file - CarbonInspired

Transcripción

file - CarbonInspired
CarbonInspired
Workshop Internacional: Aplicación de Nanomateriales en la Industria
Madrid, 21 de Noviembre de 2012
CarbonInspired es una red de transferencia de conocimiento
orientada a la aplicación de materiales de alto valor añadido
basados en nanopartículas carbonosas, con especial interés
en los sectores de automoción y construcción.
Programa
09:00-09:15
REGISTRO
09:15-09:30
Apertura & bienvenida
Raquel Nieto
Resp. de Comunicación y Capitalización - STC SUDOE
09:30-10:00
CarbonInspired: red de transferencia de conocimiento en
nanomateriales
Alberto Tielas
Responsable del Grupo I+D New Materials - CTAG
10:00-10:30
Nanoestructuras de Carbono: logros & retos
Miren Blanco
Investigadora - IK4-TEKNIKER
10:30-11:00
Orientado a investigadores, emprendedores, ingenieros, directores
técnicos, directores de proyecto, responsables de producto,
gerentes y profesionales de cualquier sector industrial.
Nanopartículas en el sector de automoción
Mario Ordóñez
Responsable de la Ud. Materiales - MAIER
11:00-11:30
PAUSA CAFÉ
La inscripción es gratuita. Solo tiene que seguir dos pasos:
11:30-12:00
Sectores de Automoción y Construcción: papel presente y
futuro de los composites nanocarbonosos
Olivia Menes
Investigadora - AIMPLAS
12:00-12:30
Diseño y desarrollo de nuevos nanocomposites de carbono
por fuerzas electrohidrodinámicas para aplicaciones en el
sector aeroespacial
Pablo Ballorca
Ingeniero de I+D - YFLOW
12:30-13:00
Comercializando nanotubos de carbono
Alexander Korzhenko
Ingeniero de I+D en el Dpto. NTC - ARKEMA
13:00-13:30
Nanofibras de plata para tintas conductoras y adhesivos
flexibles conductores
Carlos Vázquez
Co-fundador de NANOGAP - Profesor en la Universidad de
Santiago de Compostela
13:30-14:30
PAUSA COMIDA
14:30 15:00
Compounding industrial de elastomeros y nanocargas
Maxime Charman
Director de I+D - EMAC
15:00-15:30
Aspectos de seguridad: ¿cuál es la realidad de las
nanotecnologías?
Marilys Blanchy
Ingeniera de I+D - Asociación ADERA / RESCOLL
15:30-16:00
Films de Nanodiamante: carbono para aplicaciones
tribológicas
Victor Neto
Investigador - Universidad de Aveiro
16:00-16:30
Nanomateriales en la industria de la construcción
José Vera-Agullo
Resp. Grupo de Materiales Tradicionales - ACCIONA
16:30-17:00
Ruegos y preguntas. Clausura de la jornada
El principal objetivo de la red CarbonInspired es transferir el
conocimiento existente a las empresas, permiténdoles
transformar este conocimiento en valor real dentro del
mercado.
Participe en este workshop gratuita y aproveche la
oportunidad para compartir conocimientos y experiencias,
conocer posibles socios e intercambiar información de
interés.
Inscripción
1. Registro en la platforma virtual www.carboninspired.com para
obtener su código de usuario y contraseña.
2. Cumplimentar el formulario adjunto y enviarlo por e-mail a la
siguiente dirección: [email protected]. Por favor, un
formulario por asistente.
Plazo máximo de registro: martes 13 de noviembre de 2012
Aforo limitado. Plazas asignadas por orden de solicitud.
El registro en la plataforma virtual es imprescindible
Lugar de celebración
Hotel Santo Domingo Mercure
C/ San Bernardo 1
28013 - Madrid
GPS: N40º 25' 14.13'' W03º 42' 30.15''
Sponsors
www.carboninspired.com
9 COMPOUNDING INDUSTRIAL DE ELASTÓMEROS Y NANOCARGAS MAXIME CHARMAN DIRECTOR I+D EMAC Industrial compounding of elastomers with
nanofillers
M. Charman
EMAC élastomères industriels, Mauléon (64)
CarbonInspired International Workshop « Application of Nanomaterials in Industry »
Madrid, November 21st 2012
1
EMAC introduction
•
•
•
Set up in 1950
Staff : 70
Turnover 2011 : 12.5 M €
•
•
French Leader for technical rubber and polymer compounds 6000 tons produced in 2011 :
– 4000 tons of black compounds
– 2000 tons of coloured compounds
CarbonInspired International Workshop Madrid, November 21st 2012
2
The elastomers compounded
• NR / SBR
• EPDM
• CR > NBR/IIR
• « Special » elastomers
(ACM, ECO, FKM, HNBR,CSM…) Special
Elast om er s
13%
IIR
4%
NBR
4%
NR
27%
CR 9%
SBR
16%
EPDM
27%
CarbonInspired International Workshop Madrid, November 21st 2012
3
Markets
Aeronautics
5%
Adhesives
5%
Wires
5%
Extruders
8%
Automotive
49%
Moulding
10%
Railways
8%
Building
10%
CarbonInspired International Workshop Madrid, November 21st 2012
4
Emac in the nanoworld
First trials
EMAC/Arkema
2005
2006
Industrial mixer
securisation
Start of PhD thesis
between EMAC / UPPA
2007
2008
2009
2010
2011
Lab mixer
securisation
First industrial
trials with CNTs
2013
2012
End of Nacomat
Project
Start of Nacomat
Project
End of PhD thesis between
EMAC / UPPA
CarbonInspired International Workshop Madrid, November 21st 2012
5
Agenda
1.HSE issue
2.CNT EPDM formulation
3.Rubber‐Nanoclays formulation
4.Conclusions
CarbonInspired International Workshop Madrid, November 21st 2012
6
HSE issue
CarbonInspired International Workshop Madrid, November 21st 2012
7
Mixing securisation
Main potential expositions : inhalation, ingestion, eye and skin contacts.
INRS1 recommandations :
•Isolate and mechanize the process ;
•Work with continous process and use of masterbatches ;
•Avoid weighing and transfering of powder form;
•Capture locally the free powder nanofiller residue ;
•Filter the polluted air :
HEPA filter (quality > H13)
•Wear a personal protective equipment : FFP3 mask, gloves, glasses, Dust‐proof clothes (type 5)
•Clean the work environment ;
•Collect and treat the waste ;
HEPA filter
•Train and inform the exposed workers.
CarbonInspired International Workshop Madrid, November 21st 2012
1
M. Ricaud, et al., ND 2286, INRS, (2008)
8
Mixing securisation
Lab mixer (1,5 L)
Using of CNTs pre‐weighed bags from
Arkema
Ventilation by air extraction and filtration (HEPA H14 filters)
Using of PPE
Industrial mixer (17 L)
CarbonInspired International Workshop Madrid, November 21st 2012
9
CNT EPDM formulation
CarbonInspired International Workshop Madrid, November 21st 2012
10
CNT
Physical structure : ‐ High aspect ratio (L/D = 1000)
‐ Very good electrical1 and mechanical2 properties 1 Hamada, N. et al., 2
Phys. Rev. Lett. 1992; 68:1579‐1581
Treacy, M.M.J. et al., Nature 1996; 381 : 678‐680
Potential Applications in Rubber domain: ‐ Electrostatic charge dissipation (ESD)
‐ Wire and automotive industries
Many problems ‐ Difficulties to obtain a good dispersion of CNTs in polymer matrixes 3 techniques :
‐ Solvent mixing ‐ “In‐situ” polymerization
‐ Melt mixing
‐ Lack of affinity between CNTs and various polymers Æ Functionalization
3 techniques : ‐ Chemical modification of CNTs surface3
‐ Polymer grafting onto CNTs surface4
‐ Polymer adsorption5
3 Courbaron , AC, et al. Adv. Mat. Res. 2010;112:29‐36
4 Datsyuk, V. et al. Carbon
5
2005; 43:873‐76
Bhattacharyya, A.R. et al. Chem. Phys. Lett. 2004; 392, 28–33
CarbonInspired International Workshop Madrid, November 21st 2012
11
Improvement of the filler‐matrix affinity
Copolymer adsorption onto CNTs surface by melt mixing S. Peeterbroeck et al. Comp. Sci. Tech. 2007; 67 :1659–1665
Better CNTs
dispersion when the matrix polarity is improved
EVA (12%VA, MFI=0.5g/10min) +3%NTC
EVA (19%VA, MFI=0.65g/10min) +3%NTC
EVA (27%VA, MFI=3g/10min) +3%NTC
PVac (100%VA, 3%NTC
Hypothesis
EPM
EVA
‐ Association between EPM and EVA being very current in the rubber industry
‐ Affinity between CNTs and EVA and between EPM and EVA
VA
CarbonInspired International Workshop Madrid, November 21st 2012
E
EPM
12
Rheological properties
Influence of the matrix viscosity on the CNTs dispersion (1wt%)
Master curves at Tref=120°C (100‐120‐140‐160)
dmax = 40 à 50 µm dmax = 15 à 20 µm More important increase in viscosity and non‐newtonian behavior for EPM 2 Æ Better dispersion of CNTs
Correlation between dispersion and rheological behavior
CarbonInspired International Workshop Madrid, November 21st 2012
13
Electrical properties
Electrical conductivity vs CNT wt% for EPM2/EVA
Electrical conductivity is modeled with a power law equation for φ>φc: σ ∝ (φ − φc )t
φc : percolation threshold concentration
φc = 2,93wt%
t = 2,20
1D. Stauffer, Introduction to percolation theory, Taylor & Francis, London (1985)
CarbonInspired International Workshop Madrid, November 21st 2012
14
Rheological properties
Mooney Viscosimeter MV2000
100°C – 4 min – 1s‐1
Viscosity level is too important = impossibility to process this blend
Important increase of the viscosity by addition of CNTs and conductive carbon black
The viscosity remains constant when CNTs
come from Master Batches
The effect of CNTs on the viscosity level was cancelled by EPM‐EVA phase
CarbonInspired International Workshop Madrid, November 21st 2012
15
Rheological properties
RDA2 Rheometer
‐60 à 120°C – 2°C/min – 1rad/s Better reinforcement with CNT than conductive carbon black
Better reinforcement with an association of conductive carbon black and CNTs
Synergistic effect between the fillers1,2
1Bokobza, L. et al., J. Polym. Sci.: Part B: Polym. Phys., 46, 1939‐1951, (2008)
2Yan, N. et al., Plast. Rubb. Comp., 38, 290‐296, (2009)
CarbonInspired International Workshop Madrid, November 21st 2012
16
Electrical Properties
Keithley 6430 Surface conductivity on film (thickness = 200µm)
Low increase of electrical conductivity for blends which associate fillers
Low interactions between fillers
No synergistic effect on electrical properties
Results in contradiction with the literature1 for rubbers obtain by solvent mixing
1Bokobza, L. et al., J. Polym. Sci.: Part B: Polym. Phys., 46, 1939‐1951, (2008)
CarbonInspired International Workshop Madrid, November 21st 2012
17
Rubber‐Nanoclays formulation
CarbonInspired International Workshop Madrid, November 21st 2012
18
Nanoclays
The nanoclays more used belong to the phyllosilicates familly.
Hydrophilic material Æ chemical treatment (organo modification)
Montmorillonite
Fibrous clays
China Clay
Hydrated sodium calcium aluminium magnesium silicate hydroxide
Formula : (Na,Ca)0,3(Al,Mg)2Si4O10(OH)2∙nH2O
Sepiolite : hydrated magnesium
natural silicate
Hydrated aluminium silicate
Formula : Al2Si2O5(OH)4
Formula : Mg4Si6O15(OH)2 6(H2O)
Application fields : Fire resistance, gas permeability
CarbonInspired International Workshop Madrid, November 21st 2012
19
Nanoclays in EPDM Dispersion limited over 15 phr with twin‐screw extruder Æ LCPO laboratory
¾ Using of organo‐modified nanoclays (Pangel B20®)
¾ Better dispersion after encapsulation by PE‐g‐MAH (Orevac®) or EVA‐g‐MAH (Fusabond®)
1μ
100nm
20nm
CarbonInspired International Workshop Madrid, November 21st 2012
20
Encapsulation of nanoclays in Fusabond (50/50)
Ko‐Buss kneader (100°C, 110tr/min, 30 ‐ 40s‐1). Kneader pins
Single‐screw extruder at low shear rate
Distributive and dispersive mixing through the screw
CarbonInspired International Workshop Madrid, November 21st 2012
21
Formulation of nanoclay MB
Twin‐screw
encapsulation (LCPO)
Ko‐Buss kneader
encapsulation
(EMAC)
Dispersion state and mechanical properties equivalent (10 phr of MB)
Strain at break : 2.4 MPa vs 2.5 Mpa
Elongation at break : 257% vs 253%
Young modulus : 2.7 MPa vs 2.6 MPa
A trial has been done up to 27,5 phr of Sepiolite (55 phr of MB)
CarbonInspired International Workshop Madrid, November 21st 2012
22
Comparison between CNT / Nanoclay / silica
Final SPS application : improve ablation resistance (EPDM material)
3 compounds are compared: ‐Silica
‐ CNT
‐ Nanoclay
allumeur
structure
PTI
Chargement
Tuyère
Results (torch fire) :
v(ablation mm/s) = f(density)
Butée
Divergent
Nanoclay (B20, 27,5 phr) : decrease of density (8%) compared to silica
for the same level of ablation speed. Good level of dispersion.
CNT (pure) : decrease of density (16%) compared to silica for the same ablation speed. Bad level of dispersion.
CarbonInspired International Workshop Madrid, November 21st 2012
23
Nanoclays in NBR
Gaz Permeability for seal applications
Introduction in the blends :‐ natural montmorillonite
‐ organo‐modified talc
‐ organo‐modified montmorillonite
Increase of imperméability by 25% with organo‐modified nanoclays
ESD coloured rubber
Introduction in the blends : ‐ SiO2 functionalized nanoparticles
‐ ester of polyethylene glycol modified with nanoparticles
Resistivity = 2.106 Ω/m
CarbonInspired International Workshop Madrid, November 21st 2012
24
Conclusion
HSE has to be considered as a priority before any industrial nanofiller compounding.
Typical rubber techniques are applicable to disperse nanofillers if an encapsulation is prior considered. CNT composite has shown really interesting conductivity properties.
Nanoclay seems a potential candidate for ablation application but must be tried at a higher level to assess any better properties.
CNT is also an option to consider for ablation resistance because shows a significant weight advantage despite the bad level of dispersion. Nanoclay seems a potential candidate for improve gas impermeability of for rubber seal applications
CarbonInspired International Workshop Madrid, November 21st 2012
25
Perspective
Colaborative R&D project on nanomaterials
NAWHICEL
Development of elastomers compounds filled with cellulose nanofibers or nanowhiskers
Potential markets : Automobile and transport, adhesive, …
PENELOPE
Development of elastomers filled with nanoclays
Æ Improvement of fluid and gas permeability
Potential markets : Pomp seal
CarbonInspired International Workshop Madrid, November 21st 2012
26
Thanks for your attention
CarbonInspired International Workshop Madrid, November 21st 2012
27
10 ASPECTOS DE SEGURIDAD: ¿CUÁL ES LA REALIDAD DE LAS NANOTECNOLOGÍAS? MARILYS BLANCHY INGENIERA I+D ADERA / RESCOLL ƒ Nanotechnologies : What the
reality of safety issue?
Marilys Blanchy- ADERA
International Workshop, Madrid 21st of September
Index
ƒ Some european definition and regulations
ƒ Safety Risk presented by nanotechonologies
ƒ Management of the risk
ƒ Environmental issue
Nanomaterials : an European definition
Definition of nanomaterial from the European Commission :
“Nanomaterial means a natural, incidental or manufactured
material containing particles, in an unbound state or as aggregate
or as an agglomerate and where, for 50% or more of the particles
in the number size distribution, one or more external dimensions
is in the size range 1nm-100nm”.
This definition does not take into account toxicity and
reactivity of the materials
Nanomaterials : an European definition
Nanotechnologies : an European definition
Two standard ISO for nanomaterials
ISO/TS 27687 : 2008 : Nanotechnologies – Terminology
and definition of nano-objects –
Nanoparticles, nanofibers and nanoplates.
ISO/TR 13121: 2011
(October 2011) gives a guideline for the assessment of risks
associated to nanomaterials.
REACH
So far nanoparticles and nanomaterials were not included into
REACH Regulation. This is going to be revised to include
nanomaterials
Nanomaterials still need more general framework rules : depending
on their chemistry, size, shape, adequat low limit of exposure…
Occupational exposure
One of the main fields involved in nanotechnologies in
Europe is the automotive field with more than 40% of SMEs
in Europe
More 1200 SMEs are involved in developing nanotechnologies
Today more than 400 consumers product include
nanoparticles
Occupational exposure
ƒ Some example of activities including nanotechnology
ƒ Construction –
For the improvment of wear resistance, rigidity, more
efficient insulation materials
ƒ Health Care –
engineering,…
New drug and active agent, drug delivery system, tissue
ƒ Energy conversion and use
– Increasing efficiency of energy
conversionand low wastage storage of energy
ƒ Automobile and aerospace industry – Reinforced and stronger
material, sensors
ƒ Chemical industry
ƒ Electronics and communication –
components
Occupational exposure
optical and optoelectronic
Occupational exposure
ƒ It exists several pathways to be exposed to materials
in general
ƒ Inhalation
ƒ Cutaneous contact
ƒ Ingestion
ƒ And several methods to evaluate the potential impact
on the organism
Occupational exposure
ƒ Inhalation
ƒ The main risk of exposure
Nanoparticles are
difficult to eliminate
from the organism
Today there is no low limit of
observable effect
Capacity to reach deap
respiratory area
Occupational exposure
ƒCutaneous contact
ƒ Dermal contact
ƒ Eye contact
ƒIngestion
ƒ If rules of good pratice implemented Æ low risk of
exposure
The issue with nanoparticle is its possible reactivity
compared to the same particles at a larger scale
Occupational exposure
ƒ There are 4 differents methods to evaluate health effect of
a material
ƒ Epidemiology/occupational studies
No studies had been carried on for carbon nanoparticles yet
ƒ In Vivo studies on animals
Inhalation exposure is the main concern
Question about the extrapolation of the route of exposure and the
relationship between animals and humans
However dose dependance, accumulated dose have to be
considered
ƒ In vitro studies on cells
In vitro study allow to study inflamatory, cytotoxicty, gentoxicity
However a better model to predict real effect on human body need to be
validated
Occupational exposure
ƒ Physico-chemical properties
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Size
Shape
Porosity
Chemical composition
Reactivity
Solubility, aggregat statut
Means of detection are limited and still on development
ƒ They are based on measuring :
ƒ Size
ƒ Number
ƒ Specific surface
Occupational exposure
ƒ Why assessing risk exposure to nanomaterials ?
ƒ Because some nanoparticles show some potential toxicity to
human being
ƒ Because of the lack of knowledge about the toxicity and the
impact on health and environment of nanomaterials
Workplace exposure management
In the absence of specific regulations of nanoparticles and in
view of the potential toxicity of nanomaterials it is important
to avoid any risk of exposure.
ƒ
Several steps of the risk assessement can be conducted :
ƒ Collecting information
ƒ Characterization of scenariis of exposure
ƒ Characterization of risk
ƒ Plan for Management of risk
ƒ Evaluation of the plan
Workplace exposure management
ƒ
Collecting information
ƒ
ƒ
Characterization of scenariis of exposure
ƒ
ƒ
Characterizing nanotechnology and nanoparticles
properties
Characterizing workplace, equipment, quantity of
materials, level of exposure
Characterization of risk
ƒ
ƒ
ƒ
Identification of every steps of the process
Identification of potential risk
Evaluating potential risk and its gravity
Workplace exposure management
ƒ
Plan for Risk Management
ƒ
Substitution :
ƒ
ƒ
ƒ
Avoid using volatil material,
if possible use of masterbatch
Technical Measure :
ƒ
ƒ
ƒ
ƒ
Confinment of the place of work and/or
Confinment of the equipment
Control quantity in and out ,
Air extraction (local and general ) with High performance
filter (HEPA 14) as closest as possible from the source
Workplace exposure management
ƒ
ƒ
Organisational Measure :
ƒ
ƒ
General information : proper training of workers
General procedure : cleaning of the equipment, generak rules to
ƒ
Access to the workplace
respect,
Individual Protection : Choose the appropriate equipment for
the individual protection
ƒ
Proper Mask following the lenght of exposure and the toxictyof
the particles – Type FFP3 or P3 filter for short exposure. Autonomous
ƒ
ƒ
ƒ
Gloves (doubles pairs if necessary)
Safe glass ware
Protection clothes of at least class 5 ( EN ISO 13982)
apparatus in case of longer operation
Workplace exposure management
ƒ End of production cycle
ƒ Cleaning : Equipement, machine and laboratories should be
cleaned with vaccum cleaner equipped with a high efficiency filter
ƒ Transfer
ƒ Storage
ƒ Disposal
Waste and not used material should be well
labelled and keep in a ventilated closed
area
Waste should be considered as dangerous
substance and treated like this
Environmental exposure
Environmental exposure
ƒ Three main way of environmental exposure
ƒRejection in water
Several factors impact the release and its importance of
nanoparticles into air
ƒ Solubility in water
ƒ Reactivity of nanoparticles in a chemical environment
ƒ Interaction with some biologic processus
ƒRejection in air
Several factor affect the release of nanoparticle in air
ƒTime during which particles remain airborne
ƒInteraction with other particles
ƒDistance particles can travel in air
ƒRejection in ground
Environmental exposure
ƒ Rejection in ground
Depend on the physical and chemical properties of
nanoparticles
ƒ Mobility of particles into the ground
ƒ Reactivity with the media
ƒ Properties o the ground (porosity, size of the grain,
electrical charge)
ƒ Disposal of nanoparticle
Today there is no specific regulation for nanomaterial
A general rule is to consider nanoparticle as a dangerous substance and treat like it is
ƒ Thank you for your attention !
11 FILMS DE NANODIAMANTE: CARBONO PARA APLICACIONES TRIBOLÓGICAS VICTOR NETO INVESTIGADOR UNIVERSIDAD DE AVEIRO Nanodiamond films:
carbon for tribological applications
Victor Neto
Universidade de Aveiro
Universidade de Aveiro
ƒ 16 Departments
4 Polytechnical schools
(Environment and Planning; Biology; Materials and
Ceramic Engineering; Economics, Management and
Industrial Engineering; Mathematics; Social,
Political and Territorial Sciences; Physics;
Chemistry; Geosciences; Education; Communication
and Art; Mechanical Engineering; Civil Engineering;
Languages and Cultures; Electronics,
Telecommunications and Informatics; Health
sciences)
ƒ 4 Associated Laboratories a 12
Research Units
ƒ About 15000 students
ƒ More than 1000 employees
(Professors, researchers, Staff)
Department of Mechanical Engineering
ƒ People
ƒ Teaching
people:
ƒ PhD: 29
ƒ No PhD: 6
ƒ Researchers: 73
ƒ Secretariat and
technicians: 7
Department of Mechanical Engineering
Graduation and Post-graduation Teaching
ƒ Integrated Master
(1st and 2nd cycle)
ƒ Mechanical Engineering
ƒ Masters (MSc) - 2nd cycle
ƒ Industrial Automation
Engineering
ƒ Sustainable Energy Systems
ƒ Product Design and Engineering
Graduation and Post-graduation Teaching
ƒ Adv. Specialisation
Programme
ƒ Energy Efficiency and Renewable
Energies
ƒ Doctoral Programme
ƒ Mechanical Engineering
ƒ Energy Systems and Climate
Change
ƒ Nanosciences and Nanotechnology
Research, Development and Innovation
ƒ Research Unit
TEMA - Centre for Mechanical Technology and
Automation
ƒAdvanced Mechanical Engineering and Fracture
Mechanics Group (GAME)
ƒApplied Energy Group (AE)
ƒBiomechanics Research Group (GIBUA)
ƒNanotechnology Research Group (NRD)
ƒR&D Group on Transportation Technology (TT)
ƒSimulation Software Research and Development
Group (GRIDS)
Cooperation with industry
DIAMOND COATINGS
Chronology of diamond utilization
Date
340 BC
1000s
1400s
1500s
1600s
1700s
1800s
Event
Aristotle describes the use of diamond tipped drills in Greece.
Pliny describes the use of diamond splinters in handles of iron to
form an engraving tool in Italy.
Reports describe the use of a diamond engraving tool called jade
cutter knife in China.
Crushed diamond powder used for polishing diamond.
Leonardo da Vinci reports the use of diamond tools for glass cutting.
Report on the first diamond drilling tool.
Ramsden reports the first single diamond turning tool for application
in metal working.
Smith-Tennant reports diamond to be composed solely of carbon.
Diamond grinding wheels are being used by Pritchard in England to
shape lenses.
France grants a patent for a diamond core drill for use in the French
stone industry.
Use of diamond as a wire drawing die.
Diamond drills for dentistry are introduced in the USA by Desau.
Chronology of diamond utilization
Date
1900s
Event
Wheel for glass grinding developed by Carl Zeiss Jena.
First description of grinding tungsten carbide with diamond.
First successful diamond synthesis via High Pressure, High
Temperature by ASEA, Sweden (February 16th, 1953).
Shockwave sintering of diamond reported.
Natural diamond used as heat spreaders for semiconductors.
First large synthetic diamond crystals grown up to 0.25 cts in weight.
Polycrystalline diamond launched commercially.
Growth of diamond crystals via low pressure CVD on non-diamond
substrates announced in the Soviet Union.
2000s
Sales by volume of synthetic diamond products exceeds natural
diamond for the first time.
Development of high quality single crystal CVD diamond for
electronic applications.
Polycrystalline CVD diamond dome used as tweeter in loudspeaker
application.
© Diamond At Work
Spears, K.E. and J.P. Dismukes, eds. Synthetic
diamond: emerging CVD science and technology. The
Electrochemical Society. 1994, Wiley Inter-Science: New
York. 688.
Use of diamond in insdustry
Diamond properties
Property
Comments
Vicker’s hardness
(kgmm−2)
12000-15000
As hard as bulk
diamond
Possible application
Friction coefficient
~0,1 (in air)
Depends on the
grain size
Young’s modulus
(Nm−2)
1.2 × 1012
Twice the value of
alumina, high
mechanical strength
Stiff membrane for
lithography masks,
tweeter
components,
micromechanical
oscillators
Sound propagation
velocity (km s−1)
18.2
1.6× the value of
alumina
SAW filters
Property
Comments
Possible application
Chemical inertness
Inert
At room
temperature
resistant to all acids
bases and solvents
Coating for reactor
vessels, diamond
containers, diamond
electrodes
Range of high
transmittance (μm)
0.22–0.25 and >6
In the IR orders of
magnitude lower
than other
materials;
Refractive index
2.41
1.6× the value of
silica
UV–VIS–IR windows
and coatings,
microwave
windows, optical
filters, optical wave
guides
Band gap (eV)
5.47
1.1 for Si; 1.43 for
GaAs; 3 for B-SiC
Electron/hole
mobility
(cm2 V−1s−1)
2400/2100
1500/600 for Si
8500/400 for GaAs
Dielectric constant
5.5
11 for Si 12.5 for
GaAs
Drill bits, polishing
materials, cutting
tools, sintered or
brazed diamond
compacts, wear
resistant coatings
on windows and
molds and bearing
under vacuum
Gracio et al, J. Phys. D: Appl. Phys. 43 (2010) 374017
CVD diamond films
High power
electronics,
high frequency
devices,
high temperature
devices,
solid-state detectors
Gracio et al, J. Phys. D: Appl. Phys. 43 (2010) 374017
CVD diamond films
Property
Comments
Possible application
Thermal
conductivity
(W cm−1 K−1)
20
∼4× the value of
Cu or Ag
Heat sinks for
electronic devices,
heat spreading films
on RF devices, laser
packages
Thermal expansion
coefficient (K−1)
0.8 × 10−6
At room
temperature close
to silica value of
0.57 × 10−6
Thermal stable
substrates, e.g. for
x-ray lithography
masks
Work function
Negative
The vacuum level
lies below the
conduction band
Light emitters,
displays
CVD diamond growth
ƒ Typical
polycrystalline
diamond growth
by CVD
ƒ Temprature
700 – 1000 ºC
ƒ Pressure
30 Torr (~4000 Pa)
ƒ Gas precursors
CH4 0.5 – 2%
H2 balanced
Gracio et al, J. Phys. D: Appl. Phys. 43 (2010) 374017
CVD diamond films
CVD diamond growth
CVD diamond growth
Hot Filament CVD systems
Main advantage: easily scalable
Main disadvantage: low growth rate
CVD diamond growth
Microwave-plasma CVD
Main advantage: high growth rate; purity of film.
Main disadvantage: Low area deposition.
Combustion-flame-assisted CVD
Main advantage: Large area deposition.
Main disadvantage: Very poor purity.
Other CVD systems: DC-plasma, RF-plasma, etc.
Controlling the film characteristics
ƒ Film characteristics
can be tuned:
ƒ
ƒ
ƒ
ƒ
ƒ
Film thickness
Crystal size
Crystal orientation
Surface roughness
…
ƒ By controlling the
deposition conditions
ƒ Deposition time
ƒ Gas mixture
composition
ƒ Substrate
temperature
ƒ Reactor pressure
ƒ …
Controlling the film characteristics
Deposition time
Raman spectroscopy
Controlling the film characteristics
Gas composition: CH4 concentration
CH4/H2: 1%
2%
3%
4%
Controlling the film characteristics
Gas composition: Addition of Ar
Argon (Ar): 0%
50%
Crystals size: 1,5 μm
Ra:
70,0 nm
Rms:
85,6 nm
100nm
17,6 nm
22,0 nm
90%
<10nm
11,1 nm
14,1 nm
May et al., Diamond & Related Materials 15 (2006) 345
Controlling the film characteristics
Gas composition
DIAMOND COATINGS @ TEMA
Diamond Coatings @ TEMA
First research paper
ƒ Since 2001
Main research topics
ƒ Development and application of diamond coatings
onto cutting tools to machine electrodes for mold
industry
Performance
(Coated WC-Co bits for the tooling of EDM graphite
electrodes and/or aluminum alloys)
CVD Diamond
coated tools
Commercial
PCD inserts
Main research topics
ƒ Diamond coating of injection molding tools for the
production of polymeric micro-components
Micro-injection
molding
machine
Injection
molding
tools
Molding insert
Polymeric
micro-component
Main research topics
ƒ Diamond coating of injection molding tools for the
production of polymeric micro-components
Coated
Polymer
flow
Dimensional
stability
- Polymer part surface depend strongly on the diamond crystal size.
Not coated
Part number
Not coated
Coated
Work still in progress!
Main research topics
ƒ Nanodiamond coated mechanical seals
(Mechanical seals are used in rotary equipment,
pumps, agitators, compressors)
Work still in progress!
Material: Wc-Ni
Dimensions: Øe = 30 mm / Øi = 18 mm
Main research topics
ƒ Nanodiamond coated Bragg gratings for sensing
applications
a) Uncoated optical fiber; b) Diamond coated FBG (D-FBG); c) D-RFBG.
Work still in progress!
OTHER CARBON RELATED
RESEARCH @ TEMA
Other carbon related research @ TEMA
ƒ Nanocomposite of graphene-zeolite with nickel for
hydrogen storage;
ƒ Polymer reinforcement with carbon nanotubes for
biomechanical applications;
ƒ Shape memory polymers reinforced with carbon
nanotubes;
ƒ Thermal properties of carbon nanotubes in a fluidic
medium;
ƒ Large-Area epitaxial growth of graphene thin films by
CVD for micro-electronics;
ƒ Graphene based nanocomposites as probes for
biodetection by SERS;
ƒ …
Thank you
ƒ Victor Neto
e-mail: [email protected]
MSN ID: [email protected]
Skype ID: vfsneto
Linkedin: linkedin.com/in/victorneto
12 NANOMATERIALES EN LA INDUSTRIA DE CONSTRUCCIÓN JOSÉ VERA‐AGULLO RESP. GRUPO MATERIALES TRADICIONALES ACCIONA INFRAESTRUCTURAS Acciona R&D: On vanguard of sustainable development.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
BUSINESS MAIN LINES
Urban and Environmental
Services
Infraestructures
Facility Management
Construction
Hospital Services
Engineering
Waste Treatment
Concesions
Logistics and
Transport
Real State
Airports
Heritage
Transmediterránea & Others
Promotion
Water
Energy
Treatment
Reverse Osmosis Desalination
Eolic
Other Businesses
Other renewables
Bestinver
Hijos de Antonio Barceló
GPD
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
OUR INTERNATIONAL PRESENCE
Canada
Poland
U.S.A.
Italy
India
Mexico
Chile
U.A.E.
Brazil
Australia
Infraestructures
Real State
Energy
Water
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
INNOVATIVE ACTIVITY. ORGANIZATION STRUCTURE
INFRAESTRUCTURES
REAL STATE
LOGISTICS
Technological Center
MADRID
URBAN SERVICES
WATER
Technological Center
BARCELONA
ENERGY
Technological Center
PAMPLONA
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
INVESTMENT EFFORT
R&D Project Investment
R&D Investment Distribution
WATER
ENERGY
INFRAESTRUCTURES
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
IMPROVEMENT HUMAN R&D STAFF
R&D Employees
R&D Percentages
EMPLOYEES
WATER
ENERGY
INFRAESTRUCTURES
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
Nanomaterials in the construction industry
International Workshop: Application of Nanomaterials in Industry
Jose Vera-Agullo, PhD, Head of the Traditionals Materials Group
[email protected]
Madrid 21/11/2012
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
INDEX
NANOTECHNOLOGY IMPLEMENTATION IN ACCIONA:
¾ PHOTOCATALYTIC
BUILDINGS
AND TO THE
NANOTECHNOLOGY
APPLIED
INFRASTRUCTURE:
CONSTRUCTION SECTOR
-
Photocatalytic Island. R&D facilities building
University Carlos III, Getafe
Bus station, Ávila
Pavement of two city-center streets,
Madrid
¾NANOSÍLICA
- Dome of liquified gas tank, Cartagena
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
NANOTECHNOLOGY APPLIED TO THE
CONSTRUCTION SECTOR
PHOTOCATALYTIC BUILDINGS AND
INFRASTRUCTURE
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
OBJECTIVE
To confer to the construction materials new added value functionalities: selfcleaning, air depollution and biocide effects.
The final applications could be: façades, pavements (asphalt or precast
bricks), concrete urban furniture, network of sanitary and storm drains,
hospitals, etc.
NEEDS
To reduce the final cost of the photocatalytic materials. To increase their activity.
We have developed our own additive with an improved performance with respect
to the commercial available products.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
PHOTOCATALYTIC BUILDINGS AND
INFRASTRUCTURE
Photocatalytic Island. R&D
facilities building
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 1/4: Photocatalytic island. R&D Building
PHOTOCATALYTIC PAVING STONE
Double layer paving stone. Upper
side with photocatalytic additive.
1cm
7cm
MONOLAYER MORTAR
ASPHALT PAVIMENT WITH PHOTOCATALYTIC SLURRY
Conventional
Monolayer mortar
Monolayer mortar
With photocatalytic
additive
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 1/4: Photocatalytic island. R&D Building
PRODUCTION OF BRICKS
Liquid
additive
Solid additive
PHOTOCATALYTIC
PAVING STONE
INSTALLATION OF 250 m2 of BRICKS
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 1/4: Photocatalytic island. R&D Building
450 m2 of ASPHALT
PAVIMENT WITH
PHOTOCATALYTIC SLURRY
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
PHOTOCATALYTIC BUILDINGS AND
INFRASTRUCTURE
University Carlos III, Getafe
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 2/4: Carlos III University Campus
1 h.
10 h. 12 h.
Without
additive
With
additive
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
24 h.
>2000 h.
REAL IMPLEMENTATION 2/4: Carlos III University Campus
PRODUCTION of 7,5
KM of FAÇADE
PANELS
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
PHOTOCATALYTIC BUILDINGS AND
INFRASTRUCTURE
Bus station, Ávila
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 3/4: Bus station concrete slab, Ávila
2000 m2 of PHOTOCATALITIC
SLAB
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 3/4: Bus station concrete slab, Ávila
EXECUTION OF THE
ADDITIVATED CONCRETE
FOR THE SLAB
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
PHOTOCATALYTIC BUILDINGS AND
INFRASTRUCTURE
Pavement of two city-center
streets, Madrid
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 4/4: Pavement of two city-center streets, Madrid
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
REAL IMPLEMENTATION 4/4: Pavement of two city-center streets, Madrid
• Análisis descontaminación NOx en probetas-testigo de implantación ejecutada en
obra ayuntamiento de Madrid.
• Aditivo descontaminante percolado sobre mezcla
asfáltica M10.
• Eliminación de 60% de Dióxido de Nitrógeno en
pruebas realizadas en laboratorio certificado UPVCSIC.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
NANOTECHNOLOGY APPLIED TO THE
CONSTRUCTION SECTOR
EFFECTS OF NANOSILICA IN
CONCRETE
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
CONCRETES WITH NANOSILICA Î ADDED VALUE Î SOLUTIONS
NANO-SILICA
High purity spherical particles, with an ideal size distribution. Applied to the
mixture in the propper proportion conferes to the mix improved rheological
and mechanical properties.
–
TEM micrograph (TEM) of nanosilica (scale bar: 100 nm). Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
•
Effect in concrete
– Chemical effect: more CSH gel production. Puzzolanic effect.
Portlandite Ca(OH)2
Gel C‐S‐H
Nanosílice
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
– Hydratation rate increase, tested by Termogravimery analysis.
Cement paste specimens
TGA equipment
Thermogravimetric Analysis
7 days
28 days
Samples
Reference
NS
Nano Silica Content, %
0%
1%
70
82
76
91
% hydrated cement
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
Physical effect:
– Increase the size of the chains of silicates, refilling holes and increasing the mechanical properties of the mortar or concrete.
– This effect is greater at early ages due to the fact that the reaction is more energetic because there is more portlandite at the beginning.
Gel CSH Structure
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
– High Strenght concrete with less than 350Kg of cement per m3
Material with NS
Reference material
9 More homogeneous mixture
9 Increase the viscosity of the cement paste without losing workability
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
– Hight strength concrete: (> 50MPa)
– Same amount of cement as a conventional concrete.
– Use less than 1% of nanosilica.
• 50Mpa is obtained at 3 days.
• Cost reduction of around 1€/m3 related to conventional mixture.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
Finish of the specimens
Material with nanosilica
Reference material
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
NANOTECHNOLOGY APPLIED TO THE
CONSTRUCTION SECTOR
DOME OF A LIQUEFIED GAS TANK (Cartagena, Spain)
From small things to huge ones…
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
CONCRETE FOR THE DOME OF THE LIQUEFIED GAS TANK:
•
Problems – requirements for the Concrete for the Gas Tank Dome:
– Absence of shrinkage and cracks BUT high strength mechanical properties
(¿high cement content?).
– Sloping structure of 30°: Low consistency to avoid segregation and concrete
losses in the perimeter of the dome BUT good workability to fill the steel rebar.
– Good superficial finish.
•
Solutions proposed from ACCIONA R&D:
– To reduce the cement quantity to diminish the possible appearance of cracks due
to the plastic retraction.
– Use of nanosilica to compensate the minor quantity of cement, and to improve
the rheology and docility of the concrete with low consistency.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
•
Initial tests: ideal workability in the mock-up sloping structure.
Prototype.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
•
After 24h, there was analyzed the visual finish and the possible appearance
of cracks.
• Nanosilica improves the rheology of the low consistency concrete.
• No fissures.
• Good finish.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
•
Mechanical properties: test sample extraction of concrete:
9 With regard to the compression tests, porosity and determination of the depth of water penetration under pressure, they reach the general specifications of project.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
Liquefied gas tank
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
Inside the tank
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
CONCRETE FOR THE DOME OF THE LIQUEFIED GAS TANK:
•
Problems – requirements for the Concrete for the Gas Tank Dome:
– Absence of shrinkage and cracks BUT high strength mechanical properties
(¿high cement content?).
– Sloping structure of 30°: Low consistency to avoid segregation and
concrete losses in the perimeter of the dome BUT good workability to fill the
steel rebar.
– Good superficial finish.
•
Solutions obtained with the use of nanosilica:
–
–
–
–
–
–
Low consistency : 6cm with good rheology and workability at the same time.
Absence of cracks in the surface. Very low permeability.
High resistances. 25MPa in only 12 hours.
2 days: 40 Mpa - 7 days: 50 Mpa - 28 days: 60 Mpa
Cost reduction of 12% in materials.
Economical benefit due reduction in time in the construction site.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
CONCLUSIONS
• Construction sector is highly traditional and a low tech oriented sector.
• Internal investment in R&D is low to adapt the processes to the addition of
nanomaterials.
• There use to be low qualified workers manipulating the nano-based
materials. This fact could affect to their correct use/application increasing the
health and safety risks.
• Only large construction companies will reach the nanotechnology market
and adapt their proceses to manage it properly. R&D requires expensive
equipment and skilled people and SME can not invest, specially taking into
account that R&D is not very used in the construction sector.
•There are uncertainty with respect to health and safety risk of nanoproducts.
Lack of standarized methods to determine occupational health hazards.
• IT IS DESIRABLE TO SOLVE THE NANOTECH H&S ISSUES BEFORE
REACHING THE CONSTRUCTION SECTOR by means of using peletized
nanomaterials or nanomaterials dispersed in water instead of bulk
nanomaterials, etc.
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.
Nanomaterials in the construction industry
International Workshop: Application of Nanomaterials in Industry
Jose Vera-Agullo, PhD, Head of the Traditionals Materials Group
[email protected]
Madrid 21/11/2012
Centro Tecnológico de I+D+i
© 2012. ACCIONA Infraestructuras. I+D+i. Todos los derechos reservados.

Documentos relacionados