estructura que sirve para elegir un modelo específico
de un conjunto de modelos posibles. Los resultados preliminares
de un reconocimiento o identificación preliminar deberían
combinarse para obtener pautas globales que actuasen como
entrada de nuevos patrones de inferencias más complejas. De
esta forma un posible arqueólogo autómata resolvería los
problemas a partir del reconocimiento de la materialidad, y con
la ayuda de este resultado podría llegar a producir la explicación
consiguiente.
Reconocer el pasado en el presente es pues una tarea gradual que
procede de lo general a lo específico y que solapa, guía y limita la
obtención de una explicación causal de los inputs adquiridos en
el yacimiento o en el laboratorio. El proceso general explicativo
trata pues de desglosar y extraer un número de diferentes
propiedades físicas observables (bajo nivel de análisis), seguido
de una decisión definitiva sobre la base de estas propiedades
(análisis de alto nivel). Los procesos de bajo nivel generalmente
se basan en la extracción de las características relevantes
(tamaño y frecuencia, forma y composición) que caracterizan a la
individualidad de cada caso arqueológico (Gibson 1979).
En consecuencia, la comprensión automática puede ser
entendida como el generador de una serie de descriptores del
mundo físico actual que pueden ser suficientes (quizás
conjuntamente con otra información contextualizada) para
identificar momentos de la acción social ocurrida en el pasado,
de acuerdo con lo que el robot conoce de ellas a través de los
experimentos del
laboratorio, de las simulaciones
computerizadas y de las analogías etnoarqueológicas.
La Inteligencia Artificial nos ofrece tecnologías capaces de
“virtualizar” no sólo la manera de resolver el problema
arqueológico, sino la definición misma del problema. Las redes
neuronales y la nueva generación de sistemas expertos
ejemplifican este enfoque (Barceló 2008, Dawson 2004, Jones
2007, Munakata 2008). Un Sistema Experto es un programa
informático escrito como una serie organizada de reglas que
pueden ser cambiadas, y que de hecho, están siempre cambiando
en una relación reflexiva permitiendo a los expertos dar cabida a
una nueva información. A partir de unos datos empíricos sobre
una observación particular y algún conocimiento asociativo
(Si...Entonces), el problema científico puede ser explicado en
términos de los conocimientos almacenados en las bases de
reglas. Las redes Neuronales siguen el mismo enfoque, aunque
en este caso, el conocimiento asociativo no está expresado de
una forma declarativa-proposicional, si no usando
transformaciones vectoriales. El input de entrada activa una
primera transformación –del input sensorial a la representación
vectorial del mismo- y esta activación se propaga a través del
sistema por vía de transformaciones sucesivas hacia conceptos
cada vez más generales y de mayor nivel de complejidad lógica.
En una red neuronal casi todo el conocimiento está implícito en la
estructura del dispositivo que lleva a cabo la tarea, más que
explícito en los estados de las unidades por ellas mismas. El
conocimiento no es directamente accesible a la interpretación,
sino que se construye en el propio procesador. Éste determina
directamente el proceso. Éste se adquiere a través del ajuste de
las conexiones mientras se van utilizando en el proceso, en lugar
de hechos explicativos ya formulados y almacenados. El
ordenador integra la información de un gran número de fuentes
de entrada, produciendo un valor numérico real continuo que
representa algo así como la fuerza relativa de éstos inputs (en
comparación con otros inputs que podría haber recibido). El
modelo computerizado entonces comunica otra señal clasificada
(su tasa de activación) a la representación vectorial de otras
explicaciones en función de la fuerza relativa de este valor. Estas
señales clasificadas pueden transmitir algo así como la
probabilidad de la causa en algunas específicas circunstancias
limitadas (Bicici y St.Amand 2003).
La aplicación mas obvia de los Sistemas Expertos y las redes
Neuronales en arqueología y en la gestión del Patrimonio
Cultural, está en resolver problemas de diagnóstico. Los
ejemplos son varios, desde el estudio de la forma y función de
útiles de sílex del Paleolítico hasta la cerámica prehistórica. Los
edificios antiguos también puedes ser explicados a través de sus
características visuales arquitectónicas, y las características
visuales de los huesos humanos y animales pueden ser usadas
como categorías explicativas bien definidas. También es posible
mecanizar el proceso de clasificación de muestras de madera
antigua para su determinación taxonómica. Los sistemas de
Inteligencia Artificial también pueden ayudar a la investigación a
descodificar los patrones decorativos de la cerámica o del arte
parietal. En otras aplicaciones arqueológicas se han explorado las
posibilidades de identificar un artefacto entero a partir de sus
fragmentos; el análisis y la interpretación histórica a partir de los
análisis arqueométricos en el ámbito de los estudios de
procedencia, la interpretación de fotografías aéreas y el análisis
de imágenes de teledetección para detectar características
relevantes en el paisaje (Barceló 2008).
Estas técnicas de Inteligencia Artificial pueden vincularse a la
representación de los datos arqueológicos mediante modelos
geométricos realistas (visualización científica), de manera que es
el input sensorial mismo el que es explicado directamente, sin
pasar por su tradicional descripción en términos linguísticos. No
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
56
Virtual Archaeology Review
es la palabra “yacimiento arqueológico” la que debemos explicar,
sino la información sensorial (datos visuales) captada
instrumentalmente. También la respuesta del sistema puede
aparecer expresada visualmente (modelo geométrico), pero en
cualquier caso, lo importante no es la imagen resultante, sino la
conexión necesaria entre input (visual) y output (explicación)
(Chaigneau et al. 2004).
Sistemas expertos y las redes neuronales son metodologías
“tradicionales” de Inteligencia Artificial que han sido criticadas,
fundamentalmente en base a su “asociacionismo” latente, lo que
implica el renacimiento del enfoque empiricista radical que
dominó “la edad oscura” de las ciencias sociales. En esa época la
explicación se basaba en interpretaciones medioambientales y en
los comportamientos ambientales que producía. En muchos
aspectos, los sistemas expertos y las redes neuronales hicieron
eco de ésta tendencia. Fundamentalmente los sistemas
computerizados que hemos analizado dan sentido a los estados
del sistema sobre la base de lo que se correlaciona con, y hay
graves problemas filosóficos, no sólo en relación con la
semántica de un cálculo basado en la correlación de causalidad,
sino también, en general, la adecuación de correlación semántica
como base de cualquier teoría del significado.
Conclusiones
La implementación de las potencialidades explicativas en una
máquina es lo que comúnmente se denomina “simulación
computerizada”. La simulación no es exactamente “virtual” o
imaginaria ya que cualquier forma de simular lo que ocurrió en el
pasado requiere la implementación de un mecanismo, que,
habida cuenta de las propiedades de los elementos constitutivos
y del entorno, dé lugar a los fenómenos de interés.
Por descontado, no podemos saber qué es lo que realmente
ocurrió, pero podemos llegar a saber lo que “probablemente”
tuvo lugar. Virtualmente podemos imitar la historia humana en
el ordenador, explorando (al alterar las variables) toda la gama de
posibles resultados para diferentes comportamientos. Podemos
comparar que hubiera pasado con los parámetros introducidos
en otro ordenador y conocer la sociedad pasada mejor que
nunca. Cuando este tipo de simulación funciona, el sistema
funciona de una forma determinada y muestra ciertas conductas.
La simulación puede proporcionar una prueba de los modelos y
de las teorías implícitas o simplemente permitir al observador
experimentar y registrar el comportamiento del sistema. Mientras
el énfasis cambia al describir el comportamiento de un sistema
objetivo con el fin de comprender los sistemas sociales naturales,
así también lo hace el objetivo de la investigación durante la
observación y la experimentación con posibles mundos sociales.
Al simular la estructura física y la acción del agente para las
diferentes categorías de evidencia arqueológica, seremos capaces
de predecir el comportamiento pasado. Si las descripciones
físicas del objeto son un tanto vagas, entonces el conocimiento
sobre la historia del objeto puede influir en las predicciones de
cómo conceptualizar su estructura física, que a su vez puede
influenciar sobre la explicación arqueológica. Si la historia del
objeto no es del todo completa, la máquina puede inferir que la
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
estructura física del objeto puede ser defectuosa. Este enfoque
asume que una serie de estados causales vinculados – un modelo
causal – soporta inferencias sobre la acción actual y la imaginada.
El modelo capta la estructura causal básica a través del examen
de la estructura física del objeto y de las capacidades del agente
para actuar con el objeto dando un resultado funcional. Como la
estructura física de un hacha y la acción de la persona causa el
resultado de cortar madera. Evidentemente, no todos los
elementos causales deben ser incluidos en este modelo causal.
Debemos asumir que cuando definimos los modelos causales de
la función de un objeto, estos no incluyen todos los
componentes físicos necesarios. Sin embargo, podemos captar la
estructura causal central a través de teorías intencionales; es
decir, el papel funcional imaginado para un objeto, que se le
adscribió a través de su estructura física. Desde esta posición de
la función, la estructura física es un efecto del proceso histórico,
no una causa de la función.
Algunas de estas tecnologías pueden ser difíciles de aplicar en la
arqueología. Especialmente, en el enfoque interactivo, los
arqueólogos deben darse cuenta de que el único enfoque posible
de la explicación funcional es la experimentación y el la cuidada
réplica de las antiguas técnicas y comportamientos. De esta
manera, un razonamiento a partir de la función puede ser visto
como una forma limitada de satisfacer el problema, ya que las
descripciones funcionales limitan la estructura o la estructura
limita las posibles funcionalidades. Las asignaciones disponibles
entre forma y función son muchas actualmente y cada vez hay
más que para recuperar un objeto usan la experiencia
combinada de la funcionalidad ya reconocida de los objetos. El
reconocimiento a través de un modelo es aceptado como una
solución. Otro punto de vista es aquel que considera el
razonamiento sobre la funcionalidad como un modulo de
planificación que está compuesto por procedimientos de ayuda.
En este punto de vista, la descripción funcional se lleva a cabo a
un alto nivel, descartando la representación completa. Una
representación completa del mundo físico debería intentar
representar las fuerzas que gobiernan el universo y que van
desde las fuerzas gravitacionales entre los planetas a las fuerzas
entre los componentes químicos y sus átomos.
¿Qué tiene que ver nuestra perspectiva con la Carta de Londres?
Muy sencillo, que esa declaración resulta ambigua al dejar a juicio
de los usuarios la utilidad del modelo. Como consecuencia,
pareciera que el objetivo de todo el esfuerzo es la producción del
modelo por el modelo, como si lo único importante fuese pintar
con colores virtualmente atractivos una realidad polvorienta y
fragmentada. Por el contrario, las tecnologías de la información
nos permiten pensar de otro modo, nos permiten visualizar la
manera misma de pensar.
En lugar de insistir tanto en la “certidumbre” del modelo visual,
debiéramos insistir más en la “formalización” del pensamiento,
en la necesidad de crear algoritmos de pensamiento e
interpretación. Ciber-arqueología no es pues un conjunto de
sueños virtuales, hipótesis libres que flotan a disposición de
distintos usuarios con distintas necesidades. Significa utilizar la
potencia de la algorítmica para objetivar e instrumentalizar la
manera que tenemos de explicar por qué las evidencias que del
pasado se han conservado en el presente son como son y no de
otra manera.
57
Virtual Archaeology Review
Bibliografía
BARCELÓ, J.A., 2008, Computational Intelligence in Archaeology. Information Science Reference, The IGI Group, Henshey (VA).
BICICI, E. ST. AMANT, R. 2003, Reasoning about the Functionality of Tools and Physical Artifacts. Technical Report TR-2003-22, Department
of Computer Science, North Carolina State University.
DAWSON, M.R.W., 2004, Minds and Machines. Connectionism and Psychological Modeling. Blackwell Pub. London.
CHAIGNEAU,S.E., BARSALOU,L.W. SLOMAN, A. 2004, “Assessing the Causal Structure of Function” Journal of Experimental
Psychology: General, 133, (4), pp. 601–625.
GIBSON, J.J., 1979, The Ecological Approach to Visual Perception. Mifflin, Boston.
JONES, T., 2007, Artificial Intelligence: A Systems Approach. Infinity Science Press, Hingham (MA).
MUNAKATA, T., 2008, Fundamentals of the New Artificial Intelligence. Springer, Berlin.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
58
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
59
Virtual Archaeology Review
Between the Real and the Virtual: 3D visualization in the
Cultural Heritage domain - expectations and prospects
Sorin Hermon1 and Loukas Kalisperis2
STARC. Science and Technology for Archaeological Research Center. The Cyprus Institute. Cyprus.
CaSToRC. Computational based Science and Technology Research Center. The Cyprus Institute. Cyprus.
1
2
Abstract
The paper discusses two uses of 3D Visualization and Virtual Reality (hereafter VR) of Cultural Heritage (CH) assets: a less used one, in
the archaeological / historical research and a more frequent one, as a communication medium in CH museums. While technological effort
has been mainly invested in improving the “accuracy” of VR (determined as how truthfully it reproduces the “CH reality”), issues related
to scientific requirements, (data transparency, separation between “real” and “virtual”, etc.), are largely neglected, or at least not directly
related to the 3D outcome, which may explain why, after more than twenty years of producing VR models, they are still rarely used in the
archaeological research. The paper will present a proposal for developing VR tools as such as to be meaningful CH research tools as well
as a methodology for designing VR outcomes to be used as a communication medium in CH museums.
Key Words:
DATA RELIABILITY, MIMESIS, SCIENTIFIC REQUIREMENTS, NEW MEDIA
1. Introduction
Following major shifts in the geo – politics of Europe
[COLLINS AND TAYLOR, 2006] of the late 19th century, as a
consequence of new ideas regarding economies, societies and
national identities, also the concept of "Cultural Heritage"
(hereafter CH), simply regarded here as the legacy of physical
artifacts and intangible attributes of a society, inherited from past
generations and bestowed for future ones, shifted and became
"open" – a multi – layered concept shaped by the way nations
constructed their identities and collective memories.
Consequently, referring to CH as a collective consciousness
[DURKHEIM, 1967] that acts as a cohesion force of a society,
based on shared beliefs that stands between society and its
cultural practices, we may also regard is a major actor playing a
substantial role in shaping the modern society of today. As such,
the places where CH is mostly exposed to the public, the
museums of their different types, should be regarded as "open",
following the transformation of CH itself and the ways people
refer to it
Museums, regarded as a social establishment, gradually changed
from an original "exhibits of wealth" and "cabinets of
curiosities" of first displays of artifacts to the public of the 18th
and 19th centuries, to supposedly "something else", following
shifts in the political, social and economical structures of what
we label today as Modern and Post Modern era [LYOTARD,
1984], which left a mark in other fields as well, such as
aesthetics, philosophy and art. For example, the invention of
photography at the beginning of the 19th century released art
from its traditional limitation of representing reality, and moved
towards other fields and modes of representation.
Another shift occurred with the "Information Age" of the 80's,
when, by digital means, the concept of large scale of information
distribution was spread to the public and visual communication,
which apparently had priority as a main means of
communication at humanity's dawn, (re)gained importance in an
otherwise (still) language dominated communication world, after
several hundreds of millennia. Consequently, Information
Communication Technologies (ICT) became a common term,
and allowed another "quantum leap" in the modern non-linear
way of thinking, providing tools for approaching, designing and
representing content, among it CH as well.
The emergence of ICT and the resulting revised aspects about
museology, as a reappraisal of the scope and function of
museums, triggered the organization, on a more systematic basis,
of the communication policy of museums. Aiming either at the
contextualization of objects or to improve the quality of
information provided by CH institutions or simply to increase
audience appeal, ICT offer today the means for transforming
experience without violating the primacy of the artefact. The
legalization of the adoption of mediated means for representing
CH can be seen as an attempt to lay out the theoretical and
factual presuppositions of this use.
Turning back to museums, this time regarded as a "non a priori
environment", i.e. as spaces where different social interactions,
not all as yet clear, take place, we question how new
technologies, and in particular VR, integrate in their
communication strategies, as to cope with the demands of a
modern, technology driven society; in other words, understand
the social context in which VR operates and what are their
prerequisites, from a social sciences point of view.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
60
Virtual Archaeology Review
VR is perhaps a buzz word, due to various factors, such as
excitement for new technologies, the influence of cultural
industries that suggest the possibility of existence into another
reality to live in, or the possibility to create our own reality,
through other non- linguistic symbolic systems. Given particular
aspects of VR (when used as a communication tool [BIOCCA
AND LEVY, 1995] in museums), our basic claim is that in fact
we may regard VR as a medium of human expression, and, as
such, a new kind of media [MCLUHAN, 1964], with a language
and symbolic system of its own. Thus, the article will focus on
trying to understand the nature of VR itself (regarded as a
dialogue between internal reasoning and visual exteriorization),
the dynamics between the information sources of VR, its
transmission conditions (e.g. the museum space) and the
responding receiver (museum visitors) and how meaning,
derived from VR, develops as a modern non-linear way of
thinking, providing tools for approaching, designing and
representing (CH) content, stimulating a process of interaction
between the user and the (VR) technology.
Closing the circle, we will investigate how VR, regarded as a
medium for archaeological research, may affect the
interpretation of CH. This analysis will be done taking into
consideration three basic (and yet fundamental, in our opinion)
assumptions about the archaeological reality: “…[Archaeology
is] the discipline with the theory and practice for the recovery of
unobservable hominid behavior patterns from indirect traces in
bad samples...” (CLARKE, 1976), Clarke reminding us that we
should keep in mind and always remember our data from the
past is fragmentary and partial; “…the past is a foreign country:
they do things differently there…” (HARTLEY, 1953),
indicating that no past societies had norm of behavior and
conduit and social dynamics not always clear nor accessible to us
in our modern times; and third, “…[W]hat the world wants is
for archeology to teach it something about humanity's past ...
about Olduvai Gorge, and Stonehenge ... People … look to
archaeology as the only science … with the power to uncover
that past…” (FLANNERY, 1982), reminding us that we have a
social duty, as archaeologists, to enable the past for the citizen.
2. VR – SOME CLARIFICATIONS
VR applications to humanities and social sciences have already a
long history of more than two decades, traceable to the early 80's
of the last century. Related theoretical and methodological issues
have been discussed in the past [REILLY, 1989, REILLY AND
SHENNAN, 1989, SIMS, 1997, FULK AND STEINFELD,
1997, BARCELO, FORTE AND SANDERS, 2000,
NICCOLUCCI, 2002, FORTE, 2000]. In general terms, VR can
be viewed as a simulation of a real or imagined environment
[ROBERTS AND RYAN, 1997], while (3D) models help to
understand, represent and analyze the complexity of the real
(modern or past) world, understanding a particular problem or
predict the behavior of a particular (modern or past)
phenomenon.
Researches in cognitive psychology have shown the positive
relationship between visualization ability [EKSTROM,
FRENCH AND HARMAN, 1976] and the use of visualization
tools thus perceiving the information in a more appropriate way.
The information visualization process primarily aims to amplify
human cognition with different options in order to facilitate data
meaning associations and to extent the interpretative or de
codifying skills of users. The Information Visualization (IV)
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
process is summarized in transforming data, information, and
knowledge into visual form. VR environments assist in this
visual processing by, for example, getting an insight of the
abstract data values. [SCHREIBER, ET AL., 2000] describes the
components of the IV process as follows:
data values are input signals to sensory and cognitive
processes,
information is data with an associated meaning,
knowledge is “the whole body of data and information
together with cognitive machinery that people are able to
exploit to decide how to act, to carry out tasks and to create
new information”.
The implication is: the better the visual tool, the better the
explanation and the interception. Thus, VR allows the 3D
visualization of concepts, objects or spaces and their
contextualization – it gives a visual framework in which data is
displayed. VR also enables interaction with data organized in 3D,
facilitating the interaction between human, data, and information
[FRISCHER, ET AL., 2002] It also transforms information,
making it more accessible to the human eye and thus more easily
perceptible, enhancing perception in the context of its
interrogation. VR as a system of organizing and conveying
information deliver to users multiple meanings which arise and
develop by re- interpreting spatiality. It produces thus a sort of
duality between virtual space, which is often tied to an imaginary
context and real space, closer to our every day life or experience.
Information becomes thus the point of contact between real and
virtual. VR should therefore be regarded as an intentional
activity, and constructed as such. Therefore it requires a decision
making process based on information from different sources,
incorporating aspects and views of varying actors and offering
different possibilities open to visitors. The whole process is also
followed by the imperatives of convenience and transparency
[SELMAT AND MINTZ, 1998] allowing among others an
understanding of the processes of perception and cognition.
Transparency and convenience include not only the vision of the
whole synthesis, but as well as the representational system, the
participation process for the users and the development of
edutainment content and services.
However, since man – made objects are imitable and replicas
and copies were always created [BENJAMIN, 1969], a legitimate
question to ask it is to which extent the VR outcome, seen as a
replica to something yet to be defined, can reproduce the
original? Two major drawbacks characterize this replica: its
presence in the spatio-temporal context (related to the original)
and the degree of matching between the original and its replica.
Moreover, since human sense perception depends on the way it
is organised, the medium in which it is accomplished and the
historical circumstances into which it is active, we can pose again
the previous question: what are reconstructing when creating a
VR ? Which facet of the original object's nature we want to
capture and reconstruct? VR offers an experience of a multilayered reality, and as such should be conceived. VR is not “the
reality", but the representation of “one”, or, several “instances”,
possibilities among others, various under different circumstances
and contexts.
Since VR can be perceived as a visual exteriorization of an
internal reasoning process (analysis and interrogation, creation of
a fiction and a narrative), a dialogue between the internal
cognitive process and its external manifestation occurs.
Therefore, the user of the VR should be aware of the intended
identity of this outcome and the intentionality of its producer.
61
Virtual Archaeology Review
Another aspect to take into consideration is the amount of
information provided with the VR outcome – should we
consider all facets of a CH object and thus presumably letting
the user to choose what to observe (a content oriented
approach), or, taking into consideration the historical
circumstances of the potential user and his/her previous
knowledge (if the target user is identified, which, in museum
environments is yet a difficult task), applying a user oriented
approach. But, since in most cases evaluating how a user
accumulates knowledge and absorbs it is extremely difficult, and
the characteristics of target groups can be defined only in very
generic terms, we are facing an apparent tough choice when
creating a VR, balancing between "an objective representation of
the whole", and a "selected visualization", choosing only
particular aspects of the real object to be virtually represented.
VR should be regarded in our opinion as a dialogue between the
characteristics of the real object and the user, VR being not a
digital "monolith", but rather an entity with a "changing shape"
and a "shifting geometry", allowing the creations of different
"metaphors". As such, we should regard visual communication
in general and VR in particular, not as an "objective truth",
parting from the Platonian perspective that "seeing is believing"
[BUR83], but as only one truth among possible others
[HERMON, NICCOLUCCI AND D’ANDREA, 2005]. This
means that the construction of a VR environment is not merely
a technical challenge.
Choices made about the conceptualization step, the
interpretative frame, the extent of mimic external realities, the
narrative structure and functions to adopt, make VR appealing
to a wide spectre of disciplines with prevalent epistemological
issues. Such a point of view takes into consideration the
processes or effects of using VR environments, provides a
conceptual framework and the epistemological basis upon which
design synthesis is operated, provides the aesthetic premises for
the creation of media products, the type of interaction or
encounter with users experience and the interpretative frame of
the virtual space.
world as we internally do, assuming that when we think of a
concept, we visualize its structure and geometry and also
spatially reconstruct its context. So, if the distance between the
external and internal modes of representation is short, we do not
need to invest much effort in translating the external
information, it is in a way more intuitive.
By addressing VR as a new language, a new media, we cannot
limit the relation VR user to a mere passive observation by the
later, we need an active interaction in order to acquire this
language. Following this idea, while learning by acquiring and
storing information is an inert knowledge, interpreting reality (or
virtual reality) and making sense of it is an active knowledge.
Since basically VR is a non- linguistic symbolic system, we can
address it through the prism of ideas deriving from visual
communication theories. As such, an attempt to characterize
VR, mainly as an experiential product [LAUREL, 1992], could
derive from theories of social sciences, in an attempt to identify
its nature and the relationships with the user. In this sense, VR is
a unique technology which enables a very intuitive way of
processing data. We can thus refer to the (VR) medium using the
Aristotelian terms of mimesis, emphasizing its characters as a
form of artistic imitation, which strengths the relationship
between user and technology, and encourages the user of a
technology to develop a first person, rather than third-person
relationship with his or her mediated environment [STEUEUR,
1992].
In other words mimesis is necessary in order to cultivate a direct
contact through the subject and its mediated environment.
Hopefully, if the mediated environment provides us with
different modes of representation; one of our tasks at this stage
would be to create group of events relatable to the mimesis, in
order to facilitate the interaction user VR system. Moreover,
since in many cases there is a discrepancy between a de facto
representation and the intended expression [GOODMAN,
1076], we need the mimesis in order to "better relate to the
transmitted information"; mimesis can be viewed as the event
that connects the user to the mediated environment (in the VR
system).
3. VR as a communication medium
4. Issues concerning interpretation
When creating a VR, we should be aware of the fact that we are
using a different language for gathering, packaging and
conveying knowledge; as such, we must be aware of its syntax
and the “symbol system” it employs [SALOMON, 1980]. Since
VR offers new ways of internal, cognitive representations, it can
be seen as cultivators of mental abilities as well. However, these
systems are requiring different mental skills – how can we, or
should we, adapt, or address, VR to particular targets with
(unknown, perhaps only hinted) mental skills? Without a very
deep understanding, how can we balance between simplicity of
“3D message” and complexity of its structure? How do we
balance between simplicity (basic facts) and complexity (more
fiction)?
If we are willing to accept the assumption that people represent
the world to themselves and manipulate it mentally through a
number of internal symbol systems, we cannot avoid the
possibility
of
interdependence
between
externalcommunicational and internal-cognitive symbol systems
[SALOMON, 1980]. Consequently, we should identify and
characterize these symbols, and express them in the VR
outcome, since one of the major advantages of using VR derives
from the fact that it uses similar methods of representing the
We can summarize our discussion by delineating the main
features of VR [DAVIS, 2006]. The following distinction is
established only for methodological concerns as the three
components appear interrelated in VRE:
1.
Spatiality
2.
Virtuality
3.
Representation
Space is not only the frame into which action is located. It is
abstract in the sense that is related to the interior life of the
objects and the user. Its construction is based primarily upon
certain properties of reception and perception of the real world
and at the same time it is carrier of determined cultural values.
However this space rich of significations, cannot stand alone
without being related to the interpretation of the real or the
imaginary space by the user. Users recognize and derive pleasure
from familiar images of their vision. Virtual space plays a double
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
62
Virtual Archaeology Review
role by contributing to the virtual environment acquiring its
coherence and verisimilitude.
Virtuality refers to the relationship between the user and the
system. It is essentially reposed on the idea of direct
manipulation as it is determined by the human computer
interaction. It characterizes in a large extent the interaction style
or interaction paradigm. Graphical display of interaction is
linked to direct manipulation by a visible feedback to any
operation on the VRE. The 3-D graphical environments offer
the possibility of exploration to more realistic environments and
interaction with both virtual and autonomous agents.
Anthropomorphic interactions, build around interface agents,
establishes the human computer interaction in a conversational
style, usually as a dialogue with a wizard. Virtuality invalidates
the distinction between control interface and user interface. By
this distinction we can avoid the confusion occurring when we
deal with the meaning within a space (spatiality) from the actual
relationship of the user to that space (virtuality).
Once we have decided what to model and by what means, the
problem of the representation emerges. The choice of the
representational means, appropriate to our task, obeys to several
parameters which must fulfill several functions:
The visual embodiment of the user,
The interaction means and modes with the world,
The means of feeling various attributes of the world using
the senses.
Representation models try to respond to the problem of access
and visualization of the huge quantity of data stored in a VRE.
The semantic representation of 3D CH objects captures the
functions, characteristics and relationships between virtual
objects. Semantic representation turns objects into a virtual
environment and the tools used to display and communicate, the
interface, into meaningful entities.
The meaning of virtual objects and their relationships in a scene
provide an alternative image of the real object, conveying
meaningful information that would be impossible to represent
otherwise [HERMON, NICCOLUCCI AND D’ANDREA,
2005]. Attached metadata help users to find access and use
virtual reality worlds in a more convenient way and for multiple
purposes as engineering, interpretation and reconstruction,
evaluating methods of mediating and presenting information,
exploring the artistic views, and supporting educational activities.
The whole enterprise can be seen as a way of structuring
information in a digital form. At this point, the use of different
communication channels, such as pointing, linguistic utterances,
or facial expressions, in an intermixed way expresses the
multimodality capabilities of a VRE. It demonstrates the specific
channels through which information can be conveyed. It refers
to the ability of a VRE of mimicking and understanding humans’
natural use of multiple modalities.
6. Epilogue
The paper focused on presenting VR as a communication media
and a suitable platform for archaeological research, and, as such,
to define its basic characteristics, presented above. Our starting
point was that VR should be regarded as a media, and thus
defines its language and internal system, either when employed
as a research tool in archaeology, or is incorporated in the
communication strategy of a CH museum. Therefore, the
creation of the mediated environment (the VR content), should,
in our opinion, be designed according to the characteristics that
identify VR as a communication medium. This would imply that
starting from collection of data content, creating the VR content
(the mediated environment) and ending with the interface design
and the physical place of the exhibited VR, these attributes
should be taken into consideration. Thus, apart from the
requirements from VR when considered as a “cognitive partner”
in the archaeological research, discussed elsewhere as well
(HERMON, 2008, HERMON AND NIKODEM, 2007), we
propose to regard VR as a medium of human expression, and as
such, a new kind of media communication, when employed into
the communication strategy of (CH) museums, considering also
the particular roles museums may fulfill in the modern society.
As such, several aspects should be taken into consideration when
designing the VR outcome: what is the reality, or realities that we
want to virtually reconstruct, how we mediate between a content
oriented, "objectively" recreating all possibilities, and a user
oriented approach, visualizing selected attributes, presumably of
higher interest than the others and related to the potential target
user. The VR product should address aspects such as vividness,
creating a rich sensorial environment and interactivity, i.e. the
possibility to shift geometry and change content by its users.
Moreover, internal, cognitive modes of representation should be
taken into consideration, and creating the VR accordingly, in this
manner shortening the distance between the internal and
external modes of representation, obtaining a VR accessible in a
more intuitive way, and as such, also its transmitted message.
For such a task, we are suggesting to adopt a "mimesis"
approach, as a mediator between the user and the VR.
Acknowledgements
The authors would like to express their gratitude to their collaborators over the years, in particular at the VAST-Lab, University of
Florence and at Penn State University, during work meetings of various EU funded projects, such as EPOCH, No.E. and Chiron, as well
as fruitful discussions at the Cyprus Institute.
References
AUKSTAKALNIS S., BLATNER D (1992): Silicon Mirage: The Art and Science of Virtual Reality, Peach Pit Press.
BENJAMIN W (1969): The Work of Art in the Age of Mechanical Reproduction, Illuminations, Schocken Books. New York.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
63
Virtual Archaeology Review
BARCELÓ, J.A., FORTE, M. AND SANDERS, D.H. (eds.) (2000): Virtual Reality in Archaeology, Oxford, BAR International Series
843.
BIOCCA, F., LEVY R., (Eds) (1995): Communication in the Age of Virtual Reality, Lawrence Erlbaum Associates. F Hillsdale, NJ.
COLLINS J. B., TAYLOR K. L. (eds.) (2006): Early modern Europe. Issues and interpretations, Blackwell. Malden, MA.
DAVIS S., B (2006): The Design of Virtual Environments with particular reference to VRML. A report for the Advisory Group on Computer
Graphics Support Initiative for Multimedia Applications, Middlesex University June 1996, accessed on July 17, 2007 in
www.agocg.ac.uk/reports/virtual/vrmldes/vrmldes.pdf
DURKHEIM É (1967): Les règles de la méthode sociologique, Les Presses universitaires de France, 16e edition. Paris.
EKSTROM, R.B., FRENCH, J.W. AND HARMAN, H.H (1976): Manual of Kit of Factor-Referenced Cognitive Tests, Educational Testing
Service. Princeton.
FORTE, M (2000): About virtual archaeology: disorders, cognitive interactions and virtuality, in Barceló, J.A., Forte, M. and Sanders,
D.H., (eds.), Virtual Reality in Archaeology, Oxford, BAR International Series 843, pp. 247-59.
FREEDMAN, D. H. (2005): “It doesn’t just look real- it is real. The big shift in how we watch will be from flat screen to 3-D”, in
Newsweek, 18, [online] http://www.msmbc.com [Consult: 1-02-2007].
FRISCHER, B., NICCOLUCCI, F., RYAN, N.S., BARCELÓ, J.A (2002): From CVR to CVRO: the past, present, and future of cultural
virtual reality, in Niccolucci, F. (ed.) Virtual Archaeology, Proc. VAST Arezzo, Oxford, BAR International Series 1075, pp. 7-18, 2002.
FULK, STEINFELD, C (1997): (Eds.), Organizations and Communication Technology, Sage. Newbury Park, CA.
GIBSON, J. J (1966). The Senses Considered as Perceptual Systems. Houghton Mifflin. Boston.
GOODMAN, N (1976): Languages of Art. An Approach to a Theory of Symbols, Hackett Publishing Company Inc., Indianapolis/Cambridge.
HERMON, S (2008): Reasoning in 3D: a Critical Appraisal of the Role of 3D Modelling and Virtual Reconstructions in Archaeology, in
B. Frischer and A. Dakouri-Hild (eds.), Beyond Illustration: 2D and 3D Technologies as Tools for Discovery in Archaeology, B.A.R. International
Series 1805, Archaeopress. Oxford. pp. 36-45.
HERMON, S., NIKODEM, J (2007) 3D Modelling as Scientific Research Tool in Archaeology, CAA Conference Proceedings, Berlin, 2007
(CD-Rom).
HERMON, S., NICCOLUCCI, F., D’ANDREA, A (2005): Some evaluations on the potential impact of virtual reality on the
archaeological scientific research, in Proc. VSMM 2005, Ghent, Belgium, pp. 105-14.
LAUREL, B (1992): Computers as Theatre, Addison- Wesley. Reading, MA.
LYOTARD J.F (1984): The Postmodern Condition (1979) publ. Manchester University Press.
McLuhan, M (1964): Understanding Media: The Extensions of Man. Penguin. New York.
NICCOLUCCI, F (2002): Virtual Archaeology, Proc. VAST Arezzo, Oxford, BAR International Series 1075.
REILLY, P (1989): Data visualization in archaeology, IBM Systems Journal 28(4): 569-79.
REILLY, P., SHENNAN, S (1989): Applying Solid Modeling and Animated Three-Dimensional Graphics to Archaeological Problems,
Technical Report UKSC 209, Winchester, IBM UK Scientific Centre.
ROBERTS, J.C. RYAN, N.S (1997): Alternative archaeological representations within virtual worlds, Fourth VR-SIG 97 Conference, Brunel
University.
SALOMON, G (1980): The use of visual media in the service of enriching mental thought processes, Instructional Science 9(4): 327-39.
SCHREIBER, A. T., AKKERMANS, J. M., ANJEWIERDEN, A. A., DE HOOG, R., SHADBOLT, N. R., DE VELDE, W. V., and
WIELINGA, B. J (2000).: Knowledge Engineering and Management: The Common KADS Methodology, MIT Press.
SELMA T., MINTZ, A (1998): The Virtual and the Real: Media in the Museum, American Association of Museums.
SIMS, D (1997): Archaeological models: pretty pictures or research tools? IEEE Computer Graphics 17 (1): 13-15.
STEUER, J (1992): Defining Virtual Reality: Dimensions Determining Telepresence, Journal of Communication, 4(24), 73-93.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
64
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
65
Virtual Archaeology Review
Propuesta para profundizar en La Carta de Londres y mejorar
su aplicabilidad en el campo del patrimonio arqueológico
Víctor Manuel López-Menchero Bendicho
1
Grupo de Investigación Materialidad Arqueología y Patrimonio. Universidad de Castilla-La Mancha. España
Resumen
La visualización computarizada aplicada al floreciente campo de la gestión integral del patrimonio arqueológico presenta múltiples posibilidades. Sin embargo esas
posibilidades pueden ver truncadas sus expectativas sino se presta atención a la parte más teórica de la disciplina. La Carta de Londres ha supuesto un avance muy
importante en esta dirección sin embargo todavía es posible seguir profundizando en sus principios así como aumentar sus condiciones de aplicabilidad. En este sentido
el presente paper propone que cualquier proyecto en el campo de la visualización computarizada aplicada al mundo del patrimonio arqueológico debería cumplir con los
siguientes principios: interdisciplinariedad, finalidad, complementariedad, rigurosidad histórica, autenticidad, eficiencia y transparencia científica.
Palabras Clave:
CARTA DE LONDRES, VISUALIZACIÓN COMPUTARIZADA, PATRIMONIO ARQUEOLÓGICO,
PRINCIPIOS TEÓRICOS.
Abstract
The application of the computer-based visualisation to the field of comprehensive management of archaeological heritage has many possibilities. However, these
possibilities may see their expectations dashed, if we don’t pay attention to the more theoretical part of the discipline. The London Charter has been a very important
step forward in this direction but it is still possible to build on its principles and to increase their applicability conditions. In this sense this paper proposes that any
project in the field of computer-based visualisation applied to the world's archaeological heritage should meet the following principles: interdisciplinary, purpose,
complementarity, historical accuracy, authenticity, efficiency and transparency of science.
Key words:
LONDON CHARTER, COMPUTER-BASED VISUALISATION, ARCHAEOLOGICAL HERITAGE,
THEORETICAL PRINCIPLES.
1. Introducción
cipios básicos que regulen las prácticas de esta pujante disciplina.
La aplicación a nivel mundial de la visualización computarizada
en el campo del patrimonio arqueológico presenta a día de hoy
un panorama que podría ser calificado como de “luces y
sombras”. El espectacular crecimiento del turismo cultural y los
increíbles avances tecnológicos desarrollados en los últimos 15
años han propiciado la elaboración y ejecución de un sin fin de
proyectos encaminados a investigar, preservar y poner en valor
distintos elementos del patrimonio arqueológico a partir de la
utilización de la visualización computarizada. Estos proyectos
han servido para demostrar el extraordinario potencial que la
visualización computarizada encierra en si misma pero también
han dejado al descubierto numerosas debilidades e
incongruencias. Brillantes fogonazos y oscuros callejones se han
ido sucediendo a lo largo de un desfile interminable de proyectos
que no representan sino la punta del iceberg de lo que está por
venir. Por ello se hace ineludible plantear un debate teórico de
implicaciones prácticas que permita a los gestores del patrimonio
aprovechar lo mejor que las nuevas tecnologías pueden
ofrecernos en esta materia minimizando sus aplicaciones más
controvertidas. En definitiva se trata de establecer unos prin-
La Carta de Londres (http://www.londoncharter.org) constituye hasta
la fecha el documento internacional que más ha avanzado en esta
dirección. Su reciente actualización (versión 2.1) revela la
necesidad imperante de encontrar un documento cuyas
recomendaciones sirvan como base para diseñar nuevos
proyectos cada vez con mayor rigor dentro del ámbito del
patrimonio cultural, pero también para plantear nuevas
recomendaciones y guías adaptadas a las necesidades específicas
de cada rama del saber y comunidad de expertos. Es por ello que
entre los objetivos que se marca La Carta de Londres se
encuentra “Ofrecer unos sólidos fundamentos sobre los que la
comunidad de especialistas pueda elaborar criterios y directrices
mucho más detalladas”. Y es que no debemos olvidar la
inconmensurable amplitud que presenta el concepto de
Patrimonio Cultural dentro del cual quedan englobados campos
tan amplios como los de patrimonio monumental, etnográfico,
documental, artístico, oral y por supuesto arqueológico.
La Carta de Londres es plenamente consciente de la amplitud
conceptual que posee el Patrimonio Cultural, y por consiguiente
de las necesidades específicas que pueden requerir cada una de
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
66
Virtual Archaeology Review
las partes que lo componen. Es por ello que en su Preámbulo,
La Carta de Londres ya reconoce estas necesidades: “en la
medida en que las pretensiones que motivan el uso de los
métodos de visualización varían ampliamente de unos campos a
otros, Principio 1: “Implementación”, se deben elaborar
directrices específicas que resulten apropiadas para cada
disciplina y para cada comunidad de expertos”. Por su parte el
Principio 1.1 recomienda: “Cada comunidad de expertos, ya sea
académica, educativa, conservativa o comercial, debe desarrollar
las directrices de implementación de la Carta de Londres de
manera coherente con sus propias pretensiones, objetivos y
métodos”. Parece pues evidente que, dada la importancia que el
patrimonio arqueológico tiene dentro del patrimonio cultural, y
reconocida por muchos la existencia de una comunidad de
expertos propia que trabaja de manera habitual entorno al
concepto de Arqueología Virtual, se deba plantear la redacción
de guías, documentos y recomendaciones que aun siguiendo las
directrices generales que marca La Carta de Londres tomen en
consideración el carácter específico que posee la Arqueología
Virtual.
2. Principios
Los principios que se expondrán a continuación pretenden
aumentar las condiciones de aplicabilidad de La Carta de
Londres de cara a su mejor implantación en el campo específico
del patrimonio arqueológico, simplificando y ordenando
secuencialmente sus bases, al mismo tiempo que se ofrecen
algunas recomendaciones nuevas que toman en consideración la
peculiar naturaleza del patrimonio arqueológico con respecto al
patrimonio cultural.
1. Principio de interdisciplinariedad: Cualquier proyecto que
implique la utilización de nuevas tecnologías, ligadas con la
visualización computarizada, en el campo del patrimonio
arqueológico, ya sea para investigación, conservación o difusión,
debe de estar avalado por un equipo de profesionales
procedentes de distintas ramas del saber. Especialmente si el
proyecto contempla la realización de reconstrucciones o
recreaciones virtuales. No podemos olvidar que la restitución
visual del pasado es un reto de tal envergadura que no puede ser
abordado únicamente por un solo tipo de experto sino que
necesita de la colaboración y complicidad de un buen número de
especialistas. Además es indispensable que estos especialistas
trabajen intercambiando ideas y opiniones que enriquezcan el
resultado final, puesto que el trabajo dividido en compartimentos
estanco nunca podrá ser considerado como interdisciplinar
aunque participen en él expertos procedentes de distintas
disciplinas. Entre los especialistas que deben colaborar en este
modelo interdisciplinar es indispensable contar con la presencia
concreta de los arqueólogos que tienen o tuvieron a su cargo la
dirección científica de la excavación que pretendemos
reconstruir, ya que nadie conoce mejor un yacimiento o
estructura arqueológica que aquel que lo ha excavado e
investigado. Pese a todo un estudio recientemente llevado a cabo
por el Getty Conservation Institute (EPPICH y CHABBI, 2006) a
puesto de manifiesto como muchos proyectos de investigación
en el campo de las nuevas tecnologías aplicadas a la conservación
del patrimonio cultural no satisfacen las necesidades reales de
conservadores y gestores. Este mismo estudio señala como la
mayor parte de los avances realizados en este campo apenas si
tiene influencia en la práctica diaria de los profesionales del
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
mundo de la conservación, en gran medida por el
desconocimiento que estos tienen de los nuevos avances que
están liderando las tecnologías más vanguardistas. De echo si
analizamos el perfil de los participantes en uno de los congresos
internacionales más influyentes en el campo de la realidad virtual
aplicada al ámbito de la arqueología, como es el Simposio
Internacional sobre Realidad Virtual, Arqueología y Patrimonio Cultural
(VAST) que se celebra todos los años, comprobaremos como la
presencia de arqueólogos, conservadores, restauradores o
museógrafos es prácticamente testimonial. En el otro extremo de
la balanza si nos fijamos en el principal congreso internacional
de referencia para el campo de la arqueología, el Congreso Mundial
de Arqueología (WAC) que se celebra cada 4 años,
comprobaremos como la presencia de informáticos e ingenieros
es igualmente minoritaria, aunque en este caso al menos una de
las 33 sesiones temáticas que fueron programadas para 2008
versó en exclusiva sobre arqueología en la era digital (Archaeology
in the Digital Age 2.0). Estos datos parecen avalar la teoría de la
incomunicación entre ambos mundos: el de la visualización
computarizada por un lado y el del patrimonio arqueológico por
el otro, de tal suerte que por el momento la interdisciplinariedad
se muestra como un objetivo a alcanzar y no como una realidad
cotidiana, a pesar del potencial colaborativo que presentan
ambos mundos y de los tímidos guiños que mutuamente se han
hecho hasta la fecha.
2. Principio de finalidad. Previamente a la elaboración de
cualquier visualización computarizada siempre debemos
preguntarnos cual es la finalidad última de nuestro trabajo. No se
puede actuar de la misma manera cuando la visualización
computarizada que estamos generando tiene como finalidad
ayudar al arqueólogo a interpretar los restos encontrados que
cuando su finalidad es la presentación al público a través por
ejemplo de un documental. En el primer caso, el referido a la
investigación, lo más importante será generar hipótesis de
trabajo bien ajustadas a la realidad, es decir precisas, sin importar
demasiado la calidad superficial de la imagen generada, a la vez
que se ofrece la posibilidad al arqueólogo de poder moverse con
libertad sobre el escenario virtual recreado para poder verificar o
desechar su modelo interpretativo. Por el contrario, en el
segundo supuesto, el referido a la difusión, aun siendo
respetuosos con el principio de rigurosidad histórica, deberemos
trabajar mucho más los acabados hasta conseguir dar una imagen
lo más realista posible del pasado, generando planos virtuales
creíbles y fácilmente comprensibles por un público no
especializado en la materia. En este segundo caso probablemente
no sea necesario que el espectador tenga la posibilidad de
recorrer el espacio virtual ya que las reconstrucciones y
recreaciones se emplearán por lo general en medios no
interactivos como por ejemplo documentales, paneles fijos,
folletos... En definitiva todo se reduce a que la visualización
computarizada esté siempre al servicio del patrimonio
arqueológico y no el patrimonio arqueológico al servicio de la
visualización computarizada.
3. Principio de complementariedad. La aplicación de la
visualización computarizada en el campo de la gestión del
patrimonio arqueológico siempre debe de ser entendida como
complementaria, nunca como sustitutiva, de otros instrumentos
de gestión más clásicos pero igualmente eficaces. La
visualización computarizada no debe ni puede sustituir a otras
técnicas y posibilidades en el campo de la gestión del patrimonio,
más al contrario debe buscar vías de colaboración que ayuden a
67
Virtual Archaeology Review
mejorar los actuales procesos de investigación, conservación y
difusión. En este sentido la visualización computarizada puede
ayudar a mejorar los procesos de conservación y preservación
del patrimonio arqueológico, pero lógicamente, no puede servir
como excusa para abandonar los tradicionales métodos de
conservación y restauración sobre los restos arqueológicos
originales. Su uso debe de ser complementario con otras técnicas
como la anastylosis, los recrecimientos o las reconstrucciones
parciales, pero nunca sustitutivo. Algo parecido sucede con los
procesos de difusión en donde la visualización computarizada ya
sea aplicada en museos (HERNANDEZ et al., 2005) o en
páginas web (HALKON, 2005) no debe, ni verdaderamente
puede, sustituir a la visita real o a la contemplación “in situ” de
los restos originales. Este tipo de actuaciones siempre deben
tener un carácter complementario, exceptuando los casos en los
que los restos originales son destruidos intencional o
desafortunadamente y por lo tanto su contemplación real se
torna imposible quedando como única forma de disfrute su
representación virtual.
4. Principio de autenticidad. La importancia del concepto de
autenticidad aplicado al campo del patrimonio cultural quedó
adecuadamente tratado en la Conferencia de Nara (LARSEN,
1995). Las conclusiones que se extrajeron en aquella reunión
junto con otras que de manera colateral han traído otras
reuniones posteriores no pueden pasar desapercibidas para la
arqueología virtual. Por otro lado es indispensable que todas
aquellas personas que trabajan en el ámbito de la arqueología
virtual asuman que la disciplina arqueológica de la que dependen,
en cuanto a generadora de conocimiento histórico, no es una
ciencia exacta e incontestable sino compleja y, en algunos
aspectos, relativa. Sin embargo en muchas visualizaciones
tridimensionales orientadas al público se trasmite una idea
monolítica, casi positivista, del conocimiento arqueológico sin
dejar espacio a las interpretaciones alternativas que en muchos
casos presentan igual validez científica que la hipótesis principal.
Esta actitud rompe con los principios de autenticidad,
rigurosidad y transparencia que debe tener toda investigación
científica, pues impide al visitante comprender la complejidad y
el alcance de la investigación arqueológica (SAN MARTÍN,
1994: 15). Así mismo, resulta indispensable aceptar que la mayor
parte de las reconstrucciones virtuales que se realizan en el
ámbito de la arqueología poseen diferentes grados de certeza.
Simplificando podríamos decir que dentro de cualquier
reconstrucción virtual algunas partes son probables, otras son
posibles y otras tantas son hipotéticas. Estos grados de certeza
rara vez se muestran o explican al público o a la propia
comunidad de expertos lo que fomenta la tradicional mitificación
del mundo de la arqueología y genera recelo en una parte
importante tanto público como del mundo científico. Para
combatir estos efectos no deseados algunas reconstrucciones
virtuales deberían mostrar de forma explícita los distintos niveles
de veracidad que presentan sus respectivas reconstrucciones
(SIFNIOTIS et al., 2006). Además en muchos yacimientos
arqueológicos, con objeto de mejorar las condiciones de
conservación y presentación del patrimonio, ya se han realizado
intervenciones o reconstrucciones sobre los restos originales, por
lo que las visualizaciones tridimensionales no solo deben mostrar
los grados de certeza sobre las “hipótesis virtuales” sino también
sobre las propias “hipótesis reales”. Así, como mínimo se debe
poder diferenciar claramente en las visualizaciones
tridimensionales entre: los restos que se han conservado “in situ”,
los restos que han vuelto a ser colocados en su posición
originaria (anastylosis), las zonas que han sido reconstruidas
parcial o totalmente sobre los restos originales, y finalmente las
zonas que han sido recreadas virtualmente.
5. Principio de rigurosidad histórica: Cualquier forma de
visualización o reconstrucción virtual del pasado debe estar
basada y sustentada en una sólida documentación histórica y
arqueológica. Ya que si la investigación arqueológica es
deficiente la rigurosidad de las visualizaciones históricas virtuales
también lo será perjudicando de este modo la credibilidad de los
sitios arqueológicos. Consecuentemente para lograr aplicar este
principio siempre será necesario que previamente los
arqueólogos cuenten con los medios técnicos y materiales
suficientes como para poder obtener la mayor cantidad de datos
posibles de sus excavaciones e investigaciones. Además la
persona encargada de realizar las reconstrucciones virtuales
debería colaborar de forma activa con el arqueólogo encargado
de la excavación, a ser posible durante el propio proceso de
investigación, pues esto asegura un mayor rigor interpretativo.
Pero la rigurosidad histórica no solo se consigue mediante una
colaboración permanente con los arqueólogos, también es
necesario tener presentes algunas premisas generales a la hora de
lograr la máxima rigurosidad histórica posible:
La recreación o reconstrucción virtual de todas las fases
históricas registradas durante la investigación arqueológica
es indispensable. No se debe mostrar únicamente el
momento de esplendor del yacimiento reconstruido sino
todas las fases, incluidas las de decadencia, por las que pudo
atravesar el lugar. Tampoco se debe mostrar una imagen
idílica del pasado con edificios que parecen recién
construidos, personas que podrían pasar por modelos, etc..,
sino real, es decir con edificios en diferente estado de
conservación, personas de distinto tamaño y peso, etc...
Siempre debemos tener presente que las imágenes del
pasado no son neutras, al igual que tampoco lo son las
palabras, ya que todas ellas están cargadas de una gran
variedad de mensajes. Priorizar las reconstrucciones
virtuales que hacen alusión a los momentos de esplendor de
las ciudades o lugares históricos significa esconder otra
parte de la realidad tan importante desde el punto de vista
histórico como la primera, lo que va en contra del principio
de rigurosidad histórica.
Es necesario humanizar las reconstrucciones. No se pueden
mostrar ciudades vacías, sin vida, edificios solitarios y
paisajes muertos, pues ese es un falso histórico. En este
punto es bueno recordar las palabras de Sir Mortimer
Wheeler (1979: 7), padre de la arqueología moderna,
cuando sentenciaba: “el arqueólogo no desentierra cosas,
sino gentes. Si los trozos y piezas con los que trabaja
carecen de vida para él, sino tiene sentido de lo normal, más
valiera que hubiese buscado otra disciplina por oficio […]
La arqueología muerta es el polvo más seco que puede
soplar”.
El entorno o paisaje asociado es tan importante como el
yacimiento en sí (Carta de Cracovia, 2000). No se puede
menospreciar a la hora de realizar reconstrucciones
virtuales el entorno o los paisajes asociados a los
yacimientos arqueológicos pues estos jugaron un papel
fundamental, en algunos casos determinantes, en la
evolución de muchos lugares históricos. Las investigaciones
antracológicas, paleobotánicas y paleozoológicas deben
servir como base para la realización de reconstrucciones
virtuales del paisaje rigurosas y cercanas a la realidad.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
68
Virtual Archaeology Review
6. Principio de eficiencia. El concepto de eficiencia aplicada al
campo que nos ocupa pasa inexorablemente por lograr una
ajustada sostenibilidad económica y tecnológica. Cualquier
proyecto que implique la utilización de la visualización
computarizada en el campo del patrimonio debe de tener en
cuenta las necesidades de mantenimiento económico y
tecnológico que generará una vez se instale y ponga en
funcionamiento. Si hablamos de investigación o conservación los
medios empleados deben de ser lo menos costosos y
complicados posibles pues en gran medida tendrán que ser
desplazados, total o parcialmente, al lugar de excavación. Así
mismo la información generada en un determinado programa o
formato debe poder ser extrapolada con facilidad a otro
programa más moderno con objeto de evitar la pérdida definitiva
de la información que muchas veces queda atrapada en formatos
obsoletos (HOWELL, 2007). Muchos de los proyectos hasta
ahora desarrollados han fracasado precisamente por no cumplir
con este principio. Consecuentemente se debe de apostar por
sistemas que aunque en un primer momento presenten una
elevada inversión inicial a largo plazo impliquen un bajo coste de
mantenimiento económico y una alta fiabilidad de uso, es decir
sistemas resistentes, fáciles de reparar o modificar y de bajo
consumo. Si los nuevos medios tecnológicos empleados resultan
excesivamente complicados, pesados, o caros de mantener, los
gestores del patrimonio arqueológico y los propios arqueólogos
los rechazarán y mantendrán sus métodos de trabajo
tradicionales. En la actualidad este es uno de los principales retos
con el que se enfrentan las nuevas tecnologías, incluida la
visualización computarizada, para abrirse paso en el ámbito del
patrimonio.
7. Principio de transparencia científica: Toda investigación
científica, proceda de la disciplina que proceda, debe de ser
esencialmente transparente, es decir, contrastable por otros
investigadores, ya que la validez, y por lo tanto el alcance, de las
conclusiones producidas por dicha investigación dependerán en
gran medida de la capacidad de otros para confirmar o refutar
los resultados obtenidos (AROSTEGUI, 1995: 278-279).
Consecuentemente para que los proyectos de arqueología virtual
caminen por la senda del rigor científico y académico se vuelve
indispensable la elaboración de bases documentales en la que
quede recogido y expresado con total transparencia todo el
proceso de trabajo desarrollado: objetivos, metodología, técnicas,
razonamientos, origen y características de las fuentes de la
investigación, procedimientos, resultados y conclusiones. No
obstante para que estas bases documentales puedan cumplir
plenamente con su tarea deben tener en cuenta el carácter
multidisciplinar que posee la arqueología virtual ya que para su
desarrollo es necesaria la colaboración entre numerosas
disciplinas tanto del ámbito de las ciencias naturales como del
ámbito de las ciencias sociales. Esta dicotomía científica o
disciplinar debería quedar reflejada en las bases documentales, en
las que tan importante es que aparezcan datos referentes a los
aspectos arqueológico-patrimoniales como a los apartados mas
íntimamente relacionados con la informática y las nuevas
tecnologías.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
3. Conclusión
Todos los principios aquí expuestos emanan directa o
indirectamente de la Carta de Londres. Este documento
internacional posee un valor infinitamente mayor al que se le ha
otorgado hasta el momento y debería convertirse en un
documento de trabajo indispensable para todos los profesionales
del ámbito de la visualización computarizada. Para favorecer su
aplicabilidad se deberían respetar una serie de principios que a
modo de pasos convendría seguir en el proceso de desarrollo de
cualquier proyecto de visualización 3D ligado al campo del
patrimonio arqueológico. En cualquier caso para facilitar y
simplificar el proceso de evaluación de los proyectos cada cierto
tiempo podría ser recomendable contestar al siguiente
cuestionario:
¿Nuestro equipo de trabajo puede ser calificado como
interdisciplinar?
¿Tenemos claro cual es el objetivo final de nuestro trabajo?
¿Nuestro proyecto es complementario en relación con
otras técnicas tradicionales?
En nuestro proyecto, ¿se respeta la autenticidad de los
restos arqueológicos?
¿El resultado final de nuestro trabajo es históricamente
riguroso?
¿La aplicación práctica del resultado de nuestro proyecto es
sostenible económica y tecnológicamente?
¿Es posible que los resultados de nuestra investigación sean
contrastados por otros investigadores?
Si todas estas cuestiones pueden ser respondidas mediante un sí
rotundo, sin lugar a dudas, nuestro proyecto habrá alcanzado un
nivel de calidad óptimo.
Agradecimientos
El presente trabajo ha sido cofinanciado por el Fondo Social
Europeo, así como por la Junta de Comunidades de Castilla-La
Mancha en el marco del Programa Operativo FSE 2007-2013.
69
Virtual Archaeology Review
Bibliografía
AROSTEGUI SANCHEZ, Julio (1995): La investigación histórica: teoría y método. Crítica. Barcelona.
CARTA DE CRACOVIA (2000): Principios para la conservación y restauración del patrimonio construido.
CARTA DE LONDRES (2006): La Carta de Londres para el uso de la visualización tridimensional en la investigación y divulgación del
patrimonio cultural.
CARTA DE LONDRES (2008): La Carta de Londres para la visualización computarizada del patrimonio cultural.
CARTA DE NARA (1994): Documento de Nara sobre la Autenticidad.
CARTA DE ENAME (2008): Carta de Ename para la interpretación de lugares pertenecientes al patrimonio cultural.
CARTA INTERNACIONAL PARA LA GESTIÓN DEL PATRIMONIO ARQUEOLÓGICO (1990).
EPPICH, R. y CHABBI, A. (2006): “How does Hi-tech touch the past? Does it meet conservation needs?”, en The 7th International
Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2006), pp. 94-99.
HALKON, P. (2005): “Creating an award winning website for community Archaeology and research – Valley of the first Iron Masters – a
case study (www.ironmasters.hull.ac.uk)”, en The 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST.
HERNANDEZ, L. A. et al. (2005): “Physically Walking in Digital Spaces - A Virtual Reality Installation for Exploration of Historical
Heritage”, en International journal of architectural computing, nº 3, vol. 5, pp. 487-506.
HOWELL, A. (2007): Preserving digital information: challenges and solutions. [en línea] [Ref. de 10 de marzo de 2009]. Disponible en
web: http://nla.gov.au/nla.arc-49633.
LARSEN, Knut Einer (ed.) (1995): Proceedings of Nara Conference on authenticity, Japan 1994. Tapir Publishers. Trondheim.
SAN MARTIN MONTILLA, Concha (1994): “La protección del Patrimonio Arqueológico desde el museo II. Criterios de difusión”, en
Boletín Informativo del Instituto Andaluz del Patrimonio Histórico, nº 8, pp. 14-16.
SIFNIOTIS, M., MANIA, K., WATTEN, P. y WHITE, M. (2006): “Presenting uncertainty in archaeological reconstructions using
possibility theory and information visualisation schemes”, en The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage
VAST (2006), pp. 198-202.
WHEELER, Mortimer (1979): Arqueología de campo. México: Fondo de Cultura Económica, [1a. ed. 2a. reimp.].
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
70
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
71
Virtual Archaeology Review
Hacia una Carta Internacional de Arqueología Virtual.
El Borrador SEAV
Víctor Manuel López-Menchero Bendicho 1 y Alfredo Grande2
1
Grupo de Investigación Materialidad Arqueología y Patrimonio. Universidad de Castilla-La Mancha. España
2 INNOVA CENTER. European Center for Innovation in Virtual Archaeology. Sevilla. España.
Resumen
Tras la primera reunión mantenida por el Forum Internacional de Arqueología Virtual el 18 de junio de 2009 durante la celebración del I Congreso
Internacional de Arqueología e Informática Gráfica, Patrimonio e Innovación ARQUEOLOGICA 2.0 quedó de manifiesto la necesidad de avanzar en la
creación de un documento internacional capaz de regular o al menos establecer un conjunto de recomendaciones en relación a la praxis de la arqueología virtual.
Fruto de aquella reunión la Sociedad Española de Arqueología Virtual (SEAV) consideró oportuno tomar la iniciativa en la redacción de un primer borrador
que sirviera de base para ulteriores debates en el seno de la comunidad científica internacional. Lo que se expone a continuación es el resultado preliminar de esa
iniciativa, que comienza a ser mundialmente conocida como La Carta de Sevilla.
Palabras Clave: ARQUEOLOGÍA VIRTUAL, ARQUEOLOGICA 2.0, CARTA DE SEVILLA, SEAV
Abstract
After the first meeting held by the International Forum on Virtual Archaeology June 18, 2009, during the celebration of the First International Conference on
Computer Graphics and Archaeology, Heritage and Innovation ARQUEOLOGICA 2.0, revealed the need for progress on the creation of an international
document able to regulate or at least establish a set of recommendations regarding the practice of virtual archeology. In result of that meeting the Spanish Society of
Virtual Archaeology (SEAV) considered it appropriate to take the lead in writing a first draft as a basis for further discussions within the international scientific
community. What follows are the preliminary results of this initiative, which is becoming known worldwide as The Charter of Seville.
Key words: VIRTUAL ARCHAEOLOGY, ARQUEOLOGICA 2.0, SEVILLA CHARTER, SEAV.
1. PREÁMBULO
La aplicación a nivel mundial de la visualización asistida por
ordenador en el campo del patrimonio arqueológico presenta a
día de hoy un panorama que podría ser calificado como de
“luces y sombras”. El espectacular crecimiento del turismo
cultural y los increíbles avances tecnológicos desarrollados en los
últimos años han propiciado la elaboración y ejecución de un sin
fin de proyectos encaminados a investigar, preservar, interpretar
y presentar distintos elementos del patrimonio arqueológico a
partir de la utilización de la visualización asistida por ordenador.
Estos proyectos han servido para demostrar el extraordinario
potencial que la visualización asistida por ordenador encierra en
si misma pero también han dejado al descubierto numerosas
debilidades e incongruencias. Por ello se hace ineludible plantear
un debate teórico de implicaciones prácticas que permita a los
gestores del patrimonio aprovechar lo mejor que las nuevas
tecnologías pueden ofrecernos en esta materia minimizando sus
aplicaciones mas controvertidas. En definitiva se trata de
establecer unos principios básicos que regulen las prácticas de
esta pujante disciplina.
La Carta de Londres (http://www.londoncharter.org) constituye
hasta la fecha el documento internacional que más ha avanzado
en esta dirección. Sus diversas actualizaciones revelan la
necesidad imperante de encontrar un documento cuyas
recomendaciones sirvan como base para diseñar nuevos
proyectos cada vez con mayor rigor dentro del ámbito del
patrimonio cultural, pero también para plantear nuevas
recomendaciones y guías adaptadas a las necesidades específicas
de cada rama del saber y comunidad de expertos. Es por ello que
entre los objetivos que se marca La Carta de Londres se
encuentra “Ofrecer unos sólidos fundamentos sobre los que la
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
72
Virtual Archaeology Review
comunidad de especialistas pueda elaborar criterios y directrices
mucho más detalladas”. Y es que no debemos olvidar la
inconmensurable amplitud que presenta el concepto de
Patrimonio Cultural dentro del cual quedan englobados campos
tan amplios como los de patrimonio monumental, etnográfico,
documental, industrial, artístico, oral y por supuesto
arqueológico.
que será considerado también como formante del patrimonio
arqueológico, sirven como fuente histórica para el conocimiento
del pasado de la humanidad. Estos elementos, que fueron o han
sido abandonados por las culturas que los fabricaron, tienen
como sello distintivo el poder ser estudiados, recuperados o
localizados usando la metodología arqueológica como método
principal de investigación, cuyas técnicas principales son la
excavación y la prospección, sin menoscabo de la posibilidad de
usar otros métodos complementarios para su conocimiento.
Gestión integral: comprende las labores de inventario,
prospección, excavación, documentación, investigación,
mantenimiento, conservación, preservación, restitución,
interpretación, presentación, acceso y uso público de los restos
materiales del pasado.
La Carta de Londres es plenamente consciente de la amplitud
conceptual que posee el Patrimonio Cultural, y por consiguiente
de las necesidades específicas que pueden requerir cada una de
las partes que lo componen. Es por ello que en su Preámbulo,
La Carta de Londres ya reconoce estas necesidades: “en la
medida en que las pretensiones que motivan el uso de los
métodos de visualización varían ampliamente de unos campos a
otros, Principio 1: “Implementación”, se deben elaborar
directrices específicas que resulten apropiadas para cada
disciplina y para cada comunidad de expertos”. Por su parte el
Principio 1.1 recomienda: “Cada comunidad de expertos, ya sea
académica, educativa, conservativa o comercial, debe desarrollar
las directrices de implementación de la Carta de Londres de
manera coherente con sus propias pretensiones, objetivos y
métodos”. Parece pues evidente que, dada la importancia que el
patrimonio arqueológico tiene dentro del patrimonio cultural, y
reconocida por muchos la existencia de una comunidad de
expertos propia que trabaja de manera habitual entorno al
concepto de Arqueología Virtual, se deba plantear la redacción
de guías, documentos y recomendaciones que aun siguiendo las
directrices generales que marca La Carta de Londres tomen en
consideración el carácter específico que posee la Arqueología
Virtual.
Los principios que se expondrán a continuación pretenden
aumentar las condiciones de aplicabilidad de La Carta de
Londres de cara a su mejor implantación en el campo específico
del patrimonio arqueológico, incluido el patrimonio
arqueológico
industrial,
simplificando
y
ordenando
secuencialmente sus bases, al mismo tiempo que se ofrecen
algunas recomendaciones nuevas que toman en consideración la
peculiar naturaleza del patrimonio arqueológico con respecto al
patrimonio cultural.
2. DEFINICIONES
Restauración virtual: comprende la reordenación, a partir de
un modelo virtual, de los restos materiales existentes con objeto
de recuperar visualmente lo que existió en algún momento
anterior al presente. La restauración virtual comprende por tanto
la anastilosis virtual.
Anastilosis virtual: recomposición de las partes existentes pero
desmembradas en un modelo virtual.
Reconstrucción virtual: comprende el intento de recuperación
visual, a partir de un modelo virtual, en un momento
determinado de una construcción u objeto fabricado por el ser
humano en el pasado a partir de las evidencias físicas existentes
sobre dicha construcción u objeto, las inferencias comparativas
científicamente razonables y en general todos los estudios
llevados a cabo por los arqueólogos y demás expertos vinculados
con el patrimonio arqueológico y la ciencia histórica.
Recreación virtual: comprende el intento de recuperación
visual, a partir de un modelo virtual, del pasado en un momento
determinado de un sitio arqueológico, incluyendo cultura
material (patrimonio mueble e inmueble), entorno, paisaje, usos,
y en general significación cultural.
3. OBJETIVOS
Dado que el marco teórico de referencia para la Carta de Sevilla
es la propia Carta de Londres el documento asumiría todos los
objetivos aprobados por la Junta Consultiva de dicha Carta. A
estos objetivos generales sería necesario añadir algunos nuevos, a
saber:
Arqueología Virtual: es la disciplina científica que tiene por
objeto la investigación y el desarrollo de formas de aplicación de
la visualización asistida por ordenador a la gestión integral del
patrimonio arqueológico.
Generar criterios fácilmente comprensibles y aplicables por
toda la comunidad de expertos, ya sean estos informáticos,
arqueólogos, arquitectos, ingenieros, gestores o especialistas
en general en la materia.
Patrimonio arqueológico: es el conjunto de elementos
materiales, tanto muebles como inmuebles, hayan sido o no
extraídos y tanto si se encuentran en la superficie o en el
subsuelo, en la tierra o en el agua, que junto con su contexto,
Establecer directrices encaminadas a facilitar al público un
mayor entendimiento y mejor apreciación de la labor que
desarrolla la disciplina arqueológica.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
73
Virtual Archaeology Review
Establecer principios y criterios que sirvan para medir los
niveles de calidad de los proyectos que se realicen en el campo
de la arqueología virtual.
Principio 2: Finalidad.
Promover el uso responsable de las nuevas tecnologías
aplicadas a la gestión integral del patrimonio arqueológico.
Previamente a la elaboración de cualquier visualización asistida
por ordenador siempre debe quedar totalmente claro cual es la
finalidad última de nuestro trabajo es decir cual es el objetivo
final que se persigue alcanzar.
Contribuir a mejorar los actuales procesos de investigación,
conservación y difusión del patrimonio arqueológico mediante
el uso de nuevas tecnologías.
Abrir nuevas puertas a la aplicación de métodos y técnicas
digitales de investigación, conservación y difusión
arqueológica.
Concienciar a la comunidad científica internacional de la
necesidad imperante de aunar esfuerzos a nivel mundial en el
creciente campo de la arqueología virtual.
4. PRINCIPIOS
Principio 1: Interdisciplinariedad.
Cualquier proyecto que implique la utilización de nuevas
tecnologías, ligadas con la visualización asistida por ordenador,
en el campo del patrimonio arqueológico, ya sea para
investigación, conservación o difusión, debe de estar avalado por
un equipo de profesionales procedentes de distintas ramas del
saber.
1.1 Dada la compleja naturaleza que presenta la visualización
asistida por ordenador de patrimonio arqueológico, esta no
puede ser abordada únicamente por un solo tipo de experto sino
que necesita de la colaboración y complicidad de un buen
número
de
especialistas
(arqueólogos,
informáticos,
historiadores, arquitectos, ingenieros…).
2.1 Cualquier proyecto de visualización asistida por ordenador
siempre tendrá el objetivo de mejorar aspectos relacionados o
bien con la investigación, o bien con la conservación o bien con
la difusión del patrimonio arqueológico. La finalidad de todo
proyecto debe quedar encuadrada dentro de alguna de dichas
categorías (investigación, conservación y/o difusión).
2.2 Además de esclarecer cual es el objetivo o finalidad principal
de la visualización asistida por ordenador siempre será necesario
definir objetivos más concretos que sirvan para conocer con más
exactitud cual es el problema o problemas que se pretenden
resolver.
2.3 La visualización asistida por ordenador debe estar siempre al
servicio del patrimonio arqueológico y no el patrimonio
arqueológico al servicio de la visualización asistida por
ordenador. Las nuevas tecnologías aplicadas a la gestión integral
del patrimonio arqueológico deben poder satisfacer, como
objetivo primordial, las necesidades reales de arqueólogos,
conservadores, restauradores, museógrafos, gestores y/o
profesionales en general del mundo del patrimonio, y no al revés.
Principio 3: Complementariedad.
La aplicación de la visualización asistida por ordenador en el
campo de la gestión integral del patrimonio arqueológico debe
de ser entendida como complementaria, no como sustitutiva, de
otros instrumentos de gestión más clásicos pero igualmente
eficaces.
1.2 Un trabajo verdaderamente interdisciplinar implica el
intercambio de ideas y opiniones entre especialistas de distintos
campos de una manera habitual y fluida. El trabajo dividido en
compartimentos estanco nunca podrá ser considerado como
interdisciplinar aunque participen en él expertos procedentes de
distintas disciplinas.
3.1 La visualización asistida por ordenador no debe aspirar a
sustituir a otros métodos y técnicas en el campo de la gestión
integral del patrimonio arqueológico (por ejemplo la restauración
virtual no debe aspirar a sustituir a la restauración real al igual
que la visita virtual no debe aspirar a sustituir a la visita real).
1.3 Entre los especialistas que deben colaborar en este modelo
interdisciplinar es indispensable contar con la presencia concreta
de los arqueólogos, preferiblemente de aquellos que tienen o
tuvieron a su cargo la dirección científica de la excavación o del
resto arqueológico sobre el que se pretende trabajar.
3.2 La visualización asistida por ordenador debe buscar vías de
colaboración con otros métodos y técnicas de distinta naturaleza
que ayuden a mejorar los actuales procesos de investigación,
conservación y difusión del patrimonio arqueológico. Para ello el
cumplimiento del Principio 1: Interdisciplinariedad, se revelará como
fundamental.
3.3. Pese a todo, las visualizaciones asistidas por ordenador
podrán tener un carácter sustitutivo cuando los restos
arqueológicos originales hayan sido destruidos (por ejemplo por
la construcción de grandes infraestructuras), se encuentren en
lugares de difícil acceso (por ejemplo sin carreteras) o corran
riesgo de deterioro ante la visita masiva de turistas (por ejemplo
las pinturas rupestres).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
74
Virtual Archaeology Review
Principio 4: Autenticidad.
La visualización asistida por ordenador trabaja de manera
habitual reconstruyendo o recreando edificios y entornos del
pasado tal y como se considera que fueron, es por ello que
siempre debe ser posible saber que es real, veraz, auténtico y que
no. En este sentido la autenticidad debe ser un concepto
operativo permanente para cualquier proyecto de arqueología
virtual.
4.1 En tanto en cuanto la disciplina arqueológica no es una
ciencia exacta e incontestable, sino compleja, se debe apostar
abiertamente por realizar interpretaciones virtuales alternativas
siempre y cuando presenten igual validez científica. Cuando no
exista esa igualdad se apostará únicamente por la hipótesis
principal.
4.2 Cuando se realicen restauraciones o reconstrucciones
virtuales se debe mostrar de forma explícita o bien mediante
interpretación adicional los distintos niveles de veracidad en los
que se sustenta la restauración o reconstrucción.
4.3 En la medida que muchos restos arqueológicos han sido y
siguen siendo restaurados o reconstruidos en la realidad la
visualización asistida por ordenador debe ayudar tanto a los
profesionales como al público a diferenciar claramente entre: los
restos que se han conservado “in situ”, los restos que han vuelto
a ser colocados en su posición originaria (anastylosis real), las
zonas que han sido reconstruidas parcial o totalmente sobre los
restos originales, y finalmente las zonas que han sido restauradas
o reconstruidas virtualmente.
Principio 5: Rigurosidad histórica.
Para lograr unos niveles de rigurosidad y veracidad histórica
óptimos cualquier forma de visualización asistida por ordenador
del pasado debe estar sustentada en una sólida investigación y
documentación histórica y arqueológica.
5.1 La rigurosidad histórica de cualquier visualización asistida
por ordenador del pasado dependerá tanto de la rigurosidad con
la que se haya realizado la investigación arqueológica previa
como de la rigurosidad con la que se use esa información para la
creación del modelo virtual.
5.2 Todas las fases históricas registradas durante la investigación
arqueológica tienen un gran valor. Por lo tanto, no se
considerará riguroso mostrar únicamente el momento de
esplendor del resto arqueológico reconstruido o recreado sino
todas las fases, incluidas las de decadencia, por las que pudo
atravesar. Tampoco se debe mostrar una imagen idílica del
pasado con edificios que parecen recién construidos, personas
que podrían pasar por modelos, etc.., sino real, es decir con
edificios en diferente estado de conservación, personas de
distinto tamaño y peso, etc.
5.3 El entorno, contexto o paisaje asociado a un resto
arqueológico es tan importante como el resto arqueológico en sí
(Carta de Cracovia, 2000). Las investigaciones antracológicas,
paleobotánicas, paleozoológicas y de paleoantropología física
deben servir como base para la realización de recreaciones
virtuales del paisaje y del contexto rigurosas. No se pueden
mostrar sistemáticamente ciudades sin vida, edificios solitarios o
paisajes muertos, pues ese es un falso histórico.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Principio 6: Eficiencia.
El concepto de eficiencia aplicada al campo que nos ocupa pasa
inexorablemente por lograr una ajustada sostenibilidad
económica y tecnológica. Usar menos recursos para lograr cada
vez más y mejores resultados será la clave de la eficiencia.
6.1 Cualquier proyecto que implique la utilización de la
visualización asistida por ordenador en el campo del patrimonio
arqueológico debe evaluar previamente cuales serán las
necesidades de mantenimiento económico y tecnológico que
generará una vez se instale y ponga en funcionamiento.
6.2 Se debe apostar por sistemas que aunque en un primer
momento presenten una elevada inversión inicial a largo plazo
impliquen un bajo coste de mantenimiento económico y una alta
fiabilidad de uso, es decir sistemas resistentes, fáciles de reparar
o modificar y de bajo consumo.
6.3 Siempre que sea posible se aprovecharán los resultados
obtenidos por proyectos de visualización anteriores, evitando la
duplicidad, es decir, la realización de los mismos trabajos por dos
veces.
Principio 7: Transparencia científica.
Toda visualización asistida por ordenador debe de ser
esencialmente transparente, es decir, contrastable por otros
investigadores o profesionales, ya que la validez, y por lo tanto el
alcance, de las conclusiones producidas por dicha visualización
dependerá en gran medida de la capacidad de otros para
confirmar o refutar los resultados obtenidos.
7.1 Es indudable que toda visualización asistida por ordenador
tiene un alto componente de investigación científica.
Consecuentemente para que los proyectos de arqueología virtual
caminen por la senda del rigor científico y académico se vuelve
indispensable la elaboración de bases documentales en las que
quede recogido y expresado con total transparencia todo el
proceso de trabajo desarrollado: objetivos, metodología, técnicas,
razonamientos, origen y características de las fuentes de la
investigación, resultados y conclusiones.
75
Virtual Archaeology Review
7.2 En cualquier caso y en líneas generales el registro y
organización de toda la documentación concerniente a proyectos
de arqueología virtual estará basado en los “Principios para la
creación de archivos documentales de monumentos, conjuntos arquitectónicos
y sitios históricos y artísticos” aprobada por la 11ª asamblea General
del ICOMOS en 1996.
7.3 En aras de la transparencia científica se hace necesario crear
una gran base de datos accesible a nivel mundial con aquellos
proyectos que posean unos niveles de calidad óptimos (art 8.4),
sin menoscabo de la creación de bases de datos de este tipo de
ámbito nacional o regional.
Principio 8: Formación y evaluación
La arqueología virtual constituye una disciplina científica
asociada a la gestión integral del patrimonio arqueológico que
posee un lenguaje y unas técnicas que le son propias. Como
cualquier otra disciplina académica requiere de programas
específicos de formación y evaluación.
8.2 Cuando las visualizaciones asistidas por ordenador tengan
como objetivo servir como instrumento de disfrute y
comprensión para el público en general el método de evaluación
mas apropiado será el de los estudios de público.
8.3 Cuando las visualizaciones asistidas por ordenador tengan
como objetivo servir como instrumento de investigación o
conservación del patrimonio arqueológico el método de
evaluación más apropiado será su prueba por parte de un
número lo suficientemente representativo de usuarios finales es
decir de los profesionales a los que este destinado el producto
final.
8.4 La calidad final de cualquier visualización asistida por
ordenador deberá medirse en función de la rigurosidad con la
que haya sido elaborada y no de la vistosidad de sus resultados.
El cumplimiento de todos los principios emanados de la
presente Carta determinará que el resultado final de una
visualización asistida por ordenador pueda ser considerado “de
calidad”.
8.1 Deben fomentarse los programas de formación posgraduada
de alto nivel que potencien la formación y especialización de un
número suficiente de profesionales cualificados en esta materia.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
76
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
77
Virtual Archaeology Review
Itálica Futura: Documentación,
Preservación e Interpretación Digital de la ciudad romana.
Alfredo Grande 1 y José Manuel Rodríguez Hidalgo 1, 2
1
INNOVA CENTER. European Center for Innovation in Virtual Archaeology. Sevilla. España
1 USLAV. Laboratorio de Arqueología Virtual de la Universidad de Sevilla. España
2 Consejería de Cultura. Junta de Andalucía. Sevilla. España
Resumen
Tras un trabajo arqueológico de más de doscientos años, la prioridad de la Itálica actual es mantener, conservar, proteger y difundir el patrimonio, tanto los
inmuebles arquitectónicos como las piezas escultóricas que se encuentran en los muesos. Asimismo, la restauración de las obras es una de las labores fundamentales,
especialmente en el caso de los mosaicos que se mantienen en su ubicación original en el yacimiento in situ.
Si se hace una lectura justa y equilibrada del nivel de evocación actual del Conjunto Arqueológico de Itálica y su estado de conservación, se puede determinar que nos
encontramos con un yacimiento de cota cero, con sus estructuras a nivel de cimentación y con un recrecido histórico que nos determinan, espacios, volúmenes y
estructuras arquitectónicas. Salvo el anfiteatro, el teatro y algunas casas de cañada honda donde el nivel murario es mayor, el nivel de arrase es generalizado.
Con motivo del Centenario de su declaración como Monumento Nacional en 2012, la Consejera de Cultura Dª. Rosa Torres, anunció la puesta en marcha de un
Plan Director con que darle al yacimiento romano localizado en Santiponce un plus de divulgación y puesta en valor, una asignatura pendiente pese a los esfuerzos
realizados en los últimos años.
Palabras Clave: HIPÓTESIS VIRTUAL ARQUEOLÓGICA, EQUIPO MULTIDISCIPLINAR, CARTA DE SEVILLA
1. INTRODUCCIÓN
Itálica es un monumento visitado al año por más de 170.000
personas, siendo el tercero más visitado de Andalucía. Su
integración en los espacios naturales, hacen de este conjunto
arqueológico un lugar no solo apasionante por el conocimiento
que se ofrece al visitante, si no también un entorno lleno de
belleza y de historia que conecta al espectador con su pasado más
remoto.
Actualmente es posible pasear por la ciudad que mantiene sus
caminos y estructuras tal y como fueron en la época de Adriano.
El itinerario principal propuesto discurre por el barrio construido
por Adriano en el primer tercio del siglo II d. C., protegido a raíz
de su excavación y de la creación de un parque moderno que ha
contribuido a una mejora paisajística considerable. No obstante,
el área visitable del Conjunto Arqueológico recorre también una
parte situada en el casco urbano de Santiponce, que incluye el
Teatro y las Termas Menores, testigos de la ciudad preadrianea
conservada bajo este municipio.
El Plan Director del Conjunto Arqueológico de Itálica es el
marco estratégico a medio plazo para la gestión del yacimiento
que contiene las pautas para organizar, impulsar y orientar las
actuaciones de tutela que se han de llevar a cabo durante ocho
años en la Zona Arqueológica de Itálica. Establece, de forma
encadenada y coherente entre sí, la misión y visión institucional y
una serie de objetivos, estrategias, líneas de acción y actuaciones
que las desarrollan. El PD del Conjunto Arqueológico se enmarca
entre los objetivos de la R.E.C.A., creada por la Ley de
Patrimonio Histórico de Andalucía, que, a su vez, constituye un
programa transversal de la Dirección General de Bienes
Culturales.
Fig. 1. Interpretación de una Domus Casa de los Pájaros
Entre todas las áreas tratadas en el Plan Director, aparece como
prioritaria la interpretación arqueológica in situ, conocer Itálica en
Itálica, eso no quiere decir, que sólo se puede conocer en el
Conjunto, sino que se interprete el yacimiento real y luego, si se
desea, se profundice en la Itálica dispersa, Museo Arqueológico
Provincial de Sevilla o en el Palacio de Lebrija, etc.
Desde este planteamiento, la dinamización arqueológica de Itálica
se plantea por medio de la visualización virtual 3D, auspiciadas
por la Arqueología Virtual contemporánea. No debemos olvidar
que Itálica, en el pasado siglo, fue la primera ciudad romana
reconstruida virtualmente por el Proyecto Itálica Virtual, que ya
hemos analizado y su carácter pionero en la incorporación de las
nuevas tecnologías en la documentación, investigación, conservación, preservación, presentación y difusión del Patrimonio
Arqueológico.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
78
Virtual Archaeology Review
2. DEFINICIÓN Y OBJETIVOS
No es Itálica un conjunto arqueológico de especial comprensión
por el visitante, su gran extensión, su clima y su nivel de deterioro
no hacen fácil la tarea de la interpretación arqueológica. Una
excepción es la Casa de los Pájaros, que ofrece una especial
restauración que permite al visitante hacerse una idea de los
espacios en la vida cotidiana de una familia romana. (Fig. 1).
En el último trimestre de 2007 se comenzó a trabajar en el
proyecto de dinamización virtual de Itálica bajo la dirección de
Alfredo Grande, restaurador virtual y la dirección arqueológica de
José Manuel Rodríguez Hidalgo, arqueólogo.
A lo largo de dos años el equipo multidisciplinar formado por los
arqueólogos Mario Delgado Canela y Sergio Ortiz Moreno, la
historiadora Ángeles Hernández-Barahona, el licenciado en BB.
AA. Francis Martínez, el alumno de arquitectura Diego Lozano
Diéguez y el infografo Luis Mariano Saucedo, han desarrollado
una nueva maqueta virtual del Conjunto Arqueológico y las
hipótesis virtuales arqueológicas del viario de la ciudad, muralla,
Traianeum, Arco Monumental, Casa de los Pájaros, Collegium de
la Exedra, Termas Mayores y Anfiteatro.
Los objetivos generales del Proyecto de Interpretación Virtual del
Conjunto Arqueológico de Itálica se resumen en los siguientes
puntos:
Crear una Unidad de Interpretación Arqueológica Virtual
estable y sostenible en la sede del Conjunto Arqueológico de
Itálica, donde se desarrolle un programa de contenidos, que de
manera complementaria a la visita del mismo y no sustitutiva,
ayude a conocer el yacimiento en su dimensión patrimonial, a
entender la cultura y costumbres de sus pobladores y colabore
en conocimiento y deleite de la visita a sus monumentos.
Desarrollar un Audiovisual de imagen Virtual de 12 minutos de
duración que analice la vida en Itálica en el siglo II, por medio
de un paseo virtual que recorra la ciudad y sus monumentos
más importantes. La concepción del audiovisual ha de
responder a los preceptos y criterios más actuales que en el
campo de la Arqueología Virtual, se consideren en este
momento internacionalmente.
Plantear un Programa de divulgación virtual “in situ” en el
Conjunto Arqueológico de Itálica y en una segunda fase, en el
conjunto urbano de Santiponce, que por medio de gráficos
infográficos de rotulética estable y sostenible, ayude a conocer
el yacimiento en su dimensión patrimonial, a entender la
cultura y costumbres de sus pobladores y colabore en
conocimiento y deleite de la visita a sus monumentos.
3. ESTUDIOS GEOARQUEOLÓGICOS Y
PALEOTOPOGRÁFICOS
Para elaborar un panorama geográfico virtual y dinámico, a partir
del cual, explicar los rasgos singulares de este estadio cultural,
fueron especialmente importantes los estudios geofísicos y
geoarqueológicos realizados, que ofrecieron una morfología
territorial fidedigna, para entender las relaciones culturales y el
desarrollo civilizador de estos momentos, y dar la capacidad de
recrear virtualmente la evolución geográfica del valle del
Guadalquivir y modificar su topografía actual. Se llevaron a cabo
tutelados por el Prof. Francisco Borja de la Universidad de
Huelva.
DESEMBOCADURA DEL RÍO GUADALQUIVIR.
A partir de esta investigación, se realizó un estudio comparado de
la misma, para determinar aquellos aspectos relevantes en un
análisis histórico, que configuró el panorama general de un
amplio periodo cultural, que presenta importantes cambios y
evoluciona en sucesivas etapas con identidad propia.
LAGO LIGUSTINO (MARISMA)
CAURA (CORIA DEL RÍO)
ITÁLICA
HISPALIS (SEVILLA)
ORIPPO (DOS HERMANAS)
Fig. 2. Hipótesis de la desembocadura del río Guadalquivir en Caura (Coria) y Orippo (Dos Hermanas).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
79
Virtual Archaeology Review
La definición geoarqueológica del territorio, contemplaba el gran
golfo tartésico con la desembocadura protohistórica del
Guadalquivir en Caura (Coria del Río) y Orippo (Dos Hermanas) y
el curso del río hasta Corduba (Córdoba). (Fig. 2).
Desde Ilipa Magna, actual Alcalá del Río (1), fluye un cauce
paralelo al cauce principal del Guadalquivir (2) que, coincidente
en cierto tramo con el Rivera de Huelva, discurre junto a la
cornisa del Aljarafe sobre la que se asienta Itálica. El cauce
denominado Madre Vieja (3) permitía río abajo unirse de nuevo al
Guadalquivir (4) y a través de su desembocadura tener acceso al
gran golfo, en fase de creación de marisma y por consiguiente al
mar.
Desde el punto de vista geológico, este territorio se incluye en el
dominio de la Depresión del Guadalquivir, formando el extremo
occidental de esta enorme franja triangular que separa Sierra
Morena de las Sierras Béticas y a través de la cual discurre el gran
río andaluz. Desde el período Terciario hasta la actualidad, esta
gigantesca brecha, que era una extensa cuenca marina, se fue
rellenando con los materiales arrancados por ríos y arroyos desde
los entornos serranos próximos. Si bien el principal
condicionante paisajístico que se le antoja a la mirada es el
dominio de lo llano, existen algunos elementos que diversifican el
relieve, como la meseta del Aljarafe, en cuyo borde se encaja el
río Guadiamar formando un pronunciado y bello escarpe, o los
terrenos alomados margosos al oeste del río, en los municipios de
Huévar y Aznalcázar, que sirven de contrapunto a los terrenos de
la vega. Precisamente, el término Aljarafe, que deriva del árabe
Al-Saraf, significa otero o terreno sobresaliente. Estas elevaciones
tienen su origen en una mayor resistencia de sus materiales margas y areniscas- a la erosión fluvial, quedando como testigos
de la superficie mucho más extensa que antes cubrían sobre el
territorio. Los sistemas de terrazas fluviales, de menor entidad en
cuanto a relieve pero de enorme interés geomorfológico, están
asociadas principalmente a la evolución del río Guadiamar. En el
área de influencia de arroyos y ríos de menor entidad, como el
Agrio o el Ardanchón, adquieren protagonismo las vegas y las
llanuras de inundación, pobladas en otros tiempos por extensos
bosques de ribera.
Itálica (5) situada en la margen derecha del Guadalquivir y a
escasos kilómetros de Hispalis (6), importante puerto fluvial en las
inmediaciones del estuario y capital de uno de los cuatro
conventos jurídicos, participaba de una de las principales vías
terrestres de la península ibérica y de la Bética. Su territorio estaba
recorrido por una serie de cauces de agua y arroyos secundarios,
que circundaban la ciudad e incluso la atravesaban. Dos de ellos
fueron entubados en tiempos de Adriano, el que pasaba por la
depresión entre las dos colinas del anfiteatro y el que recorría
cañada honda transversalmente. (Fig. 4).
El río era vía de comunicación excepcional que permitía el
contacto con las ciudades costeras del atlántico y del orbe
mediterráneo. Dado que el transporte comercial se realizaba
principalmente a través de las rutas marítimas y fluviales, las
ciudades costeras y con acceso fluvial tuvieron un factor
determinante en su desarrollo económico e impacto cultural
frente a las situadas en el interior. Los grandes cursos fluviales
conectaban a través de sus afluentes con otras poblaciones más
alejadas, creando una extensa red de comunicación vital para el
flujo comercial.
La relación con especia-les enclaves comerciales como Gades en el
mar, así como Hispalis a la que se unía a través del Rivera de
Huelva y con las principales localidades el curso superior del
Guadalquivir como Córdoba, le hacían estar en uno de los ejes
principales de comunicación con Roma, asegurando a Itálica
como un emplazamiento duradero y floreciente durante siglos.
El río Guadalquivir en su curso desde la sierra de Cazorla hasta
su desembocadura en las proximidades de Caura, Coria del Río, a
escasos kilómetros de Hispalis, fluía en el siglo II con escasa
pendiente a través de la llanura aluvial, creando, en su zona
inferior, un sistema de meandros que con el tiempo se van
modificando y rectificando en su trayectoria, propiciando áreas de
explotación agrícola (Fig. 3).
5
3
2
4
1
6
Fig. 3. Hipótesis fluvial del territorio en el siglo II d. C.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
80
Virtual Archaeology Review
Fig. 4. Hipótesis fluvial del territorio de Itálica con todos los arroyos
y cauces que rodean y atraviesan la ciudad en el siglo II d. C.
4. ESTUDIO DE ITÁLICA EN EL
TERRITORIO
COMUNICACIONES TERRESTRES
La vía Augusta que unía Gades con la capital del imperio recorría
las principales ciudades de la Bética y la Tarraconensis hasta enlazar
con la Vía Domitia en la Galia. Esta calzada interprovincial con
conexión “transnacional”, se llevó a cabo en los años del
emperador Augusto, aunque utilizando diferentes tramos de
épocas precedentes y siendo mejorada y ampliada con los
sucesores gobernantes. Desde Hispalis discurre paralela al
Guadalquivir por las principales ciudades ribereñas, Carmo,
Astigi, Córduba hasta Cástulo en que se dirige a la costa
mediterránea, continuando su trazado costero por la provincia
Tarraconensis en dirección al actual paso de La Junquera.
Asimismo, Itálica se encuentra en la ruta de comunicación norte
que unía Hispalis con la cornisa cantábrica a través de la Vía de la
Plata, pasando por la capital de la Lusitania, Emérita Augusta. Esta
junto a la vía Augusta fueron las más transitadas en la
antigüedad. La estructura básica de las comunicaciones terrestres
de Itálica se aprecian en este estudio de rutas óptimas. (Fig. 5).
Otro eje terrestre de importancia se dirigía hacia la provincia de
Huelva, a su paso por Tejada, de donde partía el principal
abastecimiento hídrico de la nova urbs, y que ponía en
comunicación a la ciudad con la zona minera de esta provincia,
continuando hacia el valle del Guadiana.
RECONSTRUCCIÓN PAISAJÍSTICA.
El paisaje ha sido empleado a lo largo del tiempo con muy
diversos significados, constituye un patrimonio común de todos
los ciudadanos y elemento fundamental de su vida. Se entiende
entonces que posee unos valores propios – estéticos, naturales,
histórico culturales que pese a la inherente componente de
percepción son de indiscutible materia de protección y
preservación.
La inclusión del paisaje en un proceso de reconstrucción virtual
queda justificada atendiendo al desconocimiento del recurso
natural original, debido a que se ha convertido en un elemento
natural perdido, escaso o modificado como consecuencia de la
presión humana sobre el medio ambiente. (Fig. 6).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Fig. 5. Estudio topográfico de rutas óptimas
en el siglo II d. C.
Para llegar a entender la estructura y funcionamiento de un
paisaje es necesario partir del conocimiento de los componentes
que lo integran y de sus interacciones. Esto hace que se deban
contemplar tanto los componentes del sistema natural como los
componentes que forman el sistema socioeconómico.
La impronta que caracteriza estos paisajes está definida por la
extraordinaria fertilidad de sus suelos. Para entender mejor la
tradición agrícola secular de la zona, es conveniente no olvidar la
naturaleza de estos suelos, ricos y profundos sobre relieves
suaves con materiales blandos y deleznables. Así, el Aljarafe
posee sustratos con buena textura, buen drenaje y fácil manejo
que los ha hecho apetecibles desde antaño. Suelen ser suelos
rojos que se formaron en unos tiempos en los que el clima se
caracterizaba por una mayor pluviosidad y temperatura. Por otro
lado, la existencia de areniscas, muy permeables, sobre margas
impermeables permite el almacenamiento ocasional de
importantes reservas de agua freática, origen de los numerosos
caños y arroyos que dieron a conocer estos lugares en toda la
región. Por el contrario, la zona de campiña se caracteriza por el
predominio de las arcillas, lo que hace que sean encharcables y
más difíciles de trabajar. En las inmediaciones del Guadalquivir,
en su llanura aluvial, los suelos se caracterizan por la influencia
directa del río, conformando vegas de gran fertilidad aunque
sometidas con frecuencia al acoso de las crecidas del río,
asociadas a las pulsaciones propias del clima mediterráneo.
Las riberas del río (Fig. 7), presentaban las antiguas alamedas,
saucedas, fresnedas y olmedas que lo debieron cubrir como
bosque de ribera. Es muy patente la presencia cerca del cauce de
carrizos y eneas, mientras que donde los rigores estivales son, los
tarajes y las adelfas adquieren cierto protagonismo. Los
herbazales pueden llegar a tener un desarrollo importante en
determinadas épocas del año, circunstancia que es aprovechada
por el ganado.
81
Virtual Archaeology Review
Fig. 6. Estudio paisajístico de itálica desde el mirador de Trajano en el siglo II d. C. y en la actualidad
Fig. 7. Reconstrucción paisajística del madre vieja y su forestación de ribera a su paso por el Teatro de Itálica en el siglo II d. C.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
82
Virtual Archaeology Review
5. PROCESO DE RECONSTRUCCIÓN
VIRTUAL
ESTUDIO TOPOGRÁFICO
El proceso de levantamiento tridimensional del caserío fue lento
y laborioso dado el margen de edificaciones a desarrollar; 66
manzanas de edificaciones en la ciudad antigua y 44 manzanas de
edificaciones en la ampliación adrianea, además de la muralla y las
villae rurales del contexto territorial cercano a la ciudad.
Todo el contenido virtual tiene como soporte una hipótesis
tridimensional del terreno a partir de la documentación
cartográfica del ICA concretamente del Mapa de Andalucía
vectorial 1:10.000. (Fig. 8).
Fig. 8. Estudio topográfico del territorio actual desde Coria del Río a Alcalá
del Río. Sevilla.
HIPÓTESIS VIRTUAL ARQUEOLÓGICA
Son múltiples las ocasiones en este proyecto, donde la disciplina
de la Arqueología Virtual se ha habilitado como importante
medio de investigación y documentación del patrimonio
arqueológico y que por medio de la infografía, en especial del
3D, hemos podido dar respuestas o al menos postular hipótesis
reales, que la historiografía y la arqueología convencional no
había resuelto.
Como su propio nombre indica, la hipótesis virtual arqueológica
es una hipótesis de naturaleza digital y desarrollo virtual. Su
definición podría responder “al conjunto de afirmaciones de carácter
hipotético y consensuado, que en su combinación definen y determinan la
propuesta virtual, total, parcial o fragmental de un bien del Patrimonio
Arqueológico, en un espacio y tiempo determinado”. (GRANDE A.
2008).
La consecución de la hipótesis virtual, constituye a nuestro
parecer, el punto más importante y trascendente de la
metodología o proceso virtual. De ella va a depender el éxito o
fracaso del desarrollo intelectual de la misma y un error no podrá
ser subsanado por ningún virtuosismo técnico de visualización,
animación o posproducción. En las Figs. 9 y 10, se observa la
hipótesis virtual de la vetus urbs.
LEVANTAMIENTOS 3D
El desarrollo del conjunto urbano se basó en la hipótesis virtual
creada. Primero se planteó la planta 2D, colocando las curvas de
nivel modificadas y el viario ideal determinado en la hipótesis
virtual. Posteriormente se levantan los cardos y decumanos
siguiendo las curvas de nivel de la topografía histórica.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figs. 9 y 10. Hipótesis virtual arqueológica de la ciudad vieja de Itálica en el
siglo II d. C.
Por lo que respecta a los edificios virtuales, el proceso se basó en
plantas georeferenciadas (aquellas que la Consejería de Cultura
aportó). (Figs. 11 / 13).
BIENES MUEBLES
Los pavimentos romanos normalmente cubiertos de mosaicos se
restauraron digitalmente, a partir de ortofotos de gran resolución.
Se debe tener en cuenta que gran parte de éstos han sido muy
dañados por el paso del tiempo, lo que dificultó la labor de
reconstrucción. (Figs. 14 y 15).
Son muy escasos los restos de pinturas murales conservados en la
Bética, algunos ejemplos de ellos son: los de la Collegium de la
Exedra en Itálica (Sevilla), en el criptopórtico, en una bóveda
caída de las termas, también de la Exedra, en las Termas de
Munigua (Villanueva del Río y Minas) y algunas pinturas murales
en domus de Astigi (Écija).
Nos vemos en la situación de interpretar motivos decorativos del
mundo romano paralelo de otras localizaciones. Se seleccionaron
composiciones de pintura mural y artesonados y yeserías de los
siguientes yacimientos arqueológicos: Domus Aurea, Casa de los
Grifos del Palatino, Casa de la Farnesina, Casa de Livia del
Palatino, de Roma; Casa della Caccia Antica, Villa de los
Misterios, Casa de Apollina, Casa de Lucretius, Termas Stabianas,
Casa de los Vettii, de Pompeya; Casa Sannitica de Herculano;
Villa de Poppea de Torre Anunciatta; Villa de Boscoreale, en
Boscoreale y la Villa de Stabia, Stabia. Italia.
83
Virtual Archaeology Review
Con ellas, se desarrolló un arduo proceso de restauración virtual
de las mismas a partir de documentación fotográfica de gran
definición. Se cerraron dibujos faltantes por simetría o analogía,
dejando lagunas neutras poco perceptivas en las zonas de
imposible interpretación. (Fig. 16)
Fig. 16. Resultado de mapa de repetición tras la restauración digital del
mismo, a partir de documentación fotográfica. Casa del Comediante del siglo
I Pompeya. Italia.
Se completó un programa suficiente de modelos iconográficos
del siglo I y II de nuestra era, que abarcaba a todas y cada una de
las funciones de los ámbitos de una domus, un collegium, unas
termas, etc. (Fig. 17).
Figs. 11, 12 y 13. Proceso de levantamiento tridimensional del Traianeum
de Itálica en el siglo II d. C. Planta georeferenciada, levantamiento de cotas y
objeto 3D mapeado.
Fig. 17. Ejemplos de modelos de pintura mural histórica restaurados
virtualmente.
Figs. 14 y 15. Vistas del estado actual del Mosaico de Tellus de la Casa de
los Pájaros de Itálica (Santiponce) y restauración digital del mismo.
Integración digital en la laguna central el emblema robado en la década de los
ochenta.
En esta parte de la unidad de bienes muebles se desarrolló los
elementos de todo el mobiliario de las edificaciones; triclinios,
mesas, lechos, sillas, lámparas, lucernas y objetos en general,
todos pertenecientes al Museo Arqueológico de Nápoles,
poseedor de la colección más importante de ajuar romano del
mundo. (Figs. 19 y 20).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
84
Virtual Archaeology Review
Figs. 19 y 20. Levantamiento 3D de triclinio. Imagen del mismo tras su
mapeado, introducción de texturas y proceso de ambientación.
Por último se construyeron los distintos platós virtuales y se
procedió a su iluminación fotorrealista de las estancias interiores y
exteriores, analizando la luz de Sevilla en las distintas horas del
día, mañana, mediodía, tarde y noche.
El siguiente paso consistió en la creación de trayectorias de
cámara subjetiva que imitaran el transitar de una persona por los
ambientes recreados sintéticamente.
6. LA IMAGEN HUMANA
Un punto importante desde el principio del proyecto, fue la
resolución conceptual de los agentes humanos animados. Éstos,
dado el tema del audiovisual “La vida en Itálica”, debían
representar una ciudad llena de vida y actividad. Era a todas luces
evidente, que no se debían de dejar las estructuras arquitectónicas
vacías y sin animación, pero al mismo tiempo, existían ya
numerosos ejemplos de representaciones humanas virtuales poco
conseguidas, que podían dar al traste al más escrupuloso proyecto
de investigación. En la introducción de agentes humanos
animados en escena, el ojo humano es bastante sensible a
movimientos poco naturales y erráticos. El simple hecho de
andar, es un movimiento extremadamente complicado que
requiere casi todas las partes del cuerpo para poder participar en
un único y fluido movimiento.
Figs. 21 y 22. Reproducción de la obra “A Roman Art lover”, de 1870
del artista prerrafaelista Alma Tadema y su integración en escena virtual 3D
que ilustre el Salutatio romano.
Existen técnicas muy avanzadas mediante el uso de esqueletos
articulados o de captura de movimiento de actores reales para
realizar las secuencias, pero junto a la Dirección de Itálica se
consideró que la verdadera protagonista era la restauración virtual
de la ciudad y que la “humanización” de las estancias tenía que estar
basada en un recurso sencillo, neutro y digno.
El recurso elegido, a pesar de su antigüedad, resultó muy
agradecido y original. Para ello, nos remontamos a finales del sigo
XIX cuando surge en Europa una escuela de pintura neoclásica e
historicista, de gran importancia en su época, denominada
prerrafaelinos, liderada por el magnífico pintor e investigador en
arqueología, Lawrence Alma-Tadema, que junto a sus discípulos y
otros autores, retratan en sus obras el esplendor y ocaso de
grandes civilizaciones, egipcia, babilónica, griega, romana, etc. La
calidad de las mismas y su hiperrrealismo, las hacían muy
oportunas para poder representar la vida y costumbres de los
patricios romanos de la ampliación de Adriano. Se realizó una
escrupulosa selección de obras, por clases sociales, costumbres
romanas, profesiones, etc. que eliminó todo aquello que la
hipótesis virtual arqueológica considera “no posible”.
(Figs. 21-26)
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figs. 23 y 24. Reproducción de la obra “At the antiquarian”, de 1880 del
artista prerrafaelista Vicenzo Capobianchi y su integración en escena virtual
3D que ilustre una tabernae romana.
85
Virtual Archaeology Review
Figs. 25 y 26. Reproducción de la obra “Pollice Verso”, de 1872 del artista Jean-Léon Gérôme y su integración en escena virtual 3D que ilustre a los gladiadores
de un anfiteatro romano.
7. RESULTADOS VIRTUALES
Fig. 27. Ciudad de Itálica en el siglo II. Eje norte/sur y eje este /oeste
Fig. 28. Ciudad de Itálica en el siglo II. Eje oeste/estee
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
86
Virtual Archaeology Review
Figs. 29 y 30. Vistas arqueológica y virtual del Anfiteatro de Itálica.
Figs. 31 y 32. Fachada ¾ y frontal del exterior del Collegium de la Exedra y Peristilum Casa de los Pájaros
Figs. 33 y 34. Vistas de la Natalio de las Termas Mayores o de Adriano y el acceso principal del Traianeum.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
87
Virtual Archaeology Review
8. CRITERIOS INTERNACIONALES DE LA
ARQUEOLOGÍA VIRTUAL
El Proyecto de Interpretación Virtual de Itálica es la primera
Hipótesis Virtual Arqueológica que desarrolla integralmente los
principios internacionales que rigen la reconstrucción virtual del
patrimonio arqueológico.
El proyecto se enmarca en las directrices de la comisión europea
para coordinar las políticas de digitalización del Patrimonio
Cultural y Tecnológico en el seno de los estados miembros; los
Principios y el Plan de Lund del 2001.
Asimismo, cuenta con los preceptos recogidos en The London
Charter, Carta Internacional del 2009 para Visualización 3D del
Patrimonio Cultural. Para terminar, la producción audiovisual
adelanta internacionalmente las directrices del borrador SEAV
2010 de la futura Carta de Sevilla de la Arqueología Virtual
Internacional.
Las imágenes virtuales de este proyecto se encuentran codificadas
por una clasificación del grado de certeza de la hipótesis virtual
del patrimonio arqueológico desarrollado. Esa escala se reduce a
tres sencillos niveles de de interpretación: muy probable, posible
y evocador:
Grado muy probable: presencia de testimonios materiales que
por sí solos sustentan la interpretación arqueológica.
Grado posible: presencia de indicios materiales que orientan
la interpretación, desarrollada en base a coherencia
arqueológica, paralelos, simetría y principios de restauración.
Grado evocador: ausencia de testimonio materiales que
respalden la interpretación, desarrollada en base a coherencia
arqueológica, paralelos, simetría y principios de restauración.
Con la codificación de imágenes, se consigue que el receptor de
información conozca en todo momento el nivel de certeza de la
Hipótesis Virtual Arqueológica del conjunto.
AGRADECIMIENTOS
Desde aquí queremos agradecer a todo el equipo del Conjunto Arqueológico de Itálica su colaboración y entrega en este proyecto de
difusión virtual de la ciudad romana de Itálica.
BIBLIOGRAFÍA
BRANDI, C. (1988) “Teoría de la Restauración.” Madrid. Alianza Editorial, S.A.
CARANDIM, A (1997): “Historias en la tierra. Manual de excavación arqueológica”. Ed Crítica. Barcelona. p. 150.
FERNÁNDEZ, J. A. (1996): “La Restauración del Patrimonio por Imágenes de Síntesis”. Universidad de Granada. Granada. pp. 21-23
GRANDE, A. (2002) “Itálica Virtual. Un Proyecto educativo que hace Historia”. Sevilla. PH Boletín del Instituto Andaluz del
Patrimonio Histórico nº 40/41 Año X Consejería de Cultura. Junta de Andalucía. Sevilla.
GRANDE, A. (2005) “Museo de las Culturas del Guadalquivir”. Proyecto de ejecución. Sevilla. pp. 1-75
GRANDE, A. (2008) “La Hipótesis Virtual Arqueológica: Anastylosis Digital de la Baetica de Adriano”. Tesis doctoral. Sevilla. pp. 260.
HERNANDO, A. (2006): “Arqueología y Globalización: el problema de la definición de el otro en la Post-modernidad”. Complutum 17.
Madrid. Pp. 221-234.
MORÓN DE CASTRO, M. F. y GRANDE LEÓN. A. (2007): “Memoria Técnica del Proyecto de Excelencia Anastilosis Virtual del
Patrimonio Cultural del bajo Guadalquivir. De los orígenes al 1000 d C. Museo de las Culturas del Guadalquivir”. Sevilla. pp. 1-44.
REILLY, P. (1990): “Towards a virtual archaeology. En Computer Applications in Archaeology”, Editado por K. Lockyear and S. Rahtz.
Oxford: British Archaeological reports. pp. 133-139.
WHELEVER, M. (1945): “Archeology from the earth” . London. E.d. Cast. FCE, México. p. 10
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
88
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
89
Virtual Archaeology Review
Enabling Archaeological Hypothesis Testing in Real Time
using the REVEAL Documentation and Display System
Donald H. Sanders
Learning Sites, Inc. & the Institute for the Visualization of History, Inc., Massachusetts, USA
Abstract
This paper focuses on a system that can ensure that excavations are indeed fully documented and that the record is accurate. REVEAL is a single piece of
software that coordinates all data types used at excavations with semi-automated tools that in turn can ease the process of documenting sites, trenches and objects, of
recording excavation progress, of researching and analyzing the collected evidence, and even of creating 3D models and virtual worlds. Search and retrieval, and thus
testing hypotheses against the excavated material happens in real time, as the excavation proceeds. That is the important advance.
Keywords: VIRTUAL REALITY, AUTOMATED 3D MODELING, DATABASES, EXCAVATION TOOLS,
DATA INTEGRATION, GEOLOCATED IMAGES, SITE RECORDING, EXCAVATION DOCUMENTATION
I. INTRODUCTION
Laboratory for Man/Machine Systems, and the University of
North Carolina’s Department of Electrical and Computer
Engineering.
Those are questionable assumptions.
From my field experience as a dirt archaeologist, I understand
traditional excavation methods and how frustrating it can be to
ensure that everything is being noted properly, dug efficiently,
and that inferences about the evidence allow for a successful
interpretation of the site’s history. Therefore, any automated
computer-based documentation and analysis tools would seem
beneficial. They can be more accurate and cost effective, saving
time and ensuring that all finds and their context are
appropriately and thoroughly recorded.
I also admit that cool software tools and fancy hardware can
create new problems and headaches. But if designed properly,
with safeguards in place, new digital field data acquisition
systems can enable new types of hypothesis testing, new insight
into the past, and new visualizations that in turn can lead to a
paradigm shift in how excavations are managed and evidence
disseminated.
As I made my transition from dirt archaeologist to virtual
heritage practitioner, I discovered that interactive 3D computer
models permit more innovative inquiries than are possible when
using traditional 2D paper-based media (Figure 1; SANDERS
2008). Afterall, the past happened in 3D, so that is the way it
should be studied. Only then can we accurately envision historic
places and events.
But, projects like these assume excavations have already
happened and that the virtual environments that re-create the
past are using a complete record of the excavated evidence and
that the data are correct.
This paper focuses on a system that can ensure that excavations
are indeed fully documented and that the record is accurate. We
call our initiative REVEAL (Reconstruction and Exploratory
Visualization: Engineering meets ArchaeoLogy). It is a new
collaborative project between the Institute for the Visualization
of History, Brown University’s Division of Engineering,
Figure 1. Montage of sample project renderings from Learning Sites, Inc.
and the Institute for the Visualization of History, Inc.; directed by Donald
H. Sanders.
There have been many computer-based data collection systems
for archaeology; many databases, many digital archives, and
many digital publications for the discipline. REVEAL is special,
because it is a single piece of software that coordinates all data
types with semi-automated tools that in turn can ease the
process of documenting sites, trenches and objects, of recording
excavation progress, of researching and analyzing the collected
evidence, and even of creating 3D models and virtual worlds.
Search and retrieval, and thus testing hypotheses against the
excavated material happens in real time, as the excavation
proceeds. That is an important advance.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
90
Virtual Archaeology Review
II. CURRENT ARCHAEOLOGICAL
METHODS
One of the key problems in archaeology is trying to accurately
locate things like trenches, walls, and artifacts in 3D space.
Traditionally, archaeologists describe their finds, manually take
measurements, and use hand-drawn sketches and occasional
photographs to record the contexts of artifacts, strata, and
architectural features. This methodology suffers from inaccuracy,
inconsistent terminology, transcription errors, and just taking too
long. Some things are not recorded at all because their
significance is not recognized until too late.
Other issues for field teams include noting what was found, who
found it, what are the find’s characteristics, figuring out how all
this data should be organized, and how other researchers can
assimilate all this information. Understanding the meaning,
context, and function of an object evolves over time as it is
examined and categorized, which often involves multiple
specialists each of whom may submit data in different formats.
The standard collocation methods do not effectively allow
hypothesis testing on all the excavated data in real time; nor
allow for planning field strategies while the dig is underway.
Normally, we have to wait until all the evidence has been
collected, analyzed, and synthesized--that often takes years and is
unfair to our colleagues.
Has the transition to digital acquisition technologies improved
the situation? We now have the choice of laser scans, LIDAR,
digital photography, databases, CAD, GIS, GPS, total stations,
and even smartphones with high-res cameras and custom apps
that can be tailored for use during excavations.
data entry tasks; and integrated 2D and 3D media resources to
enhance comprehension and dissemination.
More specifically, our goals are to enable real-time hypothesis
testing during excavation by improving data acquisition through
automation, including zero-additional-cost geo-located position
recording; 3D model generation from photographs; and full
integration of all other user data, from laser scans to chemical
analyses (GALOR ET AL. 2009). REVEAL has a single
common repository for all data about an excavation, integrated
multimedia analysis functions (including immediate access to
tabular, photo, video, and 3D data), and integrated display of
that data on plans or in spatially located 3D models of excavated
remains. This means that from any single data type there is, via
context-sensitive menus, direct access to and display of all other
related datasets. REVEAL can also export data and query results
in a number of file formats. Thus, REVEAL combines multiple
modes of input, a back-end database, and a sophisticated user
interface.
The alpha version of REVEAL, used on-site last summer, tested
low-frame-rate continuous video to capture the entire excavation
process, allowing the users to “roll-back” and replay the
excavation to determine exactly where and when an artifact or
wall was discovered. To solve issues of occlusion, multiple
cameras were mounted around the trenches to record from
many viewpoints. However, the cameras lacked sufficient
resolution for locating small finds, and positioning them around
the excavation so their cables did not get in anyone’s way proved
difficult. We concluded that this process was not worth the
effort and expense.
Using total stations and related equipment to survey a site is time
consuming, only those points that were considered important at
the time are recorded, and the points are hard to collate with the
rest of the datasets from the site. GIS is superlative for 2D
spatial data, but not so useful as a general purpose data
exploration tool, and generally has poor integration with
interactive 3D visualizations. Harris Matrix tools focus on
displaying stratigraphic sequences, with little integration with
other datatypes. Custom site-specific databases are uneven in the
comprehensiveness of their features and cannot be easily
generalized to other excavations.
What site directors really need is a complete package that keeps
things digital from acquisition to publication, integrates all data
types, and can be used across different excavations with minimal
modification. The goal would be to ease recording and recall for
researchers of all backgrounds. That is exactly what we set out to
do.
III. REVEAL
REVEAL is a four-year US National Science Foundation-funded
project. We are currently nearing the grant’s midway point. Our
consortium is creating an all-digital toolkit for acquiring,
coordinating, and presenting archaeological data in a way that
streamlines the excavation documentation process, supports and
enhances understanding of the data, and allows for many output
formats. REVEAL leverages three aspects of information
technology: computer vision algorithms to speed up or replace
manual imaging tasks; computer automation tools to speed up
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figure 2. Photos of the REVEAL I camera and scaffolding arrangement
from the 2009 alpha tests.
In addition, REVEAL I used multiple high-resolution still
cameras placed surrounding trenches to photograph finds as
they were uncovered, to provide data for 3D reconstructions of
the area, and to enable detailed analysis and measurements from
any angle (Figure 2). The photography and its automated
processing were combined with more traditional form-based
object recording into a database whose entries are linked to the
digital images. Based on last summer’s tests, the REVEAL
interface, image input methods, and automated tools were
redesigned.
REVEAL II, our current pre-beta version, is programmed for
acquiring and analyzing highly integrated tabular data, plan
views, photographs, and 3D models. It is being field tested at
archaeological sites in Israel this summer. We have significantly
91
Virtual Archaeology Review
reduced the equipment cost and enhanced flexibility by replacing
the fixed still and video camera array with a single handheld
digital camera and a specific picture-taking process. We trade
off simplified hardware for more complex software challenges.
The REVEAL user interface allows direct, multiple window
access to drawings, photos (stills and videos, whether taken on
site or via satellite or from scans), 3D models (of objects,
trenches, and reconstructions, including GIS, point cloud, and
laser scan data), and any text about the site and its finds.
The following screen shots of some sample queries will
demonstrate a bit of the power and flexibility of the system. The
explanations will focus on the query and hypothesis-testing side
of REVEAL, assuming that the front-end database forms are
being filled out while a (hypothetical) excavation progresses.
REVEAL’s screen consists of a side panel (for adding to or
changing elements in the display); the main display space, and
various context-sensitive pull-down menus (Figure 3). All data
types and visualization methods are always available and linked
from all other interface and image modes. Users can choose
from a set various display preferences, such as, selecting the size
and color of icons, the zoom depth for resolving dense clusters
of objects, or the transparency and order of stacked images. User
navigation methods and menu options are consistent across all
screens.
Figure 4. Screen grab of REVEAL showing stacked site plan and satellite
views of the castle site and the transparency slider.
Figure 5. Sreen grab of REVEAL showing the plan browser focused on
Area M in the stack and showing the flyout menu options for this top
image.
Figure 3. Screen grab of REVEAL showing the main panels and selection
options from the plan browser.
What pottery was found in association with the walls in Area M?
To graphically visualize the answer to that question, open the
Artifacts filter (from the menu at the left) and choose Pottery
from the material list (Figure 6).
The easiest way to get oriented is to click on the plan icon,
which opens the plan browser window and a list of available topdown images of the excavation (in this case, the Crusader castle
at Apollonia-Arsuf, Israel; Figure 3). After selecting (for
example, the site plan and a satellite photo), top-down images
display as a series of automatically geo-referenced stacked layers
and can include site plans, satellite images, trench plans, or any
similar top view of a location. Layers can be sorted, and there is
a transparency slider to aid understanding of superimposed
images (Figure 4).
Suppose we want to study the distribution of artifacts in relation
to the architecture in a particular trench. Clicking on the Load
Plan operation brings back the list of available top views; Area M
is selected, which is added to the stack. The Zoom to This Plan
feature in the fly-out menu focuses the plan browser on the
selected image (Figure 5). Images in the stack can still be sorted
here or their transparency changed so that different aspects of
each view can be seen.
Figure 6. Screen grab of REVEAL showing the selection of pottery
artifacts
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
92
Virtual Archaeology Review
The type, color, and size of the icon used to represent the
selected artifacts can be customized by the user (in this case, red
triangles; Figure 7).
Figure 9. Screen grab of REVEAL showing the flyout menu generated
from a group of selected icons.
Figure 7. Screen grab from REVEAL showing the choice of icon shape
and color.
The interface knows that Area M is already open, so the chosen
artifacts are displayed on the plan (Figure 8). In the plan
browser, hovering the cursor over each icon brings up a flyout
that shows the object ID, material, color, type, and locus for the
artifact represented by that icon; clicking on the icon pops up a
menu with further options on how to view the object and what
other media are available for that selected object.
Figure 10. Screen grab of REVEAL showing the photo browser and a
high-res image of a selected thumbnail.
Returning to the same group of highlighted objects, the artifacts
can instead be studied in a data browser. Each of the fields in the
data browser can be sorted and the individual artifacts can be
compared by as many different fields as there are in the database
(preselected characteristics display here, but a wide variety of
categories can be viewed as needed simply by clicking in an
object’s row; Figure 11).
Figure 8. Screen grab of REVEAL showing the distribution of pottery in
Area M, in the chosen icon shape and color, as well as the flyout menu
resulting from hovering the cursor over an artifact icon.
To study how metal objects array with the pottery, the selection
process is repeated and a different icon shape and color are
chosen. These types of queries can be repeated as many times as
relevant to the research. Drawing a bounding box around a
group of objects generates a flyout showing related options
(Figure 9). For example, selecting to look at photos of these
objects opens the photo browser which displays thumbnails of
the selected group. Clicking on any thumbnail pulls up the highres image of that object in a window that is zoomable (Figure
10).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figure 11. Screen grab of REVEAL showing the data browser.
93
Virtual Archaeology Review
As before, clicking on any object brings up a flyout indicating
which other media are available for that object, such as the
photo browser or the plan browser, demonstrating that any type
of information is directly available from any one of the display
options.
Further, multiple data browsers can be open simultaneously so
that researchers can compare groups of objects and their
characteristics and context information. Any query made on an
object in the data browser can, also, display on the plan.
However, plans are too limiting; excavated evidence should
really be studied in 3D. REVEAL also has a 3D model browser.
This can be accessed by selecting the 3D model icon, then, for
example, chosing the name of the excavation square in which the
preselected group of artifacts is located. This sequence brings up
a window displaying thumbnails of available 3D models. Clicking
on the thumbnail brings up an interactive 3D browser in which
the model can be rotated and zoomed. Researchers can now
more fully understand the group of selectede artifacts by seeing
them in a 3D spatial distribution of their excavated contexts
(Figure 12).
Figure 12. Screen grab of REVEAL showing the selected group of
artifacts displayed in a 3D model of the trench in which they were found (a
bit difficult to read the 3Dishness of the model in this image, however).
A key feature of REVEAL is its ability to automatically generate
accurate 3D models of trenches and in-situ artifacts as the dig
progresses with just standard digital camera photographs.
REVEAL archaeologists take lots of overlapping photographs to
create a chain of images that have sufficient information for a
Scale Invariant Feature Transform (or SIFT) algorithm.
REVEAL then automatically locates the photos relative to each
other. By strategically including patterned markers in the shots
and using feature extraction, camera calibration, and position
algorithms, REVEAL can locate any object and feature in the
photos in real-world coordinates.
REVEAL includes the ability to extract accurate and precise
measurements from the 3D models to augment or replace
traditional measurement methods. The 3D model interface can
also import externally created 3D models. Such models can then
be geo-located and used in conjunction with the rest of the
REVEAL data to examine an archaeological site in great detail.
Soon, it will include an automated fragment re-assembly
application for creating 3D models of reconstructed pots from
sherd photographs, which will then be extended to handle virtual
reassembling of wall fragments, based on inferences about
architectural features.
When REVEAL is used during an excavation, with photos and
database information input as the dig proceeds, it is not difficult
to imagine how easy it becomes to ask new types of questions
about the excavated evidence in real time while the dig ensues,
thus enhancing the field team’s ability to grasp the significance
of daily activities in each trench and more effectively plan
excavation strategies accordingly.
IV. CONCLUSION
REVEAL will provide a new level of timely and comprehensive
exploration of excavation data. It provides the ability to visualize
relationships among related artifacts found at different times and
to take additional measurements, both during and after
excavation, from 3D models of in-situ finds. The user interface
reinforces the uniquely flexible data integration, enabling precise
contextual examination of data in the field, providing
unprecedented analysis detail and support for daily excavation
decisions. Powerful tools for post-excavation analysis and
publication are welcome byproducts of the system. These
features are combined with strong search and filtering
capabilities, flexible data export to external applications, and an
extensible architecture designed for adding new functionality. By
providing all of an excavation’s datasets in a single interface,
REVEAL encourages real-time hypothesis testing as the dig
ensues; while also providing advantages for use across multiple
sites.
Thus, REVEAL offers a more complete, coordinated, and
accurate solution to excavation data gathering, site
documentation, and research querying in comparison to current
methods that employ hand-written field notebooks or
standalone computer databases, conventional hand-drawn 2D
plans or CAD files, or reliance on occasional photographs and
other non-geolocated or non-linked image sets. When seen in
combination with REVEAL’s ability to automatically build geolocated 3D models, semi-automatically reassemble artifacts from
fragments, and infer architectural features from minimal
remains, archaeologists can appreciate the dramatically new and
potentially paradigm-shifting nature of the package. To be able
to see in detail what happened at an excavation last year, last
week, or even just three hours ago in a fully textured, virtual recreation, and to be able to query all the recovered data in real
time, frees the field team to test hypotheses about the evidence
in unprecedented fashion.
Future REVEAL releases will be even bolder. We envision a
potential scenario whereby the full package becomes a series of
linked smartphone apps using the device’s camera and data input
features. Photos, videos, data descriptions, automated virtual
world generation, and automated artifact reassembly and
architecture reconstruction will occur in the cloud. There will be
global access to the data for real-time querying as the evidence
comes out of the ground. Instant feedback from colleagues
around the world using social networking tools, wikis, and
virtual memos posted inside the virtual models of the excavation
progress and reconstructions will enable timely shifts in
excavation strategies, comprehensive analyses of the newly
uncovered material, and innovative querying on an
unprecedented level of detail so that we can begin to truly
understand cultural change, spatial function, and even ancient
behaviors.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
94
Virtual Archaeology Review
The study of the past need not be constrained by the technology of the past.
ACKNOWLEDGEMENTS
The REVEAL project consortium includes the following principals (besides the author): John Ballem, David Cooper, Katharina Galor,
Eben Gay, Benjamin Kimia, Gabriel Taubin of Brown University; and Andrew Willis of the University of North Carolina.
REFERENCES
GALOR, Katharina; ISRAEL Roll and OREN Tal (2009): “Apollonia-Arsuf between Past and Future,” in Near Eastern Archaeology 72.1,
pp. 4-27.
SANDERS, Donald H. (2008): "Why Do Virtual Heritage? Case studies from the portfolio of a long-time practitioner," Archaeology
Magazine [online] http://www.archaeology.org/online/features/virtualheritage/
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
95
Virtual Archaeology Review
Practical 3D Reconstruction of Cultural Heritage Artefacts
from Photographs – Potentials and Issues
Dieter W. Fellner1,2, Sven Havemann1, Philipp Beckmann1 and Xueming Pan1
1
Institute of ComputerGraphics and KnowledgeVisualization (CGV), TU Graz, Austria
2 Fraunhofer IGD and GRIS, TU Darmstadt, Germany
Abstract
A new technology is on the rise that allows the 3D-reconstruction of Cultural Heritage objects from image sequences taken by ordinary digital cameras. We describe
the first experiments we made as early adopters in a community-funded research project whose goal is to develop it into a standard CH technology. The paper
describes in detail a step-by-step procedure that can be reproduced using free tools by any CH professional. We also give a critical assessment of the workflow and
describe several ideas for developing it further into an automatic procedure for 3D reconstruction from images.
Key words: 3D RECONSTRUCTION, PHOTOGRAMMETRY, 3D ACQUISITION, 3D SCANNING, ARC3D, MESHLAB
1. INTRODUCTION
The 3D-COFORM project
3D reconstruction from photographs has the potential to
revolutionize the digital documentation of Cultural Heritage
artifacts. No expensive delicate equipment like 3D-scanners is
necessary for capturing data, but an ordinary digital camera is
sufficient. Decent cameras are often already part of the
equipment of CH professionals for capturing documentary
photographs. But in addition to this they can also be used for
taking so-called image sequences, and the acquired photos can be
used for 3D-reconstruction. This requires today a somewhat
tedious workflow, but it may soon be automated.
3D-COFORM (www.3d-coform.eu) is a 4-year integrated
project (FP7-IP) funded by the European community. Its main
objective is to make the use of 3D technology a standard in
Cultural Heritage, and to develop all necessary technologies for
data acquisition (in museums and on archeological campaigns),
for data processing, for semantics and metadata processing, for
museum presentations.
Apparently this technology is not so widely known in the
professional Cultural Heritage community. It was for instance
presented in Graz, Autria, on a workshop of the Steirisches
Denkmalamt on the conservation of pre-historic wood. The
following presentation was given by Rengert Elburg from the
Landesamt für Archäologie Sachsen who presented the enormous
effort made for excavating a large scale pre-historic well in
Saxonia. He started his presentation with the words: “If only
someone had told me three years ago that we should simply take many image
sequences!”.
In particular, a repository-centric approach is adopted with a
distributed central database to document paradata (LONDON
CHARTER,2006) describing the digital provenance of all
acquired data, processing steps, and results (PAN, 2010).
Especially innovative is that all metadata are recorded in a
semantic network following a common standard, the CIDOCCRM (CROFTS, 2005), which is in fact an ISO standard for
describing cultural facts.
At this point the question remaining is how image-based 3D
reconstruction works in practice.
To make this readily available for testing in the CH community
is the purpose of our contribution.
2. THE ACQUISITION PHASE
The quality of the 3D reconstruction results can be greatly
improved when following only a few rules. The purpose of this
paper is to report on the practical experiences we have made in a
number of acquisition campaigns. With any such campaign a
great challenge is sustainability: Without a faithful documentation
of the workflow it is difficult if not impossible to judge the
quality, the authenticity, or to re-use intermediate results.
The Gipsmuseum of the Institute of Archeology of Karl-Franzens
University Graz (KFU) contains more than a hundred 1:1 plaster
copies, primarily of ancient Greek and Roman statues. We have
selected a set of 24 statues for photogrammetric reconstruction.
Each statue has a label showing a number (Figure 1), this
number we have taken as object ID for our files and directories
(Table 1).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
96
Virtual Archaeology Review
Figure 1: The Gipsmuseum of KFU Graz contains more than 100 plaster copies of marble statues. 24 of them were acquired using photo-based 3D
reconstruction using projected light to account for the white surface. The labels of the statues were directly used as data reference in the reconstruction
workflow.
Acquisition Phase: Process Description
The Gipsmuseum acquisition process required projecting a
random pattern onto the statues: As explained in more detail
below, photogrammetric reconstruction proceeds by comparing
pairs of images, i.e., individual pixels. If the pixels all have the
same color, no distinctions can be made, and thus, no depth
value can be computed. Plaster statues are primarily white, this is
why we had to apply a high-frequency texture artificially.
The setup (Fig. 2) is somewhat complex because the projector
has to be put into a different position for every sequence. The
camera tripod ideally moves on a half-circle around a chosen
point on the surface. However, the camera must not be in front
of the projector, so it must either be higher or lower than the
projector. In principle, the camera should be as close as possible,
so that a larger field of view can be used, which allows for
calculating the disparity more robustly. Sometimes this is not
possible because of the space constraints in the museum, of
course we may not move the artefacts.
Figure 2: The acquisition process. The string helps to keep the camera at the same distance from the chosen surface point. The camera autofocus is switched off both
for greater speed and accuracy.
Preparation and Capture
Preparation phase
We use a 6 megapixel Nikon D50 camera with a good 18-55 mm
zoom lens and a 55-200 mm tele lens. There is a rather informal
list of things to do and remember when taking the pictures:
•
Clear memory cards, load batteries
•
Projection laptop: Display random image in 1400 x 1050
resolution in presentation mode
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
97
Virtual Archaeology Review
•
Material: projector, camera, tripod, string, 2nd memory
card and 2nd battery pack, long power cable, multi-plug,
camera remote control
Acquisition planning
•
Take context pictures of the statue from all sides, at normal
light, including ID plate
•
First take an overview sequence of statue as a whole, then
make detail sequences
•
Plan sequence of camera positions for the detail sequences,
in particular whether to place the camera in front or behind
the projector, and whether it should be above or below.
focus depth. Some experimentation is required; we tend to use a
medium F-stop whenever possible.
Another delicate issue is lighting. Ideal is a bright, diffuse
illumination from all sides, as for instance outside on a cloudy
day, where it is impossible to tell where the sun is. – We try to
approximate this kind of illumination whenever taking pictures
inside (see Fig. 3).
Interestingly, it is desirable to use a closer range with a large
depth of field (wide-angle zoom, e.g., 18 mm) instead of a tele
(50 mm or more). The larger the focal distance is, the more
resembles the image an orthographic projection, and the less
significant is the needed perspective distortion. – As explained
next, significant depth disparity is most vital for any
photogrammetric computation.
The actual acquisition pattern is highly object dependent,
although for some object classes a certain typical schema
emerged with experience. For example for a bust we used this
schema: Three projector positions, from front left, front right,
and from behind. For more complex busts the projector is
positioned two times, shining from slightly above and slightly
below. Questions to clarify are: Is anything occluded? Is any part
of the statue not visible? Then, for each projector position, one
sequence is taken from below the projector (camera looking
upwards), and one from above the projector (camera looking
slightly downwards).
Acquisition of a sequence
•
Determine one fix point on the surface
•
Determine the camera distance (halfcircle radius), make a
mark on the string, fix the camera vertically
•
Determine the zoom factor: Is the object completely visible
at the start, the middle, and end positions on the halfcircle?
•
At the midpoint: Determine best focus setting, then lock
the lens (switch off autofocus)
•
Set camera to manual operation: F-stop is set above middle
to (large depth of field), ISO is always 200 (minimum, e.g.,
lowest noise), then adjust shutter speed accordingly so that
image is sufficiently bright. Avoid over- and underexposure. Use a remote control for the camera.
•
Go with tripod along halfcircle, take one photo every 10-15
cm, keep fix point in image center
•
Rule of thumb: 60 images per full circle
•
Change the height of the camera every 2-3 photos by
adjusting the tripod top rod
Considerations on camera settings and lighting
Concerning the F-stop setting, a compromise is required
between a large depth of field (max F-stop, e.g. 28) and the
avoidance of refraction blur which occurs at a large F-stop
because the pinhole is extremely small. This is a very delicate
issue. In case of objects with high depth complexity, a large Fstop is unavoidable, but this leads to a uniform blur over the
whole depth range. A medium F-stop (e.g., 14) greatly increases
the focus sharpness, but only within some range around the
Figure 3: Artificial diffuse illumination. The paper cylinder is illuminated
from outside to obtain as diffuse illumination as possible in its interior.
Essentials of Dense Matching
Knowing some basic facts about photogrammetry is required for
understanding the issues with acquisition of photo sequences.
First of all, the position and orientation (pose) of all cameras is
computed through a global optimization process, the bundle
adjustment. It computes 100-200 recognizable feature pixels per
image, and it compares the positions of pixels that exhibit the
same features. This first phase is followed by a second that is the
core of 3D-reconstruction from images, dense matching. Every pair
of successive photos P1, P2 in an image sequence is compared
pixel by pixel as follows. The positions c1 and c2 of the two
cameras (optical centers) are two points in space. Together with
a 3rd point p in space that lies on the object, they form a triangle
(c1,c2,p) which defines a plane in space. When looking through
one of the cameras, this plane is seen from the “side”, i.e., it
forms a line, the so-called epipolar line. If q1 is the pixel in image
P1 showing point p of the object, then the epipolar line L1(p)
goes through this q1. And if p projects on another pixel q2 in P2,
then this yields another epipolar line L2(p). The color values of
the pixels along L1(p) and L2(p) are very similar. A comparison of
the “horizontal” displacements allows, like with the disparity of
the human eyes, for computing the position of p and,
consequently, of the depth (z-coordinate) of both pixels q1 and
q2.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
98
Virtual Archaeology Review
When this process is carried out for all epipolar lines, the result
is one depth value (z-coordinate) for every pixel in every image
of the sequence.
cannot be reconstructed. When using a handheld camera, the
small variations of the human hand give sufficient variation in x,
y, and z to compute the optical centers even when walking along
a line. When using a tripod, care must be taken to assure that
there is some variation in all 3 spatial directions.
Implications for 3D reconstruction
All in all it must be acknowledged that taking image sequences
requires a bit of training. Most effects can be explained when the
implications of the method are understood. With some
experience, it is in most cases easy to avoid the pitfalls and to
obtain really good reconstruction results.
One immediate consequence of the method is that the worst
case is in fact a perfect white wall: All pixels along all epipolar
lines have the same color, so no disparity at all can be detected.
This makes the method especially well suited for Cultural
Heritage, since most old objects have rich texture. Matte objects
(mud) can be reconstructed much better than shiny materials
(metal): Highlights are view dependent, which creates fake color
correspondences on epipolar lines of consecutive images, which
results in wrong depth values. The computed depth information
is most reliable at sharp boundaries of differently colored
regions. And of course, blurred but also uniformly colored
regions yield bad or no results at all..
Figure 4: Turntable problem. Nearby and far away object parts are out of
focus, the background and specular highlights confuse the feature extraction
Gipsmuseum trick: Artifical texture
In the Gipsmuseum campaign we were faced with the problem
that the plaster surface of many statues was too perfect, ie., the
statues were too white. Our workaround was to apply a random
texture to the surface artificially using a projector (Fig. 5).
Figure 5: The 1400 x 1050 random pattern with a uniform noise
distribution. The image resolution is half of the camera resolution, both in
x and y (1.5 MPixel vs. 6 MPixel), so one projector pixel corresponds to
more than one camera pixel.
3. THE PROCESSING PHASE
Fig. 4 (left) shows a particularly bad case, a turntable sequence.
In this case the object has a high depth. In order to fill the whole
image, the camera needs to get too close to allow for the whole
object to be in focus; the closest and farthest parts are blurred.
This is even the case at the border of the cup since the
background of the cup is already blurred. The problem with
turntables is that the image features are contradictory: The
background stays in place while the turntable and the object
move. So the bundle adjustment fails.
Figure 4 (right) shows the typical effect of non-diffuse
illumination. The highlights on the left and right on the bronze
surface stay in place when the object is turned, so the color
comparison along the epipolar lines fails to compute the right
depth.
Each day of an acquisition campaign typically results in 300-500
fotos. These are first stored on a file server as raw data, then
they are sorted into sequences. For the Gipsmuseum campaign,
we have created one directory for every statue, named after the
statue ID on the plate. The plate of statue 83 for instance reads
83. Athena, so-called Lemnia, Dresden, Albertinum, Roman
marble copy of a Greek original (from Phidias?), around 450/440
b.c.
So the corresponding directory is GM083, GM standing for
GipsMuseum. For every campaign we invent such a twocharacter short. The GM083 directory is structured as shown in
Table 1.
This can be avoided if, like in Fig. 3, the object is put on a table
and the camera is moved around the object, instead of moving
the object itself.
The different files correspond to the individual processing steps.
In the following we describe the workflow in more detail.
Camera variation in all x, y, and z is mandatory
Sequence preparation
A not so obvious fact is that the computation of the optical
centers requires a variation of the camera position in all three
spatial directions over the sequence. A circle, for instance,
typically varies only in x and y, but not in z. So if all images are
taken with the camera on exactly the same height, all optical
centers lie on one plane in space. In this case the bundle
adjustment computation of the pose must fail, and the sequence
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
•
Store all images from the day into a raw data directory, e.g.,
GM083/Rawdata/2008-07-23. Raw data are archived and
never changed.
•
Split up the images belonging to one statue into sequences.
Review each individual image in full resolution to remove
99
Virtual Archaeology Review
the bad images: blurred, over-/under-saturation, parts
missing,..
•
Send each sequence to the ARC3D web service using the
upload client, labeled e.g, as: User scene: GM083, Academic
Reference: CGV, Sequence: 01
•
After several hours you receive an email with an ftp
location of the reconstruction zip to download it to the
sequence directory
The Arc3D webservice is free for CH users
The Arc3D webservice (www.arc3d.be) is a great service
provided by the group of Prof. Luc van Gool from the Katolieke
Universiteit Leuven (Belgium). Several hundred CPU cores are
available for performing the dense reconstruction of uploaded
image sequences. The service can be used free of charge for
non-commercial applications, it is only required to register. The
only limitations are that uploaded images must be from the
domain of Cultural Heritage, and that KU Leuven reserves the
right to archive and use the uploaded image sequences for
academic research.
GM083/Rawdata /2008-07-23
63 MB
All photographs taken on a specific date for this statue
GM083-01/DSC_0055.JPG ….
13 MB
Images for sequence 01 of statue GM083, only the good photos, not
unsharp or shaken, over/under saturated, parts missing, …
GM083-01/DSC_0078.JPG
GM083-01/GM083-01.zip
210 MB
zip archive with range maps obtained from ARC3D
GM083-01/GM083-01_c.ply
91 MB
Step 1: Multilayer mesh
GM083-01/GM083-01_cc.ply
75 MB
Step 2: Multilayer mesh interactively cleaned
GM083-01/GM083-01_ccp.ply
17 MB
Step 3: Poisson reconstruction single layer mesh
GM083-01/GM083-01_ccpc.ply
16 MB
Step 4: Poisson reconstruction cleaned
GM083-01/GM083-01_ccpcs.ply
11 MB
Step 5: Poisson reconstruction cleaned and simplified
GM083-01/GM083-01_ccpcsc.ply
21 MB
Step 6: Color information re-applied - final result
GM083-01/GM083-01.metadata
3 KB
Workflow information in XML format
Table 1: File structure for the 3D-reconstruction workflow, with file sizes and workflow information
Description of the Arc3D data
The zip archive obtained from ARC3D contains for each and
every image:
•
Pose: position of the optical center (focal point in world
coordinates) and orientation, computed using bundle
adjustment. This is also called external camera calibration.
•
Internal calibration: A few parameters describing the
radial distortion of the lens and the deviation of the optical
center from the image center
•
Range map: A 2D floating point number grid with the
same resolution as the photo. It gives for each pixel the
distance from the focal point, which is obtained using
dense matching
•
Confidence map: 2D grid of integer numbers with the
same resolution as the photo. For each pixel this is counts
on how many photos this same surface point appears. It is
a measure for the reliability of the depth value.
•
.v3d info file: this is a list in XML format of the individual
files mentioned above
A 6 MP camera obtains in principle 6 million vertices and
consequently 12 million triangles for each range map, since each
quadrangular pixel is split into two triangles. A sequence has
typically 20-50 photos, resulting in as many as 240-600 million
triangles, but with very high redundancy: Each surface point is
typically contained in 5-15 photos, so the surface is composed of
many layers residing at the same position in space.
This multi-layered surface has to be reduced to a single layer
(sequence merge), resulting in one single-layered mesh per sequence.
Finally, all sequences of one statue have to be merged together
to obtain one coherent, integrated mesh for this statue. This final
step is difficult to perform with standard software since the
different sequence meshes all have different scales: The ARC3D
webservice has no information at all about absolute scale.
Therefore each sequence is scaled differently, basically with
respect to the focal length of the camera, which is the only
“absolute” value that is available at this stage. So before merging
the sequences together, they have to be re-scaled to a common
scale.
The Processing Workflow
In the following, the six processing steps are described in more
detail. They are illustrated in Figure 7. Since many different
processing options exist, and new ones are being developed, the
standard workflow used for the Gipsmuseum will be subject to
change in the future. It is nevertheless worth describing since it
was successfully applied for reconstructing as many as 257
different sequences that were acquired for the 24 statues.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
100
Virtual Archaeology Review
advantage since it can cope with very noisy data. A great
advantage is that it produces a connected manifold mesh (“water
tight”). The Poisson method "blows up a balloon" whose surface
snaps to data points. Thus, the resulting mesh is closed by
construction. It has high resolution where data points are
present but low resolution in the balloon parts. Its surface is
sampled at regularly spaced intervals using the well known
marching cube method, which divides the cell size recursively by a
factor of 2 in surface regions with high detail. However, the
Poisson mesh resolution is not directly coupled to the resolution
of the input mesh, i.e, the range map. With respect to resolution,
the limiting factor of this method is the number of these cell
divisions, the so-called octree depth. An octree depth of 10 gives
acceptable results, but crashes sometimes due to RAM
limitations. A depth of 11 would be great, but it typically
consumes four times as much RAM as depth 10.
Figure 6: Meshlab opening a .v3d file. On the right, every 3rd image of the
sequence is selected, blue parts indicate high quality. Required confidence,
grazing angle and sub-sampling are the most important parameters for mesh
generation.
Step 4: Cleaning the Poisson mesh
The zip file obtained from Arc3D is opened using Meshlab to
which the .v3d extension is associated on our computers.
Meshlab is the “swiss army knife” for mesh editing and
processing. It is an extensive open source software produced by
the group of Roberto Scopigno and Paolo Cignoni from ISTICNR in Pisa, Italy. It can inter-operate with Arc3D and read
.v3d files.
The balloon is cut away interactively, which is easy in most cases
since Meshlab offers a filter to remove faces with edges longer than a
percentage of the model (e.g., 0.32%). Exploiting the fact that in
regions without data the Poisson mesh has very large triangles,
these can be selected and deleted easily. However, the “real”
boundaries cannot be detected reliably using this technique, so
we additionally apply twice the filter remove border faces. Finally, we
use Remove isolated pieces (wrt. Facenum) to delete clusters < 25
triangles and then do Remove unreferenced vertex once in the end.
Step 1: Creating a multi-layer mesh
Step 5: Simplification
When opening a .v3d file, Meshlab offers a dialogue box with
many options for the creation of a multi-layer mesh (Fig. 6).
Typically only a small subset of the images is selected for
conversion to a mesh layer, for instance every 4th or 5th image of
a sequence of 25 images. Because of this limitation good data are
potentially ignored. But each range map increases the file size by
20-30 MB, and requires up to 80 MB of RAM. Currently no
more than 8 layers can reasonably be processed since on 32 bit
Windows, a single process may not use more than 1 GByte of
RAM. This is expected to be resolved when 64 bit Meshlab
becomes available.
Besides a long running time of O(n3) the marching cubes
method has the drawback of creating many irrelevant small
faces, and also faces that have one edge that is much shorter
than the other two (lengthy triangles). They are an artifact of the
cubic octree grid. A reduction by 50% remove bad faces without
throwing away any useful information. This sort of simplification
is offered by the Quadric edge collapse decimation filter.
Step 2: Manually cleaning the multi-layer mesh
The multilayer mesh must be cleaned because the range maps
sometimes contain background parts. The unwanted parts of all
meshes can be marked in parallel and deleted, so this is in fact a
sequence of interactive move-select-delete actions. Meshlab
offers many filters for mesh operation. In particular, at the end
the filter “Remove unreferenced vertex” must be issued since by
default, only the indices to the point list are deleted when
deleting a triangle, not the points themselves.
Step 3: Poisson reconstruction
Many algorithms have been developed for merging multiple
surface layers into a single layer mesh. Each of the methods has
its pros and cons, and many work only in an out-of-core fashion.
The Poisson reconstruction offers a good compromise. Its
disadvantage is the unavoidable smoothing effect (which
“washes out” small detail), but this is at the same time also an
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Step 6: Adding color
The Poisson reconstruction in Meshlab creates a mesh without
any color or material information. We have created a tool to
transfer colors from one mesh to another. However, it uses
vertex colors instead of a bitmap texture. Thus, the color
resolution is actually identical to the mesh resolution. This
creates annoying artefacts in surface regions with simple
geometry (e.g., flat spots) but complex texture (e.g., written text).
Question: Why storing intermediate results?
Table 1 lists the different files in the sequence directories. This
shows that the intermediate files for all processing steps are kept
despite of their size. The reason is a conservative strategy: Since
we are not sure which files may be used later on, we keep them
all for the time being. We can for instance re-do parts of the
workflow when new new algorithms or hardware become
available. With Meshlab 64-bit we might, for instance, re-do all
sequences with an octree depth of only 9. – In order to do so,
however, we need to make use of the documentation of the
workflow that we have collected.
101
Virtual Archaeology Review
Obtaining the final model
In order to obtain the final model we currently have to resort to
commercial engineering software for professional post
processing of 3D scans, namely Geomagic Studio from
Raindrop Geomagic. The feature that is missing in Meshlab is
the alignment of differently scaled model parts. The iterative
closest pair (ICP) algorithm in Meshlab assumes that the parts
have the same scaling, which is a true assumption for models
from laser scanning. For photogrammetry, there is no absolute
scale a priori.
1: Multilayer mesh
2: Cleaned multilayer mesh
3: Poisson reconstruction
4: Poisson cleaned
5: Mesh simplification to remove 50% triangles
6: Re-apply vertex colors from multilayer mesh
Figure 7: Six typical Meshlab processing steps for reconstructing a 3D mesh from a series of range maps
Figure 8: Six standard processing steps are carried out for each sequence (top). But the GM100 statue was assembled from 20 such sequences (middle)! Bottom:
The resulting model with 1.5 MTriangles (751 KVertices) is nice but too smooth.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
102
Virtual Archaeology Review
Figure 9: Conventional archeological documentation (top row): A measurement rig with a reflective marker must be kept exactly vertical, then its position is
measured as a single point using a total station on a reference position, thus obtaining a point sequence (10 points/minute). The result is a collection of line
sequences that are recorded over 2 days using a laptop. – The much more dense 3D reconstruction (top right) was acquired in 5 minutes using a handheld
compact camera (Fuji F30). The models in the bottom row were acquired in a more serious way using the 6 MPixel Nikon on a tripod (60 images each).
The ICP algorithm from Geomagic Studio does not take scaling
into account either, but it is easier to use (1-click alignment). We
currently scale manually, align, look at the misalignment, scale
again, and so forth. With a bit of experience, this manual
iteration process “converges” after four orfive iterations. The
result is acceptable only from an aesthetic point of view (Figure
8), but of course this is not a satisfactory engineering solution.
Besides improving ICP another viable solution could be to
integrate measurement targets that are scanned together with the
object. However, we have not explored this approach so far.
Figure 10: The eight parts of GM083 unfortunately provide insufficient
overlap for 3D reconstruction
The great vision: Automatic 3D-reconstruction
4. CRITICAL DISCUSSION
The described workflow has the same disadvantage as all other
post-processing workflows, namely that data gaps are detected
too late. With GM100, this is obvious at the top of the head
(Fig. 8). The remedy is simple: Go back and acquire additional
sequences from the statue. In most cases this implies much
additional cost since an acquisition campaign requires expensive
travel, obtaining access permissions, and the hardware setup is in
most cases not a trivial thing either.
The GM083 example from before is even a much more serious
case, since only eight sequences were captured, and during
reconstruction it turned out that they provide insufficient
overlap to allow for mutual registration. None of the many
possible orders that were tried to align one part with another
could be successfully continued. So unfortunately, in the end no
model could be produced in this case at all (see Figure 10).
The described 3D-reconstruction workflow still involves many
manual steps, and the resulting models are typically not
comparable in terms of quality to models produced by 3D
scanning.
However, it is important to mention that the method as such has
huge potential for further development and optimization. This
becomes especially apparent when considering the state of the
art in archeological documentation (Fig. 9).
In the case of the prehistoric well at Wohlsdorf, a drastic speedup could still be realized, and a much more complete and
meaningful model was produced in a fraction of the time and
cost required for scanning – which ranges in the area of 1000
Euros for one day of scanning and post-production done by a
professional measurement engineer. The model in the top right
of Fig. 9 was acquired in five minutes using a handheld compact
camera followed by about 1 hour of post processing. The
archeologists were enthusiastic about the result.
Potential for optimization: Image acquisition
The acquisition could be dramatically simplified with cleverly
constructed camera rigs. Instead of moving a conventional SLR
camera on a tripod, a shutterless high-quality industry camera
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
103
Virtual Archaeology Review
could be moved using servo controlled step motors along a predefined trajectory. The lighting situation could be captured along
with the images using photographs of a polished steel ball, in
order to cope with highlights moving over the surface.
The need for more faithful sequence processing
Maybe the biggest drawback of the presented workflow is that
the triangles produced by Poisson reconstruction have no direct
relation to the input triangles (2 triangles/pixel). It is therefore
quite difficult to assess the authenticity of the resulting mesh, as
there is no direct relation between input data and output mesh.
The deviation of the reconstructed surface from the input
photographs can only be measured using a posteriori analysis.
Furthermore, Poisson reconstruction averages at each surface
point all available mesh layers. This is a disaster for sharp
features, e.g., corners or creases in the surface. Even if each
individual layer has a nice sharp crease, averaging all layers
smoothes away the detail even before Poisson washes it out.
This and the sparse selection of layers (e.g., 8 out of 25) make
that only a tiny fraction of the highly redundant captured
information finds its way into the final model. For the 20
sequences of the GM100 statue (Fig. 8) for instance, in total 577
images were taken with 6 MPixel each, which amounts to 3.46
GPixel or 7 GTriangles. Even taking the high redundancy and
the background pixels into account, the 750K vertices of the
model are in fact only 0.1 promille of the input data.
Potential for automatic sequence reconstruction
resolution than today. A careful analysis of the 6-stage workflow
revealed that all parts of the work that are carried out manually
are rather schematic. So the chances of finding algorithmic
solutions are good.
A greater challenge is the assembly of a complete model from
the parts. We envisage reducing this problem to the sequence
processing problem. The idea is to introduce overview and detail
sequences. An overview sequence captures the complete model,
but in low resolution. A number of detail sequences captures
only parts, but these in higher resolution. Now an additional
bundle adjustment step could use image features to relate the
detail sequences to the overview sequence. This way the 4x4
matrices for the transformation from detail to overview
coordinate systems could be obtained.
5. CONCLUSION
This paper has presented a practical recipe for the reconstruction
of 3D models from image sequences. It uses state of the art
tools, most of which are available for free to Cultural Heritage
professionals. Besides pointing out the great potential for CH
documentation we have also presented a critical assessment and
highlighted ideas with a huge potential for improvement.
Our greatest hope is that we could stimulate a wider take-up of
this great technology in the CH community. We firmly believe
that in a few years time, all mentioned problems will be solved.
Until then remember: Take many many images!
We are certain that individual image sequences could be
reconstructed in a completely automatic way in a much higher
ACKNOWLEDGEMENTS
We gratefully acknowledge the funding from the European Commission for the FP7-IP 3D-COFORM under grant No. 231809. With
this support, we are confident to provide solutions for the mentioned problems soon.
REFERENCES
CROFTS N., DOERR M., GILL T., STEAD S., STIFF M.: Definition of the CIDOC Conceptual Reference Model, version 4.2 ed. CIDOC
Documentation Standards Working Group, June 2005. Also ISO/PRF 21127, available from cidoc.ics.forth.gr.
LONDON CHARTER INITIATIVE (HUGH DENARD): The london charter, June 2006. www.londoncharter.org.
PAN, X., BECKMANN, P., HAVEMANN, S., TZOMPANAKI, K., DOERR, M., FELLNER, D.W., A distributed Object Repository for
Cultural Heritage, Proc. VAST 2010 conference, Eurographics Press, 2010
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
104
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
105
Virtual Archaeology Review
Una visión virtual de la arquitectura de Al-Andalus.
Quince años de investigación en la
Escuela de Estudios Árabes
Antonio Almagro Gorbea
Laboratorio de Arqueología y Arquitectura de la Ciudad. Escuela de Estudios Árabes.
CSIC. Granada. España.
Desde hace más de quince años, en lo que ahora constituye el
Laboratorio de Arqueología y Arquitectura de la Ciudad de la
Escuela de Estudios Árabes, instituto perteneciente al Consejo
Superior de Investigaciones Científicas (CSIC), venimos
aplicando
tecnologías
avanzadas
de
representación
arquitectónica para indagar y reflexionar primero, y mostrar
después, nuestras investigaciones sobre la arquitectura de alAndalus. Uno de los objetivos fundamentales que perseguimos
con este tipo de trabajos es poder realizar un análisis perceptivo
de la arquitectura que hemos desarrollado en aquellos casos para
los que contamos con suficiente información.
La informática ha puesto a nuestra disposición en los últimos
años unos nuevos y poderosos instrumentos de visualización y
representación que constituyen una revolución en el campo de la
investigación del Patrimonio, al igual que lo son en otros
muchos. Los sistemas de CAD ya permitieron, al final de los
años ochenta, trabajar con auténticas representaciones
tridimensionales, aunque por mucho tiempo se trataba solo de
objetos constituidos por líneas o alambres. Con las primeras
versiones que permitían trabajar con planos y después con
sólidos y daban la posibilidad de iluminar, aunque fuera
rudimentariamente, estos objetos, se dio un paso cualitativo
importante. Hoy, la capacidad que ofrecen los programas de
renderización al permitir incorporar texturas, cualquier tipo de
iluminación e incluso los efectos de radiosidad, hacen de ellos
unos útiles con una potencialidad impensable hace pocos años y
que nos dan acceso a un sistema nuevo de representación.
El recurso a los medios informáticos para generar
reconstrucciones virtuales que hacen posible observar las
cualidades del espacio se ha convertido no sólo en un potente
medio de difusión de las investigaciones, sino también de análisis
que permite profundizar en el conocimiento de la arquitectura.
Este instrumento facilita reconocer las características de una
arquitectura reconstruida a través de la inmersión en ella y
observar el espacio que genera mediante una experiencia
perceptiva recreada. Con ello se nos ofrece la posibilidad de
realizar un análisis perceptivo a través de la simulación de un
recorrido por el espacio, reconocer la secuencia de ambientes,
observar la arquitectura desde distintas posiciones escogidas a
voluntad, obtener una visión paisajística a vista de pájaro o bien
concreta y específica de la arquitectura reconstruida; es decir, una
experiencia personal de visita y recorrido virtual a través del
modelo digital 3D. En definitiva, disfrutar y contemplar la
arquitectura del pasado a través de una herramienta actual.
Así, la reconstrucción virtual de edificios o espacios destruidos o
profundamente alterados, realizada a través de los instrumentos
informáticos, permite analizar aspectos tan fundamentales como
su percepción visual, el carácter que confiere al espacio aspectos
tan importantes como el color y la textura de los materiales, los
efectos de la luz o la propia escala del edificio. Es fácil con estos
medios presentar y estudiar distintas alternativas o hipótesis sin
que nada de esto afecte físicamente a los bienes originales.
Las posibilidades que ofrecen los programas de infografía son
enormes. Podemos visualizar vistas perspectivas desde cualquier
ángulo y condición, recrear distintos estados o distintas
soluciones, bien sea de formas volumétricas como de texturas,
colores o iluminación, hacer animaciones o visiones
panorámicas, etc; también brinda la oportunidad de construir
sistemas interactivos con participación del usuario en la elección
de las distintas soluciones. La capacidad de recrear objetos, sobre
todo
arquitectónicos,
que
hayan
sufrido
grandes
transformaciones o incluso ruina y desaparición constituye una
de las más interesantes aplicaciones a las que se puede recurrir
mediante los sistemas infográficos. Siendo el objetivo de los
estudios arqueológicos el análisis de la cultura material, y
constituyendo la arquitectura una de las expresiones más
importantes y significativas de esta cultura, las posibilidades de
recrear visualmente lo que en su origen fueron estos restos
cuando han sufrido grandes transformaciones, a veces difíciles
de imaginar, supone claramente una ayuda potencial en nuestros
trabajos1.
Todos estos instrumentos tienen múltiples aplicaciones que
podemos considerar dentro de dos grupos generales. Una sería la
de facilitar la reflexión y la investigación sobre el patrimonio
arquitectónico desaparecido. La recreación virtual obliga a
considerar el elemento en toda su extensión, a plantearse
soluciones para todos sus detalles y componentes y a reflexionar
a la vista de las imágenes sobre nuestras hipótesis previas y
también sobre las finales. La experiencia de nuestro grupo a este
respecto ha sido muy fructífera, recurriendo a estos métodos
para tratar de dar forma a nuestras presunciones y de revisar los
resultados como modo de profundizar en la investigación. Este
procedimiento nos ha obligado en varias ocasiones a
reconsiderar supuestos o a abordar cuestiones que inicialmente
José A. FERNÁNDEZ RUIZ, ‘‘El renacimiento del patrimonio a
través del dibujo digital’’, Actas del Congreso Nacional: El Dibujo del fin
del milenio, Granada: Facultad de Bellas Artes, 2000, 247–250.
1
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
106
Virtual Archaeology Review
no se habían siquiera planteado. En algunos casos ha servido
para visualizar distintas soluciones y discutir sobre ellas, no sólo
como hipótesis sobre el estado original, sino como propuestas
de restauración a realizar. En este sentido, estos sistemas evitan
cometer errores de difícil, o cuando menos costosa corrección ya
que no afectan para nada al edificio u objeto y pueden
considerarse por tanto como un método absolutamente
reversible.
Otra de las grandes aplicaciones de estos sistemas es la difusión
del conocimiento. Los métodos tradicionales de representación,
mediante plantas, alzados y secciones siempre han resultado
poco inteligibles para personas sin formación ni experiencia
sobre los sistemas de representación. Las perspectivas, muchos
más fáciles de entender, eran antes laboriosas de realizar y por
tanto se recurría a ellas de manera limitada debido a su elevado
coste. No siempre se acertaba con los puntos de vista más
adecuados pero por la causa antes aludida raramente se
revisaban. Ello hacía que los frutos de la investigación no
quedaran accesibles al público inexperto, no cumpliéndose con
ello uno de sus objetivos fundamentales de la ciencia, cual es
hacer a la sociedad partícipe de los avances del conocimiento que
se van logrando. No cabe duda de que éste es uno de los campos
que más interés ofrece y uno de los que más rentabilidad social
puede aportar, hasta el punto de hacer pensar que, cada vez más,
resulta casi obligado recurrir a estos instrumentos para dar a
conocer los resultados de nuestras investigaciones.
Sin embargo, el desarrollo de la aplicación de estos sistemas
merece una reflexión específica. Disponemos de instrumentos
hasta hace poco casi desconocidos y su correcto uso puede dar
magníficos resultados, pero un empleo inapropiado también
puede generar productos inadecuados y, con ello, reacciones
negativas. A este respecto debe tenerse en cuenta que la
utilización de estas aplicaciones informáticas se ha difundido de
una manera muy amplia entre técnicos y profesionales ajenos a
nuestros estudios que, ante la demanda social de este tipo de
representaciones, han sentido la lógica tentación de crear
imágenes que en muchos casos carecen del adecuado soporte
científico en su gestación. El problema puede venir tanto en lo
que respecta a la concepción general de las hipótesis como a
intentar dar solución a cuestiones de detalle, como puedan ser las
texturas, materiales y colores o en la búsqueda de visiones
excesivamente fotorrealistas pero sin base científica que las
soporte y que pueden producir sensación de falsedad en las
propuestas.
De aquí se pueden derivar dos reflexiones: La primera es que no
podemos mantenernos de espaldas a estos métodos de trabajo
excusándonos en que son fuente de falsedades. Será
responsabilidad de quienes trabajamos en el campo de la
investigación arqueológica y arquitectónica aportar el necesario
rigor a las propuestas. Porque si no lo hacemos desde el campo
científico, sin duda otros sin las bases adecuadas lo harán y en
cualquier caso, este tipo de representaciones están llegando a la
sociedad, porque la sociedad las está demandando.
La segunda reflexión está en relación con la forma final y el
detalle al que debemos llegar en nuestras reconstrucciones y
representaciones. Dadas las posibilidades cada vez mayores que
las aplicaciones informáticas nos permiten en cuanto a similitud
con la realidad en los modos de iluminación, calidades de los
materiales, etc., es necesario determinar qué nivel de realismo
podemos o debemos conseguir. La primera cuestión que
evidentemente se plantea es la cantidad y calidad de información
de que disponemos y por lo tanto los niveles de incertidumbre
con los que tenemos que trabajar. Salvo casos excepcionales,
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
generalmente siempre tendremos una información limitada pues
en todo proceso de ruina y transformación es inevitable la
pérdida de datos. Ello nos va a obligar a valernos de casos
paralelos e informaciones complementarias para construir
nuestras hipótesis, que serán en muchos casos eso, meras
hipótesis con mayor o menor grado de certidumbre.
En los procesos de restauración existen unos criterios más o
menos aceptados en cuanto al alcance permisible de la
intervención, los cuales guardan relación con el reconocimiento
de la autenticidad de la obra, que debe siempre permitir
distinguir con claridad lo que es original de lo que no lo es y lo
que es verosímil de lo que es mera hipótesis, dejando este tipo de
añadidos limitados a los casos en que se hace necesaria su
realización por ineludibles razones de conservación y estabilidad
de la obra. En el caso de la reconstrucción virtual es evidente
que los criterios no tienen por que ser tan estrictos al no afectar
de modo directo a la propia obra. Esto, no obstante, no debiera
ser causa de una permisividad absoluta. Aunque la
reconstrucción virtual es un proceso intelectual y por tanto no
puede ser objeto de limitaciones de ningún tipo, y menos de
carácter legal como lo son las intervenciones en el Patrimonio
Cultural, sí debería plantearse una determinada ética que en el
fondo debe ser la misma que debe presidir cualquier trabajo
científico. Sin embargo, resulta difícil establecer unos límites
claros en cuanto a nuestra capacidad de Ainvención@ en la
recreación de un patrimonio alterado, destruido, y en muchos
casos, desaparecido. ¿Hasta donde es lícito llegar en nuestras
hipótesis? Seguramente no es fácil dar una respuesta unívoca a
esta pregunta, que probablemente deberá ser muy distinta según
los casos. Probablemente, más que poner límites al alcance de
nuestras hipótesis, habrá que incidir en la explicación y
justificación de las mismas asumiendo de todos modos el riesgo
del uso indebido que pueda llegar a hacerse de las imágenes que
hayamos creado sin el contexto de las explicaciones
correspondientes2.
En todo caso, el lenguaje de los acabados en luces y texturas
puede ser utilizado como medio para expresar la fiabilidad o
certeza de las propuestas. Normalmente los acabados de los
edificios son las partes que más sufren siendo difícil en muchos
casos poder saber cual era su color original o la forma de su
decoración. De todos modos, no hay que olvidar que estos
acabados definen de un modo especial la naturaleza de la
arquitectura. Muchos de los grandes monumentos tal como hoy
los contemplamos tienen muy poco que ver con la imagen que
ofrecían a sus primitivos usuarios al haber perdido su color y su
textura y con ello unas cualidades muy definitorias de esa
imagen. Siempre que haya datos para reconstruir ese aspecto de
la arquitectura, no cabe duda de que será importante mostrarlo,
pero si carecemos de tal información, habrá que ser cautos y
deberemos limitarnos a representar exclusivamente los espacios
y los volúmenes recurriendo a texturas y colores de carácter
neutro que, como mucho, insinúen posibles soluciones, pero sin
darles un carácter realístico que pueda inducir a error.
En cualquier caso, debemos también considerar que ser
excesivamente estrictos en una limitación del usos de texturas y
acabados priva a estos instrumentos de una de sus principales
cualidades, que es la de permitir revivir percepciones sensitivas
como una forma de conocimiento más enriquecedor de las
realidades del pasado. Quizás a este respecto se debe ser
2
José A. FERNÁNDEZ RUIZ, "Scientific and Ethical Scope of Digital
Modelling in Architectonic Heritage", VAST2001 Virtual Reality,
Archaeology and Cultural Heritage, New York, 2001.
107
Virtual Archaeology Review
especialmente exigente en dar información sobre los datos de
partida y el alcance de nuestras hipótesis para aquellas personas
que por sus conocimientos e interés se fijen en el detalle,
mientras para los que no tengan estas inquietudes, cabe pensar
que en ellos sólo perdurará el recuerdo de las sensaciones
generales, pues será raro que se mantenga vivo el de
determinadas características
que generalmente pasan
desapercibidas para la mayor parte de la gente. Esto quiere decir
que, en todo caso, deberá haber una explicación de las bases
científicas en que se ha asentado la hipótesis y una aclaración de
aquellos aspectos que se han tomado de casos semejantes o
simplemente de nuestra imaginación. Estas explicaciones
tampoco tienen necesariamente que estar contenidas en la propia
realización virtual, pues en muchos casos la privarían de algunos
de los efectos buscados. Lo ideal es que se expresen a través de
publicaciones científicas que no tienen por que ser
necesariamente de amplia divulgación.
El método de trabajo a seguir en este proceso es también
importante y debe adoptar pautas que garanticen el rigor
adecuado. En el grupo de investigación del LAAC hemos venido
investigando sobre ello teniendo ya una experiencia acumulada
que nos ha permitido fijar la metodología que aplicamos de
forma habitual en nuestras tareas de investigación3. Todo el
proceso se inicia siempre con un detallado levantamiento que
implica la medición de las estructuras y su representación en
plantas, alzados y secciones. Para ello se utilizan todos los
sistemas disponibles, desde la medición directa hasta los sistemas
topográficos y fotogramétricos. La representación se realiza en
AutoCAD, si es posible generando ya desde el comienzo un
modelo tridimensional del estado actual que facilite la creación
del modelo de la hipótesis reconstructiva. El modelo del estado
actual debe ser lo más detallado posible, recogiendo la forma real
de las estructuras, sus deformaciones y lesiones y toda cuanta
información pueda interesar para un estudio completo de los
restos. Estos modelos, normalmente generados con
fotogrametría son solamente alámbricos, sin superficies ni
sólidos que no son posibles en dibujos muy detallados. A partir
de estas representaciones se inicia la generación de las hipótesis
de la forma original de los edificios y espacios, trabajando
siempre en AutoCAD. Estos estudios se basan tanto en los
restos existentes en el propio yacimiento como en la información
que se desprende del análisis de otros paralelos, ya sea de
edificios coetáneos como de precedentes o desarrollos
posteriores que se procura tener igualmente documentados en
dibujos de AutoCAD, dentro de la base de documentación
planimétrica y fotográfica de arquitectura andalusí que hemos
ido generando en estos últimos veinte años.
Una vez definidas las hipótesis, en un proceso que realizamos los
investigadores especializados en arquitectura islámica, el trabajo
se continúa por otros especialistas en temas infográficos.
Constituida la maqueta en AutoCAD, ésta se exporta al
programa 3DStudio. A partir de este momento, se inicia la
creación del modelo virtual tomando como base el modelo de la
hipótesis pero dotándolo de materiales con texturas, colores e
iluminación. Este proceso suele requerir una simplificación del
modelo alámbrico procurando reducirlo a formas geométricas
simples, buscando la forma geométrica teórica de los elementos
que facilite la formación de superficies y de sólidos. La
formación de la maqueta requiere también seguir un proceso de
análisis y descomposición de objetos generando un vocabulario
de elementos que se usen de forma repetitiva, a fin de reducir en
lo posible el tamaño en memoria de la maqueta virtual. La
simplificación debe llevar aparejada igualmente la determinación
de simetrías, rotaciones o matrices que faciliten la construcción
del modelo.
En el proceso de modelado se atiende, entre otros los siguientes
puntos: estudio previo de la finalidad del modelo; análisis de
otros casos similares para fijar criterios de la representación de lo
incierto, dudoso o indeterminado; proyecto de modelo virtual
estableciendo los niveles de precisión métrica y de realismo;
gestión de la maqueta y de su iluminación; revisión autocrítica de
los resultados previos.
El salto cualitativo que se produce al pasar a la información en
entorno digital es inmenso. En este medio, el modelo se
convierte en un potente soporte de información métrica,
matérica y perceptiva, abordable para obtener información
requerida desde infinitos puntos de vista. Una vez generado el
modelo, las posibilidades que ofrece se extienden desde la simple
obtención de cualquier tipo de representación, la obtención
directa de valores métricos, tanto lineales como en superficie y
volumen, la asociación de valores materiales y de textura
concretos hasta la búsqueda de efectos fotorrealísticos, la
navegación y simulación en entornos virtuales y todo tipo de
productos derivados del espacio digital configurado. Con la
creación del modelo virtual se pueden visualizar distintas vistas,
cambiar la iluminación y, finalmente, obtener las distintas
imágenes que se considere de interés. Éstas podrán ser
modificadas o recreadas en cualquier momento y, obteniendo
series de ellas desde puntos de una trayectoria, lograrse
animaciones que acentúan la percepción de las tres dimensiones
y permiten una comprensión más adecuada del espacio. Con la
generación de este material, en nuestro caso, se han podido
abordar distintas investigaciones basadas en el análisis perceptivo
de la arquitectura que han dado lugar en estos últimos años a
diversas publicaciones4.
Como ejemplo de algunas de las realizaciones que hasta ahora
hemos hecho, podemos mostrar algunas imágenes de Madinat
al-Zahra en que se han hecho reconstrucciones con los
tratamientos y acabados interiores de acuerdo con restos
aparecidos en diversas zonas del conjunto. La arquitectura de
Madinat Al-Zahra ofrece facilidades en la tarea de plantear su
reconstrucción gracias a su carácter clásico y canónico, pues
sigue modelos y pautas compositivas fácilmente deducibles.
Gracias a la anastylosis de los elementos que han podido ser
remontados, en especial los paneles decorativos, disponemos de
bastante información relativa a los alzados de muchas de las
construcciones5. Ello nos ha facilitado plantear hipótesis sobre
3
Antonio ALMAGRO, Julio NAVARRO, Antonio ORIHUELA,
“Metodología en la conservación del patrimonio arquitectónico
medieval”, La Investigación sobre Patrimonio Cultural, Ed. C. Saiz-Jiménez.
M.A. Rogerio-Candela. Sevilla: CSIC, 2008, 87-98; Antonio ALMAGRO
GORBEA, Ana ALMAGRO VIDAL, José A. FERNÁNDEZ RUIZ,
Miguel GONZÁLEZ GARRIDO, AMadinat al-Zahra, Investigación y
Representación@, VIII Congreso Ibero-Americano de Gráfica Digital, SIGraDi
2004, El sentido y el universo digital, Sao Leopoldo (Brasil), 2004. p. 47-49.
Ana ALMAGRO VIDAL, El concepto de espacio en la arquitectura palatina
andalusí. Un análisis perceptivo a través de la infografía, Madrid: CSIC, 2008.
4
Aparte de las citadas en las notas 7 y 9, cabe también resaltar
ALMAGRO, A. “Preserving the Architectural Heritage of al-Andalus.
From Restoration to Virtual Reconstruction”. Al-Masaq, Vol. 19, No. 2,
September 2007. p. 155-175. ALMAGRO VIDAL, A. La evolución del
espacio en la arquitectura palatina andalusí. Un análisis perceptivo a través de la
infografía. Madrid 2008.
5 ALMAGRO GORBEA, A. ALMAGRO VIDAL, A. FERNÁNDEZ
RUIZ, J.A. GONZÁLEZ GARRIDO, M., AMadinat al-Zahra,
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
108
Virtual Archaeology Review
las que realizar una reconstrucción visual de todo el conjunto
(Fig. 1, 2). Pese a haber sufrido trasformaciones a lo largo del
período de construcción y de su corta vida, el hecho de que esta
ciudad palatina fuera destruida muy tempranamente sin haber
dado posibilidad a una transformación continua en el tiempo,
facilita mucho la definición de sus formas originales.
Fig. 1. Vista virtual de la ciudad de Madīnat al-Zahrā’ según hipótesis de
A. Almagro e imagen de M. González y F. Garrido.
Fig. 2. El Alcázar de Madīnat al-Zahrā’ con la mezquita en primer
plano, según hipótesis de A. Almagro e imagen de M. González.
recrean los efectos de luz y sombra y la función de diafragmas
lumínicos que realizan los pórticos y los sucesivos huecos
dispuestos en profundidad. Todo ello nos permite experimentar,
con un alto realismo, algunas de las cualidades de esta
arquitectura.
Fig. 3. La Bab al-Suda o puerta principal del Alcázar de Madīnat alZahrā’ (hipótesis de A. Almagro, imagen de M. González).
Fig. 4. Interior del salón de recepciones de la Dar al-Yund de Madīnat alZahrā’ (hipótesis de A. Almagro, imagen de M. González y J. A.
Fernández Ruiz).
En la ciudad palatina destacan especialmente los grandes
edificios protocolarios, desde la gran fachada-pórtico del alcázar,
la Bab al-Suda (Fig. 3), hasta los salones de recepciones de la Dar
al-Ŷund (Fig. 4) y del salón de Abd al-Rahman III (Fig. 5, 6) con
su frontero pabellón situado en medio de los jardines de la
Terraza Alta (Fig. 7), rodeado de albercas, canales de agua y
vegetación6 (Fig. 8). Elementos especialmente significativos en
este conjunto son los jardines, ya sean dispuestos en grandes
terrazas, ya dentro de patios domésticos. Las imágenes virtuales
nos acercan a la percepción de estos espacios permitiendonos
imaginar su interrelación con la arquitectura7. También se
Investigación y Representación@ VIII Congreso Ibero-Americano de Gráfica
Digital, SIGraDi 2004, El sentido y el universo digital, Sao Leopoldo (Brasil),
2004. p. 47-49.
Antonio ALMAGRO, ALa arquitectura en al-Andalus en torno al año
1000. Madinat al-Zahra@, La Península Ibérica en torno al año 1000. VII
Congreso de Estudios Medievales, León: Fundación Sánchez Albornoz, 2001,
165-191.
6
7 Antonio ALMAGRO, “An Approach to the Visual Analysis of the
Gardens of Al-Andalus”, Conan, M. Ed. Midle East Garden Tradition:
Unity and Diversity, Washington: Dumbarton Oaks, Trustees for Harvard
University, 2007, 55-73.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Fig. 5. Pórtico del Salón de Abd al-Rahmān III de Madīnat al-Zahrā’
(hipótesis de A. Almagro e imagen de M. González y J. A. Fernández
Ruiz).
De la mezquita aljama de Madinat al-Zahra conocemos su planta
por las huellas de los muros de los que en muchos casos no ha
quedado ni siquiera la cimentación, al haber sido expoliados.
También disponemos de alguna de las columnas in situ y de
muchos elementos decorativos. Existen incluso descripciones
que nos dan el dato de la altura de su alminar, y algún paralelo de
109
Virtual Archaeology Review
alminares contemporáneos8. Con esta información hemos
podido proponer una reconstrucción total de todo el edificio del
que se muestra alguna imagen (Fig. 9).
Fig. 6. Interior del Salón de Abd al-Rahmān III de Madīnat al-Zahrā’
(hipótesis de A. Almagro, imagen de M. González y F. Garrido.
residencia califal ocupa un lugar dominante dentro del alcázar y
la ciudad (Fig. 12), y en ella destaca su organización en tres
crujías paralelas y sus ricos pavimentos de baldosas cerámicas
con incrustaciones de piedra. (Fig. 13)
Fig. 8. El pabellón central y el Salón de Abd al-Rahmān III de Madīnat
al-Zahrā’ (hipótesis de A. Almagro, imagen de M. González y F.
Garrido).
Fig. 7. El pabellón central y el jardín alto desde el interior del Salón de
Abd al-Rahmān III de Madīnat al-Zahrā’ (hipótesis de A. Almagro,
imagen de M. González y F.Garrido).
La arquitectura de carácter doméstico del área privada del alcázar
nos muestra los precedentes de los edificios residenciales que
imperarán en al-Andals en los siglos posteriores9. La Acasa de la
Alberquilla@ nos presenta un espacio recogido y doméstico, en
consonancia con el uso de este edificio que debió ser una
vivienda distinguida de algún príncipe o dignatario de la corte
califal. Las dos salas-pórtico enfrentadas que dan paso a las dos
salas principales constituyen los fondos de un recoleto jardín que
podemos imaginar lleno de flores y con algún árbol de ornato o
frutal (Fig. 10). Frente al pórtico occidental hay una pequeña
alberca con su escalera de descenso que permite imaginar su uso
para mitigar el calor además de permitir el riego de las plantas.
Para tal fin, pequeños canales de piedra bordean los parterres. La
llamada casa de Ŷafar (Fig. 11) es una residencia de carácter
suntuario con sala de recepción en profundidad acompañada de
dos alhanías de similar disposición, y la alcoba principal situada
en un patio interior íntimo. Finalmente, la Dar al-Mulk o
Fig. 9. Interior de la sala de oración de la mezquita de Madīnat al-Zahrā’
(hipótesis de A. Almagro, imagen de M. González).
El palacio de la Ajafería de Zaragoza es el mejor ejemplo que
poseemos de la arquitectura de las taifas del siglo XI. Aunque de
él han llegado hasta nosotros importantes restos que han sido
recuperados y restaurados desde mediados del siglo pasado, el
obligado respeto a muchas transformaciones posteriores, sobre
todo de los siglos XIV y XV, hacen de este monumento un
auténtico palimpsesto de muy dificil lectura, por la dificultad de
visualizar las distintas etapas sin los añadidos posteriores que las
fueron transformando. Aquí las imágenes que presentamos,
debidas al trabajo de la Dra. Almagro Vidal nos permiten
sumergirnos en el espacio original y percibirlo tal y como fue
concebido inicialmente, así como comprender la naturaleza y
significado del sistema de arcos entrecruzados10 (Fig. 14).
8 Antonio ALMAGRO, AEl alminar de la mezquita aljama de
Zaragoza@, Madrider Mitteilungen, 34, (1993), 251-266.
Antonio ALMAGRO, “The Dwellings of Madīnat Al-Zahrā: A
Methodological Approach”, Revisiting Al-Andalus: Perspectives on the
Material Culture of Islamic Iberia and Beyond. Anderson, G. Rosser-Owen, M.
Eds. Leiden: Brill, 2007, 27-52.
9
10
A. ALMAGRO VIDAL, El concepto, 201-224.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
110
Virtual Archaeology Review
Fig. 10. El Patio de la Alberca de Madīnat al-Zahrā’ (hipótesis de A.
Almagro, imagen de M. González).
trata del llamado Patio del Crucero11 y del Patio de la Casa de
Contratación12. La primera construcción era sin duda la
residencia principal del alcázar a finales del siglo XII. Debió de
ser, además de uno de los mayores edificios residenciales de alAndalus, uno de los más originales. Junto a la disposición
característica de las casas andalusíes, con dos grandes salones
enfrentados precedidos por sus correspondientes pórticos,
presenta la singularidad de tener ocupando el espacio del patio,
un gran jardín rehundido más de cuatro metros respecto al nivel
de los salones. Esta disposición permite aunar en un solo espacio
las funciones de jardín y de patio, pues mientras desde los
salones se percibe un ambiente abierto alfombrado de verde,
desde el nivel inferior del jardín y gracias a la frondosidad que
cabe imaginar, la arquitectura quedaría casi oculta a los ojos de
quienes por él pasearan. Este edificio sufrió una transformación
muy sustancial al constituirse en residencia regia de los monarcas
cristianos. Conservando la disposición general del patio,
característica de un palacio musulmán, uno de sus frentes fue
reconstruido con arquitectura gótica en la segunda mitad del
siglo XIII. Varios salones cubiertos con bóvedas ojivales
sustituyeron al primitivo salón para dar acomodo a una corte
más numerosa y protocolaria. Para dar acceso a estos espacios se
construyó un pasaje elevado sobre el jardín sostenido por
pórticos abovedados que lo dividían en cuatro partes formando
una cruz. Esta original disposición sufrió una drástica mutación
al enterrase los jardines en el siglo XVIII y transformar las
fachadas del patio en estilo barroco, haciendo hoy difícilmente
comprensible los distintos estados por los que pasó tan singular
construcción. El recurso a la reconstrucción virtual de cada uno
de estas situaciones no solo facilita la comprensión de la historia
y de las características de esta obra arquitectónica, sino que sirve
al investigador para mejor adentrarse en su estudio.
Fig. 11. La portada del salón de la llamada Casa de Ŷafar de Madīnat alZahrā’ (hipótesis de A. Almagro, imagen de M. González).
Del siglo XII, sin duda el edificio residencial más interesante que
se nos ha conservado sea el Castillejo de Monteagudo ubicado
en la vega de Murcia a escasa distancia de esta ciudad. Pese a que
el estado de deterioro es notable y vergonzosa la situación en
que se encuentra tan singular monumento, una revisión de los
estudios realizados y sobre todo un análisis y levantamiento
planimétrico cuidadoso de sus restos nos ha permitido plantear
la hipótesis de reconstrucción que puede verse en las imágenes
que presentamos. Su estructura de patio de crucero, las unidades
residenciales organizadas en torno a los pequeños patios situados
en los ángulos y su aspecto externo de fortaleza son sin duda sus
rasgos más singulares. (Fig. 15)
Una aplicación realmente útil de estos instrumentos visuales es la
de mostrar las trasformaciones sufridas a lo largo del tiempo por
espacios o edificios que han vivido cambios sustanciales en el
gusto o la cultura de sus moradores. Casos espacialmente
interesantes por las profundas trasformaciones sufridas son los
que presentan distintas estructuras del Alcázar de Sevilla y
especialmente los dos grandes palacios del periodo almohade
que fueron posteriormente transformados en época cristiana. Se
Fig. 12. Pórtico de la Dar al-Mulk de Madīnat al-Zahrā’ (hipótesis de A.
Almagro, imagen de M. González y L. Yudes).
11 Antonio ALMAGRO, AEl Patio del Crucero de los Reales Alcázares
de Sevilla@. Al-Qantara, XX (1999), 331-376.
12 Antonio ALMAGRO, “Una nueva interpretación del patio de la Casa
de Contratación del Alcázar de Sevilla”, Al-Qantara, XXVIII, 1 (2007),
181-228.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
111
Virtual Archaeology Review
de Alfonso X el Sabio (Fig. 17). Ambas situaciones son
difícilmente entendibles hoy en día a la vista del estado actual.
Las imágenes realizadas forman parte de un montaje audiovisual
realizado para facilitar a los visitantes la comprensión del
monumento13.
Fig. 13. Salones de la Dar al-Mulk de Madīnat al-Zahrā’ (hipótesis de
A. Almagro, imagen de M. González y L. Yudes).
Fig. 16. El Patio del Crucero del Alcázar de Sevilla en época almohade
(hipótesis de A. Almagro, imagen de M. González).
Fig. 14 Patio del Palacio de la Aljafería de Zaragoza (hipótesis de Ana
Almagro-Vidal, imagen de M. González).
Fig. 17. El Patio del Crucero del Alcázar de Sevilla tras la reforma de
Alfonso X (hipótesis de A. Almagro, imagen de M. González).
El llamado Patio de la casa de Contratación contiene los restos
de un patio de época almohade transformado posteriormente en
época cristiana, seguramente a mediados del siglo XIV. Del patio
almohade se conservan restos de uno de los pórticos
reconstruido con algunos elementos originales, y algo de la
estructura del jardín que incluía una decoración pintada en los
muros perimetrales de los parterres (Fig. 18). También se han
conservado parte de las dos albercas que había frente a cada
pórtico. El jardín sufrió una profunda remodelación, sin perder
el carácter de patio de crucero pero disponiéndose albercas en
Fig. 15. Patio del Castillejo de Monteagudo de Murcia (hipótesis de A.
Almagro, imagen de M. González).
Las imágenes que presentamos muestran el estado del patio en
dos momentos históricos diferentes, uno en el período islámico
(Fig. 16) y el otro tras las trasformaciones realizadas en tiempo
13 Antonio ALMAGRO, Ana ALMAGRO, ALa expresión gráfica en el
análisis del Patrimonio: El patio del Crucero del Alcázar de Sevilla@,
Actas del IX Congreso internacional de Expresión Gráfica Arquitectónica, EGA
2002, Re-Visiones: enfoques en docencia e investigación. La Coruña, 2002, 517522.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
112
Virtual Archaeology Review
forma de cruz que discurren por el centro de los andenes. Los
pórticos almohades fueron tapiados construyéndose unos
nuevos más adelantados dentro del área del primitivo jardín (Fig.
19).
contemporáneos, se ha podido realizar una reconstrucción muy
verosímil de este gran monumento cuyo tamaño y sobria
elegancia impresionan cuando se contemplan en esta
imagen15(Fig. 20).
Fig. 18. El patio almohade de la Casa de Contratación del Alcázar de
Sevilla (hipótesis de A. Almagro, imagen de M. González).
Fig. 20. Patio y alminar de la mezquita almohade de Sevilla (hipótesis de
A. Almagro, imagen de M. González).
Fig. 19. El patio de la Casa de Contratación del Alcázar de Sevilla
después de la reforma cristiana (hipótesis de A. Almagro, imagen de M.
González).
Un caso espectacular es el de la mezquita almohade de Sevilla.
Fue uno de los edificios religiosos de mayor tamaño en el Islam
occidental y convertido en iglesia perduró hasta el siglo XV
cuando se inició la construcción de la nueva catedral que ocupa
su mismo solar y que resultó la mayor catedral gótica de Europa.
Los restos conservados en el patio así como los encontrados en
las excavaciones realizadas en el subsuelo de la catedral14 y el
carácter canónico y regular de su arquitectura, nos permiten
conocer con gran fiabilidad su primitiva forma y estructura. Con
estas informaciones y las que proporcionan otros edificios
14
Alfonso JIMÉNEZ MARTÍN, Ed. Magna Hispalensis I, Sevilla, 2002;
Alfonso JIMÉNEZ MARTÍN, “Notas sobre la mezquita mayor de la
Sevilla almohade”, Artigrama 22, (2007), 131-153.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Otros casos de interés sobre los que también hemos trabajado en
Granada son el Cuarto Real de Santo Domingo, el Palacio de los
Abencerrajes y el Maristán. El primero de estos monumentos era
una propiedad de los monarcas nazaríes ubicada en el arrabal
meridional de la ciudad, compuesta por un jardín y una qubbamirador alojada dentro de una torre de la muralla. En las
imágenes que presentamos se puede ver una hipótesis de como
pudo ser este pabellón de jardín según nos muestran la
arqueología y los documentos gráficos del siglo XIX16 (Fig. 21).
En este caso, aprovechando los restos de policromía
conservados así como otros similares de la Alhambra, se ha
procurado revivir la rica policromía que enriquecía su
ornamentación y que nos proporciona una visión muy distinta de
aquella a la que estamos acostumbrados a ver en estos
monumentos. (Fig. 22). Especial relevancia tiene la visión desde
su interior, con la contemplación del jardín a través del arco de
ingreso y del pórtico, hoy desaparecido, fundamental para
entender el sentido de este tipo de edificios (Fig. 23).
El palacio de los Abencerrajes situado dentro del recinto de la
Alhambra y demolido a comienzos del siglo XIX, corresponde al
modelo de casa-palacio del último periodo andalusí con patio
rectangular y dos pórticos enfrentados en los lados menores y
15 Antonio ALMAGRO, “De mezquita a catedral. Una adaptación
imposible”. La piedra postrera (1) Ponencias. V centenario de la conclusión de la
Catedral de Sevilla. Simposium internacional sobre la catedral de Sevilla en el
contexto del gótico final. Sevilla 2007, 9-45.
16 Antonio ORIHUELA, Casas y Palacios Nazaríes, Siglos XIII-XV.
Granada: Fundación El Legado Andalusí, Lunberg, 1996, 49-56. Antonio
ALMAGRO, AEl análisis arqueológico como base de dos propuestas: El
Cuarto Real de Santo Domingo (Granada) y el Patio del Crucero
(Alcázar de Sevilla)@. Arqueología de la Arquitectura 1, (2002), 175-192.
113
Virtual Archaeology Review
con una gran alberca que ocupa gran parte del espacio. Las
recientes excavaciones han permitido confirmar la interpretación
del Dr. Antonio Orihuela que ha servido de base a esta
reconstrucción17. (Fig. 24)
la ciudad de Granada18. Es el único ejemplo de este tipo de
edificio en al-Andalus del que tenemos noticias precisas y del que
se conservan restos suficientes para analizar su disposición y
estructura. La tipología edilicia del Maristán obedece a un
modelo profundamente arraigado en la arquitectura islámica. Es
un edificio con patio central con pórticos y crujías de
habitaciones en torno a éste, introvertido y sin más
comunicación con el exterior que la puerta de ingreso (Fig. 25,
26). La absoluta racionalidad del edificio primigenio le confiere
un carácter de modernidad. Tanto por la simplicidad y
funcionalidad de sus formas como por su planteamiento espacial
y tipológico permite con gran facilidad conocer su disposición
primitiva gracias a los elementos conservados en elevación y su
semejanza con el llamado Corral del Carbón, que aunque de
función distinta era tipológicamente muy similar.
Fig. 21. Jardín y qubba del Cuarto Real de Santo Domingo de Granada
(hipótesis de A. Almagro y A. Orihuela, imagen de M. González y C.
Torrecillas).
Fig. 24. Patio del Palacio de los Abencerrajes de la Alhambra (hipótesis de
A. Orihuela, imagen de M. González).
Fig. 22. Pórtico del Cuarto Real de Santo Domingo de Granada (hipótesis
de A. Almagro y A. Orihuela, imagen de M. González y C. Torrecillas).
Fig. 23. Vista del jardín desde el interior de la qubba del Cuarto Real de
Santo Domingo de Granada (hipótesis de A. Almagro y A. Orihuela,
imagen de M. González y C. Torrecillas).
Fig. 25. El Maristán de Granada (hipótesis de A. Almagro y A.
Orihuela, imagen de L. Gómez y M. González).
El antiguo Maristán de Granada, hospital fundado por
Muhammad V en 1367 ha sido un edificio de triste historia para
17
A. ORIHUELA, Casas, 49-56.
18 Antonio ALMAGRO, Antonio ORIHUELA, AEl Maristán nazarí de
Granada. Análisis del edificio y una propuesta para su recuperación@,
Boletín de la Real Academia de Bellas Artes de Nuestra Señora de las Angustias de
Granada, 10, (2003), 81-109.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
114
Virtual Archaeology Review
Todo esto ilustra de forma bastante explícita las posibilidades
que ofrece la infografía en el campo de la investigación de la
arquitectura y de la difusión de su conocimiento y nos
proporciona una visión nueva y enriquecedora del rico legado
arquitectónico generado en al-Andalus que recobra, al menos de
forma virtual, parte de su pasado esplendor.
Fig. 26. El Maristán y la Alhambra (hipótesis de A. Almagro y A.
Orihuela, imagen de L. Gómez y M. González).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
115
Virtual Archaeology Review
A.R.T. Ancient Rome Tour 2.0 Upgraded
How Nero Saved Rome
Stefano Moretti y Alessandro Furlan
ALTAIR4 Multimedia. Roma. Italia.
Abstract:
La presentazione di Altair4 ad Arquelogica 2.0 consiste essenzialmente nella presentazione delle ultime produzioni su Roma Antica, attraverso la proiezione di
alcune animazioni tratte da "How Nero Saved Rome" film in HD per National Geographic Channel e Il Foro Romano e i Fori Imperiali per la trasmissione
RAI Ulisse. Queste produzioni si inquadrano nell'ambito del progetto pluriennale A.R.T. (Ancient Rome Tour). Il progetto nasce nel 1998 con il proposito di
creare nuovi strumenti di comunicazione per la conoscenza della storia della costruzione della città di Roma e degli eventi ad essa collegati. Dopo dieci anni dalla
prima pubblicazione si è deciso di operare un significativo aggiornamento dei contenuti della parte più monumentale della città, il palatino, il foro romano, i fori
imperiali e la valle del colosseo, area un tempo in gran parte occupata dalla fastosa residenza dell'imperatore Nerone: La Domus Aurea. In questi dieci anni
infatti si sono raccolti e analizzati i risultati di alcune importanti attività di scavo e ricerca svolte da diverse istituzioni e istituti di ricerca concretizzati in un
impegnativo lavoro di sintesi visuale con gli strumenti della computer grafica 3D cercando di restituire una unità spaziale ad un'area che risulta oggi estremamente
frammentata e di difficile lettura.
Key words: DIGITAL MODELS, DIGITAL HUMANITIES, PEDAGOGY
1. LE ORIGINI: A.R.T. ANCIENT ROME
TOUR
Il progetto A.R.T. (Ancient Rome Tour) nasce nel 1998 con il
proposito di creare nuovi strumenti di comunicazione per la
conoscenza della storia della costruzione della città di Roma e
degli eventi ad essa collegati.
La città di Roma, è il risultato di una stratificazione secolare in
cui si sovrappongono, spesso in modo indistinguibile, elementi
topografici e architettonici di epoche e stili diversi. A Roma, con
il centro storico cinto di mura più esteso del mondo, la
problematica della comprensione dell'ordine e della gerarchia
con cui i diversi elementi topografici e architettonici sono
correlati nella definizione della struttura attuale è particolarmente
complesso, e risulta del tutto illegibile non solo ai turisti
occasionali, ma anche ai suoi stessi abitanti.
Lo scopo del progetto A.R.T era quello di utilizzare le enormi
potenzialità delle simulazioni in computer grafica 3D per creare
nuovi strumenti di comunicazione che potessero rendere
evidenti le correlazioni spaziali degli elementi architettonici
risultanti dalla stratificazione ma anche i processi tecnologici,
urbanistici, architettonici, e naturalmente sociali e storico politici
che li avevano prodotti.
La necessità di produrre e rendere disponibili tali strumenti è
oramai acquisita anche al livello amministrativo locale e
nazionale, ove vengono visti anche come volani di sviluppo del
settore turistico.
Figura 1 A.R.T. Veduta del modello generale di roma antica nel iv sec d. c.
2. MISSIONE DEL PROGETTO
L'acronimo utilizzato è programmatico, l'approccio artistico è
essenziale al fine di raggiungere gli obbiettivi di comunicazione
auspicati e non è alternativo ad un rigoroso approccio scientifico,
ma ne è invece la naturale conseguenza: ogni fase del processo di
ricostruzione deve infatti poter beneficiare del contributo
specialistico più consono per rendere efficace ed effettivo lo
strumento di comunicazione.
La visualizzazione dei risultati di una ricerca attraverso l'utilizzo
di strumenti multimediali e multisensoriali non potrà non
coinvolgere fattori emotivi/soggettivi che risultano fortemente
influenzati dal retroterra visivo/culturale dell'autore e dell'utente,
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
116
Virtual Archaeology Review
e quindi non può prescindere dal considerare quali sono i
parametri di riferimento semiologici e iconografici più diffusi, in
particolare sulle piattaforme multimediali utilizzate per la
visualizzazione dello strumento di comunicazione.
4. A.R.T. 2.0 UNA NUOVA SFIDA PER IL
FUTURO
Sia che vengano considerati o no, questi parametri risulteranno
predominanti nell'esprimere attraverso i codici del linguaggio
visuale le informazioni documentali complesse scaturite dal
lavoro di ricerca ed analisi scientifica, ed è bene quindi che
vengano gestite al massimo livello da chi ne sa padroneggiare al
meglio le potenzialità espressive per individuare il paradigma
corretto per visualizzare un determinato dato documentale.
Dopo dieci anni dalla prima pubblicazione si è colta l'occasione
di alcune importanti produzioni per operare un significativo
aggiornamento dei contenuti sia in termini quantitativi che
qualitativi.
3. SOSTENIBILITA DEL PROGETTO
Il progetto A.R.T. è una iniziativa editoriale di Altair4 che non
beneficia di nessun finanziamento pubblico, è un Work in
Progress che definisce gli step di evoluzione cercando di
ottimizzare al meglio le risorse per produrre contenuti originali
suscettibili di essere utilizzati nei più diversi contesti, e sulle più
diverse piattaforme. Il punto di partenza è stata la realizzazione
di un DVD-ROM interattivo dedicato alla conoscenza dello
sviluppo storico urbanistico della città: A partire dal plastico
della Roma Costantiniana di Italo Gismondi conservato presso il
Museo della Civiltà Romana a Roma si è creato un modello 3D a
larga scala della città. Si sono poi individuati una serie di
emergenze storico tipologiche rappresentative di fasi importanti
e se ne è studiata la ricostruzione essenzialmente sulla base delle
informazioni documentali presenti in letteratura.
In occasione di ogni nuova edizione dell'opera si è proceduto alla
verifica dei contenuti alla luce delle più recenti attività di indagine
archeologica, verifica effettuata in collaborazione con le
istituzioni e gli istituti di studi e ricerca quali l'assessorato alla
cultura del comune di Roma, la soprintendenza Archeologica,
l'Università degli Studi di Roma La Sapienza, l'Ecole Francaise
de Rome, L'Istituto Archeologico Germanico, l'Università di
Tokyo, lo IES (Institute for the International Education of
Students) e si sono apportate le necessarie modifiche
In particolare una ricerca del prof. Andrea Carandini con nuove
ipotesi di ricostruzione della Domus Aurea di Nerone sono alla
base di un importante progetto audiovisivo dedicato alla
controversa figura dell'imperatore Nerone e del suo ruolo
nell'incendio di Roma nel 64 d.C. e nella successiva ricostruzione
della città: "How Nero saved Rome" è un film documentario in
HD prodotto da Altair4 per National Geographic per la regia di
Stacey Mannari (in onda su National Geographic Channel USA
dal 20 settembre 2010).
"Il Foro Romano e i Fori imperiali" è il titolo invece della
puntata della trasmissione "Ulisse, Il piacere della scoperta", la
principale trasmissione televisiva della TV pubblica Italiana RAI
3 dedicata alla divulgaazione scientifica a cura di Alberto Angela
andata in onda il 29 maggio 2010.
La Domus Aurea di Nerone
L'ipotesi di Carandini parte dall'assunto che la costruzione della
Domus Aurea è la rappresentazione visuale esplicita, di un
progetto politico assolutistico, e ne traccia in questo senso le
correlazioni anche di carattere tipologico e strutturale con
modelli antecedenti, coevi e successivi che rispondono alle stesse
logiche: recenti studi sull' l'immenso complesso dei palazzi
imperiali e dei parchi che li circondavano fanno pensare che in
realtà la Domus Aurea potesse essere almeno in parte aperta alla
popolazione, il nome originale del palazzo quale Domus
Transitoria è ora intesa nella sua accezione di Domus Aperta,
transitabile; l'ala sul colle Oppio in particolare mostra caratteris-
Figura 2 Ricostruzione della Domus Aurea, il fronte prospicente il lago (Stagnum Neronis)
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
117
Virtual Archaeology Review
Figura 3 Ricostruzione della Domus Aurea, sul Fondo L'ala Sul Colle Oppio
Figura 4 La Via Sacra con i Portici Neroniani. Sul Fondo il Colosso
tiche compatibili con una destinazione d'uso Museale, l'aula
ottagona probabilmente una felice soluzione dei Geniali
architetti Celere e Severo (Magistri e Machinatores) per esporre
una straordinaria collezione di statuaria greca di cui Nerone era
profondo conoscitore ed estimatore. Il fronte scenico sul lago
con le imbarcazioni utilizzate quali ali galleggianti del palazzo
destinate probabilmente ad ospitare le fastose feste aperte al
popolo. Il palazzo sarebbe diventato in questi termini uno
strumento funzionale alla politica di Monarca assolutista che
Nerone promuoveva in contrapposizione al potere del senato e
della classe patrizia. Le Feste offerte alla popolazione, la
celebrazione dell'immagine dell'imperatore attraverso lo
splendore della sua abitazione, diventano un modo per stabilire
un relazione immediata con la popolazione, idonea ad una
gestione diretta del potere senza l'ausilio di scomodi intermediari.
Carandini traccia paralleli storico tipologici con le grandiose
reggie dei monarchi persiani, ma anche con Versaille, la reggia
dell'assolutismo per eccellenza che presenta sorprendenti
analogie storiche tipologiche e planimetriche con la Domus
Aurea.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
118
Virtual Archaeology Review
La Domus Aurea arriva ad inglobare anche la Via Sacra, il luogo
più antico e "sacro". Il luogo d'origine della città, dello stato,
cuore delle sue istituzioni, diviene con Nerone appendice del
vestiboolo del suo palazzo attraverso la costruzione di grandiosi
portici scenografici che inquadrano un cannocchiale prospettico
al cui fuoco c'è la statua colossale dell'imperatore, risplendente
d'oro come il sole, figura divina a tutti gli effetti che rivela come
lo stesso nome della regale residenza sia da intendere nella sua
accezione più ampia non solo di casa dorata, ma di residenza di
un dio, la casa del Sole
ma con la caratteristica comune di essere molto simili tra loro e
si suppone al loro corrispettivo di epoca romana
Nell'affrontare la ricostruzione della Domus Aurea per la parte
del Vestibolo e del lago ci siamo basati sulle ipotesi del Prof
Carandini sviluppate dalla dott.ssa Fabiola Fraioli a partire dagli
studi della Prof.sa Panella, mentre per la parte sul colle Oppio ci
si è basati sugli studi e i rilievi dell'Arch Martines della
Soprintendenza di Roma e delle più recenti ipotesi e misurazioni
dell'Arch. Beste dell'Istituto Archeologico Germanico. Per i
porticati sulla via sacra ci siamo basati sui dati di scavo della
equipe del prof Carandini e del prof. Paolo Carafa diretta dal
dott. Niko Arvanidis. Nel progettare la resa delle superfici,
dell'aspetto esteriore e dei materiali non direttamente deducibile
dalle documentazioni di scavo, e per quanto riguarda quelle parti
ricostruttive di un contesto meno specifico ma evocative di una
realtà non meno importante si è provveduto ad una attenta
analisi iconografica attraverso la riproduzione di spazi urbani e di
interni di palazzi tramandataci dalla pittura parietale
principalmente di area Pompeiana.
Figura 6 Ricostruzione ipotetica di un Vicolo della Suburra
Il Foro Romano e i Fori Imperiali
Figura 5 Ricostruzione del Colosso di Nerone
La Suburra
Nella realizzazione del film per National Geographic si è dovuto
affrontare il problema della rappresentazione della città prima del
grande incendio che la distrusse quasi completamente. In questo
caso ci siamo trovati di fronte la pressocchè assoluta carenza di
dati documentali e si è dovuto procedere esclusivamente per
analogie, con il fine esplicito di rendere un'impatto emotivo più
che una descrizione puntuale di un luogo.
Molto utili, in questo senso, sono stati gli schizzi presenti nelle
pubblicazione di Spinazzola su via dell'Abbondanza che
costitiscono un interessante repertorio delle tipologie edilizie ed
di elementi architettoni rappresentati negli affreschi di Pompei.
L'elaborazione di modelli credibili di edifici costruiti con tecnica
a graticcio è stato coadiuvato da una accurata raccolta di studi e
documentazioni di costruzioni contemporanee costruite con tale
metodo che spaziano in un ambito geografico abbastanza vasto
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
l'obiettivo dei curatori della trasmissione televisiva Ulisse era
semplice e al tempo stesso molto impegnativo: riuscire a rendere
la complessità dell'area quale sistema megastrutturale
interconnesso. Lo stato attuale è di difficile lettura anche per gli
specialisti, l'area infatti è estremamente frammentata, tagliata da
una ampia strada ad intenso scorrimento che ne rende
impossibile la lettura come elemento unitario. Il task era chiaro e
inderogabile: occorreva procedre ad una ricostruzione completa
di tutta l'area tra il Palatino, la valle del Colosseo, il Campidoglio,
il Foro Romano e I Fori imperiali fino alle pendici del Quirinale.
La ricostruzione doveva essere di un livello di dettaglio tale da
rendere evidenti e facilmente individuabili i diversi monumenti e
le precipue caratteristiche tipologiche e architettoniche, non ci si
poteva quindi accontentare di una semplice ricostruzione
volumetrica quale quella resa disponibile on-line con Google
Earth dalla Virginia University, ma occorreva dare pienamente
l'idea della straordinaria monumentalità del luogo, risultato di
una stratificazione millenaria, cuore pulsante della capitale del
mondo antico, catalizzatore di tutte le ricchezze, risplendenti
degli ori e dei marmi pregiati a memoria imperitura dei propri
119
Virtual Archaeology Review
costruttori, autentico testamento di pietra di Giulio Cesare, di
Augusto, Nerone, Vespasiano, Traiano
Nel realizzare la ricostruzione del Foro Romano ci si è basati
principalmente sulle pubblicazioni del prof Coarelli, sugli studi
topografici inseriti nel sistema georeferenziato sulla Forma Urbis
sviluppato dall'Università di Roma dal Prof. Carandini e dal Prof
Paolo Carafa, Per i Fori Imperiali sugli studi e i rilievi effettuati
dalla soprintendenza di Roma e pubblicati dal dott. Meneghini e
dal dott. Valenzani Per il foro di Traiano si è fatto riferimento
agli studi di Parker e alle pubblicazioni di Eugenio La Rocca e
Lucrezia Ungaro mentre Per il Foro della Pace in particolare ci si
è basati sulle ipotesi del prof Pier Luigi Tucci.
Figura 7 Bozzetti di Spinazzola: Architetture Tratte dagli Affreschi Pompeiani
Figura 8 Ricostruzione dell'area del Foro Romano e dei Fori Imperiali
Il Templum Pacis
la ricostruzione del Templum Pacis o Foro della Pace a cui ha
lavorato il dott.r Fabio Cavallero affronta per la prima volta
alcuni elementi controversi quali la presenza di un attico sopra la
trabeazione, la copertura a doppio spiovente dei porticati e la
soluzione del raccordo tra l'ordine gigante del colonnato della
cella e l'ordine minore del colonnato del portico. L'ipotesi nasce
dalle considerazioni del prof Pier Lugi Tucci sui risultati degli
scavi e dei rilievi metrici effettuati dalla soprintendenza, con
particolare attenzione al confronto tra gli elementi del portico
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
120
Virtual Archaeology Review
con quello che sembra essere il suo modello di riferimento: il
Foro di Augusto con il quale condivide molte delle misure e dei
rapporti proporzionali e dal quale potrebbe anche derivare la
presenza di un'attico sopra la trabeazione. Il tentativo si è subito
dimostrato efficace una volta tradotto in termini spaziali,
armonizzando il progetto a quello delle altre architetture presenti
nell'area e ai frammenti del rilievo della forma urbis rendendo
esplicita anche la soluzione per il difficile problema della
connessione del Pronao della cella con il colonnato del portico
che vede sulla forma urbis la presenza di due colonne affiancate,
una maggiore e l'altra minore. Si è quindi cercato altre situazioni
analoghe, per verificare se a queste corrispondessero soluzioni
architettonice conosciute. Il prof Tucci ha suggerito l'area del
portico di Ottavia che presenta una situazione molto simile: un
Pronao che costituisce un avancorpo leggermente avanzato
rispetto ad un porticato con colonne di ordine minore, con una
soluzione architettonica, tuttora visibile in situ, che fu oggetto di
studi e rilievi da parte di G.B. Piranesi e che è stato quindi
possibile adottare anche per la nostra ricostruzione del Templum
Pacis.
Figura 9 A sx pianta del Templum Pacis con frammenti forma urbis. A
dx il Portico D'ottavia Rilievo di G.B. Piranesi
Figura 10 Ricostruzione del Templum Pacis
BIBLIOGRAFIA
Per la Domus Aurea:
CARANDINI, Andrea. "Le case del potere dai re agli imperatori". AudioLibri Laterza. Lezioni di Storia. Sulla scena di Roma - Edizione 2007
http://www.laterza.it/index.php?option=com_laterza&Itemid=97&task=schedalibro&isbn=9788849100037
PANELLA, Clementina. "Archaeological Investigations & Discoveries" (2002-2009) - THE META SUDANS / THE PALATINE HILL /
"Roma-Piazza del Colosseo, area della Meta Sudans; pendici nord-orientali del Palatino." La Sapienza Roma (07/2009).
http://www.flickriver.com/photos/imperial_fora_of_rome/sets/72157594580930580/
BESTE, Heinz. "Un palazzo imperiale. La domus aurea neroniana" . .S.S. Editorial Service System S.r.l. Forma Urbis Roma, settembre 2010
F. BALL, Larry. "The Domus Aurea and The Roman Architectural Revolution". Cambridge University Press. Cambridge 2003
CONTI, Cinzia, MARTINES, Giangiacomo, SINOPOLI, Anna, "Constructions Techniques of Roman Vaults: Opus Caementicium and the Octagonal
Dome of the Domus Aurea". Proceedings of the Third International Congress on Construction History. Cottbus, May 2009
MARTINES, Giangiacomo, "Argomenti di geometria antica a proposito della cupola del Pantheon", Quaderni dell'Istituto di storia dell'Architettura, 13
(1989)
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
121
Virtual Archaeology Review
Per i Fori Imperiali:
MENEGHINI Roberto, SANTANGELI VALENZANI, Riccardo. "I Fori Imperiali, Gli scavi del Comune di Roma (1991-2007)". Viviani
Editore - Roma 2007
TUCCI, Pier Luigi. "Nuove osservazioni sull’architettura del Templum Pacis". in Divus Vespasianus, il bimillenario dei Flavi, Electa - Roma 2009
PACKER. James E."Il Foro di Traiano a Roma, Breve studio dei monumenti" Edizioni Quasar - Roma 2001
LA ROCCA, Eugenio, UNGARO, Lucrezia, MENEGHINI, Roberto, "I luoghi del Consenso Imperiale, Il Foro di Augusto Il Foro di Traiano".
Progetti Museali Editore - Roma 1995
Per il Foro Romano:
COARELLI. Filippo. "Il Foro Romano". Edizioni Quasar. Roma 1992
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
122
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
123
Virtual Archaeology Review
Ricostruire l’antico.
Dal Museo della Civiltà Romana al Museo dei Fori Imperiali
Lucrezia Ungaro, Marco Sartini y Paolo Vigliarolo*
Sovrintendenza ai Beni Culturali del Comune di Roma. Italia.
1. L’esigenza di ridare volumi e caratterizzazioni dei monumenti
antichi romani in una esposizione prima temporanea poi
permanente, è alla base della creazione del primo museo virtuale a
Roma.
Il Museo della Civiltà Romana è infatti l’esito di tre grandi eventi:
la grande Mostra Archeologica del 1911 nelle Terme di
Diocleziano, la prima sede stabile nel 1926 con la costituzione
del Museo dell’Impero, la seconda grande Mostra Augustea della
Romanità nel 1937 al Palazzo delle Esposizioni. Infine, tutta la
collezione verrà riallestita nel 1955 nell’attuale sede all’EUR.
Le riproduzioni in scala 1:1 e i modelli in scale variabili, sono già
uno strumento di lettura e comprensione dell’architettura e della
scultura antiche di notevole impatto. Certamente, il Museo nelle
sale storiche e in quelle tematiche permette di seguire
l’evoluzione della città e della sua espansione nell’impero, di
comprendere la straordinaria efficacia della penetrazione nel
territorio attraverso opere e cultura: cosa manca allora a questo
Museo oggi? La narrazione, il contesto, l’essere umano che è
sempre dietro un oggetto, un edificio, una qualsiasi realizzazione
concreta. Due problemi sono infatti tuttora alla base dell’offerta
di una collezione o ambiente museale: la capacità di attrarre e
catturare l’attenzione, la riproduzione di un oggetto o di un
contesto in modo realistico.
Sistina. L’architettura romana, poi, è sì imponente ma ridotta a
“schegge” rispetto all’ “intero” di splendenti palazzi ed edifici
pubblici imperiali, e non racconta nulla della vita reale se non
l’abilità di scalpellini e artisti del passato.
Come guadagnare quindi uno spazio in un contesto così difficile?
2. Attraverso un sistema di allestimento e di comunicazione
innovativo, che il Museo, inaugurato nell’ottobre del 2007,
propone al pubblico.
Si tratta, infatti, di un museo archeologico
costituito non solo da una prestigiosa
archeologici provenienti dai cinque Fori
questa è la grande novità espositiva, da
ricomposizioni architettoniche.
di nuova generazione
collezione di reperti
Imperiali, ma anche,
un ricco numero di
Le diverse tipologie di marmi, i diversi ordini architettonici, i
loro rapporti dimensionali, nonché la funzionalità degli edifici e
le loro antiche volumetrie danno vita ad un museo dedicato
all’architettura ed alla decorazione architettonica romana che, in
antico, era parte fondamentale e significante per tutti gli edifici
che componevano ogni singolo Foro.
Alcuni decenni più tardi, nell’era del computer e del cellulare
“tuttofare”, ci siamo misurati con una sfida dai rischi molto alti:
creare un museo per l’architettura romana a Roma, l’argomento
meno facile da visualizzare. Infatti, lavorare alla costituzione del
Museo dei Fori Imperiali, ha significato affrontare una massa
considerevole di materiali architettonici e scultorei, studiarne la
ricomposizione dove possibile, ma anche il significato ideologico
e la complessità costruttiva. Per questo sin dall’inizio della
progettazione si è pensato, parallelamente, a come raccontare le
opere esposte attraverso un apparato multimediale. Problema
ulteriore da affrontare è stato quello di mantenere un corretto
equilibrio tra le opere e il loro contenitore d’eccezione, i Mercati
di Traiano.
La progettazione e la realizzazione dell’allestimento museale e
del Sistema di Comunicazione Integrato hanno richiesto il lavoro
di un team di archeologi, architetti e esperti di comunicazione,
dotati di una solida formazione umanistica; le soluzioni
tecnologiche sono nate dalla stretta collaborazione di tutte le
figure professionali, tema su cui toneremo in seguito.
Abbiamo parlato di “sfida dai rischi molto alti”: a Roma i musei
archeologici e le mostre archeologiche faticano molto per
emergere e attrarre pubblico; la città è un museo a cielo aperto, la
permanenza del turista medio è relativamente bassa e vi sono
alcuni attrattori ineludibili: San Pietro, Colosseo, Cappella
Fig 1. Museo dei Fori Imperiali. Ricomposizione dell’ordine della facciata
dei portici del Foro di Augusto. In primo piano, frammenti pertinenti a teste
di divinità maschili dalla decorazione a pannelli dall’attico dei portici.
L’apparato comunicativo del Museo dei Fori Imperiali si
compone, oltre che della tradizionale pannellistica contenutistica
e direzionale, di un ricco sistema multimediale che accompagna il
visitatore, e lo aiuta, attraverso una comunicazione "semplice e
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
124
Virtual Archaeology Review
immediata”, alla comprensione degli snodi contenutistici focali
del percorso espositivo.
La possibilità di testare sul pubblico l’efficacia di un prototipo
dei prodotti multimediali ha determinato la scelta della tecnica
con la quale realizzare i prodotti video. Si è utilizzata infatti una
“tecnica mista”, un sistema di montaggio che fa uso di tutte le
potenzialità comunicative dell’immagine: dalla ripresa diretta, alle
foto d’epoca, alle ricostruzioni archeologiche realizzate ad
acquerello e, da ultimo, anche al 3D e alle più evolute tecnologie
per l’elaborazione dell’immagine.
Attualmente l’apparato multimediale del Museo si compone di
una sala multimediale, in prossimità dell’ingresso, che introduce
il pubblico alla visita, e di 10 postazioni video (o videopannelli)
dislocati lungo tutto il percorso museale.
Per la realizzazione di questi prodotti si è lavorato secondo un
vero e proprio ragionamento semiotico-strutturale dell’immagine
in movimento, assunta come linguaggio assolutamente
autonomo e universale.
I prodotti hanno una durata massima di 3 minuti ciascuno. Al
momento attuale non hanno né audio né colonna sonora di
accompagnamento, né sottotitoli. La loro realizzazione è stato
l’esito di un lungo e accurato lavoro sulla messa a punto degli
storyboard, che partono tutti da una base comune.
I video hanno inizio con la collocazione dell’antica valle dei Fori
in relazione alla moderna situazione urbanistica di Roma,
evidenziando come oggi, esattamente come allora, i Fori
Imperiali fossero collocati nel cuore della città. Tali informazioni
geografiche sono ottenute con tecniche di dissolvenze e
sovrapposizioni tra immagini moderne e ricostruzioni della fase
romana; ogni singolo prodotto poi mostra, in funzione del
materiale e delle ricomposizioni architettoniche presenti nella
sala in cui è collocato, una ricostruzione dei frammenti
architettonici o statuari. Di qui si mette in luce la funzione
dell’edificio in cui è inserito il frammento ed il suo stesso
rapporto con il Foro di appartenenza e dei Fori attigui.
Questo processo narrativo circolare, comune a tutti i
videopannelli, determina un Leitmotif che orienta il visitatore, il
quale ritrova in qualsiasi sezione del Museo le informazioni
essenziali alla comprensione dei Fori in antico e, nel caso
specifico, le notizie necessarie alla comprensione di ciascuna sala
museale e dei reperti esposti in essa.
Fig 2. Museo dei Fori Imperiali. Il sistema di comunicazione del museo
all’interno della taberna dedicata al Foro di Nerva: pannello e videopannello
con il fregio proveniente dal tempio di Minerva.
La sala multimediale, allestita in una delle tabernae più profonde
del piano terra della Grande Aula, è caratterizzata da un
maxischermo retroproiettato per mezzo di un sistema video,
dotato al suo interno di un pc ed equipaggiato con un impianto
audio. L’esigenza di trasmettere le informazioni di base alla visita
del Museo, rivolgendosi a tutto il pubblico possibile, quindi
anche ai giovanissimi, ha reso necessaria l’ideazione di uno
storyboard molto particolare.
Ad un anno dall’apertura del Museo dei Fori Imperiali è possibile
trarre le prime considerazioni sul suo Sistema di Comunicazione
Integrato; considerazioni che nascono da dati concreti e
scientifici elaborati da alcuni degli operatori del Servizio Civile
Volontario attivi ai Mercati di Traiano. La notevole quantità di
informazioni acquisite ed elaborate ci permette di progettare
precisi interventi, nell’immediato futuro, sul Sistema di
Comunicazione. Si è deciso dunque di dotare i prodotti video di
una leggera banda sonora che accompagni i filmati,
rispettandone ed enfatizzandone il ritmo narrativo, e,
soprattutto, si sta lavorando per dotarli di uno speakeraggio
essenziale e didascalico in italiano ed in inglese, affinché i
contenuti possano arrivare nella forma più chiara possibile a
tutte le tipologie di pubblico.
Una mascotte: Columnus, dalla Roma dei nostri giorni, guida il
pubblico indietro nel tempo, in un viaggio che dai Mercati di
Traiano e attraverso la visione di tutti i Fori, nelle varie epoche
storiche, lo fa tornare all’età imperiale, ed alla fine gli permette di
“ritrovare se stesso” in un capitello nell’allestimento museale del
Foro di Augusto.
Completamente diversa è invece la struttura e la caratteristica
comunicativa degli altri 10 prodotti video dislocati nelle sale
espositive del Museo.
Le postazioni video sono infatti composte da schermi LCD
collegati a mini-player tramite un cavo s-video. Tutto l'hardware
è stato inserito all'interno di pannelli del tutto simili a quelli
didattici presenti nel percorso museale, creando uniformità e
riducendo l'impatto visivo. Il video è compresso in qualità DVD
(formato mpeg2) ed è contenuto in una flash card inserita nel
player stesso.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Fig. 3. Uno screenshot del video con la ricostruzione sullo stato attuale della
peristasi del tempio di Marte Ultore all’interno del Foro di Augusto.
Inoltre, al fine di migliorare la qualità visiva dei prodotti, e
mantenersi quindi aggiornati con le proposte che il mercato offre
costantemente, verranno adeguati gli apparati hardware con
125
Virtual Archaeology Review
soluzioni più performanti. Ma tutto ciò non basta, è in
programma anche un implemento degli apparati multimediali del
Museo dei Fori Imperiali. Si prevede infatti la realizzazione di
nuovi filmati – uno dei quali già terminato, ed in attesa di essere
testato sul pubblico – e l’utilizzo di uno spazio con postazioni
multimediali fisse affinché il visitatore, se interessato, possa
approfondire la visita accedendo a materiale d’archivio tramite
schede di approfondimento relative ai reperti esposti, e
soprattutto, al sito web del Museo. A tal proposito va infatti
sottolineato come un Sistema di Comunicazione di nuova
generazione non si concluda con gli apparati e i prodotti presenti
in un museo; una grande importanza a livello comunicativo è
infatti affidata all’utilizzo di internet. Il sito web del Museo dei
Fori Imperiali è stato infatti ideato e realizzato con le
caratteristiche del Museo stesso. Ricco di contenuti ma con la
possibilità, da parte dell’utente, di accedervi per gradi a seconda
delle esigenze di approfondimento e, soprattutto, ricco di
immagini e sempre in linea con le scelte comunicative interne al
Museo. Esso è corredato, di conseguenza, da una vasta sezione
dedicata ai “multimedia”, in cui l’utente può prendere visione e
scaricare le anteprime di tutti i video dei quali poi potrà fruire,
per intero, visitando il Museo. Il sito web è inoltre concepito
come un filo diretto con il visitatore, che può leggere le ultime
notizie nella sezione “News” ed ha la possibilità di iscriversi alla
newsletter del portale dei musei del Comune di Roma, per essere
costantemente aggiornato sulle mostre e le altre manifestazioni
culturali programmate dall’Amministrazione.
Fig. 4. Uno screenshot con la ricostruzione in dissolvenza delle volumetrie
dei Fori Imperiali in rapporto alla situazione urbanistica attuale.
3. Il Sistema di comunicazione costituisce quindi il ‘valore
aggiunto’ del Museo: la sua visita deve anche suscitare stupore e
far percepire la scoperta dell’architettura dei Mercati, della storia
della città, e al tempo stesso della complessità dei Fori.
Per questo l’allestimento nel suo insieme non può essere statico,
ma deve evolvere con gli studi dei ricercatori e con gli interessi
del pubblico, superando il limite che uccide da sempre
l’istituzione museale: quello dell’autoreferenzialità e del
confinamento in un assetto immobile e definitivo, in sostanza
privo di dinamismo, di capacità di rigenerarsi e di produrre
fidelity nel proprio pubblico. Torniamo quindi ai problemi citati
nel primo paragrafo: la capacità di attrarre e di catturare
l’attenzione, la necessità di riproporre oggetti o contesti in modo
realistico. Lo sviluppo della proposta virtuale deve e può andare
a questo punto in varie direzioni.
3.1 La produzione “editoriale” derivata dall’elaborazione
multimediale quale mezzo di comunicazione del brand museale -
culturale con una diffusione differenziata tra il mercato nazionale
e quello estero, tra i diversi target di pubblico; si tratta di
espandere l’applicazione del marketing territoriale a quello
culturale ponendo attenzione ad una serie di relazioni: costo
(della produzione) - beneficio (indotto occupazionale, ritorno di
immagine), elaborazione dei contenuti – attendibilità scientifica –
capacità attrattiva del prodotto.
3.2 La possibilità di analizzare il territorio al microscopio e nel
contempo di ricostruire l’ambiente antico, il paesaggio e le sue
trasformazioni antropiche, facendo riferimento e applicando
diverse discipline scientifiche per la ricerca, come la botanica.
Esempio eclatante da un monumento apparentemente molto
conosciuto, l’analisi del rilievo vegetale dell’Ara Pacis, il cui
valore simbolico (e solo secondariamente naturalistico) è stato
rivelato proprio dall’apporto della botanica, con conseguenze
rilevanti sulle proposte di coloritura del rilievo marmoreo.
3.3 La concreta possibilità di comunicare diacronia e
contemporaneità: in una città come Roma, che ha tremila anni
circa di continuità sullo stesso suolo, la ricostruzione virtuale
(sempre rispondente alla correttezza dei contenuti) permette di
“raccontare” tutte le storie possibili e di contestualizzare i resti
soprattutto archeologici attraverso nuovi strumenti da utilizzare
nei complessi monumentali e museali in grado di fornire al
pubblico immersione e interattività.
3.4 Le creazione di banche dati comuni devono contribuire a
formalizzare sistemi di comunicazione univoci e multilingue, per
favorire una reale diffusione del patrimonio comune: troppe
banche dati sono fallite proprio perché studiate dal punto di vista
informatico e non da quello dei contenuti. I nuovi bandi
“cultura” della Comunità Europea dovrebbero ora concorrere a
dare concretezza alla banca dati “Europeana” con l’apporto di
dati alfanumerici e l’elaborazione di immagini e proposte
ricostruttive. Le reti museali in tal senso sono molto importanti e
la creazione di database multilingue alimenta la circolazione di
idee e soluzioni comunicative.
3.5 L’elaborazione della terza dimensione deve essere quindi
finalizzata a questi obiettivi: diffusione del patrimonio attraverso
la sua conoscenza, secondo i principi dell’educazione e dell’
intrattenimento, attraverso linguaggi multilingue ma rispondenti
ad un thesaurus comune, secondo un trattamento dell’immagine
che restituisca corretta unità visiva di quanto si va ricostruendo:
in questa direzione si lavorerà all’interno del progetto 3D
COFORM.
Altro contributo fondamentale della terza dimensione è lo studio
della salvaguardia del patrimonio: la tecnologia analitica ci
permette di mettere a confronto lo stato di conservazione di
monumenti e collezioni museali attraverso il rilievo laser dello
stato attuale confrontato con documentazione precedente. E’ il
caso dei calchi di opere realizzati nel secolo scorso o addirittura
nel XIX secolo: la Colonna Traiana, ad esempio, può essere
indagata attraverso il confronto tra i calchi del XIX secolo
conservati in più sedi e la documentazione dei restauri recenti e
dello stato attuale. Torniamo così al nostro primo Museo
virtuale sulla romanità e ai principi culturali ispiratori ieri come
oggi della ricostruzione e riproduzione dell’opera d’arte.
4. Una diffusa e corretta comunicazione con il pubblico ha
riflessi molto positivi sulla convivenza in ambito urbano tra
l’archeologia, considerata di solito un “ostacolo” dello sviluppo
urbanistico, e le esigenze del vivere quotidiano. Si deve
riconoscere che solitamente mancano l’informazione e il
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
126
Virtual Archaeology Review
coinvolgimento del cittadino nelle attività di scavo e restauro
urbano (oltre che della piena consapevolezza di memoria e
patrimonio comuni): il “museo diffuso” sul territorio e nei luoghi
deputati deve fornire anche quegli elementi di aggiornamento
sulle indagini e sulle nuove acquisizioni che motivano la
formazione della piena consapevolezza della memoria e del
patrimonio comuni, contribuendo ad educare i cittadini, dai
piccoli ai grandi, alla difesa e alla valorizzazione dei beni culturali.
5. In sintesi il linguaggio multimediale - quello della nostra era deve migliorare la comunicazione e la divulgazione della ricerca
anche attraverso suggestioni emotive, in poche parole: evocare,
informare, conoscere, ovvero semplificare senza banalizzare.
Proprio per questo non possiamo trascurare un tema appena
sfiorato al suo inizio: quello della formazione. A questo
proposito deve essere aperto un dibattito a tutto campo: ancora
oggi le due sfere formative – umanisti e informatici – studiano e
si formano in ambienti completamente diversi e separati; quando
si parla di formazione, si intende a senso unico, ossia destinata
agli umanisti perché apprendano i rudimenti delle tecnologie
applicate. Ciò non tiene conto del fatto che l’informatico deve
pure conoscere i rudimenti del bene culturale, del patrimonio per
poter progettare architetture informatiche realmente utili alla
conoscenza, alla gestione e alla comunicazione al pubblico nei
musei oppure on line.
* Il presente contributo ha una concezione unitaria ma il paragrafo 2 è a firma di Marco Sartini e Paolo Vigliarolo, il rimanente
testo è a firma di Lucrezia Ungaro
Bibliografia
UNGARO L. (a cura di), Il “Pubblico” ai Mercati di Traiano e dintorni, tra apprendimento, suggestione, comunicazione, in Esperienze e
progetti, III, Ferrara, 2009.
UNGARO L., “Roma: El Museo de los Foros Imperiales en los Mercados de Trajano. Conservaciòn, puesta en valor y comunicaciòn de
la arquitectura antigua y de la decoraciòn escultòrico-arquitectònica” in Museos.es, 4, Madrid, 2008.
UNGARO L. (a cura di), Museo dei Fori Imperiali – Mercati di Traiano, Milano, Guida, 2008.
UNGARO L. (a cura di), Il Museo dei Fori Imperiali nei Mercati di Traiano, Milano, Electa, 2007.
UNGARO L., “ ‘Esporre’ i Fori Imperiali: ricostruzione, ricomposizione, integrazione, comunicazione nel sistema museale. Le ragioni
della conservazione, le ragioni della fruizione”, in Palladio, 36 (2005) Roma, 2006, pp. 69-86.
UNGARO L., “Comunicare i Fori Imperiali nel museo: tra immagine e integrazione reale”, in L. HASELBERGER, J. HUMPHREY (a
cura di), Imaging ancient Rome. Documentation – visualization – imagination, Proceedings of the third Williams Symposium on classical architecture, Rome
20-23 Mai 2004, “JRA”, Suppl. s. 61, Rome 2004, pp. 191-201.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
127
Virtual Archaeology Review
Ashes2Art Now and Tomorrow:
Delphi, Alexandria and the Red Sea
Arne R. Flaten
Department of Visual Arts, Coastal Carolina University, Conway, South Carolina, USA
Resumen
Ashes2Art es una iniciativa cooperativa de investigación de estudiantes universitarios que se centró en la aplicación de herramientas digitales a proyectos culturales
de Patrimonio Cultural. El programa comenzó en 2005 en Coastal Carolina University, y de 2007 a 2009, la Universidad trabajó con estudiantes de
Arkansas State University para estudiar y construir varios recursos digitales que pertenecen a Delfos, Grecia. En enero 2011 el proyecto Ashes2Art en Coastal
Carolina University comienza la colaboración con el Centro para la Arqueología Marítima y Herencia Submarina y Cultural de la Universidad de Alejandría,
Egipto. Trabajaremos con directores de excavación en el Lago Mareotis (cerca de Alejandría) y en varios sitios del Mar Rojo.
Palabras clave: MODELOS DIGITALES, HUMANIDADES DIGITALES, PEDAGOGÍA
Abstract
Ashes2Art is a collaborative undergraduate research initiative focused on the application of digital tools to cultural heritage projects. The program started in 2005
at Coastal Carolina University, and from 2007 to 2009, Coastal Carolina University worked with students and faculty at Arkansas State University to study
and build various digital resources pertaining to Delphi, Greece. In January 2011 the Ashes2Art project at Coastal Carolina University begins collaboration with
the Center for Maritime Archaeology and Underwater Cultural Heritage at Alexandria University, Egypt. We will work with excavation directors on Lake
Mareotis (near Alexandria) and at various sites along the Red Sea.
Key words: DIGITAL MODELS, DIGITAL HUMANITIES, PEDAGOGY
1. INTRODUCTION
2. ASHES2ART
Students are digital natives. Cellphones, GPS, iPods, CAD
designs, email, digital projection systems, home computers, the
internet…all are commonplace. Digital models, too, have
become common to a wide range of programs and projects,
including mass media productions (feature films and television),
museum displays, ipod apps, and various cultural heritage
initiatives. There persists an underlying suspicion about digital
models since there exists no coherent international body to
assess and jury the accuracy of digital models and related
materials. The SAVE project (Serving and Archiving Virtual
Environments), discussed at length at the annual Computer
Applications and Quantitative Methods conference (CAA) in
Budapest in 2008, proposed just such a governing body.
Although the Ashes2Art project is directly interested in the
construction of accurate, publicly available digital models, this is
a topic for future conversations. The present discussion provides
a brief overview of a pioneering undergraduate program that
combines digital technologies with various disciplines in the
humanities to explore cultural heritage sites. It trains the next
generation of digiterati to apply their skills to important heritage
issues.
Ashes2Art (www.coastal.edu.ashes2art) began at Coastal Carolina
University in 2005 as a means of blurring the lines between
lecture and laboratory, between art history, archaeology and
technology, and between undergraduate students and faculty
research. It is an undergraduate interdisciplinary and
collaborative program that combines art history, archaeology,
web design, 3D computer models, video design and digital
panoramic photography to explore and recreate monuments of
the ancient past online. As a digital humanities initiative
concerned with cultural heritage, it focuses on a web-based,
open-source presentation of its materials conducted by faculty
and undergraduate students at Coastal Carolina University and
other universities, including Arkansas State University in
Jonesboro, AR and, most recently, Alexandria University, Egypt.
Because it relies exclusively on undergraduates, a program of this
kind has distinct limitations which may not affect other
programs to the same extent. Budgets are a concern to programs
everywhere, especially in our current economy, but our financial
concerns are unique, or at least more immediate. The turnover
of our workers (ie. students) is more pronounced than one
would find in graduate programs, governmental agencies or in
the private sector. We also are at the mercy of our student skill
sets: in any given year we may have several who can build digital
models, but none that with extensive web design skills, or vice
versa. As program directors, our schedules are limited by the
other courses we teach, by sundry university commitments, by
travel/funding restrictions. Our ability to integrate new
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
128
Virtual Archaeology Review
technologies and to teach those technologies is restricted by state
purchasing regulations, by staffing issues, by the skills and
interest levels of our students, and by curricular concerns that do
not affect other programs.
My co-director, Paul Olsen, and I founded the project with an
idea and a graphic design Macintosh computer lab with no
additional funding. As an art historian, I was impressed by the
work at the University of California-Los Angeles (UCLA) and
various programs worldwide, and I wondered if similar ideas and
technologies might be applicable to an undergraduate course
setting. Our first stage was exploratory: we focused on applying
various technologies to three well-known piazze in Renaissance
Florence. It was a test case to gauge the potential of our ideas.
We did not attempt to reconstruct “lost” monuments, but our
students stitched digital panoramas, wrote essays, compiled
biographies and bibliographies, designed a website, and built an
interactive 3D map. All this with twelve students in one
semester. A summer institute at UCLA sponsored by the
National Endowment for the Humanities in 2006 (directed by
Drs. Sander Goldberg and Diane Favro) allowed me to discuss
our preliminary work with a discriminating audience. The results
of that first semester (fall 2005) and subsequent conversations
with institute directors and attendees were sufficiently
encouraging that we decided to expand the project’s scope.
2.1 Ashes2Art: Delphi
In fall 2006 we began collaboration with Dr. Alyson Gill at
Arkansas State University (also an attendee at the NEH Institute
at UCLA) to work on Delphi, Greece, and we planned to include
the construction of digital models as a focus of the program.
Figure 1. Reconstruction of the southeast corner of the Temple of Apollo,
Delphi. Taylor Baldwin, Coastal Carolina University, 2010.
Ashes2Art was offered for course credit at both universities in
spring 2007, 2008 and 2009. We were awarded a grant from the
National Endowment for the Humanities in 2007 and, with
permissions from the Hellenic Ministry of Culture and the
support of the American School for Classical Studies at Athens,
we traveled to Delphi with students in summer 2007 and 2008.
We also received permission to work at Corinth, Nemea,
Isthmia, Epidauros, Olympia, Delos, and Aegina. Over the
course of those two years, students collected GPS data, shot
digital panoramas, built digital models of various monuments,
designed a new web site, wrote essays, wrote lesson plans in
compliance with United States National Standards for Visual
Arts Education, built flythrough and educational videos, and
designed interactive maps and resources. We hope to post the
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
40-plus panoramas online, but we are still waiting for permission
from the Hellenic Ministry of Culture and the Archaeological
Museum at Delphi. In support of the project, the
administrations at Coastal Carolina and Arkansas State built
project-specific computer modeling labs totaling over $150K. At
Coastal Carolina, the Ashes2Art course is now crosslisted
between Art History, Graphic Design and History, which means
students from various disciplines can receive credit toward their
major and minor degrees. It also means that we are able to tap
into the skills and methods of disparate programs of study.
Figure 2. Reconstruction of the entablature, roof, lion heads and acroteria on
south side of Temple of Apollo, Delphi. Taylor Baldwin, Coastal Carolina
University, 2010.
3. DIGITAL MODELS
I have published elsewhere some general remarks about the
methodology employed in the construction of our digital models
(FLATEN, 2009). Digital models are increasingly common
among digital humanities, cultural heritage, and virtual
archaeology projects so I will not endeavor to summarize those
thoughts here, but there are considerations that pertain to
utilizing (and teaching) these kinds of tools in an environment
that is exclusively aimed at undergraduates. Our models are
focused on 4th century BCE monuments at Delphi, the famous
site of the Delphic oracle and of the Pythian games. The models
are based primarily on the Fouilles de Delphes, the excavation
reports published by the French Archaeological School over the
last hundred years. In conjunction with those reports, we use
high-resolution photographs of the site and of objects in the
Archaeological Museum, and monument-specific articles that
revise, refine or supplement the information in the
archaeological reports. The marble textures we apply to our
models are taken directly from high-res photographs of the
marble blocks onsite. In some cases, we are forced to build
multiple models to address competing scholarly opinions and
concerns, as is the case with the roof of the tholos of Athena
Pronaia (single tier versus double tier). Models are built in
3dsMax and Mudbox, with early draft models sometimes
sketched out in Google Sketch Up Pro. Beginning in fall 2009, a
course in 3dsMax is offered through the Department of Theatre
at Coastal Carolina University to train students in the basics of
digital modeling before entering the Ashes2Art program.
Surprisingly perhaps, the demands of digital set design for largescale theatre productions provide many of the skills our students
need for our reconstructions of ancient monuments. Digital
models are only one component of the Ashes2Art program, but
they are vital to our mission.
129
Virtual Archaeology Review
Our philosophy on computer reconstructions and the project in
general can be summarized by three points: 1) Uncertainty is a
crucial component of knowledge; 2) Precision does not imply
accuracy; and 3) Questions are more important than definite
answers. These concepts are crucial to our students and to the
success of the program, from both a pedagogical standpoint and
when surveying our output. Many of the specifics of any given
monument that we work on are not
Figure 3. Reconstruction of entrance (east) to the Temple of Apollo, Delphi.
Taylor Baldwin, Coastal Carolina University, 2010.
known, or at the very least are contested; this is not surprising
considering that the structures are 2500 years old. The difficulty
that derives from this fact is especially evident in trying to
reconstruct the interior of the Temple of Apollo (which we are
still working on). To my knowledge there exists no generally
accepted model in any format of the Temple of Apollo’s interior.
Uncertainty in digital reconstruction models (or any type of
models) is not only valuable and expected, it is necessary; the key
is to make certain that the (meta)data that supports the models is
clearly presented and the methods are transparent. Computers
allow an almost infinite degree of precision, but designing a
model that can be measured in fractions of millimeters does not
necessarily have any bearing on the accuracy of that
reconstruction: the height and intercolumniation of a Doric
column is rendered irrelevant if that column should be Ionic,
and so on. Ultimately, the types of questions that are raised by
uncertainty become invaluable for the collaborative learning and
teaching process: what types of hinges were used? How were
treasury or temple doors locked? Was the roof tiles built of
ceramic or marble? These “rules” or guiding principles have
helped us to define our mission and refine our models, essays,
lesson plans and resource materials, and they are valuable lessons
for our students regardless of discipline. They encourage
research, enhance discovery, support creative solutions. Our
methods and our successes have allowed Ashes2Art, along with
programs at Duke and Harvard universities, to be identified
recently as “inspiring a new kind of undergraduate education
that is immersive, experiential, and contributive at the same
time.” (VILLANO, 2009: 26-30)
4. ASHES2ART AND ALEXANDRIA
UNIVERSITY
In 2010 the details were sketched out for a collaboration
between the Ashes2Art program at Coastal Carolina University
and the Center for Maritime Archaeology and Underwater
Cultural Heritage (CMA) at Alexandria University, Egypt. Olsen
and Flaten visited Alexandria in March 2010 to discuss our
program with students and discuss the details of the
collaboration with Dr. Emad Khalil (director, CMA) and other
faculty and staff at the University. A signed Memorandum of
Understanding is expected in August 2010. Beginning in January
2011, Ashes2Art will work at various excavation sites at Lake
Mareotis, immediately west of modern Alexandria (BLUE, 2006,
2007; KHALIL, 2010). When work at Mareotis is sufficiently
underway, we plan to work on multiple sites on the Red Sea,
perhaps including Wadi Gawasis, Quseir al-Qadim, and the
Sadana Island shipwreck. In support of excavation teams led by
Dr. Emad Khalil, Dr. Lucy Blue (University of Southhampton,
UK), and Dr. Cheryl Ward (Coastal Carolina University),
Ashes2Art will collect GPS data, shoot digital panoramas, design
and populate site-specific online databases and
site-specific virtual museums, build computer models of
excavated ancient boats and ports, and design a digital
representations of the radical topographic changes to the areas
over the past two thousand years. As part of those
reconstruction efforts, we plan to introduce LIDAR scanning to
the sites to better understand, and better reconstruct, the
topography.
Figure 4. Detail of reconstructed stereobate and stylobate from the east,
Temple of Apollo, Delphi. Taylor Baldwin, Coastal Carolina University,
2010.
This collaboration represents a radical and exciting departure for
the Ashes2Art program. For the first time, we will have
unlimited access to all excavation materials, we will be able to
document excavations in realtime, and we will assist in the
reconstruction of sites and maritime vessels that heretofore were
completely unknown. We will be able to work directly with
excavators and play a fundamental role in disseminating data
about their excavations worldwide. Moreover, our digital
models of individual components of boats will aid in the physical
reconstruction of the vessels themselves and to better
understand the specifics of boat construction and trade from
ancient Egypt through Rome and the Ottomans. The
collaboration also is expected to result in faculty and student
exchanges between the two universities beginning in spring
2011. Dr. Cheryl Ward and I will take students to Egypt for
three weeks in May 2011 to begin that process. Program
directors at both institutions will apply for collaborative grants
through national agencies in Egypt and in the United States.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
130
Virtual Archaeology Review
5. CONCLUSIONS
Figure 5. Map of Lake Mareotis today and in antiquity (Khalil).
In 2007 I addressed the historic joint-meeting of the National
Endowment for the Humanities (NEH) and Consiglio Nazionale
delle Ricerche (CNR) in Washington, D. C. about the Ashes2Art
project. (FLATEN, 2008: 76-86) At the time I expressed that my
presence there was similar to arriving at a car race riding a
bicycle. With the august body of scholars and researchers
gathered at Arqueologica 2.0, I feel in some ways as I did then.
Ashes2Art is a small and modest project, with a negligible
budget and a “staff” of undergraduates that changes from
semester to semester. Yet, our project is vital to the future of
cultural heritage programs and digital humanities initiatives
because we are training the next generation of programmers and
researchers. Students are introduced to a heuristic means of
acquiring knowledge, they are discovering new approaches to
learning, and they are applying the digital skills that pervade our
modern world to sensitive heritage issues. I am proud of our
students’ successes, and I am excited about the opportunities
that our new collaboration with Alexandria University will
provide. I look forward to discussing future developments of
our program at forthcoming SEAV conferences, and to
participate in the International Forum for Virtual Archaeology.
ACKNOWLEGMENTS
I would like to express my sincerest thanks to SEAV and Arqueológica 2.0 for inviting me to participate in this exciting event. Paul Olsen,
Ashes2Art co-founder and co-director, and I are indebted to the administration at Coastal Carolina University for their continued support
of the Ashes2Art project, in particular the Dean of Humanities and Fine Arts, Dr. Bill Richardson, and the Provost, Dr. Robert Sheehan.
For work at Delphi, the project is grateful for the support of the National Endowment for the Humanities, and the access to
archaeological sites provided by the Hellenic Ministry of Culture and the American School for Classical Studies at Athens. Lastly, and
perhaps most importantly, we would like to thank the students in Ashes2Art, without whom the project would not exist: in spring 2010
those students were Taylor Baldwin (digital models), Ryan D’Alessandro (digital models), Caitlin Jones (digital models), Braden Pate (web
design), Evan Donnevant (lesson plans), Samantha Bailey (lesson plans), Preston Moorhead (research/archives), Jacquelyn Mascia
(research/archives), and Jesse Nevins (research/essays).
REFERENCES
BLUE, Lucy and RAMESES, S. (2006): Lake Mareotis Research Project. Report submitted to the Egyptian Supreme Council for Antiquities
on the fieldwork and results of the September 2006 field season.
BLUE, Lucy and RAMESES, S. (2007): Lake Mareotis Research Project. Report submitted to the Egyptian Supreme Council for Antiquities
on the fieldwork and results of the May & July/August 2007 field seasons.
FLATEN, Arne R. (2008): “Ashes2Art: Collaboration in Digital Humanities”, in New Technologies to Explore Cultural Heritage (National
Endowment for the Humanities and the Consiglio Nazionale delle Ricerche): Rome & Washington, pp. 76-86.
FLATEN, Arne R. (2009): “The Ashes2Art Project: Digital Models of Fourth-Century BCE Delphi, Greece”, in A. Flaten & A. Gill
(eds.), Visual Resources: an International Journal of Documentation, vol. 25, special issue: Digital Crossroads: New Directions in 3D Architectural
Modeling in the Humanities (12/2009), pp. 355-372.
KHALIL, Emad (2010): “Waterfront Installations and Maritime Activities in the Mareotic Region”, in L. Blue (ed.). Lake Mareotis:
Reconstructing the Past. Proceedings of the International Conference on the Archaeology of the Mareotic Region held at Alexandria
University, Egypt, 5th-6th April 2008. BAR International Series 2113: 135-145. Archaeopress. Oxford.
VILLANO, Matt (2009): “Expanding the Canon”, in Campus Technology (10/2009), pp. 26-30.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
131
Virtual Archaeology Review
Current Productions
Carnuntum, German Limes and Radiopast
F. Humer 1, C.Gugl2, M. Pregesbauer 3, F. Vermeulen 4, Ch. Corsi 5 and M. Klein 6
1
Govt. of the State of Lower Austria, Dept. of Cultural Affairs, Archaeological Park Carnuntum.
2 Austrian academy of science, Vienna. Austria
3 Govt. of the State of Lower Austria, Dept. of Hydrology and Geoinformation
4 Department of Archaeology Ghent University, Gent, Belgium
5 Universidade de Évora, Évora. Portugal
6 7REASONS, Vienna. Austria
Resumen
Presento tres proyectos elegidos que delimitan técnicas diferentes de la producción y su transmisión de contenido. El impacto diferenciado en la absorción pública del
contenido es descrito dependiente a experiencias con ello en exposiciones y publicaciones, y puede ser usado para rectificar futuros acercamientos de temas similares.
En la mayor parte de estas producciones, las dificultades técnicas fueron estudiadas y solucionadas por el uso extenso de instrumentos diferentes y técnicas para
conseguir una salida razonable y representar nuestro estado del conocimiento que nos gustaría compartir. La documentación de la producción así como la
comunicación entre la producción y grupo de investigación es indispensable en estos formatos multimedia.
Palabras Clave: RECONSTRUCCION, ROMANO, CARNUNTUM, LIMES, RADIO-PAST
Abstract
The here presented three chosen projects mark out different techniques of production and their transmission of content. The differentiated impact on the public
absorption of the transported content are described dependent to experiences with it in exhibitions and publications, and can be used to rectify future approaches of
similar topics. In most of these productions, technical difficulties were observed and solved through extensive use of different tools and techniques to achieve a
reasonable output and represent our current state of knowledge which we would like to share. The documentation of the production as well as the communication
between the production and research team is indispensable to the sucsess of these media formats.
Key words: RECONSTRUCTION, ROMAN, CARNUNTUM, LIMES, RADIO-PAST
1. CARNUNTUM 2009-2011
1.1. Assignment
Marking the 2000 year anniversary of the former Roman capital
of Pannonia superior, Carnuntum, we had the chance to start a
long-term project, aiming for a total reconstruction of the city,
the legionary fortress and its canabae, including the surrounding
landscape. This will result in a 1:300 scale model measuring over
20 x7 meters as well as a series of other media including Film
and interactive Applications.
The Scale Model will inherit approx. 5600 buildings and will be
processed through virtual models which will then be plotted on a
3d printer, either as a single instance or in negative-form in order
to duplicate certain smaller buildings by cast moulting. The
generated computer models will also be used for the film scenes
and have to be prepared accordingly. The final result will be
presented in spring 2011. We will present a short overview of
the used techniques and show the current state of this project.
Figure 1.1 Scene of the reconstructed Forum
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
132
Virtual Archaeology Review
1.2. Technical realisation
One of the tasks of the project was the construction of a haptic
scale model of the ancient city including its surrounding area.
The model displays a section measuring 6,750 m x 4,500 m in a
ratio of 1:300 and thus being 22,5m x 15m in size and including
over 5000 visible Structures. Therefore extensive planning was
necessary for the implementation of this model.
Figure 1.3 Set-up of the framework for the Scale Model
Figure 1.2 Lidar and STL Model of Carnuntum
Unlike traditional model building the scene was entirely built in
3-D programmes and then printed in a 3-D format. For this
process a Stereolithographic machine (STL) was used which
utilises laser technology to build up the layers of a structure in a
matter of hours. For certain repeating buildings a vacuum
moulding technique could be used to lower costs since this
allowed the replication of existing prototypes. Hence the 3-D
Objects had to be made especially to meet the requirements of
3-D printing.
Figure 1.4 Virtual and Scale Model of the Great Baths of Carnuntum
Due to technical limitations the Terrain had to be divided into
38 terrain tiles that would have to fit perfectly together with a
very low error tolerance (<0,5mm). It was decided that instead
of placing single houses across this model, a set of structure tiles
were used approx 7cm in size. This would ease the production
process of the model as well as set further requirements. The
base of these Structure tiles had to be subtracted from the
Terrain tiles so that these would fit exactly into the indentation
afterwards.
1.4. Artefact Database
1.3. Object creation
The Database is available online to the public whilst
professionals can access additional metadata.
The creation of the virtual models involved in this project had to
fulfil certain requirements. They would have to be able to be
produced by a 3-D Plotter and therefore had to be constructed
as STL files. This would mean that the individual models
consisted of a single mesh with no holes or vertical elements that
were hanging over. Roofs and Structures were separated in the
process for alternate coloring and reassembly afterwards.
Currently a virtual web based database is being established
containing numerous findings of roman artefacts from the
carnuntum area. The artefacts are scanned with a professional
scanner and then processed to be able to present a lowresolution poly model containing detail information of the high
poly model in an interactive flash application alongside photos
of the artefact. The original texture however is not shown in
these objects as other information regarding the surface
properties is more abundant that way.
2. VIRTUAL LIMES OF RAETIA AND
GERMANIA SUPERIOR
2.1. Assignment
In autumn 2009, a consortium of regional municipal and federal
state authorities in Baden -Württemberg, Germany, requested a
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
133
Virtual Archaeology Review
proposal for the visualisation of a approx. 90 km long part of the
former roman Limes, inheriting 11 military bases and their civil
settlements. The output should result in a virtual 3d real-time
environment allowing the user to interactively navigate through
these settlements while receiving the necessary information
about the regions, buildings and local finds, on the fly. Two
short films should explain the historical background of this
segment of the German Limes, giving an insight view to the
daily life of a roman solider, explaining their duties, equipment
and architectural environments. All media was to be presented in
a stereoscopic format. In addition, a GIS -like application should
allow the user to stroll along the former Roman Limes section
while gathering information through marked areas and points of
interest but also giving him the opportunity to change the
appearing maps from the present to the reconstructed state. The
great task in this project was to find a solution for deducing the
data size to a suitable dimension while still conserving most of
its visual quality.
realized scenes and objects were also published within this blog
and could therefore be documented.
2.4. Technical realisation
In a first attempt, a query of existing 3d real-time engines was
done, to assure that the large amount of data could be presented
fluently in a high quality. Our requirements to the 3d real-time
editor where focused on interchangeable data formats,
interactive implementation through simple scripting languages,
good stability and a comprehensive asset management. After a
few weeks of trials we decided that the UNITY3d engine suited
these requirements best, and would also be a good option to
publish on various operating systems and hardware devices
(mobile, web, standalone, consoles, etc..) The output of a
stereoscopic format could be assured, since the compiled version
of the application allowed to write to its camera buffer and was
therefore suitable for both DLP and active stereoscopic devices
like 3dVision from Nvidia.
2.2. Resources
The research team consisted of five archaeologists assigned to
different duties. The content of this Project was broken down to
the individual scenes, giving us time to process the given
information and present it for correction and validation. Finally,
a 130 page manuscript documented all decisions through
interpretation of the gathered source material.
A coarse DHM together with topographic maps and orthogonal
photos of the region was supported by the federal authorities,
while a detailed LIDAR (light detection and ranging scan) was
produced and processed by our partner (ARCTRON), which
presented the base for the used Geographical Information
System, where all archaeological and topographical information
could be hosted.
2.5. Object creation
In order to obtain fluid frame rates for the end -product, we
where aiming to keep the polygon count as low as possible while
keeping as much visual quality as possible. The base
reconstructions where made in high to medium resolution and
served as a pattern of textures, which where then applied to low
resolution models.
A standardisation of objects had to be achieved to meet the large
amount of buildings and structures used within these scenes.
The various military complexes where constructed of a modular
set of parts which could be assembled to fit the archaeological
constituent and its interpretations. In case of anomalies,
adoptions of the pre modelled objects had to be made. The
templates where delivered from standing structures and well
known regional reference sites as well as literal sources of
antique authors and illustrated examples. A similar approach
defined the illustration of the civil architecture. A typology of
certain houses was created, using the nearby reference sites of
“Wimpfen” and “Wahlheim” which are well documented and
assembled to the results of excavation or prospection. To
achieve a variety of buildings, the existing models where
differentiated through texture, scale and modular compilation.
2.6. Scene creation
Through the use of the prepared research data, existing digital
elevation models and Lidar scans, a presumption of the former
roman terrain was made and illustrated in various maps to
discuss the placement of vegetation and settlements. A GIS
application was used to gather most of the information and
extract certain areas of interest to suitable formats.
Figure 2.1. Digital Elevation Model and Lidar Scan inside the Infosys
GIS Application
2.3. Communication
To assure a good communication between the production and
research teams, an internet blog was installed to update all
production progresses. Through this we were able to illustrate
ideas for reconstructions and obtain crucial information and
various suggestions from all participants. The approval of
In the real-time editor, scripts where created to allow the
placement of textures and objects using these prepared maps as
masks. Through this we could achieve a flexible way of
modelling the landscape communicating its results through 2d
information (maps) which could easily be changed and
corrected.
The terrain geometry in unity-3d was created through extrusion
of 32-bit grayscale images taken from the GIS data which were
manipulated by applying fluvial and erosion simulations. The
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
134
Virtual Archaeology Review
surface of this terrain was textured using so called “splat maps”,
which allowed the placement of different surface features on
certain parts of the DHM, depending on slope steepness, height
-value and regions defined by the splat maps in their RGB value.
Through this, a large area of the landscape could be covered
using textures of fairly small sizes and therefore economize the
computation costs during runtime. The geometric density of the
terrain is dependent to the distance of the viewer’s camera and
can therefore adjust its detail which was crucial for the
performance of the compiled application.
fortress, its canabae and other building structures. Although an
individual modelling approach for each of the settlements could
not be realized, due to deadlines and budget reasons, the
modular setup of the scenes turned out to be satisfying to the
artistic and scientific demands.
At the end, we could present 11 reconstructed landscapes of that
period (233 a.d.) inheriting approx. 2600 buildings with a fairly
high degree of quality, still maintaining the necessary
performance for the runtime of the stereoscopic, 3d –real-time
environment.
2.7. Character creation and animation
The 3d Characters used within the short film and the real-time
environment where first modelled in high detail and afterwards
reduced through re-topologisation of their surface, while
retaining most of their visual details through a process of so
called “texture baking”, where the surface appearance of the
highly detailed model is being transferred to the model of lower
detail through projected texture maps. This was especially
necessary for the use inside the real-time environment, but also
turned out to deliver almost the same quality for the film scenes
with the advantage of faster computation in the animation and
rendering processes. Different head or body models and textures
where used to diverse the characters and generate small crowds
of actors.
Figure 2.2. Example of a splat map
Most of the humanoid characters where animated through our
in-house motion capture system, which is driven by magnetic
sensors, placed on the actors body on a whole-body suit.
The resulting motions are convincing, but still demand more
post correction and cleaning than the optical motion capture
systems.
Figure 2.3. Scene in the runtime environment
A similar feature had to be applied to the vegetation of the
landscape, using pre-made plant species with three instances of
detail, ranging from 3d models of approx. 5000 polygons to
simple billboards with only 4 polygons, dynamically switching on
and off dependant on the viewers distance.
Although the terrain texture, street networks and some of the
vegetation could be placed by the use of splat or overlay maps,
architectural elements, objects and further vegetation had to be
placed by hand, which consumed a great amount of time. The
reason for not automating this process, was the detailed
placement according to plans of excavation and prospection
results which demanded individual decisions for all parts of a
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figure 2.4. Topology of a characters Mesh
2.8. Content assembly and storytelling
The four components of this production work as a composite
and complement the ported information in different ways.
The first short film explains the origin and morphology of the
Roman boarder producing a clamp of information around the
Period of the Roman occupation of the German territory west
of the Rhine and south of the Danube.
135
Virtual Archaeology Review
The second film aims to give an insight into the daily life of the
soldiers at this frontier, explaining their duties, aspects of warfare
and border control as well as the facilities of the military bases.
The real-time application lets the viewer explore the 11
settlements with their surrounding landscape while delivering
information via text, narration and pictures as the user flies by
areas of interest. A mini-game, in each of the main scenes, puts
the user’s skills to a test and interrupts the otherwise, more linear
approach of information transfer. The flight-height in the scenes
is approximately 50m above ground but for some scenes
presenting walkthroughs of buildings and castles a first person
perspective was used to show the inside of these facilities from a
closer range.
A map-based information system informs the audience in more
depth about areas of finds along the 90 km part of the limes.
Information is presented through hotspots, which call up a pop
up window, delivering text and pictures concerning the current
area. The maps can be changed to compare modern state
topographic information, orthogonal photos, lidar scans and the
reconstructed terrain and settlements.
delivering more excitement to the user, thus transporting the
content in a more ludic and enjoyable form.
3. RADIOGRAPHY OF THE PAST
3.1. Assignment
In April 2009 a European project, called “RADIO-PAST”, was
launched within the Marie Curie framework “Industry-Academia
Partnerships and Pathways”. The project aims to join resources
and very different skills to tackle each possible aspect connected
with "non-destructive" approaches to complex archaeological
sites. The consortium of 7 partners has chosen an "open
laboratory for research and experimentation” in and around the
abandoned Roman site of Ammaia in central Portugal, but some
research activities are carried out by the partner institutions in
different areas of the Mediterranean.
3.2. Introduction
2.9. Resume
I am quite confident that the output of this production is on a
high level of quality, considering the large scale of scenes and the
huge amount of modelling and animation tasks in comparison to
the relative short production time. The reaction of the public in
various presentations of these media is good and the fact that
the younger audience showed a high interest, due to the 3Drealtime content, was a valuable experience. Some critical
comments, concerning the usability of the real-time application
for the elder audience, had to be taken into account and
corrected.
Ammaia is a Roman town whose foundation should predate the
inscription mentioning the Civitas Ammaiensis during the reign
of Claudius (44 o 45 AD; IRPC, 615: Mantas 2000, 392-393.). It
was converted in municipium at the latest in the age of
Vespasian, as is witnessed by another inscription conserved in
Portalegre (CIL, II, 158 = IRCP, 616).
The ruins of the Roman town of Ammaia are located in the heart
of the Natural Park of the Serra de São Mamede, a mountainous
area of east central Portugal extending into Spanish territory.
The site is part of the fertile valley of the river Sever (Marvão).
At this stage of research, no traces of settlements preceding the
Roman foundation have been detected.
In difference to a rendered 3D scene, changes in the real-time
application can be altered more easily. This makes the
production process more flexible, but can also be of advantage
to later changes or follow-up productions.
Figure 3.1. Sitemap of Ammaia
3.3. Methodologies
Figure 2.5.Scene detail in the runtime environment
I am convinced, that within the near future, picture and
animation quality of midlevel game engines will be competitive
with rendered pictures or films and could therefore substitute
these, giving the producer more interactivity and flexibility while
We are elaborating an integrated methodology which involves a
wide range of field survey techniques (geomorphologic and
topographical survey (CORSI, DE DAPPER, DE PREZ,
VERMEULEN 2005; DEPREZ, DE DAPPER, DE JAEGER 2006),
surface artefacts collection, the main types of geophysical
prospection, vertical aerial photography interpretations (CORSI,
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
136
Virtual Archaeology Review
VERMEULEN 2007), high resolution LIDAR scanning, innovative
low altitude aerial photography, ...) as well as new avenues for
data processing, modelling, 3D visualisation and site
presentation.
The first campaign of geophysical survey has been carried out in
2008 by Ugent (L. Verdonck), mainly with GPR, while the
second campaign in 2009, carried out in the framework of the
project in collaboration with the University of Southampton
(APSS-team), was focussed on the magnetometry and covered
an area of almost 5 hectare.
3.4. Results
Archaeological data collected until now proves that most urban
structures were developed during the 1st c. AD, and the wealth
of the town is probably mainly due to its position at the centre
of a vast communication network in Lusitania (especially along
the road connecting the capital Emerita Augusta (Merida) with the
Atlantic harbour Olisipo-Lisboa: It.Ant., 419,7-420,7) and to the
exploitation of a wide range of natural resources (metals, stone
and rock crystal, pastoral and agricultural activities...).
The urban centre of Ammaia was delimited by a wall circuit
enclosing some 22 h, and the town had a regular layout, with
main axis connecting the gates and a system of terraces
regulating the most sloping part of the intra-muros area. The first
attempt to produce a 3D reconstruction has chosen the well
preserved Porta Sul.
The results of the “time slicing” of the GPR data processing
allow to prepare the ground for elaborating a digital
reconstruction of the Forum. All elements visible on the
geophysics results, such as the large basilica, the symmetrically
positioned 20 shops, the axial temple and a series of
monumental structures on the central square can be well
reconstructed, combining the survey data with punctual in situ
information and examples from elsewhere.
Figure 3.2. Visualisation of the Forum and the eastern Gate of Ammaia
Special programs are used to achieve realistic results and breathe
life into the scenes. A motion-capture system is used to drive the
animation of computer generated people to ensure correct
movements while keeping the production costs feasible.
Sophisticated render algorithms will enable the creation of
thousands of terrain features, like plants, stones and boulders as
well as populating the scenes with animated characters.
3.6. Resume
The output will result in a short movie clip (approx. 15Min)
which can be also used for ongoing productions for television
(documentaries) and print publications, with the option to
re/use the produced data for other medias like installations for
augmented reality, 3d real-time applications (educational games)
and VR environments (Dome or Cave -Projections).
Here an excavation campaign planned for the summer 2010 will
perform the ground truthing tests and will supply more elements
for the chronological definition of the different architectural
phases.
The magnetometer survey produced a fine map of regular town
structures, based on a regular grid of city streets, delimiting
housing blocks, public spaces (such as the bath complex and a
market), workshops and water infrastructures. The results
obtained so far give reason to believe that the full intra mural
town plan can be revealed, limiting the necessity for grand scale
and costly excavation procedures, but at the same time allowing
a 3D view of the townscape and opening perspectives on a
sustainable touristic exploitation and cultural valorization of the
site.
3.5. 3D Reconstructions
The visualization of the geophysical results are approached by
referencing the existing data with better preserved sites of the
region comparing similar structures and dimensions, aiming to
preserve architectural local features and details of decoration.
Digital Elevation models, geophysical results, 3D Laser and
Lidar -scans are taken into account to build the ancient terrain,
where the results of the architectural 3D reconstruction will
reside.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
Figure 3.3 Reconstructed City of Ammaia
137
Virtual Archaeology Review
ACKNOWLEDGEMENTS
Carnuntum 2009-2011
Franz Humer/Govt. of the State of Lower Austria , Dept. of Cultural Affairs – Archaeological Park Carnuntum, Christian Gugl/ Austrian Academy of
Sciences, Michael Klein/ 7reasons
Virtual Limes of Raetia and Germania Superior
Martin Schaich/ Arctron GmbH - Germany, Michael Klein/ 7Reasons, Thomas Richter -Emde/ Kulturservice - Germany
Radiography of the Past
Partnerships: Universidade de Évora (Portugal), Universiteit Gent (Belgium), Univerza v Ljubljani (Slovenia), British School at Rome
(United Kingdom), Past2Present (Netherlands),7Reasons Media Agency (Austria)
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/20072013) under grant agreement n° 230679, under the action Marie Curie – People IAPP, with the Project entitled “Radiography of the past.
Integrated non-destructive approaches to understand and valorise complex archaeological sites
REFERENCES
Carnuntum 2009-2011
http://www.carnuntum.co.at/ , http://www.carnuntum-db.at/, http://www.limes.co.at/, http://7reasons.at/
Virtual Limes of Raetia and Germania Superior
http://www.limeswelten.net/, http://www.arctron.de/, http://7reasons.at/
References
CORSI C., DE DAPPER M., DE PREZ S., VERMEULEN F. (2005). Geoarchaeological observations on the Roman town of Ammaia, Internet
Archaeology 19.
CORSI C., VERMEULEN F. (2007). Elementi per la ricostruzione del paesaggio urbano e suburbano della città romana di Ammaia in
Lusitania, Lusitania, Archeologia Aerea 3: 13-30.
DEPREZ S., DE DAPPER M. & DE JAEGER C. (2006), The water supply of the Roman town of Ammaia (Northeastern Alentejo, Portugal): a
geoarchaeological case study, Publicações da Associação Portuguesa de Geomorfólogos 3: 109-133.
MANTAS V. (2000). A sociedade luso-romano do município de Ammaia, in: Gorges J.-G. & Nogales Basarrate T. (Eds.), Sociedad y cultura en
Lusitania romana, Mérida, Museo Nacional de Arte Romano: 391-420.
Web References
http://www.radiopast.eu/, http://www.portusproject.org/, http://www.flwi.ugent.be/potenza/,http://www.nia.gr/Pharos13.htm
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
138
Virtual Archaeology Review
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
139
Virtual Archaeology Review
La realidad virtual y el análisis científico:
De la nube de puntos al documento analítico
Mercedes Farjas, Ernesto Moreno y Francisco J. García Lázaro
Universidad Politécnica de Madrid. Madrid. España.
Resumen
Desde la Topografía hemos estado trabajando en obtener la modelización tridimensional de elementos arqueológicos haciendo uso de los sistemas láser escáner de
corto, medio y largo alcance. Hemos efectuado el modelado de piezas arqueológicas para museos, levantamientos de yacimientos para equipos científicos y
documentación general de áreas de interés cultural.
En este artículo pretendemos exponer cómo habiendo llegado a un punto de vista lleno de escepticismo, en el que se podía pensar que la realidad virtual había
encontrado un límite en la representación de la arqueología, se puede iniciar un nuevo camino. Proponemos una búsqueda de nuevos modos y procedimientos de
análisis con la información recopilada, en definitiva de nuevos documentos para la interpretación científica de la arqueología que participen en la creación de
conocimiento, desde las nubes de puntos adquiridas en campo.
En este trabajo exploramos los documentos de análisis que son utilizados actualmente en el proceso de creación de modelos de realidad virtual e iniciamos la
búsqueda de nuevos planteamientos.
Palabras Clave: REALIDAD VIRTUAL, MODELIZACIÓN, LÁSER ESCÁNER, NUBE DE PUNTOS, EXPLOTACIÓN DE
RESULTADOS.
1. LA REALIDAD VIRTUAL
La realidad virtual es una simulación tridimensional interactiva
mediante ordenador, en la que el usuario se introduce en un
ambiente artificial que percibe como real. Este escenario debe
cumplir unos requisitos mínimos de simulación o capacidad de
representación, de interacción usuario-modelo y de percepción
sensorial por parte del usuario.
El término realidad virtual lo encontramos ubicado en múltiples
disciplinas, en las que se pretende contar con una fantasía de lo
real, con una representación que pueda ser objeto de aplicación
práctica, técnica o conceptual. Desde los años 50, donde sitúan
los investigadores el comienzo de esta disciplina, hasta el día de
hoy, los sistemas de captura, tratamiento y representación han
sido variados, y han ido evolucionando en el tiempo a la par
que lo hacían los ordenadores, para lograr alcanzar la potencia
necesaria que requerían los procesos de cálculo.
arqueología están encontrando puntos comunes de trabajo, uno
de los cuales es la representación virtual de escenarios de interés
arqueológico. En este sentido, las tecnologías de modelización
permiten la adquisición de datos utilizando diferentes equipos y
métodos para obtener la representación 2D y 3D de objetos,
edificios, estatuas, yacimientos arqueológicos y superficies,
centrando las investigaciones en obtener y modelizar, estos
elementos.
Desde la topografía tradicional, el proceso comienza con la
adquisición de nubes de puntos, y a continuación se procede a
su edición, antes de llevar a cabo la triangulación del modelo y
los procesos de curvado u obtención de modelos digitales que
posteriormente pueden ser tratados con texturas. Los productos
derivados más usuales han sido modelos mallados, videos
hiperrealistas y ortoimágenes. A modo de ejemplo recogemos la
representación virtual del levantamiento a escala 1/500 con
receptores GPS, de la zona arqueológica de Mleiha, en el
Emirato de Sharjah [Figura 1].
2. TOPOGRAFÍA Y MODELOS 3D
En el devenir de la ciencia, las técnicas topográficas y
cartográficas han estado tradicionalmente ligadas al estudio y
representación del terreno, en cualquiera de sus estados o
situaciones, obteniéndose resultados digitales en dos o tres
dimensiones. Estas técnicas han ido variando poco a poco su
concepción primaria monotemática hacia una situación más
generalista y multidisciplinar, convirtiéndose en apoyo o
soporte para otras ciencias.
Una de las disciplinas en la que la colaboración está siendo cada
vez más intensa, es la arqueología. Las ciencias cartográficas y la
Figura 1: Representación virtual del Levantamiento a escala 1/500 con
receptores GPS de la zona arqueológica de Mleiha en el Emirato de
Sharjah.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
140
Virtual Archaeology Review
Los sistemas de captura han evolucionado y un hito importante
fue la incorporación de los sistemas láser escáner 3D. En
España aparecieron en el año 2003 [Figura 2] y comenzamos a
experimentar con ellos en aplicaciones para patrimonio y
arqueología, aceptando el reto de investigar en la modelización
tridimensional con nubes de puntos de gran tamaño.
Con estos sistemas de adquisición se capturan datos sin
discriminación previa de puntos y se obtiene de forma rápida
modelos 3D. Desde esta captura global se puede analizar la
singularidad del detalle, frente a los sistemas tradicionales en los
que se capturaban puntos para imaginar sobre ellos superficies.
Una vez finalizada la toma de datos se efectúa el tratamiento de
la información capturada. La mayoría de los equipos láser
escáner tienen asociado un programa informático de
tratamiento y visualización de datos. Este programa está
preparado para recibir y tratar la elevada cantidad de puntos de
cada toma, que colapsan los sistemas tradicionales de CAD.
El tratamiento de datos requiere unos procesos grandes y en
algunos de los casos algo tediosos, pero aún así la incorporación
de las técnicas escáner 3D, han permitido agilizar los sistemas
de modelización. Esta situación unida a la precisión de las
tomas y a la posibilidad de disponer de métrica espacio tiempo,
hace posible que en el modelo final de realidad virtual, el
usuario se encuentre con una imagen cercana a su realidad
tridimensional.
Las fases de un proyecto con láser escáner las podemos dividir
en:
Adquisición de datos
Tratamiento y procesamiento de la información
Explotación 2D y 3D del modelo de nube de
puntos
En concreto los pasos a seguir son:
Pre-edición de cada toma. Si la toma es
demasiado densa se puede proceder a un
remuestreo.
Registro de cada nube de puntos al sistema de
referencia del proyecto escogido, generalmente
local o global.
Eliminación de puntos indeseados y erróneos y
de toda la información duplicada en áreas de
solape mediante filtrado.
Segmentación en tres dimensiones de la nube de
puntos.
Extracción de geometrías.
Modelado tridimensional de entidades.
Relleno de zonas huecas.
Simplificación de entidades.
A modo de ejemplo se presenta la actuación para documentar el
yacimiento arqueológico de Minateda, mediante equipos láser
escáner 3D, siguiendo todo este proceso [Figura 3].
Figura 2: Captura de la Fuente de Cibeles mediante equipos Láser. UPM-Leica (2003) - Equipo CYRAX 2500 Leica- Geosystem
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
141
Virtual Archaeology Review
Figura 3.a : Nube de puntos del Abrigo prehistórico de Minateda
Figura 3.b: Asignación de color a la nube de puntos
Figura 3.c: Detalle de uno de sus paneles arqueológicos a escala 1/20
Figura 3: Obtención del modelo del abrigo prehistórico de Minateda
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
142
Virtual Archaeology Review
3. BÚSQUEDA DE NUEVOS DOCUMENTOS
ANALÍTICOS DESDE LOS SISTEMAS
LÁSER ESCÁNER
importancia la conservación de las proporciones o relaciones
espaciales relativas.
El documento 3D con la nube o puntos se obtiene de los
datos de campo, con un tratamiento de procesamiento
topográfico. Para poder realizar el modelo completo de una
superficie exterior cuando se han realizado múltiples tomas
desde distintos ángulos, para poder registrar el área en su
totalidad, al de unirse todas ellas para representar el objeto.
Cada una de las tomas genera una nube de puntos en un
mismo sistema de coordenadas, sistema de referencia local
perteneciente al instrumental que se haya usado. Para
solucionar ese problema se realizan alineaciones o
transformaciones entre cada una de las tomas y se obtienen
el modelo completo en un único sistema de referencia. Este
modelo puede ser triangulado utilizando los algoritmos del
programa que se esté utilizando en cada caso.
Como hemos indicado anteriormente, la realidad virtual (RV) en
arqueología se ha convertido en algo cotidiano con productos
que se han incluido en museos, aplicaciones multimedia y
páginas web.
En esta situación, y cuando empiezan a repetirse los
planteamientos, hemos parado nuestra actuación productiva y
estamos dedicando nuestro pensamiento al análisis.
Se dice que toda investigación comienza cuando nos
encontramos ante una pregunta o incertidumbre que nos hace
cuestionarnos una situación e iniciar una búsqueda. Nosotros
nos planteamos las siguientes preguntas:
¿Qué productos de RV son usados a nivel científico?
¿Por qué la RV está centrada en la representación hiperrealista?
Y en este artículo pretendemos iniciar el camino hacia la
respuesta a la primera de ellas.
La cuestión que queremos plantear en este trabajo es analizar el
hecho de una realidad: la potencia de la herramienta RV es
inmensa y las dificultades técnicas superadas para llegar a ella
también. Sin embargo, la explotación de los resultados y de los
documentos obtenidos durante todo el proceso es mínima.
La situación actual muestra un panorama en el que tras haberse
superado los problemas tecnológicos, el documento final es
poco más que un video. La realidad virtual se dirige hacia el
hiperrealismo y se detiene cuando lo alcanza, tirando a la basura
todos los productos intermedios o archivos tratados.
Por un lado en el modelo hiperrealista de realidad virtual
obtenido no es usado por los especialistas en arqueología desde
los programas originales de tratamiento de datos, quedando
reducida la utilización a mostrar el video en formato .avi o
similar. Este modelo hiperrealista o tendente a serlo, podría ser
obtenido con costes mínimos y resultados semejantes mediante
cámaras tradicionales de video o fotografías. El aporte métrico
de los modelos de realidad virtual obtenidos desde los sistemas
láser escáner no queda accesible de modo sencillo al investigador
en ciencias sociales. Es ésta la línea de trabajo que pretendemos
abrir delimitando los puntos críticos del proceso e intentando
definir instrumentos de fácil manejo y bajos costes, que
introduzcan la realidad virtual con toda su potencia a la
investigación y creación de conocimiento, en sentido estricto.
Explotación 3D
Nubes de puntos y triangulación.
Modelo sólido y texturizado.
El modelo sólido es generado después de la alineación de
todas las tomas del objeto, tanto las individuales, como las
de que forman parte de los grupos o familias. En la
representación tridimensional se busca el modelo completo,
pero también se pueden buscar modelos parciales de alguna
zona o cara.
Dependiendo principalmente de las formas del objeto y de
la manera de llevar a cabo la toma de datos, en la superficie
generada podrán quedar huecos producidos por la falta de
información. Esta falta se produce por zonas de sombra,
áreas del objeto en las que no sea posible lleva a cabo la
toma de datos o aquellas que se han producido durante la
toma por ocultamientos de unos elementos, normalmente
hundidos, producidos por otros del propio objeto más
prominentes. Si no se diseña de forma adecuada la
adquisición de datos también pueden producirse huecos en
el modelo por quedar alguna zona del objeto sin datos. Si
los huecos fueran de tamaño mayor que la tolerancia que
tenga que cumplir el modelo, estos no deberían rellenarse
de forma automática y si se rellenan habría que hacerlo de
manera que se diferencien estas zonas. También puede
optarse por completar la información con una nueva
adquisición directa de datos, con el equipo topográfico que
corresponda.
El modelo se puede simplificar reduciendo el número de
triángulos por si necesita utilizar alguna aplicación que así lo
requiera. Para ello los programas ofrecen la opción de
realizar un pulido para hacer suavizados de zona,
generación de aristas o caras en elementos con bordes
duros, eliminación de posibles ruidos o elementos, etc.
Los métodos de adquisición de datos actuales, permiten obtener
modelos digitales del objeto, desde ellos puede trabajarse con
productos derivados de los ficheros 3D de nubes de puntos y
triangulación, de los modelos sólidos y de los modelos
texturizados.
Sobre el modelo sólido, puede obtenerse el modelo
texturizado. La ventaja que tiene el equipo escáner láser es
que permite el registro de las texturas a la vez que toma las
nubes de puntos y pueden ser procesadas de forma
simultánea.
Recordemos que un modelo digital del terreno (MDT) genera
una estructura de datos que puede ser tratada por los programas
informáticos. Esta estructura numérica de información
representa la distribución espacial de la superficie, considerada
como una variable cuantitativa y continua. En este sentido
aporta una maqueta de la realidad en el que adquiere una especial
Una vez obtenidos los dos tipos modelos del objeto, el
sólido y el texturizado, se pueden exportar los datos para
realizar animaciones y simulaciones infográficas, para su
uso científico e histórico, y para otros usos dependiendo de
las características del objeto escaneado.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
143
Virtual Archaeology Review
Explotación 2D
Si bien todos los productos de representación indicados en el
apartado anterior, ofrecen un enorme potencial de uso, tal como
venimos planteando en el presente trabajo, la formación que
requieren en tecnologías específicas, ha dificultado su uso real en
la investigación. Es por ello por lo que consideramos interesante,
que se recurra a productos tradicionales de representación
cartográfica, mediante representaciones 2D que indiquen la
geometría de los modelos.
A modo de ejemplo se presenta la documentación cartográfica
obtenida en el yacimiento arqueológico de Galería, en Atapuerca
(Burgos), a partir de la ortofotografía del modelo.
Figura 6: Detalle de la cartografía a escala 1/20 de las ventanas del
Palacio del Infantado (Guadalajara)
4. CONCLUSIÓN
Figura 4: Cartografía a escala 1/30 del yacimiento arqueológico de Galería
Para la documentación gráfica de la fachada principal del Palacio
del Infantado de Guadalajara, se utilizo el uso de homografías
apoyadas en un levantamiento láser escáner. Para ello se uso la
aplicación
infográfica
Homograf.1,
como
módulo
complementaria de un programa de dibujo asistido por
ordenador, en nuestro caso el programa AutoCad. La aplicación
Homograf.1, resuelve directamente las homografías planas, y
facilita
considerablemente
la
representación
métrica
arquitectónica. Se adjunta un ejemplo de los resultados
obtenidos.
Planteamos el análisis sobre qué productos del proceso de
creación de RV pueden ser útiles para el análisis científico,
atendiendo al perfil de los usuarios, intentando identificar
nuevos productos finales de análisis y dar respuesta a la cuestión
parcial:
¿Es necesario completar todo el proceso de RV en la documentación
arqueológica?
La RV es una autentica realidad y se ha demostrado su gran
utilidad en museológica y exposición, pero apenas se utiliza en la
generación de nuevo conocimiento científico. Pretendemos
analizarlo desde el punto de vista del análisis científico,
concretando qué productos obtener en dos y tres dimensiones, y
la utilidad real de los mismos. Es como un gran “elefante
dormido” al que queremos despertar. No se trata sólo de aplicar
las tecnologías obtener el modelo y trabajar en su representación
o reconstrucción virtual, pretendemos que se trascienda este
momento, apoyándose en formas de interpretación que vayan
más allá.
Figura 5: Detalle del la cartografía a escala 1/20 de la parte superior de
la fachada principal del Palacio del Infantado (Guadalajara)
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
144
Virtual Archaeology Review
Para finalizar presentamos esta idea con el trabajo realizado por
Martin Carril Obiols, sobre la modelización de un capitel.
El objeto, a través de las nuevas tecnologías de divulgación,
adquiere una singularidad, una vitalidad propia. Es como si la
textura de la piedra fuera la piel curtida de un rostro, en la que
se refleja lo vivido.
El capitel tiene su propia historia, que se extiende desde el
momento en que hace siglos un escultor extrajo de la piedra su
forma, hasta la eternidad.
Descubrimos la magia del objeto, que es como un meteorito
que recorre nuestro espacio-tiempo danzando y continúa su
viaje para mostrar algo del pasado a las generaciones venideras.
Su viaje por las aguas y su descubrimiento, brotando ante
nuestros ojos como una planta pétrea embozada en sus hojas
de acanto, nos revela que es algo más que un hallazgo de
interés arqueológico.
Nos regala su permanencia en un tiempo en que todo es
fulgurante y perecedero, nos introduce en el laberinto de sus
sinuosos perfiles, que un niño intenta dibujar.
Al contemplarlo reflexionamos sobre el tiempo, nuestro don
mas preciado, ya que las personas somos sólo las piedras que
forman el gran arco de la historia, y nuestra tecnología se pone
al servicio de la belleza.
AGRADECIMIENTOS
Este trabajo se desarrolla dentro del proyecto I+D: HAR2008-04118/HIST (Segeda y Celtiberia Septentrional: investigación científica,
desarrollo rural sostenible y nuevas tecnologías), financiado por el Ministerio de Educación y Ciencia y los fondos FEDER y el Proyecto
PADCAM (El Patrimonio Arqueológico y documental de la Comunidad Autónoma de Madrid: Sistematización, gestión, puesta en valor y
difusión desde el ámbito local del marco europeo) financiado por la Consejería de Educación, de la Comunidad de Madrid.
BIBLIOGRAFÍA
BARBER (2004). Towards A Standard Specification For Terrestrial Laser Scanning In Cultural. Comisión V, WG V/2 ISPRS Estambul.
ISPRS( International Society for Photogrammetry and Remote Sensing). Commission V, WG V/2
BRACCI S., FALLETTI F., MATTEINI M., y SCOPIGNO R. (2004). Explorando David: diagnóstico y estado de la conservación.
Giunti Press. Italia.
DEMIR (2004): Laser Scanning For Terrestrial Photogrammetry, Alternative System Or Combined With Traditional System?. Comisión
V, WG V/2 ISPRS Estambul. ISPRS( International Society for Photogrammetry and Remote Sensing). Commission V, WG V/2.
FARJAS, M. (Ed.) (2007). El registro en los objetos arqueológicos: Métrica y Divulgación. Spain: Reyferr. ISBN 978-84-611-6456-1
FARJAS, M. & GARCÍA-LÁZARO, F. J. (Eds.) (2008). Modelización Tridimensional y Sistemas Láser Escáner. Madrid, Spain: La
Ergástula.
LIFCHITZ MORALES, Claudia; DE LA ROCHA GÓMEZ, Mercedes (2010). Levantamiento a escala 1/200 mediante láser escáner 3D
de la fachada principal del Palacio del Infantado, Guadalajara
Proyecto Final de Carrera, no publicado, Universidad Politécnica de Madrid (UPM).
LÓPEZ GONZÁLEZ, Jaime (2008). Levantamiento mediante láser escáner 3D de un abrigo paleolítico en el yacimiento de Hellín
(Albacete). Proyecto Final de Carrera, no publicado, Universidad Politécnica de Madrid (UPM).
VÁZQUEZ PELAEZ, Sergio (2008). Levantamiento mediante Láser Escáner 3D de la zona de Los Zarpazos en el yacimiento
arqueológico de Atapuerca (Burgos) Proyecto Final de Carrera, no publicado, Universidad Politécnica de Madrid (UPM).
WOLTRING (1995), Smoothong and differentiation techniques applied to 3D data. Champaign, Illinois, USA: Human Kinetic
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
145
Virtual Archaeology Review
3D-COFORM: Making 3D documentation
an everyday choice for the cultural heritage sector
Denis Pitzalis1, Jaime Kaminski2 and Franco Niccolucci1
1 STARC,
2 University
The Cyprus Institute, Nicosia, Cyprus.
of Brighton Business School, Brighton, UK.
Abstract
This paper provides an overview of the 3D-COFORM project which began in December 2008 and aims to advance the state-of-the-art in 3D-digitsation and
make 3D-documentation an everyday practical choice for digital documentation campaigns in the cultural heritage sector.
Keywords: INDEX TERMS—ARCHAEOLOGY, CULTURAL HERITAGE, DIGITIZATION, 3D DOCUMENTATION
1. INTRODUCTION
The 3D-COFORM project aims to advance the state-of-the-art
in 3D-digitsation and make 3D-documentation an everyday
practical choice for digital documentation campaigns in the
cultural heritage sector. The project addresses all aspects of 3Dcapture, 3D-processing, the semantics of shape, material
properties, metadata and provenance, integration with other
sources (textual and other media); search, research and
dissemination to the public and professional alike. A strong
technical research program is complemented by research into
practical business aspects: business models for exploitation of
3D assets, workflow planning and execution for mass
digitisation, socio-economic impact assessment; and the creation
of a Virtual Centre of Competence in 3D digitization. The VCC3D will act as a catalyst in enhancing the sector’s capacity for
mass digitization of 3D assets – the tangible artefacts of the
physical cultural heritage of the world. The 3D-COFORM
consortium brings together 19 partners to form a world class
team on 3D-digisation complemented by an equally prestigious
group of Cultural Heritage organizations, with the Victoria and
Albert Museum as a full partner and collaborations from the
Louvre, the Florentine Museums authority the Museum of the
Imperial Forums in Rome; World Heritage Sites in Cyprus and
the Staatliche Museen zu Berlin. The consortium also contains
organizations tasked at a national level with helping museums
move in these directions. C2RMF, the research arm of the
French National Museums and CULTNAT the digitization body
for cultural and natural heritage funded by the Egyptian
Government. All these institutions have a declared intention to
develop their 3D-digitisation capability in order to move forward
on the integration of these assets into the infrastructure that is
being enabled by initiatives such as Europeana (the EDL).
2. 3D ACQUISITION
In the area of acquisition the project follows two major strands.
First, the web-based 3D-reconstruction techniques for
immovable objects as well the 3D-digitisation process of
moveable regular objects based on available laser digitisation
technology will be extended towards automatic and user friendly
rapid digitisation (in-hand digitisation) of 3D-shape. In addition
to 3D-shape colour and reflectance properties of the objects will
either be digitized as well or the user will get the possibility to
map these data from other sources in order to produce high
quality representations of the artefacts. Second, we are
developing new approaches for image-based reconstruction
which will give use the ability to digitise shape, reflectance
properties and if necessary spectral colour of artefacts, e.g. gems,
jewellery, etc. for which current techniques are not effective, in
one acquisition step.
Since the 3D shapes of many 3D objects are already available,
3D-COFORM will also develop techniques for reflectance
acquisition for these objects from multiple views of the same
known surface. We will deal with all levels of surface reflectance
ranging from simple texture maps to full 6D Bidirectional
Texture Functions (BTF). This way low cost acquisition of
reflectance data will be possible. Last but not least an important
goal of 3D-COFORM is the acquisition of spectral reflectance
data from CH objects. To come up with a rapid acquisition
device we plan to capture only a sparse sampling of the spectral
reflectance data and to interpolate the remaining data from this
sampling using efficiently acquired RGB data as constraint.
From the very beginning of the project we have extended and
deployed current tools to support digitisation projects
undertaken with major cultural heritage institutions in order to
develop operational processes and business solutions for
operationalisation of mass digitisation of 3D assets at low cost.
3. 3D ARTEFACT PROCESSING AND
ANALYSIS
Several efforts need to be undertaken to underpin the
development of tools which are capable of recording,
processing, analysing, manipulating and exploiting descriptions
of 3D-artefacts which embody integrated descriptions of 3Dobject semantics (metadata, provenance data). The approach will
be the design of processing tools (following the successful
experience of EPOCH’s MeshLab tool) together with the design
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
146
Virtual Archaeology Review
of libraries offering data representation schemes and algorithms,
which will be used in the development of other COFORM tools.
Basically two ways exist to assign semantics to an acquired 3D
dataset, namely by shape analysis (segmentation of the raw data
into meaningful parts and pieces), or by establishing the
correspondence to an informed reconstruction of the same
scene. Both ways are being pursued in 3D-COFORM.
We will develop tools for knowledge-aware segmentations,
which may be geometry-driven or based on subshape matching
or through the detection of (self-) similarities of the model (e.g.
to detect repetitions and ornament patterns). At the technical
level, we will investigate the relationships between ontological
standards (METS, CIDOC-CRM), provenance data encoding
and de-facto standard geometric representations (X3D, Collada),
endorsing both 3D graphics and Digital Libraries perspectives
and following the EDL emphasis on a Digital Library spanning a
much wider spectrum of artefacts than the traditional text based
sources.
4. SEARCHING AND BROWSING
Shape-based search. The status of the shape-based search is not
consolidated; further research is needed to increase robustness
of 3D searching algorithms. However, this research would justify
a project in itself, with a more focused and specific partnership.
The 3D-COFORM approach is rather different: instead of
focusing research on the specific 3D shape-based algorithms,
our major concern will be how to integrate the two searching
modalities (text-based and shape-based). This is an aspect
neglected so far and extremely important in applications such as
cultural heritage; to have a real impact in cultural heritage
professional daily work, searching instruments should be able to
offer an integrated interface to both search specification and
visual presentation of results. It should be able to mix any type
of request (shape- and text-based) in the specification of the
query; as well, it should be possible to sort and present results
obtained by this integrated queries.
5. VISUAL BROWSING AND ANALYSIS.
New systems are required to support radically new ways to
deploy visual browsing and inspection features to the user
community. This means that our focus is not limited to
overcoming current 3D technological limitations (i.e. how to
manage huge 3D models; how to improve visual presentation
accuracy) but will also focus on the other issues mentioned
above (easy integration of 3D and other media, easy authoring,
cooperative management, effective GUI, etc.).
6. 3D ARTEFACT SYNTHESIS
The first step in order to improve the situation will be to
separate the scientifically based structural reconstructions from
photo-realistic models for public dissemination: For scientific
reasoning, the decorative artwork is counter-productive, because
it occludes the essential. For photo-realistic imagery, the model
is more important than the reasoning behind it. Second, a high-
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
level standard representation for historic reconstructions is
needed, that allows bidirectional linking to and from each “part”
of the model. This uses a geometric markup to distinguish a part
of the model.
This part can then be annotated (semantic enrichment) and,
equally important, it can be referred to by external documents.
Third, some sort of database as historic content management
system that provides the spatio-temporal context for all
individual reconstructions (geo-referencing + time), that
manages multiple hypotheses, and it can interface and
synchronize with other such databases. Furthermore, the
database should be capable of exporting the model data in a
standard 3D format, as a basis for the decorative artwork and
the laborious DCC workflow that follows in order to produce
scientifically justified, accurate, yet high-quality photo-realistic
3D-reconstructions of historic sites. And last, but not least, easyto-use, reliable software tools will be needed to let CH
professionals use all of the described functionality in their daily
work without causing frustrations. Any scepticism and
reservations against using 3D-technology can only be overcome
when the benefits of using it are clear.
7. THE BUSINESS CASE FOR 3D
The 3D technology is only part of the story. In order to achieve
the goals of making “3D-documentation an everyday practical
choice for digital documentation campaigns in the cultural
heritage sector” it is necessary to establish the business case for
doing so. 3D-COFORM has a dedicated business strand which
has looked at such issues. During the first year of collaboration
with the technical strand, the Business Strand has designed
business processes for using digitisation tools and planning of
initial tools testing and deployment experiments. Conducted
initial deployment experiments with maturing existing tools
together with CH institutions. Identified a methodology for
strategy and socio-economic impact evaluation. And analyzed
business models to generate input and help shape business
models for the Virtual Competence Centre-3D.
8. THE VIRTUAL COMPETENCE
CENTRE 3D
The 3D-COFORM Virtual Centre of Competence in 3D (VCC3D) will be established during the project to promote and
further the role of 3D digital assets within the broader EDL
context. It will provide independent advice on 3D digitisation
technologies including geometry, materials and shape semantics;
integrating metadata (including provenance) and legacy sources
with 3D assets; mass digitisation business processes and
workflow planning; business models for exploitation of 3D
digital assets; tools for assessing socio-economic impact of
investment in 3D digital assets.
ACKNOWLEDGMENT
The research has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013)
under grant agreement n° 231809.
147
Virtual Archaeology Review
Yacimientos arqueológicos de la Sierra de Atapuerca:
Un sistema inalámbrico y computerizado de registro
de datos de campo.
Antoni Canals i Salomó y David Guerra Rodríguez
IPHES. Institut Català de Paleoecologia Humana i Evolució Social.
Universitat Rovira i Virgili (URV), Tarragona, España
Resumen
Atapuerca y el EIA (Equipo de Investigación de Atapuerca) disponen de un sistema de trabajo propio, diseñado a medida para llevar a cabo la recogida de datos
de campo y su posterior procesamiento y análisis. Este sistema, el Sistema de Registro Atapuerca, es un método creado bajo unos requerimientos inamovibles:
simplicidad, escalabilidad, portabilidad y flexibilidad. Este sistema o método de trabajo, más allá de sus requerimientos, forma una estrategia de trabajo que
marca unas pautas claras y estáticas de manera que obtendremos un flujo de trabajo automatizado, optimizado, computerizado y de fácil mantenimiento.
Palabras Clave: BASE DE DATOS, WI-FI, MÓVIL, PDA
Abstract
Atapuerca and the EIA (Atapuerca Research Team) designed their own working methods in order to collect all relevant archaeological data direct from field. This
system, the Atapuerca Recording System, is defined under some rock ideas: simplicity, scalability, portability and flexibility. This system role a working strategy
based on achieving an automatized, optimized, computerized and easy learning process.
Key words: DATABASE, WI-FI, MOBILE, PDA
1. LA SIERRA DE ATAPUERCA Y LOS
YACIMIENTOS
La sierra de Atapuerca es un conjunto montañoso situado en el
norte de la provincia de Burgos. Se sitúa a unos 20 km de la
ciudad de Burgos y a escasos 2 km de las poblaciones de
Atapuerca e Ibeas de Juarros.
Los Yacimientos de la Sierra de Atapuerca son un conjunto de
yacimientos arqueológicos que abastan un amplio abanico
cronológico y nos ilustran de la presencia de comunidades
humanas en la Sierra de Atapuerca desde el pleistoceno inferior
(hace 1,2 millones de años) hasta la actualidad.
trinchera para el paso de un ferrocarril minero perforó el
complejo cárstico y sacó a la luz los sedimentos de relleno de las
cuevas. A lo largo de la trinchera del ferrocarril se encuentran
situados los yacimientos de la Sima del Elefante, Galería y la
Gran Dolina que nos proporcionan los fósiles de homínidos más
antiguos hallados hasta ahora en la península ibérica y en
Europa.
Entre estos yacimientos destacan: Gran Dolina, Mirador, la
Sima de Elefante, Galería y La Sima de los Huesos, pero
también de otros, quizás menos conocidos pero de igual
importancia como El Portalón de Cueva Mayor, Covacha de los
Zarpazos, Hotel California, el Valle de las orquídeas o la Galería
del Sílex.
2. LA TRINCHERA DEL FERROCARRIL
Unos de los lugares emblemáticos de la Sierra de Atapuerca, es
precisamente, la trinchera del ferrocarril. La construcción de una
Figura 1. Localización geográfica de la Sierra de Atapuerca.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
148
Virtual Archaeology Review
que debemos optimizar los métodos y tener mucho cuidado al
aplicarlos.
5. EL REGISTRO DE CAMPO
Figura 2. Vista aérea de la trinchera del ferrocarril.
3. LOS HOMÍNIDOS DE LA SIERRA
La manera más práctica que tenemos para guardar los datos
adquiridos en un yacimiento es mediante el llamado “registro de
campo”. Este registro de campo tiene como objetivo
documentar todos los elementos arqueológicamente relevantes
que localicemos en un yacimiento. Estos elementos relevantes
pertenecerán a cada una de las distintas disciplinas que se utilizan
para estudiar y modelar un yacimiento arqueológico: datos geoarqueológicos, topográficos, arqueológicos y de documentación
gráfica.
Las técnicas clásicas de registro de datos de campo implican el
uso de lápiz y papel, métodos de posicionamiento 3D arcaicos y
una pobre integración informática de los datos obtenidos por las
diferentes disciplinas.
Como no podría ser de otra manera, los restos más importantes
localizados en la Sierra corresponden a Homínidos. Uno de los
puntos fuertes de la Sierra de Atapuerca es que ha sido un lugar
de asentamiento continuo por distintas comunidades de
homínidos en distintas épocas, desde el Homo Antecessor, el
Homo Heidelbergensis, Homo Neanderthalensis y finalmente el
Homo Sapiens.
4. UN YACIMIENTO ARQUEOLÓGICO
Previamente a definir una excavación arqueológica hay que
explicar qué es un yacimiento arqueológico: se ha de considerar a
un yacimiento arqueológico como libro de historia. Un libro de
historia que nos da a conocer cada acción que un grupo de
humanos o sociedad realiza para adaptarse a su entorno. En
concreto: su organización, su modo de vida y su tecnología.
Figura 4. Métodos de registro arcaicos ( cortesía EPPEX)
Figura 3.Galería, uno de los yacimientos de la Trinchera del Ferrocarril
Así pues, una excavación arqueológica son una serie de métodos
y técnicas que nos ayudan a saber y a investigar nuestra historia
más remota. Nos encontramos ante un apunte muy importante:
una excavación arqueológica es un hecho no repetible, por lo
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
La manera de suplir estas carencias es mediante la
implementación de un nuevo método, para nosotros, el llamado
Sistema Atapuerca. Este sistema o métodos tienen como
objetico automatizar, optimizar, simplificar, mecanizar y
computerizar ese conjunto de datos de diferente origen pero con
el mismo objetivo: definir un yacimiento arqueológico. Nos
centraremos en los registros de campo. Estos registros de campo
definen mediante datos descriptivos y cualitativos objetos
arqueológicos (fósiles, industria lítica…). A tal fin, se ha
desarrollado todo un conjunto de aplicaciones informáticas y una
metodología de trabajo específica. Este sistema de trabajo
específico incluye una serie de datos descriptivos del objeto
arqueológico tales como material, categoría, orientación, etc.… y
los datos relativos a su posición espacial tridimensional, bien sea
relativa o absoluta. Este conjunto de aplicaciones y metodologías
hereda del sistema global una serie de atributos (movilidad,
escalabilidad, portabilidad, flexibilidad y modularidad) que hacen
posible su evolución en el tiempo y su adaptabilidad a otros
yacimientos. Estas metodologías han surgido después de un
largo proceso de diseño y análisis que se ha extendido desde la
definición de sus requerimientos, entre el 1993 al 1997, y las
primeras aproximaciones a la problemática del arqueólogo,
149
Virtual Archaeology Review
primero, por parte de IBM en el 2001 y después, en el 2007
gracias a una gran redefinición del sistema por parte de los
investigadores del IPHES (Institut Català de Paleoecologia
Humana i Evolució Social).
6. UNA SOLUCIÓN GLOBAL Y SUS
TECNOLOGÍAS
Se entiende por solución global porque incluye todos los
aspectos metodológicos necesarios para definir correctamente un
objeto arqueológico y su entorno. Además, cumple el deseado
ciclo de portar los datos desde el campo hasta el laboratorio,
donde
facilita la notación en el análisis de los restos
encontrados, su catalogación y las posteriores intervenciones
para su restauración y conservación.
Posteriormente en el laboratorio, este cúmulo de datos
obtenidos diariamente, se sincroniza a una base de datos general
de análisis, catalogación, gestión, restauración y conservación
que permite seguir con detalle el ciclo de vida de los restos
arqueológicos recuperados.
7. APLICACIONES
Al ser una solución global para arqueólogos, diseñado por y
para arqueólogos, el ámbito de uso dentro de la arqueología es
bastante amplio. Debemos tener en cuenta que los miembros del
EIA también participan en otros proyectos y, gracias a la
flexibilidad del sistema, podemos portarlo a otros yacimientos y
utilizarlo de formar similar a la que podemos encontrar en
Atapuerca. Así, en yacimientos como Abric Romaní (Capellades,
Barcelona) o en La cueva de Maltravieso (Cáceres), además de
los yacimientos de la trinchera del ferrocarril, encontrarnos el
uso de esta metodología de trabajo.
8. BENEFICIOS
Son varios los beneficios que obtenemos a primera vista: rápida
integración y control de los datos. Más profundamente,
podremos observar que las soluciones móviles tienen un gran
valor en la arqueología moderna: confieren gran flexibilidad al
trabajo en condiciones extremas y definen un flujo de trabajo
claro, libre de decisiones condicionadas y de errores de
tratamiento.
9. EL FUTURO
Figura 5. Flujo de trabajo (cortesía IBM).
Adentrando más en los aspectos tecnológicos, sigue siendo un
referente globalizador dentro de la captación de datos del mismo
yacimiento ya que nos permite agruparlos, catalogarlos y ejercer
un control sobre estos desde el primer momento de la captación,
es decir, en el campo de trabajo. El sistema informático se basa
en una aplicación diseñada especialmente por el equipo del
IPHES que se ejecuta en una agenda electrónica o PDA. Los
arqueólogos necesitan de este instrumento ya que su función es
la de sustituir a la clásica libreta de campo, es decir: el lápiz y el
papel. Estos datos recolectados en el campo, son enviados
mediante una tecnología de comunicación
inalámbrica
(Bluetooth o Wi-Fi) a un servidor o gestor de datos ubicado en
un ordenador de tipo portátil. Este ordenador de campo,
permite la visualización en tiempo real de los datos obtenidos
por los arqueólogos y su corrección su fuera necesario.
Al ser un sistema evolutivo, flexible y escalable, podemos
asegurar de la adaptabilidad de este a nuevas situaciones y su
capacidad para recoger nuevos requerimientos e implementarlos.
Estos nuevos requerimientos o necesidades pueden aparecer
tanto en el proceso de investigación o análisis de laboratorio
como en el propio campo. Por supuesto, esas adaptaciones se
pueden requerir e implementar tanto en el campo como en las
aplicaciones y metodologías del Sistema Atapuerca en el
laboratorio.
10. LOS NUEVOS BENEFICIOS
Se proveen nuevas líneas de trabajo que nos permitan explorar
funcionalidades que no eran necesarias o no eran alcanzables o
realizables a día de hoy con la tecnología actual como: la minería
de datos, la adquisición de datos multimedia, la arqueología
virtual o un sistema de gestión de información predictiva.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
150
Virtual Archaeology Review
AGRADECIMIENTOS Todos los agradecimientos se
BIBLIOGRAFÍA
dirigen hacia el personal técnico e investigador del EIA y al
personal de la Fundación Atapuerca asimismo como a todas las
instituciones que financian las excavaciones y la investigación de
los Yacimientos de la Sierra de Atapuerca.
CANALS I SALOMÓ, Antoni et al (2008): “The 3COORsystem
for data recording in archaeology”, en Journal of Anthropological
Sciences, Vol. 86 2008, pp. 133-141.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
151
Virtual Archaeology Review
Virtual Archaeology and museums, an italian perspective
Augusto Palombini and Sofia Pescarin
Istituto per le Tecnologie Applicate ai Beni Culturali, CNR, Roma. Italia.
Resumen
El creciente número de museos y aplicaciones virtuales disponibles en la actualidad plantea diversas problemáticas en cuanto a uso y mantenimiento se refiere. El
presente proyecto intenta establecer un análisis del problema a través del estudio de tres proyectos de musealización virtual realizados por el Virtual Heritage Lab
en el Istituto per le Tecnologie Applicate ai Beni Culturali del CNR (proyectos realizados en los años 2008, 2009 y 2012(en fase de realización). Tales proyectos
se realizan en base a tres aspectos: el mantenimiento, la fiabilidad en la gestión de los datos y la densidad semántica. El estudio aporta una contribución al debate
sobre el desarrollo de futuros museos virtuales y las posibles formas de abordar la compleja relación entre el rigor científico y la divulgación.
Palabras Clave: REALIDAD VIRTUAL, MUSEOS VIRTUALES, ARQUEOLOGÍA, FIABILIDAD DE LOS DATOS.
Abstract
The growing number of virtual museums and applications today available arises many questions concerning the problems connected to their fruition and
maintenance. This paper aims at setting up an analysis of the topic, through the steps of three VM projects carried on by the Virtual Heritage Lab (2008, 2010,
2012 (in progress)). Such case studies are taken into account on the basis of three topics: technical maintenance, reliability and semantic density. The analysis aims
also at contributing the debate on the future development of VMs and on the management of the relationships between reliability and wide dissemination.
Key words: VIRTUAL REALITY, VIRTUAL MUSEUMS, ARCHAEOLOGY, RELIABILITY.
Riassunto
Il numero crescente di musei virtuali ed applicazioni attualmente disponibili solleva molte problematiche riguardo al loro uso e alla mantenibilità. Questo lavoro
cerca di impostare un'analisi della questione attraverso lo studio di tre progetti di musei virtuali condotti dal Virtual Heritage Lab dell'Istituto per le Tecnologie
Applicate ai Beni Culturali del CNR (progetti realizzati nel 2008, 2009 e 2012(in progress)). Tali realizzazioni vengono analizzate sotto tre aspetti: la
manutenzione, la gestione dell'affidabilità dei dati, la densità semantica. Dallo studio emerge un contributo al dibattito sugli sviluppi futuri dei musei virtuali e sui
possibili modi di affrontare le complessa relazione fra rigore scientifico e divulgazione.
Parole chiave: REALTÀ VIRTUALE, MUSEI VIRTUALI, ARCHEOLOGIA, ATTENDIBILITÀ
1. THE TEAM AND THE TOPIC
The Institute of Technologies Applied to the Cultural Heritage
of CNR-ITABC, since 1981 is a centre of excellence in the field
of the advanced researches and technologies. In particular, it is
involved in several areas from Geophysical Prospection to VR
applications for CH.
The Virtual Heritage Lab team's work (www.vhlab.itabc.cnr.it) is
focussed on two research aspects: geo-spatial 3d component of
cultural information and communication; on-line VR sharing
(VR cooperative environments) and dissemination (VR
webGIS). The team has developed 2d and 3d tools for CH,
following an open source approach, specifically directed to
ancient landscapes reconstruction and 3d exploration.
Since the late 90's the team has worked on many GIS and VR
projects, such as the Kazakhstan Project, the Ancient Appia
Projects, Virtual Rome, the Ca' Tron VM, as well as the constant
work on the dissemination and support to the Open Source in
CH domain, organizing the IV Italian Workshop on Open
Source in archaeology (Cignoni, Palombini, Pescarin 2010).
Following such experiences, the Lab often faced some of the
most common problems and issues connected to Virtual
Museums and their planning, realization, everyday life. The
evolution of the different choices in this sense may be a possible
way to approach a wider reflection on the state of the art.
The projects taken into account in the present analysis are: the
Ancient Via Flaminia Virtual Museum (2008), the Teramo
Virtual Museum (2010), the Bologna Virtual Museum (in
progress, to be released in 2011).
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
152
Virtual Archaeology Review
2. THE PROJECTS
faculty, for the users, to open some informative windows
representing the monuments used for chronological and
functional comparisons.
2.1 The Virtual Museum of the Ancient Via Flaminia
3. Semantic density. The choice to concentrate in an unique
application all the information contents and levels (technical and
emotional) in the same applications, resulted in a very heavy
product, hard to be fully lived and comprised.
The Virtual Museum of the ancient Via Flaminia is a project
financed by ARCUS S.p.A and developed in collaboration with
the Archaeological Superintendence of Rome. The application is
permanently exposed in a multimedia room at the National
Roman Museum-Terme di Diocleziano in Rome (FORTE,
2008).
Such problems were the most discussed topics during the
analysis of the visitors' reactions in the early opening months.
The results of such considerations were the heritage we reached
in the perspectrive of experimenting new solutions.
The final product is a 1 h 20'' multiuser application with short
movies connected to interactive 3d environments (in
stereoscopy).
2.2 The Teramo Virtual Museum
The Teramo Virtual Museum is a project started in 2009, on
behalf of the local Soprintendenza, focussed on the virtual
reconstruction of the St. Maria Aprutiensis Cathedral, destroyed
in XIII century.
The current archaeological complex is composed of the ruins of
the cathedral and some roman domus, and one of the project
needs was to emphasize the evocative effect of such wall
remains, whose height rarely overcome one meter.
The final release implied three different outputs:
1.
Figure 1. the Virtual Museum of the Ancient Via Flaminia: triclinium of
the Livia's villa: the yellow pyramid activates a source window (see text)
[courtesy E.Pietroni, M. Di Ioia, L. Vico].
A touch-screen application containing a technical
reconstruction of roman domus, in the current and original
conditions, in order to provide technical informations for
an expert fruition (archaeological plans, historical and
chronological details and so on).
2.
An interactive VR application, in which a couple of
characters, following the story-telling approach, lead the
user inside the virtual model of the ancient cathedral, to
discover the history of the city.
Since the beginning main issues that appeared to be the most
problematic have been:
3.
An integrated system of music, movies and random
spotlights into the archaeological site, following the visitors
tour.
1. Maintanance. The system installation comes together with a
specific training program for the Museum's personnel. The
personnel has been, for the most part, very interested in the
topic, and in all the application needs, such as the daily switch
on and off and the maintenance. Anyway, this kind of
installation implies different levels of possible problems, in terms
of software, hardware, settings, which can not be easily solved by
non-expert personnel. This is probably one of the reasons why
many Museum applications “dies” so early. The solving of the
arisen maintanance issues has requested a level of engagement,
in terms of work, time and availability, higher than in any
expectation.
2. Interpretation. This is maybe the most discussed problem
connected to Virtual Museums: how to manage uncertainty and
represent the different reliability levels of the monuments? In
current times, the graphic quality of VM applications is rapidly
growing, as well as the risk, for the users, to mislead the esthetic
quality as an index of the reliability. The development of this
project made we often face such a question. The solution chosen
was double: on the one hand marking each room of the
monument visited by the avatars with one two or three stars as
an index both for the architectural and the decoration reliability
(hypothetic, probable, certain); on the other, setting up the
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
The Teramo project represented, thus, an evolution of the VM's
concept, in relation to the three topics stressed above. The
semantic density is now shared in three different applications in an
increasing scale of interaction and knowledge requested (from 3
to 1).
The maintenance issue was studied in order to reduce as much
as possible the personnel actions, which is absolutely null for
applications 3 (chronometric auto- switch on and off) and need
only a limited effort for the others.
The problems connected with reliability was crucial in this
situation, as the ancient cathedral was completely destroyed and
its architectural structure, with the exception of the plan, is
completely hypothetical. Thus, the situation made particularly
important to remark the difference between reality and virtuality.
Among the many possible ways, we opted for an experimental
meta-narrative approach, making the game explicit through the
presence of a special character, Virtuvius, the virtual architect,
who explains to the public how hypothesis and virtual buildings
are made.
153
Virtual Archaeology Review
Figure 2. the Teramo Virtual Museum: Virtuvius, the virtual architect, at
work reconstructing the ancient Cathedral [Courtesy of E.Pietroni, M.Di
Ioia, C.Rufa].
2.3 Bologna Virtual Museum
The Bologna Virtual Museum Project is a stereoscopic short
movie aimed at bringing visitors of the new City Museum inside
30 centuries of history. Bologna and its territory are
reconstructed (from the 9th century BC) through a tremendous
scienfic work, dedicated to the communication and the storytelling of its long and complex
history. The project is
developed by CINECA in cooperation with CNR ITABC and
will be released in 2011.
Starting from the whole city model, and its neighbourings, two
ouputs will be available:
1.
A short movie (about 10 min. long) representing a trip
inside and around the city (in stereoscopic view).
2.
A very simple interactive application which will allow to
explore the same scenarios and reach specific information.
As it is clear that, here too, the maintenance is reduced to a very
low level of interaction, the semantic density in this case is
thinned down through its distribution on the lenght of the
applications (the movie will be about ten minutes long). Anyway,
here too, there will be a two level fruition: the first completely
passive, the second interactive.
An important research feature of the project, is the use of
procedural modeling tools for the city buildings, through the
software Blender and City Engine (MUELLER ET AL. 2007).
Such a strategy allowed to reduce the modeling work and, thus,
to preserve more effort to the graphic quality of the whole
context (PESCARIN, PIETRONI, FERDANI, in press). Such
an advantage was used to try a new (again meta-narrative)
approach to the reliability topic.
Figure 3. The reconstructed city of Bologna (20th century): Courtesy of
CINECA: Silvano Imboden and CNR ITABC: Daniele Ferdani
3. CONSIDERATIONS
Trying to sum up the experience of the described works, it is
possible to state some indications as possible strategies to be
discussed in order to face specifical VM's aspects.
Manteinance: A VM should be planned (both in hardware and
software terms) as to limit as much as possible the need of
museum operators' technical intervention. Particular effort
should be paid to the realization of scripts to automate
procedures, and even operations of computer switch-on and
shut down – where possible – should be programmed to be
automatically activated at time.
Interpretation: In the current state of the art, many solutions
have been experimented in order both to express different level
of reconstruction reliability and the whole concept of virtuality as
something ontologically different from reality. Among all the
possible ways in such a direction, it seems interesting the
challenge of the meta-narrative approach, to make explicit the
virtual reconstruction work, inserting in the virtual world
characters or elements referring to it.
Semantic density: This is a hard topic to be faced, as there are
not standard solutions. The starting observation is that a very
heavy amount of contents (historical, artistic, geographical and
so on) may result unshared for the the same application. Possible
solution can be found in the content segmentation through
different kind of applications, with different knwoledge and
interaction requirements, thus sharing more semantic levels
levels on different outputs.
Beyond such considerations, it is still important to stress the
need of systematic analysis of VMs,, in order to focus their
impact on the users and build a theoretically strong corpus of
considerations on the topics related to their evolution and life
(or death).
The graphic quality was set up avoiding an “hyper-realistic” look,
and choosing a “cartoon” graphic color palette.
The particular color atmosphere automatically suggests an idea
of “unrealistic reality”, implicitly marking the distance of
virtuality from the real world.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
154
Virtual Archaeology Review
ACKNOWLEDGEMENTS
The authors wish to thank all the scholars contributing to the Flaminia, Teramo and Bologna projects: Stefano Borghini, Carlo
Camporesi, Raffaele Carlani, Marco Di Ioia, Daniele Ferdani, Maurizio Forte, Fabrizio Galeazzi, Alessia Moro, Eva Pietroni, Claudio
Rufa, Bartolomeo Trabassi, Valentina Vassallo and Lola Vico (CNR-ITABC); Luigi Calori and Silvano Imboden (CINECA). For the
liguistic support, a special thank to Belen Jimenez.
REFERENCES
FORTE M. and AA.VV., 2008, “La Villa di Livia, un percorso di ricerca di archeologia virtuale”, L'Erma di Bretschneider, Roma.
MUELLER P, ZENG G, WONKA P AND VAN GOOL L, 2007, Image-based Procedural Modeling of Facades, ACM Transactions on
Graphics, volume 26, number 3, article number 85. pages 1-9. Proceedings of SIGGRAPH 2007.
PESCARIN S., PIETRONI E., FERDANI D., in press, “A procedural approach to the modeling of urban historical contexts” in
Francisco Contreras & Fco. Javier Melero (Eds) Fusion of Cultures Proceedings of the 38th Conference on Computer Applications and Quantitative
Methods in Archaeology Granada, Spain, April 2010.
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011
155
Virtual Archaeology Review
INNOVA CENTER
European Center for Innovation in Virtual Archaeology
Complejo Educativo Jose María Blanco White. Centro de Iniciativas Empresariales CIE.
Pabellon 1
Carretera de Isla Menor s/n 41014 - Bellavista - Sevilla – España
Telfs: +34 954 692 115 / +34 687 731 111
www.innovacenter.es
VAR. Volumen 2 Número
4. ISSN: 1989-9947
[email protected]
Mayo 2011
156
Virtual Archaeology Review
Directores / Directors
Alfredo Grande León
López--Menchero Bendicho
Víctor Manuel López
VAR. Volumen 2 Número 4. ISSN: 1989-9947
Mayo 2011

Documentos relacionados