Unifying Semantical Annotation and Querying in Biomedical Image

Transcripción

Unifying Semantical Annotation and Querying in Biomedical Image
Unifying Semantical Annotation
and Querying in Biomedical
Image Repositories
One Solution for Two Problems of Medical Knowledge
Engineering
Daniel Sonntag, Manuel Möller
Santiago Redondo Salvo!
Sistemas de Información en Medicina!
Máster en Ingeniería Biomédica
1. Introducción
•
¿Qué sucede cuando llega un enfermo al medico?
http://www.elrincondelamedicinainterna.com/2014_01_11_archive.html
1. Idea
•
Hasta ahora las imágenes no proporcionan
información explícita adicional sobre su contenido
y si lo hacen no comparten la semántica
•
En realidad todas ellas pertenecen al dominio
médico, comparten reglas y conceptos comunes
•
Emplear imágenes médicas anotadas con
contenido semántico que proporcionen la base
para el diagnóstico asistido por computador y la
ayuda en la toma de decisiones clínicas
1. Problema
•
Introducir en el SI ese conocimiento médico sobre
el contenido de las imágenes
Cantidades ingentes de datos => Automatizar
Supervisión y validación
Cómo almacenarlo para que sea útil
Introduction
THESEUS-MEDICO
Introduction
•
Images
1. Solución
Knowledge Engineering in the Medical Domain
Final Remarks
Problem:
Proyecto THESEUS-MEDICO, sistema
informático
Many individual medical applications,
Clinical
no common semantics
Records
que unifica mediante
el uso debut
ontologías
BUT:
Queries
are not arbitrary,
instead based on
La anotación semántica de las imágenes
(mediante
un GUI)
anatomy, physiology, pathology…
– e.g. only heart has left ventricle
– e.g.en
certain
spatial relations
información (diálogo
lenguaje
between the organ
regions/segments
Treatment
Plans
La recuperación de esta
natural)
Proposed solution:
“Show me the CT scans & records of
patients with an enlargement in the
dimension of the lymph node in
the neck”
Image Type:
CT Scan
Region:
left ventricle
part_of heart
Image Type:
CT Scan
Region:
left ventricle
part_of heart
1. Indice
•
Desafíos en la Ingeniería del Conocimiento Médico
•
Técnicas para analizar y consultar conjuntos de
imágenes anotadas con contenido semántico
•
Interacción mediante interfaz de consultas
multimodal basado en lenguaje natural
•
Descripción del repositorio de imágenes anotadas
•
Trabajos relacionados y conclusiones
1. Sistema MEDICO
Figure 6. Generic Architecture of a Multimodal Dialogue System.
Figure 7. Overall MEDICO Semantic Search Architecture.
2. Desafíos
•
A partir de información
de bajo nivel:
2 CHALLENGES
Various challenges exist in medical knowledge engineering, all of which arise from the requirements of
the clinical reporting process. The clinical reporting
process focuses on the general question What is the
disease? (or, as in the lymphoma case, Which lymphoma?). To answer these questions, semantic annotations on medical image contents are required. These
are typically anatomical parts such as organs, vessels,
lymph nodes, etc. Image parsing and pattern recognition algorithms can extract the low-level image feature information. The low-level information is used to
produce higher-level semantic annotations to support
tasks such as differential diagnosis.
For this purpose, we envision a flexible and
generic image understanding software for which image semantics, which are expressed using concepts
from existing medical domain ontologies, play a major role for access and retrieval. Unfortunately, although automatic detection of image semantics seems
to be technically feasible (e.g., see (Kumar et al.,
2008)), it is too error-prone (at least on the desired
annotation level where multiple layers of tissue have
to be annotated at different image resolutions). Accordingly, one of the major challenges is the so-called
knowledge acquisition bottleneck. We cannot easily
Imágenes médicas, pruebas y
otros análisis
•
Obtener y anotar información de alto
nivel semántico:
Signos y síntomas
•
Que ayuden a proporcionar un
diagnostico médico
Figure 1: Graphical User Interface of the Annotation Tool
1 shows the graphical user interface of the annota-
2. Desafíos
•
Basados en la comunicación:
Knowledge acquisition bottleneck or knowledge elicitation
•
Basados en la ingeniería de ontologías médicas:
El conocimiento es opaco al ingeniero por el vocabulario específico
Existencia y/o creación de ontologías médicas completas y comprensivas
Múltiples jerarquías, complejas y con muchas relaciones
Entorno de riesgo y nulo margen de error. Precisión en el conocimiento
Dificultad en el modelado de los sistemas por la falta de dominio del tema
Basado en FOIS2008-Wennerberg.pdf
detecting 19 body landmarks very quickly and robustly in about 20 seconds.
By forming an anatomical network, the landmarks can be used to restrict the
search area in the context of organ detection. New anatomy can be easily
incorporated since the framework can be trained and handles the segmentation
of organs and the detection of landmarks in a unified manner. The detected
landmarks and segmented organs are used in multiple ways. First, they
facilitate the semantic navigation inside the body (see Figure 2, left), and
second, they are used for the generation of semantic annotations such as
“spleen” or “splenomegaly”.
3. Herramienta de anotación
de imágenes
Figure 1: Graphical User Interface of the Annotation Tool
Figure 2. MEDICO application that integrates automatic landmark and organ detection
with manual image annotations.
1 shows the graphical user interface of the annotation tool. Images can be segmented into regions of
3. Herramienta de anotación
de imágenes
•
Permite a los médicos anotar imágenes para lo que se reutilizan diferentes
terminologías y ontologías de referencia:
FMA (Foundational Model of Anatomy) para la anatomía corporal (75k
conceptos y 2.1M relaciones)
RadLex para expresar la manifestación en una imagen de características
anatómicas particulares o enfermedades relacionadas
ICD-10 (International Classification of Diseases) para clasificar enfermedades
•
Búsqueda en PubMed (y otros) de información relacionada
•
Guarda el historial de interacciones del médico con el sistema
•
Mantiene un repositorio RDF remoto con las imágenes, su semántica
correspondiente y el resto del historial clínico
3. RDF
•
RDF (Resource Description Framework) es una familia de
especificaciones de la W3C. Originalmente diseñado
como un modelo de datos para metadatos se usa como
un método general para la descripción conceptual o
modelado de la información que se implementa en los
recursos web
•
Se basa en declaraciones sobre los recursos en forma de
expresiones sujeto-predicado-objeto o triples
•
Ej.: La idea de "El cielo tiene el color azul" en RDF es como
el triple de un objeto que denota "el cielo", un predicado
que denota "tiene el color" y un objeto que denota "azul"
http://en.wikipedia.org/wiki/Resource_Description_Framework
1993).
3. In the clinical staging and patient management process the general
concern is with the next steps in the treatment process. The results of
the clinical staging process influence the decisions that concern the
patient management process in a later phase.
3. Anotaciones
Figure 3. MEDICO semantic annotation scheme.
4. Interface de consulta
•
•
Interacción dependiente del contexto
Multimodal
Text to Speech
Show me the internal
organs: lungs, liver, then
spleen and colon.
Pantalla táctil
pa
str
ac
m
all
as
1
2
3
4
Figure 3: Multimodal Touchscreen Interface. The clinician
can touch the items and ask questions about them.
5
4. Ejemplo de diálogo
•
U: “Show me the CTs, last examination, patient XY.”
•
S: Shows corresponding patient CT studies as DICOM picture series and MR videos.
•
U: “Show me the internal organs: lungs, liver, then spleen and colon.”
•
S: Shows corresponding patient image data according to referral record.
•
U: “This lymph node here (+ pointing gesture) is enlarged; so lymphoblastic. Are there any
comparative cases in the hospital?”
•
S: “The search obtained this list of patients with similar lesions.”
•
U: “Ah okay.”
Our system switches to the comparative records to help the radiologist in the differential diagnosis of
the suspicious case, before the next organ (liver) is examined.
•
U: “Find similar liver lesions with the characteristics: hyper-intense and/or coarse texture ...”
•
S: Our system again displays the search results ranked by the similarity and matching of the medical
ontology terms that constrain the semantic search.
16
Daniel Sonntag, Martin Huber, Manuel Möller et al.
4.3. Speech and Touchscreen Interaction Design (Surface plane)
4. Ejemplo de diálogo
This plane deals with the logical arrangements of the design elements. In
the case of a multimodal dialogue system, the logical arrangement results in a
user-system natural dialogue whereby the user input is speech and touch and
the system output is generated speech or the generation of SIEs which display
windows for images, image regions, or other supported interaction elements.
The implemented clinical workflow is best explained by example. Consider a
radiologist (R) at his daily work of the clinical reporting process (also cf.
section 3.1) with the speech-based semantic dialogue shell (S):
The potential application scenario
(provided by Siemens AG)
includes a radiologist which treats
a lymphoma patient; the patient
visits the doctor after
chemotherapy for a follow-up CT
examination.
R: “Show me my patient records,
lymphoma cases, for this week.”
S: Shows corresponding patient
records.
R: “Open the images, internal
organs: lungs, liver, then spleen
and colon of this patient (+
pointing gesture (arrow)).”S:
Shows corresponding patient
image data according to referral
record.
The presentation planer of the
The potential application scenario
(provided by Siemens AG)
includes a radiologist which treats
a lymphoma patient; the patient
visits the doctor after
chemotherapy for a follow-up CT
examination.
R: “Show me my patient records,
lymphoma cases, for this week.”
S: Shows corresponding patient
records.
R: “Open the images, internal
organs: lungs, liver, then spleen
and colon of this patient (+
pointing gesture (arrow)).”S:
Shows corresponding patient
image data according to referral
record.
The presentation planer of the
dialogue system rearranges the
semantic interface elements
(SIEs). The top-most picture
frame, showing the patient
information in the header, is
interactive; when touching it,
special image regions and region
annotations are highlighted (two
arrows).
R: Switches to the 5th image and
clicks on a specific region
(automatically determined).
4. Ejemplo de diálogo
4. Ejemplo de diálogo
Design and Implementation of a Semantic Dialogue System…
17
S: The system rearranges the
semantic interface elements (SIEs)
to signalize that the dialogue focus
is on regions.
R: “This lymph node here (+
pointing gesture), annotate
Hodgkin-Lymphoma.”
S: Annotates the image with RDF
annotations (cf. Figure 3,
highlighted pathological part) and
displays a label for the recognized
ICD-10 term.
R: “Find similar lesions with
characteristics: hyper-intense
and/or coarse texture.”
S: MEDICO displays the search
results in the record table (also see
first screenshot) ranked by the
similarity and match of the
medical terms that constrain the
semantic search (left) and opens
to signalize that the dialogue focus
is on regions.
R: “This lymph node here (+
pointing gesture), annotate
Hodgkin-Lymphoma.”
S: Annotates the image with RDF
annotations (cf. Figure 3,
highlighted pathological part) and
displays a label for the recognized
ICD-10 term.
R: “Find similar lesions with
characteristics: hyper-intense
and/or coarse texture.”
S: MEDICO displays the search
results in the record table (also see
first screenshot) ranked by the
similarity and match of the
medical terms that constrain the
semantic search (left) and opens
the first hit, Peter Maier (arrow),
the record, and his images that
correspond to the search. The
system rearranges the SIEs for the
two patients for a comparison.
R: “Get the findings of this
patient”
S: Opens the findings (text) and
highlights the medical terms in
different groups.
4. Ejemplo de diálogo
One of the radiologist’s goals is to estimate the effectiveness of the
administered medicine. In order to finish the reading / pathology, additional
cases have to be taken into account for comparison. We try to find these cases
by matching the medical RDF annotations (FMA, RadLex, ICD-10) of
4. Modelado del diálogo
•
KEMM: A Knowledge Engineering Methodology in
14
Daniel Sonntag, Martin Huber, Manuel Möller et al.
the Medical
Domain, Wennerberg et al. 2008
Figure 4. Usability planes and corresponding design issues for implementation.
Defining the users and their needs on the strategic planes is the first step in
4. Modelado del diálogo
•
Query Pattern Derivation Query Pattern Derivation
Introduction
•
Ontology Identification
•
Ontology Modularization and
Pruning
•
Ontology Customization
•
Ontology Alignment
•
Reasoning-Based Ontology
Enhancement
•
Testing and Deployment
LOGO
Knowledge Engineering in the Medical Domain
Final Remarks
P.Wennerberg, S.Zillner, M.Möller, P.Buitelaar,
M.Sintek, FOIS 2008, Saarbrücken
Data Processing: RadLex & FMA
4. Modelado del diálogo
Introduction
Knowledge Engineering in the Medical Domain
Anatomy Corpus
Final Remarks
Radiology Corpus
Steps:
all text sections of each corpus through the TnT part-of-speech parser (Brants, 2000)
! extract all nouns in the corpus
! compute a relevance score (chi-square) for each
! …by comparing anatomy & radiology frequencies respectively with those in the British National Corpus
!
4. Arquitectura técnica
•
Arquitectura distribuida: escalabilidad y uso de
dispositivos móviles
a central Triple Store (see section 5.2). Exnotations of an image can also be used to
line resources on the web such as PubMed
ww.ncbi.nlm.nih.gov/pubmed) and Clinicaltp://clinicaltrials.gov) for similar cases.
ULTIMODAL INTERFACE
multimodal query interface implements a
aware dialogue shell for semantic access to
edia, their annotations, and additional texrial. It enhances user experience and usproviding multimodal interaction scenarios,
ch-based interaction with touchscreen instalr the health professional.
edical Dialogue
ecommendations can support building up
ying new medical knowledge repositories?
edge engineering methodology (Wennerberg
008) helped us to formalize these require-
Figure 2: Architecture of the Dialogue System, where external components, such as automatic speech recognition
(ASR), natural language understanding (NLU), and text-tospeech Synthesis (TTS), are integrated.
9 S: Our system again displays the search results ranked by the similarity
4. Arquitectura técnica
•
Interface multimodal
Gestor de ventanas táctil específico (similar al visto en tablets)
•
Sistema de diálogo
Middleware
Se comunica en SPARQL con los servicios del Backend
NLU proporciona directamente términos de la ontología
•
Bus de eventos
Pasa mensajes entre los distintos actores
5. Backend services
Figure 6. Generic Architecture of a Multimodal Dialogue System.
Figure 7. Overall MEDICO Semantic Search Architecture.
•
Triple Store
•
Semantic Search
•
Semantic Navigation
5. Triple store
•
RDF: Implementación seleccionada Sesame por su
sencillo despliegue online y rápida estrategia de
persistencia para el almacenamiento.
•
Sistema central para almacenamiento y
recuperación de información sobre el dominio
médico, práctica clínica, metadata de pacientes y
anotaciones semánticas de las imágenes
tion 4.
c Mediator, we imThe system also allows us to perform a semantic
or the purpose of
query expansion based on the information in the medithin the dialogue
ical ontologies. Accordingly, a query for the anatomulate and maintain
ical concept lung also retrieves images which are not
er-level Java funcannotated with “lung” itself but parts of the lung. The
s of a number of
query expansion technique is implemented in Java
ocol for accessing
and provided as an API. Below we show a SPARQL
Here, we•provide
a
A bajo
nivel
el acceso
a los
RDFin se
query example,
according
to ourdatos
query model
the realiza
t library to handle
semantic mediante
search layer in el
figure
4, which retrieves
all
directamente
lenguaje
de
consulta
se Case Repositoimages of patient XY annotated with the FMA conr architecture
conSPARQL
cept “lung”.
dialogue system),
er, and a dynamic
SELECT ?personInstance ?patientInstance ?imageRegion ?imageURL WHERE {
?personInstance surname ?var0 .
resses information
FILTER (regex(?var0, "XY", "i")) .
ge layer hosts the
?patientInstance referToPerson ?personInstance .
?patientInstance participatesStudies ?studyInstance .
ve semantic medi?seriesInstance containedInStudy ?studyInstance .
?seriesInstance containsImage ?mdoImageInstance .
ing an appropriate
?mdoImageInstance referenceFile ?imageURL .
terogeneous infor?imageRegion hasAnnotation ?imageAnnotation1 .
?imageAnnotation1 hasAnatomicalAnnotation ?medicalInstance1 .
ologies.
?medicalInstance1 rdf:type fma:Lung.
5. Triple store
ory
?imageInstance hasComponent ?imageRegion .
?imageInstance hasImageURL ?imageURL .
?mdoImageInstance referenceFile ?imageURL . }
triple store setup
, is based on two
ntiate between de-
Note that this query spans across patient metadata
(the name, automatically extracted from the image
header) and anatomical annotations (manually added
5. Relación entre el triple
store y semantic search
Design and Implementation of a Semantic Dialogue System…
Triple
Store
Figure 9. Three Tier Search Architecture.
23
5. Semantic search
•
Las anotaciones manuales y la aplicación de
búsqueda semántica usan el mismo repositorio
RDF. Uso simultáneo
•
Búsqueda usando funciones muy complejas
•
Expansión de consultas basada en la
información de las ontologías
•
Operaciones de manipulación de datos
mediante librarías específicas
5. Semantic navigation
22
•
Navegación semántica
de conceptos anatómicos
disponibles para todos
los actores del sistema.
•
Se accede mediante un
interface XML RCP / Java
Daniel Sonntag, Martin Huber, Manuel Möller et al.
Figure 8. Semantic Navigation Interface Element.
Semantic navigation
Semantic Navigation shows anatomical concepts in a browser window.
This window can be accessed by the dialogue shell through the XML RCP /
Java Interface. In this way, additional clinical reporting process relevant
information can be accessed by the radiologist (Figure 8).
6. Trabajos relacionados
•
Agregación de datos con imágenes médicas y
ontologías:
Cancer Biomedical Information Grid (https://
cabig.nci.nih.gov)
•
Además uso de tecnologías Semantic Web:
myGrid (http://www.mygrid.org.uk)

Documentos relacionados