Catálogo Hispania

Transcripción

Catálogo Hispania
hispania solar
todo en fotovoltaica
Catálo go Genera l
2012
Índice
hispania solar
todo en fotovoltaica
• Paneles Solares y fijaciones
Pág. 3
• Reguladores
Pág. 12
• Electrónica de Potencia
Pág. 34
• Acumuladores estacionarios/baterías
Pág. 64
• Cuadros eléctricos modulares
Pág. 76
• Iluminación
Pág. 80
• Generadores eólicos y diésel
Pág. 98
• Kits solares
Pág. 112
• Dossier Práctico
Cuaderno final
www.hispaniasolar.es
Serie Prisma
Panel Fotovoltaico 12V
Características
Aptos para cargar baterías de 12V en sistemas aislados, aunque combinándolos entre ellos
se pueden utilizar también en instalaciones de 24V.
Todos los paneles tienen el certificado CE y cumplen la normativa EN 61000-6-1:2007/610006-3:2007 y la normativa de seguridad TÜV en caja de conexiones.
Además disponen de 10 años de garantía del producto; 10 años de garantía: 90% de Pmin;
25 años de garantía: 80% de Pmin.
10, 15, 25, 45 y 85W, 12V
SERIE PRISMA, 12V
Potencia máx (W)
Tamaño del módulo (mm)
Peso (Kg)
PRISMA P10/N PRISMA P15/N PRISMA P25/N PRISMA P45/N PRISMA M85/N
10
15
25
45
85
373x276x30
521x280x30
514x427x30
556x630x35
556x1.191x35
1,2
1,6
2,4
4
7
Voltaje @ Pmax (Vpm) V
17,6
17,6
17,6
17,28
17,28
Corriente @ Pmax (Ipm)
568mA
897mA
21,5
1,42A
2,61A
4,91A
21,5
21,5
21,60
21,60
600mA
944mA
1,5A
2,74
5,18
Circuito abierto (VOC) V
Cortocircuito (ISC)
Tolerancia potencia
Número de celdas por módulo
±3%
Juntas, conectores, cables
Coef. temperatura ISC (%)
JÜV
+0,1/ºC
Coef. temperatura VOC (%)
-0,38/ºC
-(90±5)mV/ºC
Coef. temperatura Pmax (%)
-0,47/ºC
-(0,5±0,05)/ºC
36
+(0,065±0,015)/ºC
Material frontal
Cristal templado de 3,2mm
Material marco
Aluminio anodizado
Temperatura normal de trabajo
Tecnología
Diodos by-pass
Garantía del producto
Garantía rendimiento eléctrico
47ºC ±2ºC
Silicio policristalino
Silicio monocristalino
1 unidad
10 años en materiales
10 años al 90% + 25 años al 80% en salida de potencia
3
Serie OPTITEC
Módulos de alta gama: 24V
Los módulos fotovoltaicos de la serie OPTITEC están ensamblados con células mono o policristalinas de
alta eficiencia diseñadas y fabricadas por los proveedores líderes del sector. El vidrio fotovoltaico texturizado
de alta transmisión óptica y de captación de luz difusa, así como el sistema de 3Bus Bar, proporcionan una
estética homogénea combinada con una amplia gama de potencias. Finalmente, el marco de aluminio
anodizado doblemente reforzado crea una estructura rígida para instalar el módulo en cualquier aplicación,
ya sea residencial o en grandes instalaciones sobre el suelo.
ELEVADA
EFICIENCIA
FULL BLACK
(opcional)
3 BUS BAR
RESISTENCIA
LLUVIA Y NIEVE
VIDRIO
TEXTURIZADO
CONDICIONES DE
BAJA RADIACIÓN
VIDRIO
PIRAMIDAL
(opcional)
60 CÉLULAS
1,20m
DE CABLE
10 AÑOS GARANTÍA
PRODUCTO
VIDRIO 4mm
RESISTENCIA MÁXIMA
DE CARGA 5.400Pa
Largo x ancho: 1.680x990mm
Peso: 22Kg
Vidrio Prismático
La estructura del vidrio solar piramidal garantiza una
alta producción en condiciones de baja radiación y
disminuye la reflexión de luz incidente. Aumenta hasta
un 10% la energía anual generada en una instalación
vertical.
4
Vidrio Texturizado
Nuestros módulos estándar utilizan un vidrio de
superficie texturizada que proporciona mejores
propiedades en pérdidas por reflexión y disipación
térmica que el vidrio liso.
Paneles SERIE OPTITEC
Policristalinos: OPTITEC
PANEL SOLAR
OPTITEC P245/H OPTITEC P240/H OPTITEC P235/H
STC (Standard Test Conditions)
Potencia nominal PMPP (W)
Tensión MPP (V)
Intensidad MPP (A)
Tensión de vacío (V)
Corriente de cortocircuito (A)
245
240
235
30,43
30,35
29,9
7,86
8,05
7,91
37,65
37,55
37
8,6
8,55
8,48
NOCT*
Potencia nominal PMPP (W)
Tensión MPP (V)
175
171
167
26,84
26,77
26,3
Intensidad MPP (A)
6,52
6,39
6,35
Tensión de vacío (V)
Corriente de cortocircuito (A)
33,8
33,69
33,2
6,97
6,9
6,73
PARÁMETROS ELÉCTRICOS DEL SISTEMA
Tensión del sistema (V): 1000
Coef. de T Voc (%/ºC) -0,32 / Coef de T Pmpp (%/ºC) -0,43
Corriente inversa máx (A): 12
Coef. de T Isc (%/ºC) +0,07 / T de funcionam. -0,40 a +85ºC
CARACTERÍSTICAS MECÁNICAS
60 en serie, 3BB, 6"
Células
Vidrio solar texturizado 4mm, altamente transparente y antireflectante
Vidrio
Backsheet
Lámina multicapas en PVF y PET
Alum. anodizado en módulo / marco BIPV para integración
Marco
2 x 1,2m de cable, conectores MCG
Conexión
índice de protección IP65, 3 diodos by-pass
Caja eléctrica
Monocristalinos: OPTITEC
PANEL SOLAR
OPTITEC M260/H
OPTITEC M255/H OPTITEC M560/H OPTITEC M245/H
STC (Standard Test Conditions)
Potencia nominal PMPP (W)
Tensión MPP (V)
Intensidad MPP (A)
Tensión de vacío (V)
Corriente de cortocircuito (A)
260
255
250
245
30,84
30,65
30,3
30,03
8,46
8,32
8,22
8,18
37,73
37,5
37,4
37,26
8,9
8,86
8,72
8,71
NOCT*
190
186
183
179
27,77
27,6
27,3
27,1
Intensidad MPP (A)
6,84
6,74
6,7
6,6
Tensión de vacío (V)
Corriente de cortocircuito (A)
34,9
34,6
34,5
34,4
7,32
7,28
7,25
7,2
Potencia nominal PMPP (W)
Tensión MPP (V)
PARÁMETROS ELÉCTRICOS DEL SISTEMA
Tensión del sistema (V): 1000
Coef. de T Voc (%/ºC) -0,34
Corriente inversa máx (A): 12
Coef. de T Isc (%/ºC) +0,07
Coef de T Pmpp (%/ºC) -0,44
T de funcionamiento -0,40 a +85ºC
CARACTERÍSTICAS MECÁNICAS
Células
Vidrio
Backsheet
Marco
Conexión
Caja eléctrica
60 en serie, 3BB, 6"
Texturizado de 4mm, altamente transparente y antireflectante / Mod. 260W solo piramidal
Lámina multicapas en PVF y PET
Aluminio anodizado en módulo estándar / marco BIPV en variante para integración
2 x 1,2m de cable, conectores MCG
índice de protección IP65, 3 diodos by-pass
*NOCT: Temperatura de trabajo de la célula habitual =45º, con radiación 800W/m2, temp.
ambiental 20ºC, vel. viento 1m/s
Tolerancia de Medida Pmax: +/-3%
Garantías: 10 años por defectos de fabricación y 80% de la potencia nominal a los 25
años
5
Paneles OPTITEC 24V
Policristalinos: OPTITEC 24V
Paneles OPTITEC 24V
Potencia máx (W)
Tamaño del módulo (mm)
Peso (Kg)
OPTITEC P210/Y OPTITEC P214/Y OPTITEC P216/Y OPTITEC P220/Y OPTITEC P225/Y OPTITEC P230/Y OPTITEC P260/Y
210
214
216
220
225
230
260
1640x990x50
1632x995x50
1632x995x50
1632x995x50
1632x995x50
1632x995x50
1948x995x50
19
20,4
20,2
20,4
20,4
20,2
24
Voltaje @ Pmax (Vpm) V
29,0
29,6
29,35
29,14
29,277
30,15
35,42
Corriente @ Pmax (Ipm) A
7,24
7,548
7,685
7,63
7,35
36,5
7,29
36,1
7,36
Circuito abierto (VOC) V
36,68
36,46
37,72
37,36
44,1
Cortocircuito (ISC) A
7,88
7,86
8,06
8,19
8,31
8,15
7,96
Tolerancia potencia
Eficiencia del módulo
±5%
±3%
±3%
±3%
±3%
±3%
±3%
-
13,3%
13,3%
13,5%
13,85%
13,4%
6x10 series
6x10 series
6x10 series
6x10 series
6x10 series
14,16%
6x10 series
6x12 series
Número de celdas en serie
1000 V
Máx. voltaje del sistema
Coef. temperatura ISC (%)
+0,08/ºC
+0,08/ºC
+0,038/ºC
+0,038/ºC
+0,038/ºC
+0,038/ºC
+0,038/ºC
Coef. temperatura VOC (%)
-0,32/ºC
-0,32/ºC
-0,32/ºC
-0,32/ºC
-0,32/ºC
-0,32/ºC
-0,32/ºC
Coef. temperatura Pmax (%)
-0,38/ºC
-0,38/ºC
-0,37/ºC
-0,37/ºC
-0,37/ºC
-0,37/ºC
-0,37/ºC
Material frontal
Encapsulado
Rango de temperatura
Marco
Cristal templado de alta transmisión de 3,2mm
EVA
-40ºC a +85ºC
Aluminio anodizado
Resistencia máx. al impacto
Garantía del producto
Garantía rendimiento eléctrico
6
Caída de una bola de acero de 227grs desde 1m de altura y 60m/s del viento
5 años en materiales
10 años al 90% + 25 años al 80% en salida de potencia
Blue Solar
Panel Solar
• El coeficiente de bajo voltaje-temperatura mejora las operaciones
a altas temperaturas
• Su excepcional rendimiento de baja luz y alta sensibilidad para
cubrir por completo el espectro solar maximiza anualmente la entrega
de energía
• 25 años de garantía limitada para la salida de potencia y su rendimiento
• 2 años de garantía limitada en materiales y mano de obra
• Sellados, resistentes al agua y juntas multifuncionales que
proporcionan un alto nivel de seguridad
• Sus diodos de alto rendimiento minimizan la pérdida de potencia debido a las sombras
• Su avanzado sistema de encapsulado en EVA (Etileno Vinilo Acetato), con hoja trasera de tres
capas, les hace cumplir los requisitos de seguridad más estrictos para operaciones de alto voltaje
• Marco robusto y en aluminio anodizado que permite el montaje de módulos en los tejados de forma muy
sencilla con una gran variedad de sistemas estándares de montaje
• Cristal templado de alta transmisión y de la más alta calidad que les confieren mejor rigidez y alta resistencia
a impactos
• Sistema preconexionado de fábrica con conectores PV-ST01
Paneles BlueSolar
SPM30-12
SPM50-12
SPM80-12
SPM100-12
SPM130-12
SPM180-24
SPM280-24
Tamaño del módulo (mm)
450x540x25
760x540x35
1110x540x35
963x805x35
1220x808x35
1580x808x35
1956x992x50
Tamaño del cristal (mm)
445x535
755x535
1105x535
958x800
1214x802
1574x802
1950x986
Peso (Kg)
2,5
5,5
8,2
10,5
13
14,5
20
Potencia Nominal (PMPP) W *
30
50
80
100
130
180
280
Voltaje máx. potencia (VMPP) V *
18
18
18
18
18
36
36
Corriente máx. potencia (IMPP) A *
1,67
2,78
4,44
5,56
7,23
5,01
7,78
Circuito abierto (VOC) V *
Cortocircuito (ISC) A *
22,5
22,2
21,6
22,4
21,6
44,9
43,2
2
3,16
4,88
6,53
7,94
5,5
8,55
Potencia nominal (±3% tolerancia)
30W
50W
80W
100W
130W
180W
280W
36
36
Tipo de célula
Número de celdas en serie
Monocristalina. Modelos 30, 50 y 130W también en policristalina.
72
36
36
36
72
1000V
Máx. voltaje del sistema
Coef. temperatura ISC (%)
+0,037/ºC
+0,037/ºC
+0,05/ºC
+0,037/ºC
+0,05/ºC
+0,037/ºC
+0,05/ºC
Coef. temperatura VOC (%)
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
Coef. temperatura PMPP (%)
-0,48/ºC
-0,48/ºC
-0,48/ºC
-0,48/ºC
-0,48/ºC
-0,48/ºC
-0,48/ºC
Coef. temperatura IMPP (%)
+0,06/ºC
+0,06/ºC
+0,06/ºC
+0,06/ºC
+0,06/ºC
+0,06/ºC
+0,06/ºC
Coef. temperatura VMPP (%)
Tipo de caja de conexiones
Tipo de conector
Longitud del cable
Rango de temperatura
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
-0,34/ºC
PV-JH03-2
PV-JH02
PV-RH0301
PV-JH02
PV-RH0301
PV-JH03
PV-RH0301
Sin conector
MC4
MC4
MC4
MC4
MC4
MC4
450mm
750mm
900mm
900mm
900mm
900mm
900mm
-40ºC a +80ºC
Máx. superficie capac. carga
200Kg/m 2
Resistencia máx. al impacto
23m/s, 7,5grs
Tolerancia de salida
Marco
Garantía del producto
Garantía rendimiento eléctrico
+/-3%
Aluminio
2 años
10 años al 90% + 25 años al 80% en salida de potencia
* Datos eléctricos según STC (Condiciones estándar de test: 1.000W/m 2 , 25ºC, AM (Air Mass): 1,5)
7
Solara
Panel Fotovoltaico
• 26 años de garantía modelos Ultra monocristalinos
• Alta calidad: Made in Germany
• Baja tolerancia, alto rendimiento
• Sistema único Sunarc ® , cristal templado
antirreflectante
• Células de alto rendimiento incluso en situaciones de
baja irradiación
Características
Energía Solar a su alcance
La clase S ha sido diseñada pensando en nuestro
cliente y sus necesidades. Su energía eléctrica estará
garantizada, incluso en las condiciones climáticas
más extremas, gracias a la robustez de fabricación
capaz de soportar: hielo, granizo, tormentas y
variaciones de temperatura extremas. El prestigioso
galardón alemán, Premium Quality, certifica la
excepcional calidad de estos generadores
fotovoltaicos. Así, usted puede disfrutar de toda la
energía disponible.
Garantía de calidad
Todos los módulos fotovoltaicos ULTRA
monocristalinos de Solara están garantizados por 26
años, de acuerdo con las recomendaciones de uso
del fabricante.
Energía de Calidad
Su exigencia de calidad también es la nuestra. Por
este motivo, el control de calidad es individual para
cada panel fotovoltaico. Sólo si todos los criterios de
calidad se superan satisfactoriamente, el producto
recibe un número de serie único.
¿Obtener energía más fácilmente?
La clase S no sólo consiste en 50 células
policristalinas de alto rendimiento. Su diseño consigue
convertir en energía incluso la irradiación más tenue,
en meses de poco sol. Su sencillo sistema de montaje
es un placer para cualquier profesional.
FLEXIBLES,12V, 36 ó 35 celdas
MODELO
POTENCIA
S40M36
S60M36
S80M36
S120M36
S160M36
S225M35
12Wp
18Wp
23Wp
34Wp
45Wp
68Wp
MEDIDAS (lxanxf)
445x267x2
620x250x2
440x460x2
590x460x2
756x460x2
800x646x2
TRANSMISIÓN DEL CRISTAL
8
Soportes
Tipo garra Antivandálicos
Este soporte se presenta en dos tipos de perfil. El Garra y el Garra Aislada. La diferencia es el diseño
estructural del perfil que se ha orientado a las diferentes necesidades que los instaladores puedan
tener.
El perfil Garra está diseñado para soportar hasta 6 módulos remontados en horizontal. La gran
resistencia estructural de este soporte lo hace ideal para huertos fotovoltaicos. Pudiendo montarse
desde 0 a 50º. Este sistema es ideal para instalaciones de gran envergadura para conexión a red.
El perfil Garra Aislada está diseñado para instalaciones de hasta tres módulos remontados. El sistema
y características son las mismas, pero se ha modificado la forma del perfil para reducir el tamaño
ya que en pequeñas instalaciones las exigencias estructurales son menores. Este sistema es ideal
para conjuntos que no requieran remontar más de tres módulos.
En ambos casos la característica mas importante es la forma de sujeción los módulos, se utiliza un
sistema de garra dentado o grapa para fijar con más facilidad y reducir el tiempo de instalación. Este
se reduce notablemente tanto por las características de los perfiles como por entregarse con
componentes premontados. Este sistema es antivandálico gracias al la garra dentada.
Con este sistema se pueden crear baterías indefinidas de captadores remontados en horizontal o en
vertical.
Todos nuestros productos son de aluminio con la posibilidad de entregarlos con diferentes acabados
(anodizado, lacado, lacado madera,…)
Están certificados por Applus.
Los sistemas de anclaje pueden ser regulables y disponemos de diferentes opciones según se necesiten.
Des de “salvatejas” hasta bordillos especiales para instalaciones en cubierta plana.
9
Soportes
FV SUN
Este es un sistema universal para módulos fotovoltaicos. Se trata de un conjunto de perfiles con los que
se pude crear emparrillados donde después se colocaran los módulos.
Los perfiles están diseñados con raíles que permiten una gran flexibilidad para situar los paneles como
convenga.
La estructura se puede montar en cubiertas planas, inclinadas y cubiertas de chapa ondulada.
Es ideal para grandes instalaciones conectadas a la red.
Con este sistema se pueden crear baterías indefinidas de captadores remontados en horizontal o en
vertical.
Todos nuestros productos son de aluminio con la posibilidad de entregarlos con diferentes acabados
(anodizado, lacado, lacado madera,…)
Están certificados por Applus.
Los sistemas de anclaje pueden ser regulables y disponemos de diferentes opciones según se necesiten.
Des de “salvatejas” hasta bordillos especiales para instalaciones en cubierta plana.
Estructuras en Uralita,
en Tejas o sin anclajes
10
Accesorios Sujeción
Salvatejas
- Anclaje para Tejas
- Universal con 3 medidas estandarizadas (50 mm, 70 m, 85 mm)
- En chapa de Acero Inoxidable cortada con Láser
- Regulación de la parte superior
- Cumpliendo la normativa de anclajes
- Anclajes con tacos incluidos
- Incluido tornillo DIN603 y tuerca DIN6923 M8 en inoxidable A2 para fijación de soportes
o paneles
Tornillos para tejas (anclabolts)
Su formato permite regular en altura y lateralidad para conseguir una colocación
perfectamente alineada.
11
BLUE SOLAR
Reguladores de carga
• Reguladores PWM para una o dos baterías y
reguladores MPPT
• Excepcional relación calidad-precio
• Gran abanico de protecciones
Car ac t er ís t i c as
Blue Solar 12/24-10, 10A a 12 ó 24V
• Regulador PWM de bajo coste
• Sensor interno de temperatura
• Carga en tres etapas (bulk, absorción y
flotación)
• Protección frente a sobrecargas, cortocircuito
y contra polaridad inversa en las conexiones de
los paneles y/o la batería
• Dispone de salida de desconexión de carga a
bajo voltaje
Blue Solar DUO 12/24-20, 20A a 12 ó 24V
• Regulador PWM
• Carga dos baterías independientes, por ejemplo
una de arranque y una de servicio
• Ratio de carga de corriente programable (por
defecto: igual corriente a las dos baterías)
• Características de carga para tres tipos de
batería: Gel, AGM y ácido
12
• Sensor interno de temperatura incluido y remoto
opcional
• Protección frente a sobrecargas, cortocircuito
y contra polaridad inversa en las conexiones de
los paneles y/o la batería
Blue Solar MPPT 12/24-40, 40A a 12 ó 24V
• Regulador MPPT (seguidor de punto de máxima
potencia). Aumenta la corriente de carga en más
de un 30% en comparación con un regulador
PWM
• Características de carga para 8 tipos de batería
y 2 ajustes de ecualización
• Sensor de temperatura remoto
• Protección frente a sobrecargas, cortocircuito
y contra polaridad inversa en las conexiones de
los paneles y/o la batería
• Dispone de salida de desconexión de carga a
bajo voltaje
B l u eSo l ar 12/24-10
B l u eSo l ar DUO 12/24-20
B l u eSo l ar MPPT 12/24-40
B l u e So l ar
12V
24V
12V
24V
12V
24V
REGULADOR SOLAR
Voltaje de la batería
12/24V autoselección (2)
12/24V autoselección (2)
12/24V autoselección (2)
Corriente de carga nominal
10A
20A
40A
Rastreo MPPT
No
No
Sí
Salida a segunda batería
No
Sí
No
Sí (carga máx. 10A)
-
Sí (carga máx. 15A)
28/55V (2)
28/55V (2)
28/55V (2)
6mA
4mA
10mA
Desconexión de carga automática
Máximo voltaje solar
Autoconsumo
Ajustes por defecto
Carga en absorción
(1)
14,4V
28,8V
14,4V
28,8V
14,4V
28,8V
Carga en flotación
(1)
13,7V
27,4V
13,7V
27,4V
13,7V
15,0V
27,4V
30,0V
Carga en ecualización
Desconexión sobrecarga
-
-
-
-
14,8V
29,6V
Recuperación sobrecarga
-
13,6V
10,8V
21,6V
12,3V
24,6V
Desconex. carga bajo voltaje
11,1V
22,2V
-
Reconex. carga bajo voltaje
12,6V
25,2V
-
27,2V
CARCASA Y MEDIO AMBIENTE
Sensor temp. batería
Sí, sensor interno
-30mV/ºC
Temperatura compensación
Temperatura de trabajo
-60mV/ºC
Sí, sensor interno. Opcional remoto
-60mV/ºC
-30mV/ºC
Sí, sensor remoto
-60mV/ºC
-30mV/ºC
-35ºC a +55ºC (carga completa)
-35ºC a +55ºC (carga completa)
0-40ºC (completa) 40-60ºC (derivada)
Convección natural
Convección natural
Convección natural
Máx. 95%
Máx. 95%
Máx. 95%
IP20
IP20
IP20
6mm 2 / AWG10
6mm 2 / AWG10
6mm 2 / AWG8
Refrigeración
Humedad (sin condensación)
Grado de protección
Tamaño terminales
Peso
160grs
180grs
1.400grs
70x133x33,5mm
76x153x37mm
202x66x140mm
Vertical en pared interior
Vertical en pared interior
Vertical en pared interior
Dimensiones (alxanxpr)
Montaje
NORMAS
EN 60335-1
Seguridad
EN 61000-6-1, EN61000-6-3
EMC
(1) Blue Solar DUO 12/24-20 y Blue Solar MPPT 12/24-40. Otras configuraciones posibles (ver manual)
(2) Para 12V utilizar paneles solares de 36 celdas. Para 24V utilizar paneles solares de 72 celdas
I
Iac
Im p
Seguidor de punto de máxima potencia MPPT
Pm áx
V
Curva superior:
Corriente de salida (I) de un panel solar en función
el voltaje de salida (V).
El punto de máxima potencia (MPPT) es el punto
Pmáx de la curva donde el producto IxV alcanza
su pico.
Pm áx
V
Curva inferior:
Potencia de salida P=IxV en función del voltaje
de salida.
Cuando se usa un regulador PWM (no MPPT) la
salida de voltaje del panel solar será casi igual al
voltaje de la batería y será inferior al Vmp.
Vm p Vd c
13
OutBack MPPT
Maximizador de cargas
• Incrementa la producción en un 30%
• Algoritmo avanzado MPPT
• Voltajes de batería de 12 a 48V DC seleccionables
• Tensión de entrada de hasta 150VDC
• 128 días de registro de datos
• Display incorporado con datos de carga y
rendimientos
Car ac t er ís t i c as
Máxima producción de energía de los
paneles
El regulador FLEXmax 80 es la última innovación de
OutBack Power Systems en reguladores de carga
con seguimiento de punto de máxima potencia
(MPPT). El nuevo algoritmo del FLEXmax es a la vez
continuo y activo, incrementando así la producción
energética hasta un 30%. Con un sistema de
ventilación mejorado, el FLEXmax 80 mantiene su
salida de 80 amperios hasta una temperatura
ambiente de 40ºC.
Incluye idiomas de programación español e inglés
seleccionables en el mismo equipo.
El FLEXmax 80 incorpora todas las ventajas del
revolucionario MX60 como es el amplio rango de
voltajes de batería y la capacidad de trabajar con
alto voltaje (150VDC) cargando baterías de voltaje
reducido. La pantalla retroiluminada y botonera
integradas permiten acceso a la información de forma
clara y rápida. La comunicación en red con el resto
de equipos OutBack power Systems permite su
programación remota a través del controlador
programable.
El nuevo FLEXmax 80 es la mejor elección cuando
busque un regulador de carga de altas prestaciones,
eficiente y adaptable para su sistema de energía
solar fotovoltaica.
www.hispaniasolar.es
14
Especificaciones FLEXmax
Corriente máxima de salida
80A / 60A @ 40ºC con límite de corriente ajustable
Voltajes de batería nominal
12, 24, 36, 48 ó 60V DC en el mismo equipo, a seleccionar al ponerlo en marcha
Potencia máxima matriz FV
Modelo 80A: 12VDC systems 1250W / 24VDC systems 2500W / 48VDC systems 5000W
/ 60VDC systems 7500W
Modelo 60A: 12VDC systems 900W / 24VDC systems 1800W / 48VDC systems 3600W
/ 60VDC systems 4500W
Voltaje circuito abierto matriz FV
150VDC valor máximo en condiciones de baja temperatura / 145VDC para arranque y
condiciones máximas de operación
Consumo en espera
Menor a 1W
Eficiencia conversión de potencia
97,5% @ 80A en sistema de 48VDC típica / 98,1% @ 60A en sistema de 48VDC típica
Regulación de carga
5 estados de carga máxima (bulk), absorción, flotación, silenciosa e igualización
Puntos ajuste regulación voltaje
De 10 a 60VDC, ajustable por el usuario con protección mediante contraseña
Voltaje de igualización
Voltaje y temporización programables - Finalización automática
Compensación temp. batería
Automática con RTS opcional (sensor de temperatura remoto) / 5.0mV por ºC por celda
Capacidad de voltaje reducido
Permite cargar una batería de voltaje inferior con una matriz FV de voltaje superior - máx.
Salida auxiliar de control
Salida programable de 12VDC disponible para diferentes aplicaciones (máx. 0,2A DC)
de batería de 2VDC
150VDC
Pantalla de información
8cm (3,1"). Pantalla LCD retroiluminada de 4 líneas y 80 carácteres
Pantalla y controlador remoto
Opcional - MATE o MATE2 con puerto serie R232 para comuniaciones
Conexión red de datos Outback
Red OutBack de datos mediante conector RJ45 con cable CAT 5e (8 hilos)
Registro de datos
Últimos 128 días - Ah, Wh, W pico, Amps, Voltaje de FV, tiempo en flotación, Voltaje máx
Energía eólica/hidráulica
Consultar fabricante para sistemas compatibles
Sistemas positivo a tierra
Precisa interrruptor bipolar para desconectar conductores positivo y negativo en matriz
y mín de batería, absorción para cada día además de valores acumulados de Ah y kWh
FV y batería (no se recomienda uso de HUB4 ni HUB10 en sistemas de positivo a tierra)
Rango de temperatura operación
-40ºC a +60ºC (la potencia de salida se desclasifica a partir de 40ºC)
Categoría ambiental
Para instalación en interior
Orificios de conexionado
Posterior: 35mm, izquierdo: 35mm, dos inferiores de 35mm cada uno
Garantía
5 años
Peso
Equipo
Envío
Dimensiones (alxanxpr) Equipo
Envío
5,56Kg (modelo 80A) / 5,3Kg (modelo 60A)
7,10Kg (modelo 80A) / 6,4Kg (modelo 60A)
41,3x14x10cm (modelo 80A) / 40x14x10cm (modelo 60A)
53x27x25cm (modelo 80A) / 46x30x20cm (modelo 60A)
Opciones
Sensor de temperatura remoto (RTS), HUB4, HUB10, MATE y MATE2
Idiomas de menú
Español e inglés en el mismo equipo
15
TRISTAR
Regulador
• Cuatro etapas de carga
• Paralelo hasta 300A
• Picos de arranque elevados
• Alto nivel de protecciones electrónicas
• Configurable mediante software
• Cinco años de garantía
Características
El regulador TriStar es un regulador de tres funciones
que provee una carga fiable de baterías por energía
solar, un control de carga o una regulación por desvío.
El regulador trabaja en uno de esos modos pudiéndose
usar dos o más controladores para proporcionar múltiples
funciones.
El TriStar usa una tecnología avanzada para proporcionar
sus sorprendentes y nuevas prestaciones a un precio
competitivo. El medidor opcional TriStar es el medidor
de regulador más sofisticado e informativo del mercado.
El regulador ha sido diseñado para sistemas solares de
todo tipo y exigencias.
Altamente fiable
Su amplio disipador de calor y su diseño le permiten
trabajar a pleno rendimiento incluso a 45°C. No necesita
reducir la potencia nominal.
Interfaz mecánica simple
Terminales de potencia y tapones pasacables más
grandes facilitan la instalación y hacen ganar tiempo.
Amplias protecciones electrónicas
Totalmente protegido contra polaridad inversa,
cortocircuitos, exceso de corriente, alta temperatura y
exceso de voltaje.
Mejor carga de batería
La conexión de los cables de sensado de batería y los
sensores de temperatura remotos opcionales mejorarán
la precisión del control. El algoritmo PWM de tensión
constante incrementa la capacidad y vida útil de la
batería.
Mayor potencia
Rangos de 60A a 48VCC que permiten manejar conjuntos
de hasta 4KWp.
Mayor información
3 LED para dar indicación del estado, las anomalías y
las alarmas. El medidor opcional muestra amplia
información del sistema y del regulador, con capacidades
automáticas de autoverificación y reinicio. Conexión del
medidor a través de conector telefónico RJ-11.
Capacidad de comunicaciones
La interfaz RS-232 para conexión a PC permite ajustes
según la necesidad del cliente, adquisición de datos,
monitoreo y controles remotos.
Fácil de reiniciar
El pulsador permite el reinicio manual y el arranque /
parada de la ecualización de la batería o la desconexión
de la carga.
Tatalmente adaptable
Los interruptores tipo DIP permiten que el usuario opte
entre 7 configuraciones digitales preestablecidas y entre
ajustes específicos de su aplicación a través de RS-232.
Bajo ruido para telecomunicaciones
El ajuste de los interruptores tipo DIP cambiará el modo
de carga de la batería de PWM a “encendido-apagado”
o modo convencional.
Dimensiones (alxanxf): 26x12,7x7,1cm
SOLAR
EÓLICA
BATERÍA
BATERÍA
Aplicaciones
BATERÍA
HIDROELÉCTRICA
INVERSOR
16
CARGA
CARGA RESISTIVA
Especificaciones eléctricas
• C o r r i e n t e n o m i n a l s o l a r e n c a rg a o
en derivación:
Tristar45
45A
Tristar60
60A
• Voltaje del sistema:
12-48V
• Precisión:
12/24V
<0,1% +50mV
48V
<0,1% +100mV
• Voltaje mínimo de trabajo:
9V
• Máximo voltaje solar (Voc): 125V
• Consumo propio:
Regulador
<20mA
Medidor
7,5mA
Especificaciones ambientales
• Temperatura ambiente de trabajo
Regulador
-40ºC a +45ºC
Medidor
-40ºC a +60ºC
• Temperatura de almacenamiento:
-55ºC a +85ºC
• Humedad: 100% (sin condensación)
• Tropicalización: caja uniforme
en ambos lados de todas las placas
de circuito impreso
Protecciones electrónicas
• Protección contra polaridad inversa
(cualquier combinación)
• Protección ante cortocircuitos
• Protección de sobre intensidades
• Protección contra rayos y picos de
tensión usando supresores
transitorios de voltaje 4500V
• Protección contra alta temperatura a
través de una reducción automática
de corriente o apagado completo
Opciones del TriStar
• Medidor del Tristar - Pantalla de 2x16
montada en el regulador que proporciona
información del sistema y del propio equipo,
adquisición de datos, gráficos de barras
y elección de 5 idiomas
13.5v 25c 12.3A
1234.5Ah FLOATANTE
V
A
14.4 V 1135 7Ah
12.3 V 11.3 kW h
• Medidor remoto del Tristar - Incluye 30
metros de cable para el montaje del
medidor a distancia del controlador
• Sensor remoto de temperatura proporciona una carga compensada en
temperatura mediante la medición de la
misma en la batería (cable de 10m)
Certificaciones
• Cumple con CE
• Listado en UL (UL 1741)
• cUL (CSA-C22.2 No.107.1-95)
• Cumple con el Código Eléctrico
Nacional de los Estados Unidos
• Manufacturado en un establecimiento
certificado según ISO 9001
17
PROSTAR
Regulador
• Nuevas prestaciones y protecciones
usando tecnología altamente avanzada
• Genera diagnósticos automáticos
• Paralelo para hasta 300 amperios
• Amplia gama
• Garantía de 5 años
• Proporciona mayor vida útil a la batería y mejora el rendimiento del sistema
• Capaz de soportar sobrecargas de hasta el 25%
Car ac t er ís t i c as
El regulador solar ProStar es el líder mundial en
reguladores solares de mediano rango, sea para
aplicaciones profesionales o para el consumidor en
general.
convierten en un elemento muy robusto apto para todo
tipo de aplicaciones, incluso las más extremas.
PRESTACIONES
•
•
•
•
•
•
•
PROTECCIONES ELECTRÓNICAS
Cortocircuito — paneles solares y carga
Sobrecarga — paneles solares y carga
Polaridad inversa
Corriente inversa por la noche
Desconexión por alta tensión
Desconexión por alta temperatura
Protección contra relámpagos y sobretensión o
transitorios
• Cargas protegidas contra picos de tensión
• Restablecimiento automático de todas las protecciones
Los reguladores solares ProStar están disponibles en
versiones de 15 ó 30A ampliables hasta 300 instalando
varias unidades en paralelo, tanto a 12, 24 como a
48V. Su vida útil estimada se encuentra en 15 años.
Seleccionando el tipo de baterías instaladas, las carga
mediante cuatro etapas de carga con controles y
medidas muy precisas. Además, incorpora
compensación de temperatura.
Su construcción con componentes de estado sólido al
100%, tropicalización y disipación de temperatura, lo
PRESTACIONES OPCIONALES
• Medidor digital:
- Pantalla de alta precisión
- Bajo consumo propio (1mA)
- Incluye botón de desconexión manual
- Muestra 5 funciones de protección y
de condiciones de desconexión
- El autodiagnóstico (auto-test) provee
una prueba completa del ProStar:
1/ Muestra 9 parámetros diferentes de
estado del regulador, incluyendo la
temperatura
2/ Muestra lista de alarmas detectadas
• Positivo a tierra
• Sensor remoto de temperatura
TENSIÓN
4
ECUALIZACIÓN
1
BULK
2
ABSORCIÓN
NOCHE
NOCHE
TIEMPO
18
3
FLOTACIÓN
Versiones del ProStar
Corriente nominal del panel solar
Corriente nominal de carga
Tensión del sistema
Opciones:
Medidor digital
Tierra positiva
Sensor remoto de temperatura
PS-15
15A
15A
12/24V
PS-30
30A
30A
12/24V
Sí
No
Sí
Sí
Sí
Sí
PS-15M-48V
15A
15A
48V
Estándar
Sí
Sí
6,01
(153)
Peso:
0,34 kg
Calibre del
cable:
16mm2
5,37
(136)
3,50
(89)
4,14
(105)
0,18
(4,57)
2,17
(55)
pulgadas (mm)
Características eléctricas
12 voltios
24 voltios
48 voltios
-60mV
-120mV
Compensación temperatura (mV/ºC)* -30mV
Precisión
40mV
60mV
80mV
Mínima temperatura de operación
8V
8V
15V
Autoconsumo
22mA
25mA
28mA
Coef. de corriente LVD**
-20mV
-40mV
-80mV
-40ºC a +60ºC
Temperatura de trabajo
Algoritmo de carga
PWM o tensión constante
Pantalla digital:
Temperatura de funcionamiento
-30ºC a +85ºC
Precisión de la tensión
0,5%
Precisión de corriente
2,0%
Autoconsumo
1mA
* Referencia 25º
** Por amperio de carga
19
SUNSAVER
Regulador
•
•
•
•
•
•
•
•
Carga de baterías PWM
Alta calidad
Última tecnología en electrónica de potencia
Última tecnología en control y lógica
Diseño compacto
En paralelo para 40A o más
5 años de garantía
Amplia gama
Características
El diseño avanzado del SunSaver lo provee de un
rendimiento sobresaliente a un precio económico. El
bajo coste del SunSaver es posible gracias a su enfoque
exclusivo de diseño y fabricación.
Su robustez estriba en su diseño tipo serie sin derivación
de corriente o shunt y construido 100% con componentes
de estado sólido. De ahí que su ciclo de trabajo sea
verdadero de 0 a 100% PWM con una precisión de
ajuste de hasta 35mV y sobrecargas de un 25%.
Su acabado, con encapsulado epoxy y especificaciones
marinas de anodizado y protecciones contra humedad,
le proporcionan una calidad/precio muy interesantes.
Como cargador, trabaja en PWM con compensación de
temperatura, sin compensaciones adicionales y
posibilidad de seleccionar el tipo de batería instalada.
Indicadores LED que proporcionan información
imprescindible, clara y rápida.
Indicado para uso en localizaciones peligrosas.
Tabla de selección de modelos de SunSaver
RANGO SOLAR (A)
MODELO
• SS-6
• SS-6L
• SS-10
• SS-10L
• SS-10-24V
• SS-10L-24V
• SS-20L
• SS-20L-24V
20
0
10
RANGO DE CARGA (A)
20 0
10
LVD
20
12V
24V
Características mecánicas
Tamaño del cable: 6mm 2
Caja de aluminio anodizado
Terminales con especificaciones marinas
Encapsulado en epoxy
Peso: 0,23Kg
Características eléctricas
12 voltios
Entrada solar especificada
Carga especificada
Sobrecarga del 25% de corriente
Regulación de tensión:
1/ Batería gel, AGM
2/ Batería plomo-ácido
Desconexión de carga
Reconexión de LVD
Compensación de temperatura
Consumo propio
Temperatura de trabajo
24 voltios
6,5/10/20A
6/10/20A
5 min
5 min
14,4V
28,2V
14,4V
28,8V
11,5V
23,0V
12,6V
25,2V
-28 mV/ºC
-56 mV/ºC
6 a 10mA
-40 a + 85ºC
6,00 (152)
5,50 (140)
CHARGING
SOLAR
CARGA +
PV +
M O R N I N G S TA R
CONTROLLER
LOAD
DISCONNECT
SS-10L
TEMP. SENSE
Nominal Rating
12 Volts dc
Solar In 10A
Load
10A
1,00
(25)
See Operator’s
Manual
BATTERY
4
3
+
–
2
+
LOAD
1
12 V
–
6
+
5
–
SEALED
OR
FLOODED
SELECT
{
Remove
Jumper
Wire for
Flooded
Battery
UL 1604
CSA22.2 No. 213-M1987
Cl I, Div 2,
GP ABCD
Haz. Loc.
Voc =13.5Vdc
PV
DÍA Y
NOCHE
PWM
LÓGICA
LVD
E112204
2,18
(55)
SOLAR
PV –
CARGA –
inches (mm)
0,50
(13)
B+
B–
1,32
(34)
BATTERY
BATTERY
BATERÍA
21
SUNSAVER DUO
Regulador
• Regulador solar de dos baterías
• Incorpora medidor remoto
• Alta calidad
• Instalación de menor coste por poder cargar dos
sistemas separados
• 15 años de vida estimada
Car ac t er ís t i c as
El regulador SunSaver Duo es un regulador PWM
(por modulación de ancho de pulso) para dos
baterías para vehículos recreativos, caravanas,
barcos y cabañas. Este producto permite cargar
dos baterías separadas y aisladas a la vez, como
por ejemplo una para la casa y otra para el motor,
basándose en las prioridades seleccionables por
el usuario.
El SunSaver Duo emplea la legendaria tecnología
del SunSaver cuyos registros de largo plazo de
fiabilidad y carga de batería mejorada son
reconocidos por la industria de energía solar.
Este controlador también incluye un medidor
remoto retroiluminado que puede ser montado
en o sobre una pared y presenta en dígitos y
gráficos la información de estado del sistema de
energía solar.
Está encapsulado en epoxi para una mejor
protección ambiental, es ajustable por el usuario
a través de interruptores tipo DIP o con conexión
a un ordenador y tiene un sensor de temperatura
remoto opcional.
Carga de dos baterías
La corriente de carga solar es compartida entre
las dos baterías según seleccione el usuario.
Cuando una batería está completamente cargada,
toda la corriente de carga fluye a la otra batería.
Información de utilidad
El medidor remoto y los LED muestran datos del
22
estado del sistema y de cualquier error que pueda
producirse. Los iconos específicos y su
retroiluminación hacen que el medidor sea fácil
de leer y entender.
Fácil de instalar
El regulador se instala cerca de las baterías
usando los grandes terminales claramente
etiquetados. El medidor remoto puede ser
montado en la pared o sobre ella usando el marco
incluido. También se incluye el cableado del
medidor con conector RJ-11.
Mayor vida útil de las baterías
La carga tipo serie por pulsos PWM de cuatro
etapas y la compensación en temperatura
incrementa la vida útil de las baterías.
Amplias protecciones electrónicas
El regulador no se dañará si se cometen errores
de cableado durante la instalación. No hay
fusibles que reemplazar y automáticamente se
reiniciará después de un error de cableado.
Alta fiabilidad
El encapsulado epoxi protege el regulador contra
polvo y alta humedad. La electrónica eficiente y
un diseño térmico conservador le permiten
trabajar eficazmente a altas temperaturas. Cinco
años de garantía y una vida estimada de 15 años.
Especificaciones eléctricas
Entrada solar especificada:
25A
Carga de salida especificada:
No aplicable
Voltaje de la batería:
12V
Voltaje mínimo de la batería:
1V
Voltaje máximo de la batería:
15V
Voltaje máximo solar:
30V
Consumo propio:
Controlador... 6 a 10mA
Medidor remoto... 6 a 15mA
C a r g a d e la batería
Regulación de voltaje (a 25ºC):
Batería gel
14.1V
Batería plomo-ácido líquido 14.4V
Voltaje en flotación:
13.7V
Voltaje en ecualización*:
14.8V
Tipo de carga:
PWM serie
4 etapas
Compensación de temperatura: -30mV/ºC (ref. de 25ºC)
Prioridad de carga de batería:
90% / 10%
50% / 50%
Configurable por PC
* Se usa sólo en baterías de plomo-ácido líquido
Visor del medidor
Retroiluminación:
LED:
Pantalla:
Activada por botón pulsador
Estado de carga
Errores
Nivel de batería
Voltaje de batería 1 y 2
Prioridad de carga de batería
Voltajes mínimo/máximo
Amperios de carga solar/Ah
Temperatura
Errores
Especificaciones mecánicas
Regulador:
17x5,6x4,1cm
Medidor:
9,7x9,7x,1cm
Parte trasera del medidor:
7,4cm diám.x2,8cm prof.
Se ajusta a un agujero
redondo de 7,6cm
Peso:
Controlador
340g
Medidor
135g
Cable más grande
16mm 2
Cable del medidor
10m
Certificaciones
Cumple con las normas CE
Fabricado en una planta certificada según ISO9001
Especificaciones ambientales
Temperaturas de trabajo:
Regulador
-40ºC a +45ºC
Medidor
-20ºC a +60ºC
Humedad:
100% sin condensación
Tropicalización:
Regulador
Encapsulado epoxi
Envolvente de aluminio
anodizado
Terminales resistentes a corrosión
Medidor
Tarjeta de circuito impreso con
Capa protectora
Protecciones electrónicas
Polaridad inversa
Cortocircuito en circuito solar
Exceso de corriente
Rayos
Alta temperatura
Corriente inversa por la noche
23
SUNLIGHT
Regulador
• Detector crepuscular
• Tecnología de microcontrolador
• Diez configuraciones posibles
• Controlador de iluminación preciso
• 5 años de garantía
• Sencillo y ligero
Características
Prestaciones
Gracias a su avanzada tecnología basada en
microcontrolador, trabaja automáticamente con
diez opciones diferentes para el control de
iluminación, ajustable de forma sencilla y directa,
además de funciones especiales.
Distingue entre el día y la noche usando el
conjunto de células fotovoltaicas a las que está
conectado, siendo ideal para farolas solares o
cualquier tipo de iluminación que requiera el
control de la iluminación natural del sol.
Como cargador, permite seleccionar el tipo de
batería instalada, trabaja mediante PWM con
compensación de temperatura.
Permite conexión paralela con el SunSaver, del
cual incluye su circuito de carga, heredando así
sus excepcionales capacidades y prestaciones
como regulador solar, alcanzando los 40A.
Opciones de control de iluminación
ANOCHECER
• APAGADO
• ENCENDIDO POR 2 HORAS
• ENCENDIDO POR 4 HORAS
• ENCENDIDO POR 6 HORAS
• ENCENDIDO POR 8 HORAS
• ENCENDIDO POR 10 HORAS
• 3 / APAGADO / 1
• 4 / APAGADO / 2
• 6 / APAGADO / 2
• ANOCHECER A AMANECER
24
NOCHE
AMANECER
Características mecánicas
Tamaño del cable: 6mm 2
Caja de aluminio anodizado
Terminales con especificaciones marinas
Encapsulado en epoxy
Peso: 0,26Kg
Características eléctricas
12 voltios
10/20A
10/20A
5 min
Entrada solar especificada
Carga especificada
Sobrecarga del 25% de corriente
Regulación de tensión:
1/ Batería de gel
2/ Batería con líquido
Desconexión de carga
Reconexión de LVD
Compensación de temperatura
Consumo propio
Temperatura de operación
24 voltios
10/20A
10/20A
5 min
14,4V
28,2V
14,4V
28,8V
11,7V
23,4V
12,8V
25,6V
-27
-54
8mA
9mA
-40 a + 85ºC
6,60 (168)
6,10 (155)
LOW VOLTAGE
DISCONNECT
CHARGING
SOLAR LIGHTING CONTROLLER
12 Volts
10A Solar
10A Light
1,00
(25)
SOLAR
4
+
BATTERY
–
3
2
+
12 V
–
LOAD
1
6
+
–
LIGHTING CONTROL
D/D
6/2
TEMP. SENSE
5
SEALED
OR
FLOODED
SELECT
OFF
2
4
6
4/2
3/1 10
2,18
(55)
8
TEST
MORNINGSTAR
Aplica ciones
0,50
(13)
inches (mm)
1,32
(34)
PV +
LOAD +
TIMER
SELECT
PV
DAY
NIGHT
LOGIC
PWM
LOAD
CONTROL
TEST
PV –
LOAD –
B+
B–
BATTERY
BATTERY
BATTERY
25
SHS
Regulador
• Bajo coste
• Electrificación rural, 1-3 paneles solares
• Marcado CE
• 2 años de garantía
Car ac t er ís t i c as
Bajo coste
Protecciones electrónicas
El SHS ha sido específicamente diseñado para
satisfacer las necesidades del mercado de
electrificación rural. El bajo coste es resultado
del uso de la última tecnología y de un alto
volumen de fabricación.
El SHS dispone de fusibles electrónicos incluidos que
no necesitan ser reemplazados. Si se comete un error
en el conexionado durante la instalación, no se dañará
al regulador.
Alta fiabilidad
Todos los reguladores son diseñados con una
alta calidad y prestaciones. El regulador SHS
tiene un bajo índice de fallos y una larga vida
operativa.
Tropicalización
La electrónica del SHS está protegida con una
capa a prueba de humedad que minimiza el
daño que podría causar la misma en el sistema.
Facilidad de uso
El controlador SHS es completamente
automático y no necesita ajustes ni selecciones
por parte del usuario.
Aplica ciones
SHS
REGULADOR
BATERÍA
26
Características técnicas
CAPACIDADES NOMINALES: (TODOS A 12 VOLTIOS)
SHS-6 100W o 6A PARA EL GENERADOR FOTOVOLTAICO
SHS-10 170W o 10A PARA EL GENERADOR FOTOVOLTAICO
Punto de regulación
14,3V
Desconexión por bajo voltaje 11,5V
Reconexión por bajo voltaje
12,6V
Modo de carga PWM Serie (modulación de ancho de pulso) 4 etapas: bulk,
(baterías)
absorción, flotación y ecualización.
Carga compensada en temperatura
Protecciones electrónicas Cortocircuito y exceso de corriente - generador fotovoltaico y carga
Polaridad inversa - en generador fotovoltaico, en la carga y
en la batería
Corriente inversa por la noche
Alto voltaje - en la carga
Rayos - en generador fotovoltaico, en la carga y en la batería
Tropicalización Placa de circuito - recubrimiento según norma
Terminales - protegidos contra corrosión
Indicadores de los Led Verde: en carga
Niveles de batería: verde, amarillo y rojo
Rojo: advertencia de bajo voltaje y desconexión
Los 3 LED destelleando - indicación de errores
Terminales
Dimensiones
Peso
Consumo propio
Para tamaños de cable de hasta 4mm2
15.1 x 6.6 x 3.6cm
113g
8mA máximo
Temperatura -25ºC a +50ºC
Encapsulado
Normas
IP22
CE
Aplica ciones
27
SUNKEEPER
Regulador
• Fiabilidad excepcional
• Protecciones completas
• Alta calidad
• Fácil instalación
• 5 años de garantía
Car ac t er ís t i c as
El regulador SunKeeper es un regulador de bajo
coste que maximiza la vida de la batería en
aplicaciones solares de poca potencia. Está
encapsulado en epoxi y su especificación permite
el uso en exteriores.
El SunKeeper está disponible en versiones de 6
y 12A (ambos de 12VDC). Para soportar las altas
temperaturas en el módulo solar, el controlador
ha sido diseñado usando electrónica de potencia
extremadamente eficiente.
Alta fiabilidad
Especificado para 70ºC, opera con altas
temperaturas con el módulo solar. Es más fiable
que los controladores montados dentro de la
caja de empalme. Usa MOSFET de potencia de
muy baja resistencia. No se necesita cambiar la
especificación.
Mayor duración de la batería
Regulación PWM en serie con carga de tres
etapas: “bulk”, absorción y flotación. Incluye
compensación en temperatura en el regulador o
alternativamente en la batería cuando usa el
sensor remoto de temperatura opcional.
Capacidad para cargar una batería con un voltaje
de 0V.
Especificado para ubicaciones peligrosas
Diseñado específicamente para sistemas de
energía solar en la industria del petróleo y gas.
Lectura fácil
Su LED bicolor es fácil de leer desde el suelo
cuando el módulo solar está montado en un
poste. Indica la carga solar, regulación, operación
noctura normal y toda alarma del regulador o del
sistema.
Especificado para exteriores
Aprobado por ETL para su uso en exteriores sin
un encapsulado adicional. Envolvente robusto
IP65, resistente a rayos UV. Placa de circuitos
impresos encapsulada en epoxi y conexión
resistente al agua para el módulo de caja de
empalme.
Protecciones electrónicas completas
Totalmente protegido contra polaridad inversa,
cortocircuito, exceso de corriente, rayos y picos
transitorios, alta temperatura y corriente inversa
por la noche.
28
Fácil de instalar
Se adapta a las aberturas troqueladas para
tuberías de media pulgada (PG13.5, M20) en el
módulo de caja de empalme. Se ajusta
rápidamente con la tuerca de fijación incluida.
Los cables tienen terminales en “U” para facilitar
la conexión a los contactos del módulo solar.
LED bicolor
El verde parpadea 3 veces:
El verde se enciende:
El verde parpadea rápido:
El verde parpadea lento:
El rojo se enciende:
El rojo parpadea:
LED apagado:
C a r g a d e la batería
Voltaje en absorción:
Voltaje en flotación:
Tipo de carga:
14.1V (a 25º)
13.7V (a 25º)
PWM serie
3 etapas
Compensación de temperatura (3 opciones):
Lectura temp. controlador
-30mV/ºC
Agregado de sensor remoto de temp. -30mV/ºC
Deshabilitar compens. temperatura
Por defecto a 25ºC
Tiene la capacidad de cargar con batería en voltaje cero
Protecciones electrónicas
Polaridad inversa
Cortocircuito
Exceso de corriente
Rayos y picos transitorios
Alta temperatura
Corriente inversa por la noche
Certificaciones
Cumple con CE
Ubicaciones peligrosas: Clase 1, División 2, Grupo A-D
UL 1604
CSA 22.2 o. 213-M1987
Cumple con el Código Eléctrico Nacional de los EUA
Fabricado en una planta certificada según ISO9001
Especificaciones ambientales
Temperaturas de operación:
-40ºC a +70ºC
Humedad:
100%
Tropicalización:
Encapsulado en epoxi
Encaps. plástico resistente UV
Conexión estanca mediante
sello de arandela de goma
Caja de empalme
SunKeeper
Especificaciones mecánicas
Dimensiones:
Peso:
Encapsulado:
Adaptador para el módulo
caja de empalme
Tamaño del cable:
Terminales del cable:
99x55x13mm
0,11Kg
IP65
PG 13,5, M20, para tubo
de 1/2 pulgada
2,0mm 2
Conectores peine
Instalación correcta
Carga solar de la batería
En regulación
Operación nocturna normal
Controlador dañado
Problema en el sistema
Sin alimentación
Configuración típica del sistema
Parte superior
del panel solar
S U N K EEPER
Especificaciones eléctricas
Entrada solar especificada:
SK-6
6A
SK-12 12A
Voltaje nominal del sistema:
12V
Voltaje mínimo de batería:
0V
Voltaje solar máximo:
30V
Consumo propio:
En carga...7mA
Nocturno...2mA
Precisión del voltaje:
±150mV
Sensor remoto de temperatura opcional (SRT)
Reverso del
panel solar
SunKeeper
Batería
Carga
29
RELAY DRIVER
Arrancador grupo electrógeno
• Contactos de alarma de alto y bajo voltaje
• Control de carga incluyendo aplicaciones de
alto voltaje como bombas o grandes motores
• Ajustes para controlar la temperatura en ventiladores
de batería o respiraderos de refrigeración
• Funciones de generador de arranque y backup auxiliar
para control de carga
Características
El regulador Relay Driver es un módulo de lógica
para el control de sistemas de alto nivel con
múltiples funciones. Es capaz de controlar 4
salidas independientes leyendo los datos de
entrada digital del regulador TriStar o leyendo el
voltaje de la batería cuando se utiliza en sistemas
que usan otros reguladores.
Control de datos
1/ Conectado a un regulador TriStar: voltaje de
batería, carga y descarga de corriente,
temperatura de la batería, disipador de la
temperatura TriStar, ciclo de función PWM,
PV/carga y todas las alarmas TriStar.
2/ Conectado a otros reguladores: voltaje de
batería, temperatura, voltaje de entrada de otras
fuentes.
necesario para cada aplicación incluyendo un
amplio rango de valores y relés sólidos,
mecánicos o por desplazamiento de mercurio
- Totalmente programable: fácil de programar
con el software que se incluye vía PC en el puerto
RS-232. Los datos se guardan en memoria no
volátil. Preprogramado para las aplicaciones más
comunes
- Diseño industrial: cada salida del Relay Driver
puede ser controlada directamente por comandos
MODBUS mediante el puerto RS-232 para usarlo
en PLCs y otro hardware industrial. Puede
montarse sobre raíl DIN o sobre superficie plana
- LEDs indicadores para cada canal de carga,
estado, fallos y muestras de intervalos
- 5 años de garantía
Beneficios
- Reducción de costes: los 4 canales proporcionan
hasta 4 funciones de control del sistema de alto
nivel a bajo coste comparado a otras alarmas y
arranques de generador
- Cada canal tiene total protección electrónica
proporcionando así al sistema una gran fiabilidad
- Flexibilidad: posibilidad de escoger el relé exacto
Panel solar
Regulador TriStar
Alarmas
Banco de baterías
= Relé externo
30
Generador de
arranque
Control
de voltaje
Especificaciones eléctricas
Voltaje del sistema:
12 a 48V*
Máx. corriente por canal:
750mA
Precisión temp. por voltaje:
2% ±50mV
Voltaje mín. de trabajo:
8V
Voltaje máx. de trabajo:
68V
Consumo propio:
<20mA
Temp. del sensor:
-40º a +85ºC
Protección:
1500W por canal
Puertos comunes:
(2) TJ-11 conexión BUS
(1) Serie RS-232 de 9 pins
* El voltaje seleccionado por el usuario tiene
que ser el mismo que el de la batería
Protecciones electrónicas
Polaridad inversa
Cortocircuito
Sobrecarga
Rayos y picos transitorios
Especificaciones ambientales
Temperatura de trabajo:
-40ºC a +45ºC
Temperatura almacenamiento:
-55ºC a +85ºC
Humedad:
100% (NC)
Tropicalización:
Capa uniforme en ambos
lados del circuito impreso
Especificaciones mecánicas
Dimensiones (l xan xf):
Peso:
Sección del cable:
Acabado:
Instalación:
163x81x33mm
0,2Kg
1,0 a 2,0mm 2
Instalación para interior
Raíl tipo DIN de 35mm
estándar
Montaje en raíl DIN
Esquema general
V+ (68Vd c Max )
CH x
A/D
~ 100K Ohms
~ 0.6 Ohms
31
SUNSAVER MPPT
Regulador cargas pico
• Avanzado controlador de carga de baterías
• Capacidad de detección de punto de máxima
potencia para paneles fotovoltaicos
• Apto para uso profesional e individual
• Previene las descargas profundas de las baterías
• Posibilidad de regular su funcionamiento
Car ac t er ís t i c as
Máxima extracción de energía de los paneles
Nuestra tecnología TrakStar MPPT Technology brinda:
• Rendimiento pico superior al 97%
• Escasa pérdida de energía
• Reconocimiento de varios picos de potencia durante
periodos de sombra o en instalaciones combinadas
de grupos de paneles fotovoltaicos
• Excelente respuesta con bajo nivel de irradiación
solar
Compatibilidad con módulos de alto voltaje
Permite utilizar módulos de alto voltaje y de película
fina para la carga de baterías.
Convertidor de paneles fotovoltaicos de 36V
o 24V
Es posible utilizar paneles fotovoltaicos de hasta 36V
para cargar baterías de 12 ó 24V.
Menor coste total del sistema
Cuesta menos que otros controladores con detección
de punto de máxima potencia (MPPT) y es de coste
razonable para utilizarlo en paneles fotovoltaicos de
menor capacidad [hasta 400W pico (Wp)]: pueden
utilizarse paneles de menor capacidad acoplados a la
red eléctrica o módulos de película fina y los cables
de la instalación son de menor medida.
Control en derivación
Puede programarse para controlar la carga de baterías
con una carga resistiva auxiliar de DC.
Más información
El LED indicador de estado y el medidor opcional
32
ofrecen datos adicionales del controlador y del sistema.
Control de alimentación de cargas
Desconecta automáticamente las cargas conectadas
a la batería cuando su estado de carga es muy bajo.
Menor tamaño
Dimensiones más reducidas que otros controladores
MPPT para facilitar su instalación en tableros con
otros equipos.
Alta fiabilidad funcional
Los componentes electrónicos de alto rendimiento, un
factor térmico de diseño de amplio margen y protección
climática le confieren alta fiabilidad y larga vida útil.
Regulación de modo funcional
Mediante selectores integrados a la unidad u
ordenador.
Protecciones electrónicas completas
Totalmente protegido contra la mayoría de los errores
y fallos del sistema.
Prolongada vida útil de la batería
La tecnología de detección de punto de potencia
máxima (MPPT) y la carga de cuatro etapas prolongan
la vida útil de la batería.
Registro de datos
Registra los principales parámetros de funcionamiento
del sistema de paneles solares y posee una capacidad
de almacenamiento de datos de 30 días.
Especificaciones eléctricas
Rendimiento máximo:
97,5%
Voltaje nominal del sistema:
12 ó 24V
Corriente máx. de batería:
15A
Rango de voltaje de bat.: 7-36V
Voltaje máx. de paneles
con circuito abierto:
75V
Aporte nominal máx. de paneles:
- Batería 12V
200W
- Batería 24V
400W
Salida nominal:
Control carga 15A
Consumo propio:
35mA
Protección picos trasitorios
4x1500W
Especificaciones ambientales
Temperatura de trabajo:
-40ºC a +60ºC
Temperatura almacenamiento:
-55ºC a +100ºC
Humedad:
100% sin condensación
Protección climática:
Encapsulado en epoxi
Revestimiento apropiado
Terminales aptos para
atmósfera marina
Especificaciones mecánicas
Dimensiones:
Peso:
Terminal de potencia:
Caja:
169x64x73mm
0,6Kg
16mm 2
Aluminio fundido con tapa
de plástico
Protecciones electrónicas
Paneles fotovoltaicos: sobrecarga, cortocircuito, alto voltaje
Circuito de carga: sobrecarga y cortocircuito
Inversión de polaridad: batería, paneles fotovoltaicos y carga
Descargas atmosféricas y picos transitorios
Alta temperatura
Carga de baterías
Corriente inversa de noche
Tipos de batería:
Carga en 4 etapas:
Opciones
- Medidor remoto
- Sensor de temperatura remoto
- Adaptador MeterBus para PC
- Mordazas de montaje en raíl DIN
Certificaciones / Normas
- Cumple con normas CE
- Cumple con norma RoHS
- Fabricado en una sola planta con certificación ISO 9001
Compensación de temperatura:
- Coeficiente:
- Rango:
- Puntos de calibración:
Gel, selladas, AGM,
electrolito líquido
principal (a corriente
constante), absorción,
flotación y ecualización
(opcional)
-5mV/ºC/celda
(25ºC de ref.)
-30ºC a +60ºC
Absorción, flotación y
ecualización
33
Phoenix
MultiPlus 12/24/48V
Co m b i n ac i ó n c ar g ad o r
+ i n v er s o r s en o i d al
•
•
•
•
Conmutación automática (inversor/cargador)
Conexión en paralelo (hasta15kVA)
Conexión trifásica
Carga variable en 4 etapas
(bulk-absorción-flotación-ecualización)
• Extraordinaria potencia de arranque
• Contacto libre de potencia
• Parámetros configurables por software
Car ac t er ís t i c as
Multi funcional, sistema inteligente de gestión de
potencia
Control de potencia - Máximo rendimiento de una
fuente limitada de energía
El Multi obtiene este nombre por su característica especial
de realizar múltiples funciones. Es un potente inversor de
onda senoidal pura con gran potencia de arranque, un
sofisticado cargador de baterías variable en 4 etapas, un
gestor de potencia inteligente, un generador sincronizado
extra (ver asistente de potencia), un conmutador automático
de alta velocidad con función de SAI, sistema totalmente
configurable, sencillo, ligero, compacto… Todo ello en un
solo equipo.
El MultiPlus mide en cada momento la corriente alterna de
entrada que suministra el grupo electrógeno, dando prioridad
siempre a las cargas o consumos conectados a la salida. El
control de potencia nos asegura una alimentación
ininterrumpida de los consumos conectados, cargando
baterías con el “sobrante” disponible, tomando en cada
momento la decisión más eficiente y aprovechando al máximo
la energía disponible de nuestro grupo electrógeno (ver
ejemplos en el Dossier Práctico).
Sistema de potencia ininterrumpida (función SAI)
En caso de avería de la red o del grupo electrógeno, el
MultiPlus pasa automáticamente del modo cargador al modo
inversor haciéndose cargo de la alimentación de todos los
aparatos conectados. Esta conmutación es tan rápida que
incluso ordenadores y otros sistemas electrónicos exigentes
continúan funcionando sin interrupción.
Capacidad prácticamente ilimitada gracias a la conexión
en paralelo
Se pueden conectar entre dos y seis dispositivos MULTI en
paralelo. De este modo, se puede lograr con 6 unidades
MULTI 24/5000/120 una potencia de salida de 25kW / 30kVA
y una capacidad de carga de 720A.
Conexión trifásica
Además de la conexión en paralelo, se pueden confirgurar
tres unidades del mismo modelo para una salida trifásica.
Pero eso no es todo: se pueden conectar en paralelo hasta
6 juegos de tres unidades que proporcionarán una potencia
de salida de 75kW / 90kVA.
34
Asistente de potencia - Elevando la potencia disponible
del grupo electrógeno
Esta función permite que el MultiPlus complemente la
capacidad de la fuente alternativa. Cuando se requiera un
pico de potencia durante un corto espacio de tiempo, el
MultiPlus compensará inmediatamente la posible falta de
potencia de la corriente del generador con potencia de la
batería. Cuando se reduce la carga, la potencia sobrante se
utiliza para recargar la batería.
Dispositivo de carga variable en 4 etapas e
independiente para dos bancos de baterías
La salida principal consigue una potente carga del sistema
de baterías gracias al avanzado sistema de “carga variable”
mediante un software interno que autorregula con precisión
las tres etapas de carga de una batería y añade una cuarta.
Este sistema alarga la vida de su batería cuidando de ella
al máximo. El MultiPlus también puede cargar una segunda
batería usando una salida independiente pensada para
mantener en óptimas condiciones la batería de arranque de
su grupo electrógeno.
Ph o en i x Mu l t i Pl u s
12/3000/120
24/3000/70
48/3000/35
24/5000/120-50A
48/5000/70-50A
PMP012302000*
PMP024302000*
PMP048302000*
PMP245021000
PMP485021000
9,5 - 17
19 - 33
38 - 66
19 - 33
38 - 66
INVERSOR
Referencia
Voltaje de entrada (V DC)
Voltaje de salida (V AC)
Frecuencia (Hz)
230 ± 2%
50 ó 60 ± 0,1%
(1)
Potencia cont. de salida a 25ºC
3000
5000
Potencia cont. de salida a 25ºC
2500
4250
Potencia cont. de salida a 40ºC
2200
4000
Potencia máxima (W)
6000
10.000
Rendimiento máximo (%)
93
94
95
94
95
Consumo en vacío modo ahorro (W)
10
10
12
20
20
Relé multifunción*
Sí
CARGADOR
187 - 265
Voltaje de entrada (V AC)
Frecuencia (Hz)
45 - 65
Phoenix MultiPlus 12/24/48V
Factor de potencia
1
Voltaje de carga en “absorción” (V DC)
14,4
28,8
57,6
28,8
57,6
Voltaje de carga en “flotación” (V DC)
13,8
27,6
55,2
27,6
55,2
Modo ecualización
13,2
26,4
52,8
26,4
52,8
Corriente de carga principal (A)
120
70
35
120
70
Corriente de carga batería
4
4
-
4
-
Sensor de temperatura
Sí
Sí
Sí
Sí
Sí
Sí (16A)
Sí (16A)
Sí (16A)
Sí (25A)
Sí (25A)
Salida auxiliar (A)
CARACTERÍSTICAS COMUNES
Sí
Relé multifunción (5)
Protecciones (2)
a - g
-20 a +50ºC (refrigerado por aire)
Temperatura de trabajo
máx 95%
Humedad (sin condensación)
CAJA
Material y color
aluminio (azul Ral 5012)
Conexión a batería
pernos M8
Conexión a 230V AC
Bornes atornillados
Grado de protección
IP 21
Peso (Kg)
Dimensiones (alxanxpr mm)
18
30
362 x 258 x 218
444 x 328 x 240
NORMAS
Seguridad
EN 60335-1, EN 60335-2-29
Emisión
EN 55014-1
Inmunidad
Directiva Automotriz
EN 55014-2 , EN 61000-3-3
2004/104/EC
* Modelo con relé de 16A. Referencias para
modelos con relé de 50A: PMP123021000,
PMP243021000 y PMP483021000
1 - Pueden configurarse a 60Hz, 120V AC bajo
pedido
2 - Protecciones:
a. Cortocircuito en salida
b. Sobrecarga
c. Voltaje excesivo de la batería
d. Bajo voltaje de la batería
h. Temperatura demasiado alta
f. 230V AC en salida inversor
g. Ondulación de la tensión de entrada
demasiado alta
3 - A temperatura ambiente 25ºC
4 - Carga no lineal factor de pico 3:1
5 - Relé multifunción que se puede ajustar como
alarma general de bajo voltaje DC o señal para
arranque de generador
Aplicaciones
Regulador
Consumo DC
Paneles Solares
Grupo
electrógeno
Inversor/Cargador
MultiPlus
PC
Televisión
Radio
Ba
* Hasta 5 unidades en paralelo
phoenix
multi 24/2500
phoenix
multi 24/2500
phoenix
multi 24/2500
phoenix
multi 24/2500
phoenix
multi 24/2500
Salida
t er
ía
Nevera
phoe nix
500
char ger 24/2
Onda
Senoidal
Luces
SENCILLÍSIMA INSTALACIÓN
Una vez instalado, el MultiPlus está listo para funcionar. Si ha de cambiarse la configuración, se puede
hacer en cuestión de minutos mediante un nuevo procedimiento de configuración del conmutador DIP.
Con los conmutadores DIP se puede incluso programar el funcionamiento en paralelo y el trifásico sin
necesidad de ordenador.
También se puede utilizar un VE.Net en lugar de los conmutadores DIP. Disponemos de un sofisticado
software (VE.Bus Quick Configure y VE.Bus System Configurator) para configurar varias nuevas y
avanzadas características.
35
Phoenix
MultiPlus C (compact)
Co m b i n ac i ó n c ar g ad o r
+ i n v er s o r s en o i d al
• Tecnología de alta frecuencia
• Extraordinaria potencia de arranque
• Conmutación automática (red/inversor)
de 16A (modelos de 2000VA: 30A)
• Carga variable en 4 etapas
(Bulk-absorción-flotación-ecualización)
• Parámetros configurables por software
• Sin interferencias
Car ac t er ís t i c as
Multi funcional, sistema inteligente de gestión
de potencia
El Multi obtiene este nombre por su característica
Asistente de potencia - Cogeneración- Elevando la
potencia disponible del grupo electrógeno, una nueva
dimensión del MultiPlus
especial de realizar múltiples funciones. Es un potente
El asistente de potencia lleva más allá el concepto de
inversor de onda senoidal pura con gran potencia de
control de potencia. El MultiPlus trabaja en paralelo
arranque, un sofisticado cargador variable en 4 etapas,
con su grupo electrógeno o fuente de alterna,
un gestor de potencia inteligente, un generador
añadiendo potencia desde las baterías cuando la
sincronizado extra (ver asistente de potencia), un
demanda supera la capacidad del grupo electrógeno.
conmutador automático de alta velocidad con función
¿Que en momentos puntuales tiene usted picos de
de SAI, sistema totalmente configurable, sencillo,
potencia que su generador no puede suministrar?, el
ligero, compacto… Todo ello en un solo equipo.
MultiPlus suministra la potencia que falta desde las
Sistema de potencia ininterrumpida (función SAI)
En caso de avería de la red o del grupo electrógeno,
el Multi pasa automáticamente del modo cargador al
modo inversor haciéndose cargo de la alimentación
de todos los aparatos conectados. Esta conmutación
es tan rápida que incluso ordenadores y otros sistemas
baterías. ¿Que la demanda de sus consumos ya ha
bajado?, el MultiPlus aprovecha para cargar las
baterías. Así de simple.
NOTA: fuente de alterna o generador de 2kW mínimo
por MultiPlus.
electrónicos exigentes continúan funcionando sin
Dispositivo de carga variable en 4 etapas e
independiente para dos bancos de baterías
interrupción.
La salida principal consigue una potente carga del
Control de potencia - Máximo rendimiento de una
fuente limitada de energía
sistema de baterías gracias al avanzado sistema de
El MultiPlus mide en cada momento la corriente alterna
autorregula con precisión las tres etapas de carga de
de entrada que suministra el grupo electrógeno, dando
una batería y añade una cuarta. Este sistema alarga
prioridad siempre a las cargas o consumos conectados
la vida de su batería, cuidando de ella al máximo. El
a la salida del MultiPlus. El control de potencia nos
MultiPlus también puede cargar una segunda batería
asegura una alimentación ininterrumpida de los
usando una salida independiente pensada para
consumos conectados, cargando
mantener en óptimas condiciones la batería de
baterías con el
“sobrante” disponible, tomando en cada momento la
“carga adaptada” mediante un software interno que
arranque de su grupo electrógeno.
decisión más eficiente y aprovechando al máximo la
energía disponible de nuestro grupo electrógeno (ver
ejemplos en el Dossier Práctico).
36
Funcionamiento en paralelo y en trifásico.
Ph o en i x
Mu l t i Pl u s C
12V
24V
C 12/800/35
C 24/800/16
C 12/1200/50
C 24/1200/25
C 12/1600/70
C 24/1600/40
C 12/2000/80
C 24/2000/50
Power Control / Power Assist
Sí
Sí
Sí
Sí
Conmutador de Transferencia
16A
16A
16A
30A
Referencia
CMP128010000, CMU024801000 CMP121220000, CMP241220000 CMP121620000, CMP241620000 CMP122020000, CMP242020000
INVERSOR
12V: 9,5-17V
Voltaje de entrada (V DC)
Salida (1)
24V: 19-33V
Voltaje de salida = 230V AC ± 2%
Potencia cont. de salida a 25ºC (VA)
800
1200
Potencia cont. de salida a 25ºC (W)
700
1000
Rendimiento máximo (%)
1600
1300
2000
1600
650
900
1200
1450
1600
2400
3000
4000
92 / 94
93 / 94
93 / 94
93 / 94
5 / 8
5 / 8
5 / 8
7/9
Potencia cont. de salida a 40ºC (W)
Potencia máxima (pico) (W)
Frecuencia = 50Hz ± 0,1% (1)
Consumo en vacío en modo ahorro
CARGADOR
Entrada AC
Voltaje de carga en “absorción”
Frecuencia de entrada: 45-65Hz
(1)
Factor de potencia: 1
14,4 / 28,8
Voltaje de carga en “flotación”
13,8 / 27,6
Modo ecualización
13,2 / 26,4
Corriente de carga (principal) (A)
Phoenix MultiPlus C 12/24V
Voltaje de entrada: 187-265V AC
35 / 16
50 / 25
70 / 40
Corriente de carga (auxiliar) (A)
4
Sensor temperatura y voltaje
Sí
80 / 50
CARACTERÍSTICAS COMUNES
Sensor o Piloto
Protecciones
Piloto
(5)
a, b, c, d, f, g
(2)
Temperatura de trabajo
-20 a +50ºC (refrigerado por ventilador)
Humedad (sin condensación)
máx: 95%
CAJA
Material y color
Aluminio RAL 5012 Color Azul
Conexión a batería
Cables de batería 1,5 metros
Conexión a 230V AC
Conector G-ST 18i
Grado de protección
Peso (Kg)
Pernos M8
Abrazadera de resorte
IP 21
10
10
Dimensiones (alxanxpr mm)
10
12
375x214x110
520x255x125
NORMAS
Seguridad
EN 60335-1, EN 60335-2-29
Emisión
EN 550141-1
Inmunidad
Directiva Automotriz
1 - Pueden configurarse a 60Hz; 120V AC bajo
pedido
2 - Protecciones:
a. Cortocircuito
b. Sobrecarga
c. Voltaje excesivo de la batería
EN 55014-2, EN 61000-3-3
2004/104/EC
d.
e.
f.
g.
h.
3 - A
Bajo voltaje de la batería
Detección de inversión de polaridad
230V AC en la salida del inversor
Ondulación voltaje de entrada elevado
Sobrecalentamiento
temperatura ambiente 25ºC
4 - Carga no lineal factor de pico 3:1
5 - Piloto: salida colector abierto 66V-40mA
Aplicaciones
Regulador
Consumo
Paneles Solares
Grupo
electrógeno
Inversor/Cargador
MultiPlus
PC
Televisión
Radio
Ba
t er
ía
Nevera
phoe nix
500
char ger 24/2
Onda
Senoidal
Luces
SENCILLÍSIMA INSTALACIÓN
Una vez instalado, el MultiPlus está listo para funcionar. Si ha de cambiarse la configuración, se puede hacer en cuestión de minutos mediante
un nuevo procedimiento de configuración del conmutador DIP. Con los conmutadores DIP se puede incluso programar el funcionamiento
en paralelo y el trifásico sin necesidad de ordenador.
También se puede utilizar un VE.Net en lugar de los conmutadores DIP. Disponemos de un sofisticado software (VE.Bus Quick Configure
y VE.Bus System Configurator) para configurar varias nuevas y avanzadas características.
37
Ejemplo de conexión de un sistema básico (3KVA, 13A)
El sistema básico es ideal para aquellas aplicaciones que precisan de poca energía como:
iluminación, microondas, secador de pelo, televisor, DVD, cargadores de móviles, cafetera y
otros pequeños electrodomésticos.
El núcleo de este sistema es el MultiPlus con sus controles (panel y monitor de baterías) que
opera de forma automática para asegurar un constante suministro de energía.
MultiPlus Compact
Control Multi
BMV-600S Monitor de baterías
Regulador Solar
Consumos AC
SHUNT
Caja fusibles DC
Consumos DC
Sensor temperatura
38
Ejemplo de sistema de conexión en paralelo
Este sistema ofrece todo el confort que pueda imaginar... y más: aire acondicionado, agua
caliente, ordenador portátil, microondas, lavaplatos, nevera, congelador, iluminación, entretenimiento
audio-visual, cocina de inducción, etc. Ha sido especialmente diseñado para cubrir todos los
requerimientos de energía. Un potente generador y un pack de MultiPlus inversores/cargadores
provee la energía necesaria incluso en periodos de alto consumo, cuando el Multi funciona de
forma inteligente y toma la energía adicional del banco de baterías.
VE.Net panel
3xMultiPlus
Consumos AC
SHUNT
Regulador Solar
Caja fusibles DC
VE.Net Controlador de baterías
Consumos DC
39
EasyPlus
Co m b i n ac i ó n c ar g ad o r
+ i n v er s o r s en o i d al
• Inversor senoidal a 12V, 1600VA. Potencia pico
de 3000W
• Cargador de 70A
• Tecnología Power Assist ® que protege al generador
de las sobrecargas añadiendo potencia extra al
inversor cuando se necesita
• Carga variable en 4 etapas
• Máxima seguridad para su sistema
• 2 años de garantía
Car ac t er ís t i c as
Potente solución multifuncional
¿Cómo trabaja?
El Phoenix EasyPlus es un sistema multifuncional de
El Phoenix EasyPlus debe conectarse a las baterías y a un
energía consistente en un potente inversor senoidal,
generador diésel (o cualquier otra fuente de AC). La máxima
un sofisticado cargador de baterías, un relé de
potencia que le vamos a requerir a dicho generador (en
transferencia en AC de alta velocidad y un distribuidor
amperios) se puede definir mediante el potenciómetro del
de cargas en AC, todo ello en un ligero y compacto
panel de control. Las cargas conectadas a la salida se
equipo. El sistema ha sido diseñado para quienes
dividen en dos grupos:
quieren disfrutar del confort y la libertad de un completo
1/ El primer grupo recoge los consumos habituales, pequeños
sistema energético sin perder el tiempo en
o de corto periodo de tiempo de conexión, tales como
instalaciones complicadas de diferentes aparatos.
pequeños electrodomésticos o bases de enchufes.
2/ El segundo grupo son los elementos de gran consumo
Seguridad y confort óptimos
tales como un aire acondicionado, una secadora o similar.
El EasyPlus garantiza ininterrumpido abastecimiento
Con el objetivo de proteger las baterías ante descargas
energético en cualquier momento y lugar por muy
profundas, este segundo grupo queda supeditado a la
aislado que se encuentre. Ideal cuando existen
alimentación única y exclusivamente a través del grupo
limitaciones energéticas. Gracias al exclusivo sistema
diésel y no pueden ser alimentadas estas cargas a través
Power Assist®, es posible aumentar la capacidad total
del inversor. Gracias a la exclusiva tecnología Power Assist®,
de suministro de potencia hacia las cargas añadiendo
se puede añadir energía a través de las baterías para
energía extra desde las baterías. Se garantiza una
prevenir sobrecargas en el generador diésel (y sus
óptima seguridad gracias a su RCD (diferencial)
consecuentes caídas de tensión) siempre que sea necesario.
integrado que lo protege ante corrientes residuales.
40
Instalación en 5 sencillos pasos
El EasyPlus obtiene su nombre de su simplicidad de instalación y uso. El sistema puede ser
instalado mediante cinco sencillos pasos consiguiendo un ahorro sustancial en tiempo así como
en espacio. El EasyPlus viene provisto de todos los elementos necesarios para conexiones de
corriente alterna e incluye los cables de batería.
Primer paso: seleccionar el espacio para la instalación
(lo más cerca posible de las baterías) e instalar el
soporte de pared. Fijar el EasyPlus a dicho soporte
mediante los tornillos de seguridad que se incluyen.
Segundo paso: conectar el generador diésel (o
cualquier otra fuente de corriente alterna) a su entrada
y las cargas a la salida.
Tercer paso: conectar el panel de control con su
respectivo cable al puerto del equipo (recordemos
que ambos están incluidos en el nuevo EasyPlus).
Cuarto paso: conectar las baterías mediante los
cables incorporados en el equipo y el sensor de
temperartura (también incluido en el equipo para ser
conectado al negativo de las baterías).
Quinto paso: subiendo el diferencial todo el sistema
completo se encuentra listo para ser usado.
41
Quattro
Co m b i n ac i ó n c ar g ad o r
+ i n v er s o r s en o i d al
• Dos entradas AC independientes
• Inversor a 12, 24 y 48V, 3.000, 5.000, 8.000 y
10.000VA. Potencia pico de hasta 20.000W
• Cargador de hasta 200A
• Tecnología PowerAssist ® que protege al generador
de las sobrecargas añadiendo potencia extra al
inversor cuando se necesita
• Carga variable en 4 etapas
• 2 años de garantía
Car ac t er ís t i c as
2 entradas AC con relé de transferencia incorporado
El nuevo combinado Quattro puede estar conectado a dos
“PowerControl®”: tratando con un generador o una
toma de puerto limitados
fuentes de alimentación independientes, por ejemplo, a un
El combinado Quattro es un potente cargador de baterías.
generador y a un panel solar a la vez o a dos generadores.
Por ello, necesitará tomar mucha corriente del generador o
El Quattro se conecta automáticamente a la fuente activa.
la fuente alternativa. Puede programarse un límite de corriente
2 salidas AC
La salida principal posee función SAI. Así, cuando hay un
fallo o desconexión de la corriente es el propio Quattro el
que sigue abasteciendo corriente. Y el cambio se hace de
forma tan rápida (menos de 20 milisegundos) que los
aparatos conectados contiuarán trabajando con normalidad,
sin sufrir ninguna interrupción.
La segunda salida está libre sólo cuando se detecta alterna
en una de las entradas del aparato. Así, a esta salida pueden
conectarse aparatos que no deberían descargar la batería,
como por ejemplo un calentador.
Potencia prácticamente ilimitada gracias al
funcionamiento en paralelo
Varias unidades de Quattro pueden operar en paralelo para
proporcionar una gran capacidad de carga. Consultar en
oficina según la aplicación deseada.
Capacidad trifásica
Pueden configurarse tres unidades Quattro para conseguir
una salida trifásica. Aunque esto no es todo, hasta 6 grupos
de 3 unidades Quattro pueden conectarse en paralelo para
proporcionar 160kW / 180kVA de potencia del inversor y
más de 2500A de capacidad de carga.
42
para las dos entradas AC. Entonces, el aparato se “fija” en
las otras cargas AC y utilizará la que esté libre para prevenir
sobrecargas del generador o el panel solar.
“PowerAssist®”: el refuerzo para la potencia de la
toma o del generador
Esta característica lleva el principio del PowerControl® a
una nueva dimensión permitiendo al MultiPlus suplementar
la función de fuente alternativa. Allí donde las potencias
pico son necesarias a menudo y por un tiempo limitado, el
Quattro se asegurará que el insuficiente generador o panel
solar sean inmediatamente compensados con la potencia
de la batería. Cuando la carga se reduzca, la energía
sobrante se usará para recargar la batería.
Con esta característica, los problemas relacionados con la
insuficiente potencia del generador se solucionan de una
vez por todas.
Configuración del sistema ultra sencilla
Instalar y funcionar. Si se necesitan cambiar los parámetros
puede hacerse en pocos minutos con el nuevo procedimiento
DIP, incluso en sistemas trifásicos y sin ordenadores. De
forma alternativa también puede usarse el programa
VE.Net.2.
12/3000/120
24/3000/70
12/5000/200
24/5000/120
48/5000/70
PowerControl/PowerAssist
Sí
Sí
Sí
Relé de transferencia integrado
Sí
Sí
Sí
Sí
Amperaje máx. de alimentación
Entradas AC (2x)
50/30
2x100 / 50/30 / 50/30
2x100
2x100
Qu at t r o
Rango entrada: 187-265VAC
24/8000/200
48/8000/110
Frecuencia entrada: 45-65Hz
48/10000/140
Sí
Factor de potencia: 1
INVERSOR
Voltaje de entrada (V DC)
9,5-17
19-33
Voltaje de salida = 230V AC ± 2%
Salida (1)
38-66
Frecuencia = 50Hz ±0,1%
Potencia cont. salida a 25ºC (VA) (4)
3000
5000
Potencia cont. de salida a 25ºC (W)
2500
4500
Potencia cont. de salida a 40ºC (W)
2200
4000
6300
8000
Potencia máxima (pico) (W)
6000
10000
16000
20000
Rendimiento máximo (%)
93/94
94/94/95
96
96
Consumo sin carga (W)
15/15
25/25/25
35
35
Cons. sin carga en modo AES (W)
Cons. sin carga en modo búsqueda
10/10
4/5
20/20/20
5/5/6
30
10
30
10
Voltaje de carga en “absorción” (V DC)
14,4/28,8
14,4/28,8/57,6
57,6
57,6
Voltaje de carga en “flotación” (V DC)
13,8/27,6
13,8/27,6/55,2
55,2
55,2
Modo ecualización
13,2/26,4
13,2/26,4/52,8
52,8
52,8
120/70
200/120/70
110
140
8000
7000
10000
9000
CARGADOR
Corriente carga (principal) (A)
(3)
Corriente de carga (auxiliar) (A)
Sensor de temperatura
4 (modelos de 12 y 24V)
Sí
Quattro 12/24/48V
CARACTERÍSTICAS COMUNES
Salida auxiliar (A)
(5)
25
50 / 25 / 25
50
50
Relé programable
(6)
1x
3x / 1x / 1x
3x
3x
Protecciones
a-g
(2)
Para funcionamiento en paralelo y trifásico, control remoto e integración del sistema
Puerto comunicación VE. BUS
Propuesta gral puerto com (7)
1x
2x / 1x / 1x
Temp. trabajo / Humedad
-20 a +50ºC
2x
2x
/ Humedad sin condensación máx: 95%
CAJA
Material, color, grado protección
Aluminio RAL 5012 Color Azul, IP 21
Conexión a batería
4 pernos M8 (2 conexiones positivas y 2 negativas)
Conexión a 230V AC
Bornes de tornillo de 13mm 2 (6 AWG)
Peso (Kg)
19
34/30/30
470x350x280
444x328x240
444x328x240
362x258x218
Dimensiones (alxanxpr mm)
45 / 41
45
470x350x280
470x350x280
NORMAS
Seguridad
EN 60335-1, EN 60335-2-29
Emisión, Inmunidad
EN 55014-1, EN 55014-2, EN 61000-3-3
1 - Pueden configurarse a 60Hz; 120V
AC bajo pedido
2 - Protecciones:
a. Cortocircuito
b. Sobrecarga
c. Voltaje excesivo de la batería
d. Bajo voltaje de la batería
e. Temperatura demasiado alta
f. 230V AC en la salida del inversor
g. Ondulación voltaje de entrada
elevado
3 - A temperatura ambiente 25ºC
4 - Carga no lineal factor de pico 3:1
5- Interruptores apagados cuando no
Conexión
Generador máx.
hay fuente AC disponible
6 - Relé multifunción que puede usarse
para la alarma general, bajo voltaje
DC o señal de encendido del generador
Distribución AC
30A
AC in
AC out
Segunda conexión
máx. 30A
Lavadora
30A
AC in
Calentador
AC out
Cocina
Lavaplatos
Multi Control
Convertidor
Mk 2.2b
RS485/RS232
Conexiones
VE.bus para
configuración en
paralelo o trifásica
Relé multifunción
Todos los parámetros pueden ajustarse con un ordenador
43
Inversor Phoenix
On d a s en o i d al p u r a
• Extraordinaria potencia de arranque
• Tecnología de alta frecuencia
• Bajo consumo sin carga
• Parámetros configurables por software
• Salida para contacto libre de potencia
• Conexión en paralelo o trifásica
Car ac t er ís t i c as
SinusMax – Tecnología avanzada
El conmutador está integrado en estos aparatos y su función
Desarrollados para un uso profesional, los inversores
como cargador se puede desactivar. Para los modelos de
Phoenix son perfectamente adecuados para multitud
potencia inferior recomendamos nuestro conmutador
de aplicaciones distintas. Estos inversores de onda
automático externo Filax. El cambio del Multi y del Filax se
senoidal pura y de alto rendimiento han sido diseñados
realiza tan rápidamente que no provoca ninguna alteración
para ofrecer la máxima eficacia. La tecnología híbrida
en ordenadores ni otros aparatos sensibles conectados.
de alta frecuencia proporciona unas características
excepcionales con unas dimensiones y un peso
Puerto de comunicación
reducidos y garantiza una compatibilidad total con
Todos los modelos de 1.200VA y superiores están equipados
todos los aparatos conectados.
con un puerto de comunicación RS485. Con la interfaz
MK1b y nuestro software gratuito VEConfigure, este puerto
Gran potencia instantánea
permite personalizar todos los ajustes del cargador Phoenix
La tecnología SinusMax permite alcanzar una potencia
(voltaje y frecuencia de salida, umbrales de voltaje de
instantánea muy elevada, imposible de conseguir con los
entrada...) e integrarlo en redes informatizadas de control
sistemas convencionales de alta frecuencia. Así pues, los
y gestión. VEConfigure permite además programar un relé
inversores Phoenix resultan muy adecuados para la
interno para avisar de alarmas o arrancar un grupo
alimentación de aparatos que requieren una elevada
electrógeno.
potencia de arranque como neveras, congeladores, aires
acondicionados y similares. Un modelo 24/1200, por ejemplo,
Nuevas posibilidades de enormes aplicaciones
es adecuado para alimentar una nevera.
Las aplicaciones posibles con nuestros inversores paralelos
o trifásicos son realmente sorprendentes. Para saberlo todo
Para cambiar la salida a otra fuente de
alimentación: el conmutador automático
sobre las baterías, las configuraciones posibles y ejemplos
de sistemas completos, consulte nuestro Dossier Práctico.
Si se necesita un conmutador de transferencia automática
en los modelos de 1.200VA o superiores, recomendamos
utilizar un aparato equivalente de la gama Multi.
Salida con
enchufe IEC-320
44
Salida con enchufe
SCHUKO
In v er s o r Ph o en i x
C12/1200
C24/1200
C12/1600
C24/1600
C12/2000
C24/2000
12/3000
24/3000
48/3000
24/5000
48/5000
INVERSOR
Referencia
CIN(12ó24)1220000 CIN(12ó24)1620000 CIN0(12ó24)202000 PIN0(12ó24ó48)302000 PIN(24ó48)5020000
9,5-17V
Voltaje de entrada (V DC)
19-33V
Voltaje de salida (V AC) (1)
Frecuencia (Hz)
50/60 ± 0,1% (seleccionable por interruptor)
(2)
Potencia cont. de salida a 25ºC (VA) (5)
1200
1600
2000
3000
5000
Potencia cont. de salida a 25ºC (W)
1000
1300
1600
2500
4500
Potencia cont. de salida a 40ºC (W)
900
1200
1450
2200
4000
Potencia máxima/pico (W)
2400
3000
4000
6000
10000
Rendimiento máximo (%)
92/94
92/94
92/92
93/94/95
94/95
8/10
8/10
9/11
15/15/16
25/25
Consumo en vacío (W)
Inversor Phoenix 12/24/48V
38-66V
230 ± 2%
Consumo en vacío en modo AES (W)
5/8
5/8
7/9
10/10/12
20/20
Consumo en vacío modo Search (W)
2/3
2/3
3/4
4/5/5
5/6
Protecciones
a-g
(3)
Caract. comunes
Temp. trabajo: -20 a + 50ºC (refrigerado por ventilador) / Humedad sin condensación máx. 95%
Relé programable
Sí
(4)
CA J A
Material y color
Cables 1,5m incl.
Conexión a batería
Aluminio pintado epoxi (azul Ral 5012)
Cables 1,5m incl.
Pernos M8
2+2 Pernos M8
2+2 Pernos M8
Conexión a 230V AC
Enchufe G-ST18i
Enchufe G-ST18i
Abrazadera-resorte
Bornes atornillados
Bornes atornillados
Grado de protección
IP 21
IP 21
IP 21
IP 21
IP 21
10
12
375x214x110
10
375x214x110
520x255x125
18
362x258x218
30
444x328x240
Control remoto (puerto RS 485)
Panel selector on/off
Sí
Sí
Sí
Sí
Sí
Sí
Sí
Sí
Sí
Sí
Panel salida AC y Alarma
Sí
Sí
Sí
Sí
Sí
Phoenix Multi
Phoenix Multi
Phoenix Multi
Phoenix Multi
Phoenix Multi
2004/104/EC
2004/104/EC
Peso (Kg)
Dimensiones (alxanxpr mm)
OPCIONES
Conmutador automático
NORMA S
Directiva Automotriz
Emisión
2004/104/EC
EN 55014-1
Inmunidad
EN 55014-2
Seguridad
EN 60335-1
1 - 115V AC (bajo pedido)
2 - 60Hz (bajo pedido)
3 - Protecciones:
a. Cortocircuito
b. Sobrecarga
c. Voltaje excesivo de la
batería
d. Bajo voltaje de la batería
e. Temperatura demasiado alta
f. Ondulación de la tensión de
entrada demasiado alta
g. 230V AC en la salida del
inversor
4 - Relé programable que puede
configurarse en alarma general,
subtensión de CD o como señal
de arranque de un generador
(es necesario el interfaz MK2 y
el software VEConfigure).
Capacidad nominal AC 230V/4A
Capacidad nominal DC 4A
hasta 35VDC, 1A hasta 60VDC
5 - Carga no lineal, factor de
cresta 3:1
Aplicaciones
Regulador
Consumo
PC
Onda
Senoidal
Paneles Solares
Grupo
electrógeno
Cargador
de baterías
Televisión
Radio
phoe nix 500
mult i 24/2
phoe nix
500
char ger 24/2
Ba
t er
ía
Nevera
Inversor
Phoenix
Luces
FUNCIONAMIENTO Y SUPERVISIÓN CONTROLADOS POR ORDENADOR
Hay varios adaptadores disponibles:
- Convertidor MK2.2 VE.Bus a RS232: se conecta al puerto RS232 de un ordenador (ver “Guía para el VEConfigure” en
nuestra web, www.hispaniasolar.es)
- Convertidor MK2-USB VE.Bus a USB: Se conecta a un puerto USB (ver “Guía para el VEConfigure”)
- Convertidor VE.Net a VE.Bus: interfaz del VE.Net
- Convertidor VE.Bus a E-PLEX: interfaz para el sistema E-PLEX. El sistema de conmutación y supervisión digital más
avanzado y comprobado en situaciones reales
- Victron Global Remote: módem que envía alarmas, avisos e informes sobre el estado del sistema a teléfonos móviles
mediante mensajes de texto (SMS). También puede registrar datos de monitores de baterías Victron, Multi, Quattro e
inversores mediante una conexión GPRS
45
Inversor
Phoenix 12, 24 y 48V
Onda senoidal pura
• Onda senoidal pura: ideal para alimentar equipos
electrónicos sensibles
• Transformador toroidal: alto rendimiento
• Controlado por microprocesador: excelente
protección contra uso inadecuado
• Cables de batería incluidos: sencillo de instalar
• Encapsulado IEC-320
Car ac t er ís t i c as
SinusMax – Tecnología avanzada
alimentación de aparatos que requieren una elevada
Desarrollados para un uso profesional, los inversores
potencia de arranque como neveras, congeladores, aires
Phoenix son perfectamente adecuados para multitud
acondicionados y similares. Un modelo 24/750, por ejemplo,
de aplicaciones distintas. Estos inversores de onda
es adecuado para alimentar una nevera. Además, los
senoidal pura y de alto rendimiento han sido diseñados
inversores Phoenix sirven también para alimentar cargas
para ofrecer la máxima eficacia. La tecnología híbrida
difíciles como ordenadores o herramientas eléctricas de
de alta frecuencia proporciona unas características
baja potencia.
excepcionales con unas dimensiones y un peso
reducidos y garantiza una compatibilidad total con
todos los aparatos conectados.
Transferencia de la carga a otra fuente AC: el
conmutador de transferencia automático
Para los modelos de menor potencia recomendamos el
uso de nuestro conmutador automático “Filax”. El tiempo
Gran potencia instantánea
La tecnología SinusMax permite alcanzar una potencia
instantánea muy elevada, imposible de conseguir con los
sistemas convencionales de alta frecuencia. Así pues, los
inversores Phoenix resultan muy adecuados para la
Salida con
enchufe IEC-320
46
Salida con enchufe
SCHUKO
de conmutación del “Filax” es muy corto (menos de 20
milisegundos) de manera que los ordenadores y demás
equipos electrónicos continuarán funcionando sin
interrupción.
Inversor Phoenix
24/180, 24/350, 24/800
12/180, 12/350, 12/800
48/350, 48/750, 48/800
INVERSOR
PIN012:181100, 351100, 8010100 PIN024:181100, 351000, 8010100 PIN048: 351100, 751100, 8010100
Referencia
10,5 - 15,5 / 21 - 31 / 42,0 - 62,0. Modelos 800: 9,2 - 17,3 / 18,4 - 34 / 36,8 - 68
Voltaje de entrada (V DC)
Voltaje de salida (V AC) (1)
230 ± 3%
Frecuencia (Hz)
50 ± 0,1%
(2)
Potencia cont. de salida a 25ºC
180/350/800
180/350/800
350/750/800
Potencia cont. de salida a 25ºC
175/300/700
175/300/700
300/700
Potencia cont. de salida a 40ºC
150/250/650
150/250/650
250/650
350/700/1600
350/700/1600
700/1400/1600
Rendimiento máximo (%)
87/89/91
88/89/93
90/94/94
Consumo sin carga (W)
2,6/3,1/6
3,8/5/6
6/13/6
Sí
Sí
Sí
a-e
a-e
a-e
Potencia máxima (W)
Ventilación forzada
Protecciones (3)
Temperatura de trabajo
-40 a + 50ºC (refrigerado por ventilador)
máx. 95%
Humedad (sin condensación)
Inversor Phoenix
OPCIONES
Conmutador automático
FILAX
Interruptor on/off remoto
Modelos 180, 350 y 800: conector bifásico. Modelos 750: RJ12
Panel salida AC
Sí
Sí
Sí
Panel alarma de batería
Sí
Sí
Sí
CAJA
Aluminio pintado epoxi (azul Ral 5012)
Material y color
(5) / (5) / (5)
Conexión a batería
(5) / (5) / (5)
(5) / Terminales de tornillo / (5)
IEC-320, schuko y otros bajo pedido IEC-320, schuko y otros bajo pedido IEC-320, schuko y otros bajo pedido
Conexión a 230V AC
Protección
IP 20
IP 20
IP 20
Peso (Kg)
2,7 / 3,5 / 6,5
2,7 / 3,5 / 6,5
72x132x200 /
72x155x237 / 108x165x305
72x132x200 /
3,5 / 2,7 / 6,5
72x155x237 /
72x155x237 / 108x165x305
72x180x295 / 108x165x305
Dimensiones (alxanxpr mm)
NORMAS
aluminio (azul RAL 5012)
EN 60335-1
EN 60335-1
Seguridad
Emisión
EN 55014-1
Normativa
EN 55014-2
1 - 115V AC (bajo pedido)
2 - 60Hz (bajo pedido)
3 - Protecciones:
a. Cortocircuito
b. Sobrecarga
c. Voltaje excesivo de la batería
EN 60335-1
d. Bajo voltaje de la batería
e. Temperatura demasiado alta
4 - Factor de pico 3:1 en carga no
lineal
5 - Cables de batería de 1,5m (modelo
12/180 con encededor de cigarrillos)
Aplicaciones
Regulador
Consumo
PC
Onda
Senoidal
Paneles Solares
Grupo
electrógeno
Cargador
de baterías
phoe nix 24/2 500
char ger
Televisión
Radio
Nevera
Ba
ter
ía
Inversor
Phoenix
Luces
47
Blue Power
Cargador de baterías
Grado de Protección IP65
• Completamente sellado y estanco
Agua, aceite o suciedad nunca dañarán el cargador.
• Protegido contra sobrecalentamiento
Ideal para ser utilizado en salas de máquinas a altas
temperaturas.
• Totalmente automático, sistema de carga
en 3 etapas
La batería queda eficazmente protegida contra sobrecargas.
Puede estar permanentemente conectada al cargador.
• 2 indicadores luminosos de estado (LEDs)
Amarillo: batería en carga.
Verde: cargador en “flotación”, batería cargada.
Car g ad o r B l u e Po w er
12/7
12/17
BPC012007100
BPC012017100
24/3
24/12
BPC024003100
BPC024012100
CARGADOR
Referencia
200-265
Voltaje de entrada (VAC) (2)
Frecuencia (Hz)
45-65
Voltaje carga “absorción” (VDC)
14,4
14,4
28,8
28,8
Voltaje carga “flotación” (VDC)
13,7
13,7
27,4
27,4
17
3
12
Corriente de carga (A)
7
Característica de carga
Capacidad mínima de la batería
Corriente de desconexión (Ah)
15
Sistema de carga de 3 etapas. Máximo 18 horas de tiempo de absorción
35
6
0,7
1,7
24
1,2
SÍ
Uso como fuente de alimentación
Protecciones
0,3
a,b,c
(1)
-20 a +60ºC (rango máximo de salida a 40ºC)
Temperatura de trabajo
Humedad
Hasta el 100%
CAJA
Aluminio (azul RAL 5012)
Material y color
Cable (rojo y negro) 1,5 metros
Cable de 1,5 metros (certificado CE)
Conexión a batería
Conexión a 230V AC
(3)
IP65
Protección
Peso (Kg)
Dimensiones (alxanxpr mm)
1,1
1,4
1,1
1,4
43x80x155
47x99x193
43x80x155
47x99x193
NORMAS
Seguridad
Emisión / Inmunidad
EN 60335-1, EN 60335-2-29
EN 55014-1, EN 60555-2 / EN 55014-2, EN 60555-3
1- Protección
a. Inversión de polaridad de la batería (cables de batería con
fusible)
b. Cortocircuito
c. Sobrecalentamiento
48
2 - También disponible en 90-135. Preguntar en oficinas de Hispania
3 - Suministro de diferentes tipos de conexión bajo pedido
Blue Power
Cargador de baterías
Grado de protección IP20
• Menor envejecimiento y necesidad de mantenimiento
cuando no se usa la batería
El modo de almacenamiento se activa cuando la batería no ha
sufrido ninguna descarga en 24 horas. La tensión de flotación se
reduce a 2,2V/ acumulador (13,2V para baterías de 12V) para reducir
el burbujeo y la corrosión de las placas positivas. Una vez a la semana
se vuelve a subir la tensión a nivel de absorción para “igualar la
batería”. Esta función evita la estratificación del electrolito y la
sulfatación, causas principales de fallos en baterías.
• Protegido contra sobrecalentamiento
Ideal para ser utilizado en salas de máquinas a altas temperaturas.
• Totalmente automático, sistema de carga en 4 etapas: inicial-absorción-carga lentaalmacenamiento
El cargador dispone de una tecnología “adaptable” gestionada por microprocesador que controla la carga de la
batería para así optimizar el proceso de carga en base al uso que se le dé a la batería.
• 2 indicadores luminosos de estado (LEDs)
Amarillo: batería en carga.
Verde: batería cargada.
Car g ad o r B l u e Po w er 12/7, 12/10, 12/15 12/25 (1), 12/25 (3)
24/5, 24/8
24/15 (1), 25/15 (3)
90-265 VAC o 90-350 VDC
180-265 VAC o 150-270 VDC
CAR GADOR
Rango de tensión de entrada
90-265 VAC o 30/350 VDC
180-265 VAC o 150-270 VDC
Frecuencia (Hz)
45-65
1
1ó3
1
1ó3
14,4
14,4
28,8
28,8
14
14
28
28
13,2
13,2
26,4
26,4
24 / 30 / 45
75
16 / 24
45
7 / 10 / 15
25
5/8
15
Número de salidas
Tensión de carga en “absorción” (VDC)
Tensión de carga en “lenta” (VDC)
Tensión de carga “almacenamiento” VDC
Característica de carga
Capacidad mínima de la batería (Ah)
Corriente de carga (Ah)
Sistema de carga de 4 etapas

Uso como fuente de alimentación
Protecciones
a,b,c
(1)
-20 a +60ºC (rango máximo de salida hasta 40ºC)
Temperatura de trabajo
Humedad (sin condensación)
Máx. 95%
CAJA
Aluminio (azul RAL 5012)
Material y color
1,3Kg
Peso
Cable de 1,5 metros con enchufe de clase 1 europeo (certificado CE)
Conexión a 230V AC
IP65
Protección
Conexiones de la batería
Dimensiones (alxanxpr mm)
Cables rojo y negro de 1,5m
Bornes de tornillo de 6mm 2
Cables rojo y negro de 1,5m
Bornes de tornillo de 6mm 2
50x85x200
66x90x235
50x85x200
66x90x235
NOR M AS
Seguridad
Emisión / Inmunidad
1- Protección
a. Inversión de polaridad de la batería (fusibles)
b. Cortocircuito de salida
c. Sobrecalentamiento
EN 60335-1, EN 60335-2-29
EN 55014-1, EN 61000-3-2 / EN 55014-2, EN 61000-3-3
49
Phoenix
Cargador de baterías
Vo l t aj e d e en t r ad a u n i v ers al
d es d e 90 a 265V
•
•
•
•
•
•
•
Sistema de carga variable en 4 etapas
Previene las sobrecargas y formación de gases
3 Salidas para cargar 3 grupos de baterías
Aumenta la vida útil de la batería
Medición de la tensión de carga
Tensión de salida 12 ó 24V DC
Parámetros configurables por software
Car ac t er ís t i c as
Carga adaptable en 4 etapas: bulk – absorción –
flotación – almacenamiento
El Cargador Phoenix es innovador por su sistema de
gestión de carga 'autoadaptable' controlado por
microprocesador y configurable según los distintos tipos
de baterías. La función 'autoadaptable' optimiza
automáticamente el proceso de carga en relación con el
uso que se esté haciendo de la batería.
Siempre con la cantidad de carga adecuada:
duración de absorción variable
Cuando la batería está poco descargada, la carga de
absorción se reduce para evitar cualquier sobrecarga.
Tras una descarga profunda, la duración de la carga de
absorción aumenta automáticamente para garantizar una
recarga completa de la batería.
Prevención de daños por formación de gases:
función Battery Safe (ver fig. 2)
Si para obtener una recarga rápida se elige una alta
corriente de carga en combinación con un alto voltaje de
absorción, el cargador Phoenix evita cualquier daño
causado por la formación de gases, limitando
automáticamente el aumento del voltaje una vez alcanzado
el voltaje de gaseo (ver fig. 2, la curva de voltaje entre
28,8V y 30,0V).
Menor mantenimiento y deterioro cuando no se usa
la batería: modo mantenimiento (fig. 1 y 2)
El modo mantenimiento se activa cuando la batería lleva
más de 24 horas sin funcionar. El voltaje de flotación se
reduce hasta 2,2V/elemento (13,2V para una batería de
12V) para minimizar el gaseo y la oxidación de las placas
positivas.
Una vez a la semana el voltaje vuelve a aumentar hasta
50
el nivel de absorción para “ecualizar” la batería. Este
procedimiento impide la estratificación del electrolito y la
sulfatación, unas de las mayores causas de deterioro
prematuro de las baterías.
Tres salidas para cargar tres bancos de baterías
Los cargadores Phoenix disponen de 3 salidas aisladas,
2 de las cuales se reparten la potencia total. La tercera
salida, destinada al mantenimiento de una batería auxiliar,
está limitada a 4A con un voltaje ligeramente más bajo.
Para una mayor duración de la batería:
compensación de temperatura
Cada cargador Phoenix dispone de un sensor de
temperatura de batería para reducir automáticamente el
voltaje de carga en caso de aumento de temperatura de
la batería. Esta función está especialmente indicada para
baterías selladas o cuando se pueden producir importantes
fluctuaciones de temperatura.
Puerto de comunicación
Los cargadores Phoenix están equipados con un puerto
RS485. Con el adaptador MK1b y nuestro software gratuito
VEConfigure, este puerto permite personalizar todos los
ajustes del cargador Phoenix e integrarlo en redes
informatizadas de control y gestión.
Sensor de voltaje de la batería
Para mejorar aún más la calidad de la carga, un dispositivo
de medición directa del voltaje en los bornes de la batería
permite al cargador compensar las pérdidas de tensión
en el cableado.
Car g ad o r Ph o en i x
12/30
12/50
PCH012030001
PCH012050001
24/16
24/25
PCH024016001
PCH024025001
CARGADOR
Referencia
90-265
Voltaje de entrada (V AC)
Frecuencia (Hz)
45-65
1
Voltaje de carga en “absorción”
14,4
Voltaje de carga en “flotación”
Voltaje carga “ecualización” (V) DC)
Corriente carga (servicio) (A) ( 2)
28,8
28,8
13,8
14,4
13,8
27,6
27,6
13,2
13,2
26,4
26,4
30
50
16
25
Corriente carga (arranque) (A)
4
Sistema de carga variable de 4 etapas
Característica de carga
Capacidad de la batería (Ah)
100-400
200-800
100-200
Sensor de temperatura
SÍ
Usable como fuente alimentación
SÍ
Protecciones
100-400
SÍ
Ventilación forzada
a,b,c,d
(1)
Temperatura de trabajo
-20 a +60ºC
máx 95%
Humedad (sin condensación)
CAJA
Material y color
Aluminio (azul Ral 5012)
Pernos M6
Conexión a batería
Conexión a 230V AC
Abrazadera 4mm 2
Grado de protección
IP 21
Peso (Kg)
3,8
350x200x108
Dimensiones (alxanxpr mm)
NORMAS
Seguridad
EN 60335-1, EN 60335-2-29
Emisión
EN 55014-1, EN 61000-3-2
Inmunidad
EN 55014-2, EN 61000-3-3
Vibración
IEC68-2-6:10-150Hz/1.0G
1 - Protecciones:
a. Cortocircuito en salida
b. Detección de inversión de polaridad
c. Voltaje excesivo de la batería
d. Sobrecalentamiento
2 - A temperatura ambiente de 40ºC
Aplicaciones
Consumo
Regulador
PC
Paneles Solares
Onda
Senoidal
Radio
Nevera
phoe nix
500
char ger 24/2
Ba
t er
Fig.1 - Carga hasta alcanzar la tensión del gas
U (V) 15
Inversor
Phoenix
ía
14,0V
Luces
Fi g .2 - Car g a h as t a u n a t en s i ó n s u p er i o r
U (V) 15
14,4V
14,4V
14
Televisión
Cargador
de baterías
Grupo
electrógeno
15,0V
14,4V
15,0V
14,4V
14
Ec
u
1 aliz
se ac
m ió
an n
a
(1
h)
Ab
so
rc
ió
n
Ec
u
1 aliz
se ac
m ió
an n
a
A
(0 bso
,2 rc
5 ió
-4 n
h)
de
flo
ta
ci
ón
C
ar
ga
Ab
so
rc
ió
n
Ec
u
1 aliz
se ac
m ió
an n
a
0
4
0
3
0
(1
h)
0
4
0
3
0
Ec
u
1 aliz
se ac
m ió
an n
a
12
I (A) 5
A
(0 bso
,2 rc
5 ió
C
-4 n
ar
h)
ga
de
flo
ta
ci
ón
12
I (A) 5
Bu
lk
13,2V
Bu
lk
Cargador de baterías Phoenix
Factor de potencia
51
Skylla TG
Cargador de baterías
Vo l t aj e d e c ar g a
24/48V DC
• Tensión de carga adaptable a cualquier batería
• Tecnología de alta frecuencia
• Utilización como fuente de alimentación
• Carga controlada en 3 etapas
• 2 salidas para cargar 2 grupos de baterías
• Medición de la tensión de carga
Car ac t er ís t i c as
Cargadores perfectos para todo tipo de baterías
Dos salidas para cargar 2 bancos de baterías
Los cargadores Skylla TG son ligeros y compactos
gracias a la tecnología de alta frecuencia. El voltaje
de carga se puede ajustar con precisión para adaptarse
a todos los tipos de baterías, abiertas o selladas. Las
baterías selladas sin mantenimiento requieren una
carga especialmente precisa para una buena duración
de vida. Cualquier sobrevoltaje provocaría un gaseo
excesivo seguido de un desecamiento y de un mal
funcionamiento prematuro.
Todos los cargadores TG disponen de 2 salidas
aisladas. La segunda salida, destinada a la carga de
mantenimiento de una batería de arranque o auxiliar,
está limitada a 4 amperios con un voltaje ligeramente
inferior.
Carga regulada en 3 etapas
Las tres etapas de carga de los cargadores Skylla TG
son controladas con precisión por microprocesador.
La curva de carga IUoUo garantiza la carga más rápida
y más segura para todos los tipos de baterías. La
duración de absorción es ajustable mediante un
interruptor.
La función "Intelligent Startup" evita iniciar un ciclo de
carga completo en una batería ya cargada.
Utilizables como fuente de alimentación
Su voltaje de salida perfectamente estabilizado permite
utilizar los cargadores Skylla TG como fuente de
alimentación, sin necesitar la utilización de baterías.
52
Para una mayor duración de la batería:
compensación de temperatura
Todos los cargadores Skylla TG están equipados con
un sensor de temperatura de batería para reducir
automáticamente el voltaje de carga cuando aumenta
la temperatura de la batería. Esta función es esencial
para evitar sobrecargar baterías sin mantenimiento.
Sensor de voltaje de la batería
Para mejorar aún más la calidad de la carga, un
dispositivo de medición directa del voltaje en los bornes
de la batería permite compensar las pérdidas de voltaje
en el cableado principal.
24/30
24/50
Sk y l l a
24/50
t r i f ás i c o
24/100
t r i f ás i c o
24/80
24/100
48/25
48/50
SDTG4800251
230
SDTG4800501
230
CARGADOR SKYLLA
Referencia
SDTG2400:301/501 STG024050300 SDTG2400:801/1001 STG024100300
230
3x400
230
3X400
Voltaje de entrada (V AC)
Gama de voltaje de entrada (V AC) (2)
Frecuencia (Hz)
Factor de potencia
Voltaje de carga en “absorción” (V DC)
Voltaje de carga en “flotación” (V DC)
185-264
320-450
185-264
320-450
185-264
185-264
45-65
45-65
45-65
45-65
45-65
45-65
1
1
1
1
1
1
28,5
28,5
28,5
28,5
57
57
26,5
26,5
26,5
26,5
53
53
Corriente de carga (servicio) (A) (2)
30 / 50
50
80 / 100
100
25
50
Corriente de carga (arranque) (A)
4
4
4
4
-
-
125-250
250-500
a,b,c,d
a,b,c,d
Características de carga
150-500
Capacidad de la batería (Ah)
250-500
IUoUo (3 etapas de carga)
400-800 / 500-1000
500-1000
Sensor de temperatura
Uso como fuente de
Sí
Contactos libres de potencia
Sí
Sí
Sí
Ventilación forzada regulada
Protecciones
a,b,c,d
(1)
a,b,c,d
a,b,c,d
Temperatura de trabajo
Humedad sin condensación
máx. 95%
CAJA
Material y color
Aluminio (azul Ral 5012)
Pernos M8
Conexión a batería
Abrazaderas 2,5mm 2
Conexión a 230V AC
IP21
Categoría de protección
5,5
13
10
23
5,5
10
365x250x147
365x250x257
365x250x257
515x260x265
365x250x147
365x250x257
Peso (Kg)
Dimensiones (alxanxpr mm)
OPCIONES
aluminio (azul RAL 5012)
Estándar
Sensor de temperatura
Panel Salida Cargador
Opcional
Panel Interruptor del cargador
Opcional
Panel alarma de batería
Opcional
NORMAS
aluminio (azul RAL 5012)
EN 60335-1, EN 60335-2-29
Seguridad
Emisión
EN 55014-1, EN 61000-3-2
Inmunidad
EN 55014-2, EN 61000-3-3
1 - Protecciones:
a. Cortocircuito en salida
b. Detección de inversión de
polaridad
c. Voltaje excesivo de la batería
d . Sobrecalentamiento
(fig.1)
2 - A temperatura ambiente de 40ºC
A p l i c ac i ó n
Características de carga
U (V) 30
28,5V
2
26,5V
8
230V
2
5
0
4
0
3
0
20
Ab
h
so
rc
ió
n
C
ar
30
ga
m
en
flo
ta
ció
n
20
h
4h
flo
ta
ció
n
en
C
ar
ga
Bu
lk
-
+
Ba
t er
sensor+
arg er
Sk illa ch
24 /48 V
Ab
so
rc
ió
n
I (A)
sensor-
Cargador Skylla 24/48V
a,b,c,d
-20 a +60ºC
í
Ba
t er
ía
53
Cargador
Centaur 12 ó 24V
Entrada universal 90-265V
• Desde 20 a 200A
• 3 salidas independientes
• Incopora un amperímetro
• Ligero y compacto
Car ac t er ís t i c as
Calidad sin compromiso
Tres estados de carga, con sensor de temperatura
Los circuitos montados están protegidos con una capa
acrílica que ofrece la máxima resistencia a la corrosión.
Los sensores de temperatura aseguran que los
componentes de potencia siempre trabajen dentro de
los límites especificados y, si es necesario, se produce
una reducción automática en la corriente de salida
bajo las condiciones extremas medioambientales.
Los cargadores Centaur cargan en la fase bulk entre
el 70 y el 100% de los amperios disponible, después
pasan a la fase de absorción en la que se mantiene
las baterías a un voltaje constante durante 4 horas.
Tras la fase de absorción el cargador pasa a la fase
de flotación. Un sensor de temperatura interno es
utilizado para compensar el voltaje de carga con
2mV/ºC por vaso. Hay un interruptor que nos permite
seleccionar el óptimo voltaje de carga de flotación
para baterías de ácido, gel o AGM.
Entrada de tensión universal de 90 a 265V
Todos los modelos funcionan sin necesidad de ser
ajustados a voltajes de entrada comprendidos entre
90 y 265V, y 50Hz o 60Hz indistintamente.
Tres salidas
Tres salidas aisladas para cargar simultáneamente 3
bancos de baterías. Cada salida es capaz de
suministrar el rango de carga completo
Aplicaciones
PC
Televisión
Panel Solar
Onda
Senoidal
Alternador
Radio
Nevera
te
Ba
r ía
Grupo electrógeno
Microondas
Inversor Phoenix
Cafetera
Luces
Cargador de baterías
Cent aur er 24/48 V
Batter y charg
54
Cargador Centaur 12/24V
12/20
12/30
24/16
12/40
12/50
24/30
12/60
24/40
12/80
24/60
12/100
24/80
12/200
24/100
80 / 60
100 / 80
200 / 100
CARGADOR
Voltaje de entrada (V DC)
90 - 265V
Frecuencia entrada (Hz)
45-65Hz
Factor de potencia
1
Voltaje de carga en ‘absorción’ (V CC)
14,3 / 28,5
(1)
Voltaje de carga en ‘flotación’ (V CC)
13,5 / 27,0
(1)
3
Cargador Centaur 12V o 24V
Salidas para cargar batería
Corriente de Carga (A) 12V/24V
Amperímetro
20
30 / 16
40
50 / 30
60 / 40
Sí
IUoU (3 fases de carga)
Características de carga
80-200
Capacidad recomendada
120-300/45-150
160-400
Sensor de temperatura
200-500 /120-300 240-600/160-400 320-800/240-600 400-1000/320-800
400-1000
Interno, -2mV / ºC por celda
Sí, temperatura y corriente controlada por ventilador
Ventilación forzada
Protecciones
Cortocircuito de salida, sobrecalentamiento
-20 a +60ºC
Temperatura de trabajo
Protección ignífuga
Sí
Humedad (sin condensación)
máx 95%
CAJA
Aluminio azul RAL 5012
Material y color
Conexiones a batería
perno M6
perno M6
perno M8
perno M8
perno M8
perno M8
perno M8
perno M8
12
16
16
Abrazadera 4mm 2
Conexiones 230V AC
Categorías de protección
IP 21
3,8
Peso
3,8
5
5
355x215x110 355x215x110 426x239x135
Dimensiones
5 / 12
426x239x135 505x245x130 505x245x130 505x245x130 505x245x320
NORMAS
EN 60335-1, EN 60335-2-29, UL 1236
Seguridad
Emisión, Inmunidad
EN 55014-1, EN61000-3-2
Directiva automotriz
EN 61000-3-3, EN 55014-2
1 - Configuración estándar. Hay un interruptor que nos permite seleccionar el óptimo voltaje de carga de flotación para baterías de ácido, gel o AGM.
2 - Sobre 40ºC de temperatura ambiente. La salida se reducirá aproximadamente al 80% nominal; a 50ºC se reducirá al 60% nominal.
Alarma de la batería
Una tensión de batería excesiva o insuficiente se indica mediante señales acústicas y visuales.
La luminosidad de los LEDs se adapta automáticamente a la luz nocturna. 12 ó 24V DC.
Accesorios
Ref. 3ALV. Más información en el apartado de Baterías o en www.hispaniasolar.es.
BMV 600S Monitor de baterías
El Monitor de Batería BMV 600S trabaja con un sistema de medición controlado por microprocesador de
alta tecnología con el que se mide y se almacena con gran precisión la tensión de carga / descarga de
la batería. Memoriza asimismo los datos más importantes referidos al consumo de la batería para poder
visualizarlos a través de un PC.
Ref. BAM001004000
U (V) 30
Sujeción fácil y rápida
A p l i c ac i ó n
Características de carga
Colocar la sujeción de montaje
28,5V
(A) en la pared donde irá
2
27,2V
8
colgar el equipo a esta sujeción
r
Cen tau ger 24/4 8V
Batt ery char
2
utilizando la pestaña trasera
5
0
4
0
3
0
superior
Asegurar con tornillos la pestaña
flo
ta
ci
ón
ía
t er
Ba
ía
t er
Ba
ía
t er
inferior (B) a la pared para conseguir
una firme sujeción del equipo
(fig.1)
C
ar
ga
en
4h
Bu
lk
Ba
Ab
so
rc
ió
n
I (A)
instalado el cargador, después
55
BMV 600S
Monitor de baterías
Co n o c i m i en t o t o t al
del estado de su batería
Mejor gestión de la energía
Saber exactamente lo que una batería “guarda en su
interior” no resulta fácil. El cálculo exacto del contenido
real de una batería requiere complejos algoritmos y un
gran número de parámetros.
Los monitores de batería de la serie 600 permiten un
conocimiento muy exacto de todos los parámetros
indispensables para utilizar eficazmente la batería. Una
indicación fiable del estado de carga de una batería
evita muchas sorpresas desagradables y permite
gestionar óptimamente la energía. Así se pueden evitar
muchos errores que afectan a la duración de la batería.
Car ac t er ís t i c as
Control de precisión
Lectura clara y sencilla
La principal función de un monitor de baterías es
calcular los amperios/hora consumidos y el estado de
carga de una batería. Dicho consumo se calcula
sumando la corriente que entra o sale de la batería.
En el caso de corriente constante, esta integración
es igual a la corriente multiplicada por el tiempo. Una
corriente de descarga de 10A durante 2 horas, por
ejemplo, supone un consumo de 20Ah. Nuestros
monitores de batería se basan en un potente
microprocesador programado con los algoritmos
necesarios para realizar controles de precisión.
El BMV 600S dispone de una pantalla de LCD
iluminada con luz trasera de gran calidad. Esta luz
se activa automáticamente cuando se pulsa una tecla
y se desactiva transcurrido un tiempo. La información
principal se visualiza en letras grandes y letras más
pequeñas nos muestran datos adicionales acerca de
la batería.
Información disponible
- Tensión de la batería (V)
- Intensidad de carga / descarga de la batería (A)
- Contador en Amperios-hora (Ah)
- Estado de carga (%)
- Previsión de autonomía según el consumo en curso
- Memorización del historial de utilización de la batería
- Alarmas de bajo/alto voltaje y estado de carga con
contactos de aviso
Conexión a ordenador
A través del Data Link se pueden visualizar todos los
datos en un ordenador. Además, se pueden incluir en
tiempo real todas las curvas de carga y descarga.
56
BMV 600S: ultrapreciso, económico y práctico
- La mejor resolución: 10mA (0,01A) con shunt de
500A
- Autoconsumo mínimo: 1mA
- Universal: alcance de 9,5 a 95V sin adaptador
- Cableado simple y rápido: suministrado con shunt,
equipado con una tarjeta de conexión, cable RJ12 y
cable de alimentación con fusible integrado. No es
necesario ningún otro accesorio de instalación
- Fácil de instalar: montaje redondo empotrado con
anillo de fijación o por delante con tornillos y
embellecedor de forma cuadrada
Monitor de Baterías
BMV 600S
BMV 602S
BMV 600HS
BAM001004000
9,5-90VDC
<4mA
BAM001004200
9,5-90VDC
<4mA
BAM001003210
70-350VDC
<4mA
Voltaje medido
9,5 - 95V DC
9,5 - 95V DC
70 - 350V DC
Capacidad batería (Ah)
20 - 9.999Ah
20 - 9.999Ah
20 - 9.999Ah
Temperatura de trabajo
de -20 a 50ºC
de -20 a 50ºC
de -20 a 50ºC
Referencia
Voltaje de entrada
Consumo con luz trasera OFF
Datos de la batería
Voltaje
± 0,01V
± 0,01V
± 0,01V
Corriente
Corriente (200 - 500A)
± 0,01A
± 0,01A
± 0,01A
± 1A
± 1A
± 1A
Capacidad)
± 0,1Ah
± 0,1Ah
± 0,1Ah
Capacidad (0-100%)
Autonomía
± 0,1%
± 0,1%
± 0,1%
± 1min
± 1min
± 1min
Precisión de voltaje
± 0,4%
± 0,3%
± 0,4%
± 0,3%
± 0,4%
± 0,3%
60V / 1A (N/O)
60V / 1A (N/O)
60V / 1A (N/O)
69x69mm
69x69mm
69x69mm
Diámetro interior
52mm
52mm
52mm
Diámetro frontal
63mm
63mm
63mm
Profundidad
31mm
31mm
31mm
Empotrado
Empotrado
Empotrado
Precisión de corriente
Contacto libre pot.
Caja
Embellecedor (alxan)
Instalación
Accesorios incluidos
Shunt
Cables
500A/50mV 2
500A/50mV 2
500A/50mV 2
10m 6 hilos UTP con conectores RJ12 y cable con fusible para
conexiones “+”
BMV 602S: dos baterías
Además de todas las características del BMV 600, el BMV 602 dispone de
medidor de tensión para una batería adicional. También disponible con
placa frontal negra.
BMV 600HS: rango de tensión de 70 a 350VDC
No necesita precontador. Ideal para sistemas con sólo el negativo a tierra.
Interfaz y software de comunicaciones RS232 aislado (opcional)
Para todos los modelos BMV. Muestra toda la información en un ordenador
y guarda los datos de carga/descarga en un archivo Excel para mostrarlo
de manera gráfica.
57
Orion
Convertidor DC/DC
• Tensión estabilizada y precisa
• Alto rendimiento
• Uso como cargador de baterías (según modelos)
• Fácil de instalar: incluyen 4 conectores hembra
de presión de 6,3mm
Car ac t er ís t i c as
¡Probablemente la gama más extensa del
mercado!
estos convertidores para cargar una batería de
arranque de 12V DC, con un sistema de
alimentación de 24V DC.
Los convertidores DC/DC Orion permiten
conseguir una tensión estabilizada y segura a
partir de un sistema a 12 ó 24V DC. Se distinguen
por su excelente rendimiento así como su alta
seguridad. Cualquier problema relacionado con
una mala alimentación en corriente continua
queda descartado por completo.
Orion 12/27, 6-12: cargador de baterías de 24V.
Este convertidor permite cargar una batería de
24V a partir de un sistema de 12V. Un
potenciómetro permite ajustar la tensión de salida.
Orion 7-35/12-3: amplio voltaje de entrada.
Mediante una tensión de salida fijada a 12,6V
DC, el convertidor Orion 7-35/12-3, aislado
galvánicamente, funciona perfectamente, tanto
a 12V DC como a 24V DC, por lo que permite
aumentar o reducir la tensión de alimentación.
Gran variedad de modelos disponibles. Destacan:
Orion 24/12-20, 24/12-30 y 24/12-60: utilización
como cargador de baterías. La tensión de salida
viene ajustada a 13,8V DC, lo que permite usar
Convertidores Orion sin aislamiento galvánico
Convertidores DC/DC
sin aislamiento
Referencia - ORI:
12/24-7
12/24-10
24/12-5*
24/12-8
24/12-12
24/12-17
24/12-20
24/12-30
24/12-60
122407000
122410000
241205000
241208000
241212000
241217020
241220000
241230000
241260000
Tensión entrada (V DC)
9-18
9-18
18-35
24
12
20-35
13,8
18-35
12
20-35
13,8
20-35
13,8
Corriente salida máx
24
7
18-35
13,8
20-35
Voltaje salida (V DC)
10
5
8
12
17
20
30
60
Ventilación forzada
no
no
no
no
no
no
no
sí
sí
Corriente sin carga
< 15mA
< 15mA
<5mA
<5mA
<5mA
<7mA
30
0,3
30
0,4
30
20
30
30
Peso (Kg)
0,18
0,25
0,26
0,30
Dim (alxanxpr) (mm)
49x88x98
49x88x98
45x90x65
49x88x98
49x88x98
Temp. tras 30 min carga max
13,8
aprox. 25mA aprox. 25mA aprox. 50mA
33
25
33
1,2
0,6
0,48
50x90x110 49x88x126 49x88x151
88x100x180
Nota: dos modelos Orion 24/12-60 se pueden utilizar en paralelo para obtener 120A.
* Disponible también con grado de protección IP65. Todos los modelos refrigerados por convección natural también pueden modificarse a
IP65.
Disponibles otras tensiones de entrada o salida bajo pedido.
Convertidores Orion con aislamiento galvánico
Co n v er t i d o r es ai s l ad o s
Referencia
Potencia (W)
Or i o n x x /y y -100W
Ventilación forzada
Peso (Kg)
Dimensiones (mm)
Voltaje entrada
Voltaje salida
58
Or i o n x x /y y -360W
ORIXX/YY10100
ORIXX/YY20100
ORIXX/YY36100
100 (12,5V/8A o 24V/4A)
200 (12,5V/16A o 24V/8A)
360 (12,5V/30A o 24V/15A)
25
30
-
SÍ
SÍ
0,5
0,6
1,6
49 x 88 x 182
64 x 163 x 160
Aislamiento Galvánico
Incremento temp. tras 30min carga
Or i o n x x /y y -200W
SÍ
49 x 88 x 152
30
(xx): 12V (9-18V) o 24V (20-35V) o 48V (30-60V) o 96V (60-120V)
(yy): 12,5V o 24V
Software
VE Configure II
• Fantástico programa de configuración
• Entorno Windows, sencillo de manejar
• En unos segundos el equipo se adapta
perfectamente a la instalación
• Define exactamente la curva de carga de
las baterías
• Relé virtual: arranque/paro generador
totalmente configurable
• Monitorea on-line los parámetros
fundamentales del sistema
• De libre descarga desde www.hispaniasolar.es
Características
Con este software de configuración, estas “cajas
azules” se convierten en el mejor gerente de su
instalación. Se adapta a sus necesidades como
un guante.
Le ahorrará tiempo y dinero en la instalación del
sistema. Gestiona de manera automática y eficaz
todo el sistema energético.
Los parámetros de arranque/paro del grupo
electrógeno son múltiples: por batería baja-alta,
por consumo elevado en potencia, por una
prealarma, por una alarma y un largo etc.
Permite la perfecta gestión de un generador
fotovoltaico gracias a la opción de ignorar o no la
entrada de alterna. Con esta opción, el generador
diesel de emergencia se convierte en exactamente
eso. Además, permite obtener el máximo
rendimiento posible de su generador fotovoltaico
sin renunciar al confort. La energía estará disponible
en su sistema aislado las 24h del día, durante 365
días al año.
Totalmente automático, una vez configurado el
usuario no se tendrá que preocupar de nada más
que de disfrutar del silencio y el confort de su
sistema fotovoltaico aislado.
Válido para toda la gama Phoenix: Inversores,
Multis y Cargadores.
59
Paneles de control remoto y accesorios
REC030001200
REC030002000
Panel remoto indicador del estado del inversor
Panel remoto indicador del inversor 750VA + 3m de cable
65X60X40
REC010001100
REC020003000
Panel remoto indicador del estado del cargador Phoenix
Panel remoto indicador MultiPlus y Quattro, VE-Bus compatible 16/200A
65x120x40
65x120x40
REC020005000
Digital Multi y Quattro control 200/200A
65x120x40
DMC000100000
Digital Multi y Quattro control 200/200A GX
65x120x40
SDRPSKC
SDRPCSV
SDRPAOV
Panel remoto cargador Skylla + Ajuste corriente de carga
Panel Skylla con interruptor ON-OFF
Salida AC
65x120x40
65x60x40
65x60x40
ASS030064900
Conexión con panel remoto, cable RJ45 UTP. Longitud 0,3 metros
ASS030064920
Conexión con panel remoto, cable RJ45 UTP. Longitud 0,9 metros
ASS030064950
Conexión con panel remoto, cable RJ45 UTP. Longitud 1,8 metros
ASS030064980
Conexión con panel remoto, cable RJ45 UTP. Longitud 3 metros
ASS030065000
Conexión con panel remoto, cable RJ45 UTP. Longitud 5 metros
ASS030065010
Conexión con panel remoto, cable RJ45 UTP. Longitud 10 metros
ASS030065020
ASS030065030
Conexión con panel remoto, cable RJ45 UTP. Longitud 15 metros
Conexión con panel remoto, cable RJ45 UTP. Longitud 20 metros
ASS030065040
Conexión con panel remoto, cable RJ45 UTP. Longitud 25 metros
ASS030065050
Conexión con panel remoto, cable RJ45 UTP. Longitud 30 metros
ASS030130000
Interfase MK2-USB (VE.Bus to USB)*
* Válido para Cargadores, Multiplus, Quattro e Inversores (a partir de 1200W)
Para más información, consulte la ficha técnica de cada producto en www.hispaniasolar.es
60
Clasificación-Resumen
Escoja su producto adecuado
Inversor-Cargador
12V
10000VA
8000VA
5000VA
3000VA
2000VA
1600VA
1200VA
800VA
Inversores
48V
Quattro
Quattro
Quattro
Quattro
Quattro/ MultiPlus Quattro/ MultiPlus 50*
Quattro/ MultiPlus
Quattro/ MultiPlus
Ph. MultiPlus 35*
Ph. MultiPlus C 80* Ph. MultiPlus C 50*
EasyPlus/Ph. MultiPlus C 70* Ph. MultiPlus C 40*
Ph. MultiPlus C 50* Ph. MultiPlus C 25*
Ph. MultiPlus C 35* Ph. MultiPlus C 16*
* Intensidad de carga en amperios
12V
24V
Phoenix
48V
Phoenix
3000VA
Phoenix
Phoenix
Phoenix
2000VA
1600VA
1200VA
750VA
350VA
180VA
Phoenix Compact
Phoenix Compact
Phoenix Compact
Phoenix
Phoenix
Phoenix
Phoenix Compact
Phoenix Compact
Phoenix Compact
Phoenix
Phoenix
Phoenix
12V
Centaur
Centaur
Centaur
Centaur
Centaur / Phoenix
Centaur
Centaur / Phoenix
24V
5000VA
Cargadores
24V
200A
100A
80A
60A
50A
40A
30A
25A
20A
17A
16A
15A
12A
10A
8A
7A
5A
3A
Phoenix
Phoenix
48V
Skylla/Sk. trif/Centaur
Skylla / Centaur
Centaur
Skylla / Sk. trifásico
Skylla
Centaur
Skylla / Centaur
Phoenix
Skylla
Centaur
Blue Power IP 65
Phoenix / Centaur
Blue Power IP20
Blue Power IP65
Blue Power IP20
Blue Power IP20
Blue Power IP65/IP20
Blue Power IP20
Blue Power IP65
61
Autoconsumo
Microinversor
• Fácil instalación y conexión rápida
• Disminución de la factura de la luz
• Reducción de costes de instalación
• Posibilidad de montaje en paralelo para obtener
hasta 3,2kW/h
• Garantía de 20 años
Car ac t er ís t i c as
Optimización del rendimiento
Amplias prestaciones
El microinversor es una unidad compacta que
transforma la corriente continua del módulo solar
en alterna. Cada módulo trabaja de manera
individual en su punto óptimo de máxima
potencia. De esta forma, obtiene el mejor
rendimiento individual y maximiza la producción
global.
Están preparados para un alto rendimiento incluso
en grandes intervalos de temperatura, con una
eficiencia máxima del 94,1% entre -40ºC y +85ºC.
También incorporan la monitorización en tiempo
real del rendimiento de cada módulo.
Facilidad de instalación de forma gradual hasta
13 unidades.
www.hispaniasolar.es
62
Especificaciones técnicas
ENTRADA DC
Potencia entrada nominal
240W
Potencia de entrada recomendada (STC)
260W
Voltaje DC máximo
44V
Voltaje DC mínimo
20V
Rango de voltaje MPPT
23-35V
Mín / máx voltaje de arranque
22V / 42,5V
Corriente máxima de entrada
12A
Corriente máx. entrada en cortocircuito
16A
SALIDA AC
Potencia de salida máxima AC
225W
Corriente de salida AC nominal
0,98A
Voltaje de salida nominal
230V
Frecuencia nominal
50Hz
Factor de potencia
>0,95
Distorsión armónica total
<5%
Máxima corriente de fallo
8,5A AC 3ms
EFICIENCIA
Eficiencia euro
91,5%
Eficiencia pico
94,8%
Consumo máximo de noche
<30mW
DATOS MECÁNICOS
Rango de temperatura de operación
-40ºC a +85ºC
Grado de protección
IP66
Dimensiones (lxalxpr) mm
262x160x35 (sin soporte de montaje)
Peso
1,8Kg
Refrigeración
Convección natural
CARACTERÍSTICAS Y CONFORMIDAD
Conformidad de seguridad
CE, pr EN 62109-1
Emisión e inmunidad
EN61000-6-3, EN61000-6-1
Conformidad conexión a red
G83/ 1-1, VDE 01 26-1, IEC 61727, IEC 62116
Comunicación
Zigbee IEEE 802.15.4
Conector
MC4
Compatibilidad fotovoltaica
Compatible con la mayoría de módulos de 60 células
Garantía
20 años (dentro de los rangos permitidos)
Tecnología
Fina capa de condensadores
Aislamiento
Galvánico
63
AGM
Monobloque
• Amplia gama de amperajes
• Excelente relación calidad-precio
• Herméticas y estancas
• Ideales para arranques
Características
Batería hermética
Batería hermética que proporciona una excelente fiabilidad. Únicamente habrá escape de
gas en las válvulas de seguridad en caso de sobrecarga o de algún fallo de los componentes.
Es una batería muy resistente a los escapes excepcionales de manera que se puede utilizar
en todas las posiciones.
Batería estanca
AGM (Absorbent Glass Mat): el electrolito se absorbe por capilaridad en una estera en fibra
de vidrio situada entre las placas lo cual le confiere una gran estanqueidad. Son más
adecuadas que las de gel para suministrar corrientes muy elevadas durante cortos periodos
(arranque).
Batería de arranque
Nuestras baterías AGM Deep Cycle (ciclo profundo) ofrecen excelentes resultados a alta
intensidad y son capaces de suministrar corrientes muy elevadas durante cortos periodos.
Por ello se recomiendan para aplicaciones como el arranque de motores, inversores,
propulsores...
Baterías AGM Deep Cycle de 12V:
Especificaciones técnicas
Autodescarga escasa
Gracias al uso de rejillas de plomo-calcio y
materiales de gran pureza, las baterías VRLA se
pueden almacenar durante largo tiempo sin
necesidad de recarga. El índice de descarga es
inferior a un 2% al mes, a 20ºC. La autodescarga
se duplica por cada 10ºC de aumento de
temperatura. En un ambiente fresco, estas baterías
pueden almacenarse durante un año sin recarga.
64
Tecnología: Placas planas AGM
Bornes: cobre, M8
Capacidad nominal: descarga en 20h a 25ºC
Dur. de vida en flotación: 7-10 años a 20ºC
Dur. de vida en ciclos:
200 ciclos en descarga 100%*
400 ciclos en descarga 50%
900 ciclos en descarga 30%
* Voltaje de fin de descarga: 10,8V para una
batería de 12V
RECOMENDACIÓN
Especial longevidad mediante la carga en 4 etapas
Victron Energy ha creado la carga adaptable en 4 etapas cuya tecnología innovadora
es resultado de muchos años de investigación y ensayos. Este método de carga
elimina los principales inconvenientes de la carga tradicional en 3 etapas: gaseo excesivo y
duración de carga fija. Se trata de un innovador sistema de gestión de carga “autoadaptable”
controlado por microprocesador y configurable según los distintos tipos de batería.
Duración de absorción
Almacenamiento
calculada
Flotación
Battery Safe
Battery Refresh
15
120
14,5
100
14
80
13,5
60
13
40
12,5
20
12
0
Corriente de carga
Voltaje de carga
Recomendamos firmemente la elección de un cargador de 4 etapas para conferir a sus baterías
un mayor número de ciclos y, por lo tanto, de vida útil. A las tres etapas convencionales (bulk,
absorción y flotación) añadimos la etapa de almacenamiento gracias a la cual, una vez cargada
la batería, si ésta no se utiliza en 24 horas el voltaje se reduce al mínimo para evitar al máximo
la oxidación de las placas positivas. Posteriormente, el voltaje aumentará en modo absorción
una vez por semana para compensar la autodescarga (función “Battery Refresh”).
Carga adaptable en 4 etapas
Baterías AGM Deep Cycle de 12V: Especificaciones generales
Ref.
Ah
BAT212070080
BAT212120080
BAT212200080
BAT412350080
BAT412550080
BAT412600080
BAT412800080
BAT412101080
BAT412121080
BAT412151080
BAT412201080
BAT406225080
LxAnxAl (mm)
8
14
22
38
60
66
90
110
130
165
220
240
151x65x101
151x98x101
181x77x167
197x165x170
239x132x235
258x166x235
350x167x183
330x171x215
410x176x227
485x172x240
522x238x240
320x176x247
Peso (Kg)
2,5
4,1
5,8
12,5
20
24
27
32
38
47
65
31
CCA@-18ºC/Res CAP @27ºC
450/90
520/100
600/145
800/190
1000/230
1200/320
1400/440
Modelo 6V
CCA@-18ºC: Amperios arranque en frío
Res CAP @27ºC: Capacidad de reserva a 27ºC
Duración de vida en ciclos
Nº de ciclos
en función de la capacidad de descarga
3000
2500
2000
1500
1000
500
0
100%
50%
30%
Profundidad de descarga
CAPACIDAD REAL EN FUNCIÓN DE LA CAPACIDAD
DE DESCARGA (Corriente de descarga 0,1C)
Duración de descarga Voltaje final V AGM Deep Cycle %
20 horas
10,8
105
10 horas
10,8
100
5 horas
10,8
95
3 horas
10,8
82
1 hora
9,6
66
30 minutos
9,6
52
15 minutos
9,6
42
10 minutos
9,6
36
5 minutos
9,6
27
5 segundos
8 C*
*Corriente de descarga máxima autorizada
65
AGM
Para telecomunicaciones
• Ideales para lugares de dimensiones
reducidas
• Baja autodescarga
• Robustas, de acceso frontal
Características
Diseñadas para aplicaciones de telecomunicaciones; excelentes para “ahorrar espacio”.
La serie AGM de ciclo profundo, expresamente pensada para telecomunicaciones, ha sido diseñada
para su uso en sistemas de telecomunicaciones. Con sus aplicaciones de acceso frontal y su pequeña
envergadura, estas baterías son ideales para sistemas de bastidor. Además, pueden ser la solución
para los casos en que el espacio es reducido y con problemas de acceso.
Tecnología AGM
AGM es el acrónimo de Absorbent Glass Mat (malla de fibra de vidrio absorbente). En estas baterías,
el electrolito queda absorbido en una malla de fibra de vidrio entre las placas por acción capilar.
Baja autodescarga
Debido al uso de rejillas de plomo calcio y materiales de gran pureza, las baterías Victron VRLA
pueden almacenarse durante largos periodos de tiempo sin necesidad de recarga. El ritmo de
descarga es inferior al 2% mensual a 20ºC. El porcentaje de autodescarga se dobla con cada
incremento de la temperatura del 10%.
Baja resistencia interna
Acepta ritmos de carga y descarga muy
elevados.
Telecom AGM
Más de 500 ciclos al 50% de descarga.
Capacidad 10/20/30/40 min (% nominal)
180Ah
Capacidad nominal (25ºC, 10,5V)
66/83/90/100 (@ 25ºC, final de descarga 10,5V)
36/49/58/63 (@ 25ºC, final de descarga 9,6V)
100Ah
150Ah
180Ah
Arranque en frío @ -18ºC
1000
1500
1800
Corr. arranque en frío DIN (A) @ -18ºC
600
900
1000
Corriente de cortocircuito
3500
5000
6000
Capacidad de reserva (minutos)
200
320
400
1 año
Tensión de absorción (V) @ 20ºC
Tensión de flotación (V) @ 20ºC
14,4-14,7
Tensión de almacenamiento (V) @ 20ºC
13,6-13,8
13,2
Storage voltage (V) @ 20ºC
8-10 años
Vida útil en flotación (V) @ 20ºC
Nº de ciclos @ 100% de descarga
250
Nº de ciclos @ 50% de descarga
500
Nº de ciclos @ 30% de descarga
Dimensiones (alxanxp mm)
Peso (Kg)
66
150Ah
CARACTERÍSTICAS
Capacidad 1/3/5/10h (% del nominal)
Capacidad elevada de ciclos
100Ah
1000
508x110x238
561x105x316
546x125x323
33/72
51/111
60/132
PLOMO-ÁCIDO LÍQUIDO
Baterías monobloque
• Baterías de plomo-ácido, traslúcidas
• Placa plana para uso solar
Características
Las baterías Classic EnerSol son del tipo abierto y su robusto diseño las hace especialmente
adecuadas para el uso en aplicaciones de consumo y tiempo libre. Desarrolladas principalmente
para sistemas fotovoltaicos, la gama Enersol representa:
• Una vida de diseño en aplicaciones cíclicas más larga en comparación con una batería de automoción
estándar
• Mejor tensión de continua gracias a cortas conexiones entre elementos
• Excepcionales propiedades anticorrosión debido al uso de placas de rejilla gruesa
• Separadores internos tipo manga de material microporoso de fibra de vidrio para conservar las
características de la batería durante toda su vida
• Adaptadores de terminal opcionales
Se recomienda el uso de cargadores profesionales de 4 etapas que permitan configurar la curva de
carga según las necesidades requeridas por el sistema. De esta manera, alargará la vida de sus
baterías.
Placas Capac. nominal: Tipo
Bajo
Reciclables
planas
53-256Ah
monobloc mantenimiento
EnerSol
Voltaje
nominal
Capacidad Capacidad Intensidad
de carga
C100 1,85 nominal
C120 1,85 I120 1,85
V/C
Peso
LaxAnxAl incluyendo
mm
ácido
Peso*
del
ácido
Terminal
Polos
EnerSol 50
12
52
53
0,44
207x175x190
13,6
3,5
A-Terminal
1
EnerSol 65
12
65
66
0,55
246x175x190
17,1
4,6
A-Terminal
1
EnerSol 80
12
78
80
0,66
278x175x190
20,4
5,6
A-Terminal
1
EnerSol 100
12
97
99
0,82
353x175x190
25,2
6,8
A-Terminal
1
EnerSol 130
12
130
132
1,10
348x175x190
35,2
10
A-Terminal
2
EnerSol 175
12
175
179
1,49
513x223x223
46,5
12,2
A-Terminal
2
EnerSol 250
12
250
256
2,13
518x276x242
63,0
18,6
A-Terminal
2
*Densidad del ácido dN= 1,28Kg/l
67
Baterías de ácido
OPzS
• Muy resistentes en climas fríos
• 20 años de vida útil
• Vida de diseño: hasta 1500 ciclos
Características
Baterías de placa tubular inundada de larga duración
Vida útil: > 20 años a 20ºC, > 10 años a 30ºC, > 5 años a 40ºC.
Cantidad de ciclos posibles: más de 1.500 ciclos al 80% de descarga.
Fabricadas según las normas DIN 40736, EN 60896 y IEC 896-1.
Mantenimiento reducido
En condiciones normales de funcionamiento se deberá añadir agua destilada cada 2-3 años a 20ºC.
Baterías de carga en seco o de electrolito listas para usar
Las baterías salen de fábrica rellenas de electrolito o cargadas en seco (para almacenamiento
prolongado, transporte en contenedor o transporte aéreo). Las baterías cargadas en seco deben
rellenarse con ácido sulfúrico diluido (densidad 1,24Kg/l @ 20ºC).
Las baterías de electrolito pueden ser más resistentes en climas fríos y más frágiles en climas cálidos.
OPzS
Capacidad nominal (10Hr/20ºC)
6 OPzS
600
8 OPzS
800
10 OPzS
1000
12 OPzS
1200
12 OPzS
1500
16 OPzS
2000
20 OPzS
2500
24 OPzS
3000
600Ah
800Ah
1000Ah
1200Ah
1500Ah
2000Ah
2500Ah
3000Ah
60 / 85 / 100 / 120 / 150 (@ 20ºC, final de descarga 1,8V por celda)
Capacidad 2/5/10/24/96h (% valor nom)
3% mensual
Autodescarga @ 20ºC
Tensión de absorción (V) @ 20ºC
2,35 a 2,50V/celda (28,2 a 30,0V para una batería de 24V)
Tensión de flotacion (V) @ 20ºC
2,23 a 2,30V/celda (26,8 a 27,6V para una batería de 24V)
Tensión de almacenamiento @ 20ºC
2,18 a 2,22V/celda (26,2 a 26,6V para una batería de 24V)
Vida útil en flotación (V) @ 20ºC
20 años
Cantidad de ciclos @ 80% de descarga
1500
Cantidad de ciclos @ 50% de descarga
2500
Cantidad de ciclos @ 30% de descarga
4000
Dimensiones (alxanxp, mm)
147x208x666 191x210x666 233x210x666 275x210x666 275x210x821 397x212x797 487x212x797 576x212x797
Peso sin ácido
35
46
57
66
88
115
145
170
Peso con ácido
50
65
80
93
119
160
200
240
68
PLOMO-ÁCIDO LÍQUIDO
Vasos de 2V
• Baterías de plomo-ácido, traslúcidas
• Placa tubular para uso solar
• Vida de diseño: 1.500 ciclos según IEC 896-2
• Bancada y conexiones incluidas
Características
Las baterías Classic EnerSol T son elementos de bajo mantenimiento adecuados para el uso en sistemas
solares industriales de tipo medio. Estas baterías de plomo-ácido con electrolito líquido son famosas por su
seguridad y fiabilidad gracias a su alto rendimiento.
Sus aplicaciones típicas son pequeños sistemas solares y eólicos y segundas viviendas (de vacaciones y
fines de semana).
• Placas positivas tubulares
• Recipientes traslúcidos para facilitar el relleno de electrolito
Placa Tubular
Elementos
de 2V
Capacidad
nominal
367 –1251 Ah
• Conexiones atornilladas para un mejor contacto y fiabilidad
Bajo
mantenimiento
1500 ciclos
Reciclables
Se recomienda el uso de cargadores profesionales de 4 etapas que permitan configurar la curva de carga
según las necesidades requeridas por el sistema. De esta manera, alargará la vida de sus baterías.
EnerSol
Voltaje
nominal
Capacidad
C120 1,85
V/C
25ºC (Ah)
Intensidad
Resistencia
de
Interna
cortocircuito
m
según A
LaxAnxAl**
mm
Peso
incluyendo
ácido
Peso*
del
ácido
Longitud
instalada
(B/L)
mm
Nº Term /
Polo
EnerSol T 370
2
367
0,701
2900
83x198,5x445
17,3
5,1
93
1
EnerSol T 460
2
459
0,561
3625
101x198,5x445
21,0
6,3
111
1
EnerSol T 550
2
551
0,467
4350
119x198,5x445
24,7
7,5
129
1
EnerSol T 650
2
648
0,450
4500
119x198,5x508
29,5
8,6
129
1
EnerSol T 760
2
756
0,386
5250
137x198,5x508
31,0
10,0
147
1
EnerSol T 880
2
876
0,438
4660
137x198,5x556
38,0
11,0
147
1
EnerSol T 1000
2
1001
0,383
5325
155x198,5x556
43,1
12,6
165
1
EnerSol T 1130
2
1126
0,341
5991
179x198,5x556
47,7
14,1
183
1
2
1251
191x198,5x556
52,8
15,6
201
1
EnerSol T 1250
0,307
6657
TODOS LOS MODELOS CON UNA TENSIÓN NOMINAL DE 2V
*Densidad del ácido dN= 1,28Kg/l
**La altura puede diferir dependiendo de los tapones usados
69
PLOMO-ÁCIDO
Vasos de 2V
• Baterías de plomo abierto, placa tubular y
recipiente transparente, para uso solar
• Vida de diseño: 2.000 ciclos según IEC 896-2
• Garantía de 3 años contra defecto de
fabricación
• También en monobloque
Características
La gama Classic OpzS Solar ha sido utilizada durante décadas en requerimientos de energía medios
y grandes. Este acumulador de energía es una batería de plomo-ácido de bajo mantenimiento con
electrolito líquido.
Debido a su robustez, larga vida de diseño y alta fiabilidad, estas baterías son ideales para el uso
en estaciones solares y eólicas, telecomunicaciones, compañías de distribución de energía,
ferrocarriles y muchos otros suministros de energía de equipos de seguridad.
Se recomienda el uso de cargadores profesionales de 4 etapas que permitan configurar la curva
de carga según las necesidades requeridas por el sistema. De esta manera, alargará la vida de
sus baterías.
Capacidad
Monoblocs
nominal
70 - 4600 Ah
Placas
tubulares
OPzS
Voltaje
nominal
Capacidad Capacidad Capacidad
nominal
nominal
nominal
C120 1,85 C100 1,85 C10 1,80
Elementos 2000 ciclos
de 2V
según
IEC 896-1
Reciclables
Bajo
mantenimiento
Fondo
mm
Ancho
mm
Alto
mm
Peso
incluyendo
ácido
Peso
del
ácido
Terminal
Polos
ELEMENTOS
OPzS Solar 190
2
190
185
128
105
208
405
13,7
5,2
F-M8
OPzS Solar 245
2
245
240
169
105
208
405
15,2
50
F-M8
1
OPzS Solar 305
2
305
300
216
105
208
405
16,6
4,6
F-M8
1
OPzS Solar 380
2
380
370
267
126
208
405
20
5,8
F-M8
1
OPzS Solar 450
2
450
440
319
147
208
405
23,3
6,9
F-M8
1
OPzS Solar 550
2
550
540
391
126
208
520
26,7
8,1
F-M8
1
OPzS Solar 660
2
660
645
468
147
208
520
31
9,3
F-M8
1
OPzS Solar 765
2
765
750
545
168
208
520
35,4
10,8
F-M8
1
OPzS Solar 985
2
985
970
700
147
208
695
43,9
13
F-M8
1
OPzS Solar 1080
2
1080
1055
772
147
208
695
47,2
12,8
F-M8
1
OPzS Solar 1320
2
1320
1295
937
215
193
695
59,9
17,1
F-M8
2
OPzS Solar 1410
2
1410
1380
1009
215
193
695
63,4
16,8
F-M8
2
OPzS Solar 1650
2
1650
1620
1174
215
235
695
73,2
21,7
F-M8
2
OPzS Solar 1990
2
1990
1950
1411
215
277
695
86,4
26,1
F-M8
2
OPzS Solar 2350
2
2350
2300
1751
215
277
845
108
33,7
F-M8
2
OPzS Solar 2500
2
2500
2445
1854
215
277
845
114
32,7
F-M8
2
OPzS Solar 3100
2
3100
3040
2317
215
400
815
151
50
F-M8
3
OPzS Solar3350
2
3350
3280
2523
215
400
815
158
48
F-M8
3
OPzS Solar 3850
2
3850
3765
2884
215
490
815
184
60
F-M8
4
OPzS Solar 4100
2
4100
4000
3090
215
490
815
191
58
F-M8
4
OPzS Solar 4600
2
4600
4500
3450
215
580
815
217
71
F-M8
4
70
1
GEL SOLAR
Baterías monobloque
• Placa plana, para uso solar
• Vida de diseño de 1.200 ciclos según
IEC 896-2
Características
El rango de baterías (Sonnenschein) SolarBloc es muy resistente y
fiable en aplicaciones donde las condiciones son adversas.
VRLA
Reguladas por
válvula
Placas planas
tipo rejilla
Capacidad
nominal
60 – 330 Ah
Baterías tipo
monobloque
1200 ciclos
de acuerdo a
IEC 896-2
Libres de
mantenimiento
A prueba de
descargas
profundas de
acuerdo a DIN
43539 Parte 5
Reciclables
Además del uso en áreas privadas como segundas viviendas con más
demanda de consumo, esta gama es la fuente de energía ideal para:
- Sistemas solares industriales de mediana potencia
- Pequeñas centrales de generación de energía eólica y solar
- Boyas y señales marítimas
- Embarcaciones y estaciones de medida y control
- Y para otros suministros de energía de equipos de seguridad
Se recomienda el uso de cargadores profesionales de 4 etapas que
permitan configurar la curva de carga según las necesidades requeridas
por el sistema. De esta manera, alargará la vida de sus baterías.
SolarBloc
Voltaje
nominal
Capacidad Intensidad de
descarga
nominal
I120
C100 1,8 V/C
(A)
25ºC (Ah)
Largo x
Ancho
mm
Altura con
Altura sin
conectores conectores
mm
mm
Peso
aprox.
Terminal
Posición
Terminales
SB 12/60 A
12
SB 12/75 A
12
75
0,75
330x171
214
236
28
A-Terminal
2
SB 12/100 A
12
100
1,00
513x189
195
223
39
A-Terminal
3
SB 12/130 A
12
130
1,30
513x223
195
223
48
A-Terminal
3
SB 12/185 A
12
185
1,85
518x274
216
238
65
A-Terminal
3
SB 6/200 A
6
200
2,00
190x244
254
275
31
A-Terminal
4
SB 6/330 A
6
330
3,30
312x182
337
359
48
A-Terminal
4
60
0,60
278x175
-
190
20
A-Terminal
1
71
GEL DEEP CYCLE
Monobloque
Características
Tecnología VRLA
Las siglas VRLA denotan que la batería es hermética. Habrá
escape de gas en las válvulas de seguridad únicamente en
caso de sobrecarga o de algún fallo de los componentes.
Las baterías VRLA son muy resistentes a los escapes
excepcionales y se pueden utilizar en todas las posiciones.
No requieren ningún tipo de mantenimiento.
Tecnología: Placas planas GEL
Bornes: cobre, M8
Capacidad nominal: descarga en 20h a
25ºC
Dur. de vida en flotación: 12 años a 20ºC
Dur. de vida en ciclos:
300 ciclos en descarga 100%*
600 ciclos en descarga 50%
1300 ciclos en descarga 30%
Baterías de Gel estancas
El electrolito se inmoviliza en forma de gel. Las baterías de
gel tienen por lo general una gran duración de vida y
* Voltaje de fin de descarga: 10,8V para
una batería de 12V
capacidad de ciclos.
Escasa autodescarga
Gracias a la utilización de rejillas de plomo-calcio y materiales de gran pureza, las baterías
VRLA se pueden almacenar durante largo tiempo sin necesidad de recarga. El índice de
autodescarga es inferior a un 2% al mes, a 20ºC.
La autodescarga se duplica por cada 10ºC de aumento de temperatura. En un ambiente fresco,
estas baterías se pueden almacenar durante un año sin tener que recargar.
Extraordinaria recuperación
Las baterías VRLA tienen una extraordinaria capacidad de recuperación incluso tras una
descarga profunda o prolongada. Sin embargo, se debe recalcar que las descargas profundas
o prolongadas frecuentes tienen una influencia muy negativa en la duración de vida de las
baterías de plomo-ácido.
Características de descarga de las baterías
Las capacidades nominales de las baterías de Victron se indican para una descarga de 10
horas, es decir, para una corriente de descarga de 0,1C. La capacidad real disminuye en
descargas más rápidas con intensidades elevadas (ver tabla inferior). La reducción de capacidad
aún será más rápida con aparatos de potencia constante como, por ejemplo, los inversores.
MODELOS
ías AGM Dde 12V:
Especificaciones generales
Ref.
BAT412550100
BAT412600100
BAT412800100
BAT412101100
BAT412121100
BAT412151100
BAT412201100
72
Ah
60
66
90
110
130
165
220
LxAnxAl (mm)
229x138x227
258x166x235
350x167x183
330x171x220
410x176x227
485x172x240
522x238x240
Kg
20
24
26
33
38
48
66
CAPACIDAD REAL EN FUNCIÓN DE LA CAPACIDAD
DE DESCARGA
Duración de descarga
Voltaje final V
GEL Deep Cycle %
20 horas
10,8
103
10 horas
10,8
100
5 horas
10,8
95
3 horas
10,8
81
1 hora
9,6
65
30 minutos
9,6
49
15 minutos
9,6
38
10 minutos
9,6
27
5 minutos
9,6
18
5 segundos
7 C*
* Corriente de descarga máxima autorizada
GEL SOLAR
Vasos de 2V
• Baterías de gel
• Placa tubular para uso solar
• Vida en ciclaje: 1600 ciclos según IEC 896-2
• 2 años de garantía
Características
Las baterías Sonnenschein A600 Solar han sido desarrolladas para aplicaciones solares de mediana
y alta potencia. Su reciclabilidad y larga vida de almacenamiento sin necesidad de recarga hace
que estas baterías sean muy recomendables para diversos tipos de requerimientos, siempre
respetando el medio ambiente.
Las aplicaciones típicas de estas baterías VRLA, fabricadas con la exitosa tecnología dryfit, son:
- Centrales de generación de energía eólica y solar en lugares con casas aisladas
- Compañías de distribución de energía
- Telecomunicaciones
Conexión
en paralelo
- Ferrocarriles
- Y otros muchos suministros de energía de equipos de seguridad
VRLA
Reguladas por
válvula
Placas
tubulares
Capacidad
Elementos
nominal
de 2V
240 – 3500 Ah
1600 ciclos
de acuerdo a
IEC 896-2
Libres de
mantenimiento
A prueba de
descargas
profundas de
acuerdo a DIN
43539 Parte 5
Conexión
en serie
Reciclables
Se recomienda el uso de cargadores profesionales de 4 etapas que permitan configurar la curva de carga según
las necesidades requeridas por el sistema. De esta manera, alargará la vida de sus baterías.
Vasos de Gel (Solar)
4 OPzV 5 OPzV
240
300
6 OPzV
360
5 OPzV
400
6 OPzV
500
7 OPzV
600
6 OPzV
720
Voltaje nominal
8 OPzV 10 OPzV 12 OPzV 12 OPzV 16 OPzV 20 OPzV 24 OPzV
960
1700
1400
1200
2300
3500
2900
2 Voltios
Intensidad de descarga I100
2,4
3,0
3,6
4,0
5,0
6,0
7,2
9,6
12,0
14,0
17,0
23,0
29,0
35,0
Capacidad nominal C100
1,85V/C 20ºC (Ah)
240
300
360
400
500
600
720
960
1200
1400
1700
2300
2900
3500
19,5
23,5
28,0
31,0
36,5
42,0
50,0
68,0
82,0
97,0
120,0
160,0
200,0
240,0
Peso aprox. (Kg)
Fondo x Ancho (mm)
105x208 126x208 147x208 126x208 147x208 168x208 147x208 215x193 215x235 215x277 215x277 215x400 215x490 215x580
Alto hasta conectores (mm)
398
398
398
513
513
513
688
688
688
688
838
815
815
815
Alto sin conectores (mm)
360
360
360
475
475
475
650
650
650
650
800
775
775
775
Long. instalación (B/L) mm
Número de polos
112
135
155
135
155
175
155
220
220
220
220
220
220
220
1
1
1
1
1
1
1
2
2
2
2
3
4
4
Terminal
F-M8
73
GEL OPzV
Vasos de 2V, VRLA
Características
Tecnología VRLA
Las siglas VRLA denotan que la batería es hermética. Habrá
escape de gas en las válvulas de seguridad únicamente en
caso de sobrecarga o de algún fallo de los componentes.
Las baterías VRLA son muy resistentes a los escapes
excepcionales y se pueden utilizar en todas las posiciones.
No requieren ningún tipo de mantenimiento.
Tecnología: Placas tubulares GEL
Bornes: cobre, M8
Capacidad nominal: descarga en 10h a
25ºC
Dur. de vida en flotación: 20 años a 20ºC
Dur. de vida en ciclos:
700 ciclos en descarga 100%*
1200 ciclos en descarga 50%
2400 ciclos en descarga 30%
Baterías de Gel estancas
El electrolito se inmoviliza en forma de gel. Las baterías de
gel tienen por lo general una gran duración de vida y
* Voltaje de fin de descarga: 10,8V para
una batería de 12V
capacidad de ciclos.
Escasa autodescarga
Gracias a la utilización de rejillas de plomo-calcio y materiales de gran pureza, las baterías
VRLA se pueden almacenar durante largo tiempo sin necesidad de recarga. El índice de
autodescarga es inferior a un 2% al mes, a 20ºC.
La autodescarga se duplica por cada 10ºC de aumento de temperatura. En un ambiente fresco,
estas baterías se pueden almacenar durante un año sin tener que recargar.
Extraordinaria recuperación
Las baterías VRLA tienen una extraordinaria capacidad de recuperación incluso tras una
descarga profunda o prolongada. Sin embargo, se debe recalcar que las descargas profundas
o prolongadas frecuentes tienen una influencia muy negativa en la duración de vida de las
baterías de plomo-ácido.
Características de descarga de las baterías
Las capacidades nominales de las baterías de Victron se indican para una descarga de 10
horas, es decir, para una corriente de descarga de 0,1C. La capacidad real disminuye en
descargas más rápidas con intensidades elevadas (ver tabla inferior). La reducción de capacidad
aún será más rápida con aparatos de potencia constante como, por ejemplo, los inversores.
MODELOS
ías AGM Dde 12V:
Especificaciones generales
Ref.
BAT702601260
BAT702801260
BAT702102260
BAT702122260
BAT702152260
BAT702202260
BAT702252260
BAT702302260
74
Ah LxAnxAl (mm)
600 149x208x710
800 215x193x710
1000 215x235x710
1200 215x277x710
1500 215x277x855
2000 215x400x815
2500 215x490x815
3000 215x580x815
Kg
48
68
82
94
120
160
200
240
CAPACIDAD REAL EN FUNCIÓN DE LA CAPACIDAD
DE DESCARGA
Duración de descarga
Voltaje final V
GEL “LONG LIFE” %
20 horas
10,8
102
10 horas
10,8
100
5 horas
10,8
94
3 horas
10,8
79
1 hora
9,6
63
30 minutos
9,6
45
15 minutos
9,6
28
10 minutos
9,6
20
5 minutos
9,6
10
Éste es un sistema trifásico de
energía solar fotovoltaica aislada.
Es un sistema modular, ideal para
granjas, casas de turismo rural o
cualquier casa aislada con un nivel
de confort elevado. Además, su
limitación en potencia es
prácticamente inexistente.
El Multi se ocupa del resto. Decide
cuándo se necesitan cargar las
baterías y cuándo no para
aprovechar al máximo nuestro
generador fotovoltaico.
De esta manera disponemos de
energía limpia, silenciosa y
disponible bajo cualquier
circunstancia.
Nos proporciona total autonomía
en cuanto a disponibilidad
energética permanente, y en
cuanto a mantenimiento de la
instalación u/o interacción con la
misma para su correcto
funcionamiento. El sistema decide
por nosotros y además toma la
decisión más adecuada en cada
momento.
Ideal para cualquier aplicación
solar fotovoltaica autónoma.
75
Instrumentación
Sistemas eléctricos
Hispania Solar le proporciona todos los elementos necesarios para
controlar, proteger e interaccionar con su instalación fotovoltaica
desde el cuadro general cumpliendo con todas las normas vigentes.
De forma cómoda y sencilla.
Tornillos de fijación
incluidos
Más de 250 rótulos
disponibles
4mm de grosor
Módulos de aluminio
anodizado
Sistema de unión, mediante cruces y tés,
por la parte trasera de los paneles. Ensambla
los módulos entre sí, en cualquier
combinación, con gran robustez.
El sistema modular permite realizar
cualquier combinación posible,
cubriendo todas las necesidades
eléctricas necesarias para su instalación.
Amplísima gama de instrumentos de
medición y control, disyuntores
automáticos, indicadores luminosos,
interruptores, conmutadores y otros
componentes eléctricos.
Medidas dsiponibles (ancho x alto):
Serie 0: 240x260mm
Serie 1: 240x130mm
Serie 2: 120x130mm
Serie 3: 120x65mm
Serie 4: 60x65mm
Serie 5: 180x65mm
Sistema AC
Un cuadro eléctrico modular diseñado para
el perfecto control de todas sus fuentes AC.
Protección, control y selección. El cuadro
ideal para cualquier instalación solar.
Cuadro AC analógico
76
Cuadro AC digital
Sistema DC
Pulsadores e Interruptores
Disyuntores
Desconectadores
Conmutadores
Shunt
Instrumentación digital y analógica
Control y señalización
77
¡Con
exió
nar
ed!
VE Solarswitch
Conmutador Solar
Un creciente número de casas, granjas y otros
edificios están siendo construidos con instalaciones
solares conectadas a red. La configuración
estándard tiene un importante desventaja: su
dependencia de la red. Si la red falla, el inversor
de conexión a red se apaga y nos quedamos con
un apagón total a pesar de la gran inversión
desembolsada en la instalación solar.
Esto ocurre con cualquier solución de energía alternativa conectada a red tal como instalaciones
eólicas, acuáticas o micro CHP (micro combinación calor y energía).
Básicamente, la solución a este problema pasa por añadir un inversor/cargador y unas baterías.
Múltiples combinaciones son entonces posibles.
El problema: los sistemas estándares fotovoltaicos se apagan en caso de corte energético.
Con el conmutador solar, en caso de apagón, el sistema funcionará de forma autónoma, sin
dependencia de la red.
Conexión del conmutador solar
78
VE SolarSwitch
Entradas AC (principales, MultiPus/Quattro y Solar)
Conmutador máx. a través de la corriente
Máx. consumo energético
Rango voltaje entrada: 187-265VAC. Frec: 45-65Hz
25A
<4W
General
Relé auxiliar programable (3X) (1)
LED de estado
Características comunes
Carga máx. 8A, 250VAC
1 azul / 1 amarillo / 1 rojo
Temp. trabajo: -20 a +50ºC Humedad sin cond. máx. 95%
Caja
Características comunes
Cubierta de poliamida 6,6 en color verde, tapa de
policarbonato irrompible transparente, IP20
Conexión 230VAC
Terminales 5,2mm 2 (10AWG)
Relé de conexión auxiliar
Terminales 2,5mm 2 (19AWG)
Peso (gramos)
Medidas (alxanxpr, mm)
750
88x215x110
Normativas
Seguridad
Emisión / Inmunidad
(1) Tres relés programables
Índice AC: 230V/4A
EN 60335-1, EN60335-2-29
EN 55014-1, EN 55014-2, EN 61000-3-3
Puede ser programado con
VEConfigure
Índice DC: 4A hasta 35VDC, 1A
hasta 60VDC
Ejemplo de aplicaciones: alarma,
inicio de generador o función de
desconexión de carga
79
Iluminación
B aj o c o n s u m o
Una gran luminosidad y un reducido consumo eléctrico definen la gama
de lámparas Resolux, idóneas para todas aquellas aplicaciones sensibles
al gasto energético. Las lámparas están montadas sobre una base de
aluminio para montaje de superficie, incorporan un interruptor y funcionan
con corriente continua.
RESOL UX
Co n s u m o
12V 24V
Ref er en c i a
Po t en c i a
tubo
Equivalencia en
incandescencia
Resolux 100
1 x 5W
0,52A
0,26A
1 x 7W
0,68A
0,34A
25W
40W
185 x 60 x 32mm
Resolux 101
Resolux 102
1 x 9W
0,85A
0,43A
60W
245 x 60 x 32mm
Resolux 103
1 x 11W
1A
0,50A
75W
314 x 60 x 32mm
Resolux 150
2 x 5W
1,04A
0,52A
2x25W
300 x 60 x 32mm
Resolux 151
2 x 7W
1,36A
0,68A
2x40W
378 x 60 x 32mm
Resolux 153
2 x 11W
2A
1A
2x75W
608 x 60 x 32mm
Dimensiones
largo x alto x ancho
212 x 60 x 32mm
Especificar 12 ó 24V CC
¿Qué sucede si su inversor fotovoltaico deja de funcionar? Con la excelente gama de iluminación en DC
de Hispania Solar no se quedará sin luz.
Es muy interesante instalar iluminación en continua, sobre todo en aquellas zonas donde es vital disponer
de luz cuando nuestro inversor fotovoltaico sufre una avería. Cuando esto sucede y además es de noche
o el habitáculo donde se encuentran nuestros sistemas de alimentación y/o emergencia es oscuro, la
instalación de una luminaria Hispania Solar proporcionará luz siempre a través de las baterías. Esto nos
permite operar y solucionar el problema con total normalidad y/o atender nuestra emergencia.
La gama de iluminación en corriente continua de Hispania Solar está fabricada con base en aluminio, tarjeta
electrónica en SMD y acabados en plástico de última generación. En definitiva, la mejor calidad al mejor
precio.
Su sencilla instalación es otro valor añadido de nuestra gama de luminarias. Además, pueden ser instaladas
en lugares con ambientes hostiles (polvo, humedad...) que es exactamente donde se ubican la mayor parte
de nuestros sistemas de alimentación y/o emergencia.
80
RESOL UX 600
Ref er en c i a
Resolux 651
Resolux 655
Po t en c i a
tubo
1 x 4W
1 x 8W
Co n s u m o
12V 24V
12V
24V
0,4A
0,2A
0,8A
0,4A
Dimensiones
largo x alto x ancho
250 x 95 x 35mm
450 x 95 x 35mm
Especificar 12 ó 24V CC
La serie de luminarias Resolux permite ahorrar una gran energía en consumo. Su exitosa introducción en
el mercado así lo certifica. Gracias a su avanzado sistema electrónico, se consigue un consumo más bajo
que el resto de iluminación existente en el mercado.
Estas fantásticas luminarias tienen una vida útil de 8000h. Libre de flickers, gracias a su sistema avanzado
de filtro, cumple con todas las normativas en CE y radio interferencia.
Su acabado de calidad les permite trabajar perfectamente a altas temperaturas ambientales y resistir las
condiciones más extremas, incluyendo radiación UV.
al
e
d
I
5:
IP6
res
o
i
r
exte
81
Iluminación
L ám p ar as L ED
Los LED’s son diodos que irradian luz al ser atravesados por una corriente pequeña.
A diferencia de las fuentes de luz tradicionales, los LED’s poseen polaridad por lo que
funcionan únicamente al ser polarizados en directo y no en inverso.
Poseen muchísimas ventajas ante los dispositivos tradicionales, entre las que destacan:
- Reducen aproximadamente a 1/10 el consumo energético
!
- Tiempo estimado de vida muy elevado (entre 80.000 y 100.000 horas de operación continua)
- Trabajan a muy baja corriente y tensión (2V - 3V DC @ 20mA aproximadamente)
- No generan calor
- Por ser de estado sólido pueden ser adaptados a aplicaciones con ciertos grados de vibraciones o impactos
- No emiten luz UV
- Permiten la elaboración de dispositivos de iluminación mucho más prácticos y de fácil instalación
- Casi no requieren mantenimiento debido a su larga durabilidad
- No atraen a mosquitos
Figura de un LED y su chip semiconductor
Lente
Semiconductor
Bigote
Plástico de alto
impacto
Yunque
(-) Negativo
(+) Positivo
82
LED
Conformidad
CE
Cubierta en
negro
Lámpara
compacta
Conformidad
EMC
Cubierta en
blanco
Lámpara
compacta
Colour
temperature of
lamp
Cubierta en
gris
Fluorescente
T5
Eficacia
luminosa de la
lámpara
Cubierta en
acabada en
cromo mate
Fluorescente
T16
Flujo luminoso
de la lámpara
Cubierta en
acabada en
cromo pulido
Fluorescente
T26
Luz con
interruptor
Color difusor
verde
Ángulo del
haz luminoso
Máxima
iluminación en
1m de
distancia /
diámetro del
área con igual
iluminación
Color difusor
rojo
Voltaje
funcionamiento
DC
Protección
contra objetos
extraños > 1mm
Color difusor
amarillo
Voltaje
funcionamiento
DC
Protección
frente a
salpicaduras de
agua y polvo
Ledstep colour
of grouting blue
Consumo
Color difusor
azul
Voltaje
funcionamiento
DC
Ledstep colour
LED yellow
Diseño LED
Ledstep colour
LED green
83
Iluminación
L ám p ar as L ED
84
85
Iluminación
L ám p ar as L ED
86
87
Iluminación
L ám p ar as L ED
88
89
Iluminación
L ám p ar as L ED
90
91
Iluminación
L ám p ar as L ED
92
93
Iluminación
L ám p ar as L ED
94
Modelo:
Consumo:
Colores del LED:
Colores de la lámpara:
Dimensiones:
3284/LD1W
1 LED de 1W
blanco/de ambiente/azul
metálico
37mm diámetro x 28mm fondo
Modelo:
Consumo:
Colores de la luz:
Colores de la lámpara:
Dimensiones:
3239/LD3W
3 LED de 3W
blanco/de ambiente
metálico
62mm diámetro x 35mm fondo
Modelo:
Consumo:
Colores de la luz:
Colores de la lámpara:
Dimensiones:
111 901
1 LED de 1W
blanco
aluminio
60mm diámetro x 35mm fondo
Modelo:
Consumo:
Colores de la luz:
Colores de la lámpara:
Dimensiones:
111 871
1 LED de 1W
blanco
aluminio
60mm diámetro x 35mm fondo
Modelo:
Consumo:
Colores de la luz:
Colores de la lámpara:
Dimensiones:
111 851
3 LED de 1W
blanco
gris plata
80mm diámetro x 35mm fondo
Modelo:
Consumo:
Colores de la luz:
Colores de la lámpara:
Dimensiones:
LED 1028WH/RE/BL/YE
24V @ 1,2W, 3 LED de 1W
blanco/rojo/azul/amarillo
aluminio negro
40mm diámetro x 20mm fondo
Modelo:
Consumo:
Colores de la luz:
Colores de la lámpara:
Dimensiones:
Serie 21 100
21-36 LED de 1W
blanco/rojo
blanco/gris plata/cromo/dorado
94mm-114mm diámetro (21/36 LED’s)
95
Iluminación
L ám p ar as h al ó g en as
Las luces halógenas proporcionan una calidez excepcional y permiten crear diferentes ambientes
en espacios reducidos. Un regulador de intensidad luminosa completa nuestra amplia gama.
Halógenas de 28V: en el proceso de carga de baterías, se alcanzan tensiones de 28V y las bombillas
halógenas convencionales se funden con frecuencia. Las nuevas halógenas de 28V solucionan el
problema sin perjuicio de la intensidad luminosa.
L Á MPA RA S Y B OMB IL L A S HA L ÓGENA S DE 28V
MODEL OS
20934
35mm de diámetro, tensión 28V, potencia 10W
20933
35mm de diámetro, tensión 28V, potencia 20W
20932
51mm de diámetro, tensión 28V, potencia 10W
20931
51mm de diámetro, tensión 28V, potencia 20W
20916
Tensión 28V, potencia 10W
20917
Tensión 28V, potencia 20W
Ventajas en comparación con las lámparas incandescentes comunes:
- Emiten una luz un 30% más blanca y brillante empleando menos potencia en vatios
!
- Son más eficientes, es decir, consumen menos energía eléctrica por lumen de intensidad de luz aportado
- Son mucho más pequeñas comparadas con una incandescente normal de la misma potencia en vatios
- No pierden intensidad de luz con las horas de trabajo pues los vapores de tungsteno no ennegrecen la envoltura
del cristal de cuarzo
- Prestan un mayor número de horas de servicio
B OMB IL L A S L ED PA RA HA L ÓGENA S
MODEL OS
14 LED’S
9 LED’S
20 LED’S
96
21020
25mm de diámetro, tensión 12-14V, potencia 1,2W
21022
25mm de diámetro, tensión 12-14V, potencia 0,9W
21021
25mm de diámetro, tensión 24-28V, potencia 2W
21023
25mm de diámetro, tensión 24-28V, potencia 1,6W
21006
35mm de diámetro, tensión 12-14V, potencia 0,9W
21008
35mm de diámetro, tensión 12-14V, potencia 0,7W
21007
35mm de diámetro, tensión 24-28V, potencia 1,4W
21009
35mm de diámetro, tensión 24-28V, potencia 1,2W
21002
50mm de diámetro, tensión 12-14V, potencia 1,4W
21004
50mm de diámetro, tensión 12-14V, potencia 1,2W
21003
50mm de diámetro, tensión 24-28V, potencia 2,5W
21005
50mm de diámetro, tensión 24-28V, potencia 2W
Regulador
3DIMM
Fabricación nacional
• Regulador de intensidad luminosa para luces halógenas o de filamento
alimentadas con corriente continua
• Potencia máxima de 130W, permite regular varias lámparas en paralelo
• Potenciómetro de regulación incorporado en el mismo módulo
• No precisa caja auxiliar, el dimmer está incorporado en la parte trasera del módulo
• Regulación por ancho de pulso (PWM): evita la degradación de la lámpara y asegura
una buena luminosidad, incluso a bajas intensidades (ver esquema más abajo)
• Protección por sobrecargas incluida
• Posibilidad 12V DC o 24V DC
• 120x65x60mm
La Modulación por Ancho de Pulso (PWM=pulse-width modulation) es una técnica de modulación
en la que se modifica el ciclo de trabajo de una señal periódica. Es decir, si encendemos y apagamos
una luz lo suficientemente rápido como para que el parpadeo no lo note el ojo del ser humano (inferior
a 30 veces por segundo), podremos “simular” la variación de luminosidad de la luz (la veremos
siempre como encendida debido a la impresión que ha dejado en nuestra retina).
Dado que el consumo pasa por momentos de 0 amperios, el gasto energético se reduce
considerablemente gracias a esta técnica.
Consumo
100
0
Tiempo
80
0
100
Según esta gráfica, en el primer esquema tenemos más consumo energético
que en el segundo aunque tenemos la misma impresión de visión
20
97
Aerogenerador
Air X
• Turbina ultra silenciosa
• Microcontrolador electrónico inteligente
que controla el voltaje, las revoluciones
del rotor y el freno de las aspas
• Sencilla instalación
• Perfecto para múltiples aplicaciones por
su gran ligereza
• Resistente a vientos de hasta 150Km/hora
• Sencilla instalación
• Incluye regulador interno de carga ajustable
a cualquier batería externamente
• Seguridad frente a fuertes vientos gracias
a su exclusivo interruptor que actúa
disminuyendo las revoluciones a 600rpm
Tecnología basada en microprocesador
El aerogenerador Air X incorpora una tecnología basada en microprocesador que proporciona un
acabado excelente, una gran capacidad de carga de baterías, una fiabilidad excepcional y una
potente reducción del ruido de la turbina.
El regulador permite el seguimiento de potencia pico del viento mediante la optimización de la salida
del alternador en todos los puntos de la curva cúbica y carga de forma eficiente la batería. El
regulador inteligente de la turbina le permite controlar realmente la velocidad de rotación de las
aspas eliminando así el zumbido que se da comúnmente con turbinas de viento más pequeñas.
Carga de las baterías
El aerogenerador Air X cargará de manera segura cualquier banco de baterías de 25 a 25.000
amperios o más. Cuando la batería ha alcanzado su carga máxima, el Air X se desacelerará hasta
un paro casi total. Sólo cuando la batería ha caído por debajo de su punto de voltaje volverá a
cargar. Gracias a esta función, se prolonga la vida de las baterías y se impiden las sobrecargas.
Usos del Air X
El Air X es un producto ideal para cubrir necesidades de energía básicas como televisión, radio y luces. Las
aplicaciones más típicas son:
- Casas rurales aisladas
- Bombeo de agua
- Torres de telecomunicación
- Puestos de emergencia
- Proyectos educativos y científicos
98
Características Técnicas
Dimensión del rotor
Peso
Dimensiones flete
Montaje
Velocidad de arranque
Voltaje
Energía clasificada
Regulador del generador
Cuerpo
Aspas
Protección alta velocidad
Kilovatios/hora al mes
Protección alta velocidad
Garantía
1,15m
5,85Kg
686x38x228mm, 7,7Kg
1,9” / 48mm OD
3,58m/s
12, 24 y 48VDC
400W a 12,5m/s
Basado en microprocesador interno inteligente.
Regulador con rastreo de energía
Molde de aluminio
3 - fibra de carbono compuesto
Control de esfuerzo de torsión
38KWh/mes a 5,4m/s
49,2m/s
3 años de garantía limitada
Energía Mensual
Potencia de Salida
Curvas de funcionamiento
Velocidad de viento instantánea
Sin turbulencia
Con turbulenc
Velocidad media de viento anual
Esfera de Operación
99
Generador Eólico
Ampair Pacific 100
• Potencial de salida de 100W
• Limitación de la corriente máxima de salida
• Alternador sin escobillas
• Sus 6 palas y el centro de gravedad alineado
con el eje evitan los molestos ruidos
• Equipado con arillos deslizantes para buscar
la dirección del viento y autorientarse
• Marinizado
Características
Las necesidades de producción de energía eléctrica se ponen
de manifiesto en multitud de ocasiones. Mantener operativos
los instrumentos de navegación, al mismo tiempo que la nevera
y otros elementos de confort, requiere a menudo mucha más
energía de la que producimos con la navegación a motor.
Amp @ 12V (1/2 para 24V)
8
6
4
2
0
0
30
10
20
40
Velocidad del viento (Nudo = 0,5m/seg)
50
El ruido y consumo de combustible del generador o motor se
pueden reducir mediante el uso del generador eólico que
producirá energía eléctrica continuamente por acción del viento.
Modelos
480mm
A01 1012
12V DC. Precisa regulador
A01 1024
24V DC. Precisa regulador
Accesorios
A01 MO 30
Montaje en puente (con palo aluminio 410mm+base de 120x120mm)
A01 MO 31
A01 MO 32
Montaje en Stern (kit montaje en popa)
Montaje en palo de mesana (mizzen bracket)
A00 RG S1B-12
Regulador de dos niveles de carga, 100W, para una batería de 12V DC
A00 RG S1B-24
Regulador de dos niveles de carga, 100W, para una batería de 24V DC
A00 RG S3B-12
Regulador de dos niveles de carga, 100W, para tres baterías de 12V DC
A00 RG S3B-24
Regulador de dos niveles de carga, 100W, para tres baterías de 24V DC
100
915mm
ø44,5mm
980mm
Peso total 29Kg
La mecánica y el diseño eléctrico del Ampair Pacific
100 es el resultado de una combinación óptima entre
la turbina y el alternador, produciendo la máxima
eficiencia de conversión a una velocidad eólica normal
(7 - 18 nudos).
Ideado para tener un funcionamiento suave, sin ruido
ni vibración, el Ampair Pacific 100 está diseñado para
sobrevivir en los más severos entornos. Todos sus
componentes han sido marinizados para prevenir la
corrosión.
Este generador eólico tiene numerosas aplicaciones.
Puede encontrarse en: embarcaciones, chalets en las
playas de Tasmania, estaciones de radar en Finlandia,
repetidores de radio en Sudáfrica,
para
telecomunicaciones en las Islas Malvinas, para varias
expediciones a la Antártida... en definitiva, para todas
aquellas situaciones donde necesitan cargarse baterías
de 12 ó 24V.
MIZZEN
• Soporte de aluminio para la instalación
• Resistente a la torsión en cualquier
dirección
STERN
• Kit de montaje en popa
• Dos tubos de aluminio con fijaciones al
backstay, 2 cables de acero inoxidable,
soportes de fijación y pequeño material
para el montaje
Sistema de Baterías
Regulador S-M3B
Amperímetro 10A
Fusibles 10A
Auxiliar
Arranque
Doméstica
101
Generador Eólico
Ampair Pacific 300
(12 ó 24V)
• 300W de corriente continua a 12,6m/s
• Velocidad de arranque 3m/s
• Prestaciones sin compromiso
• Energía sin polución
• La energía que se necesita
• La fuerza requerida
• Protección frente a fuertes vientos
Características
Optimizado diseño de la turbina: poco ruido y mucha potencia
- La alta tecnología en el diseño del PACIFIC 300 combina
Gracias al avanzado diseño aerodinámico del Ampair Pacific
un estilo moderno con un bajo impacto visual y unas
300 sus aspas no producen ruido de vibración, resonancia
operaciones no intrusivas.
o aleteo. El control automático de las vueltas de las aspas
- La acertada construcción aerodinámica de las turbinas de
convierte una suave transición de la turbina en una velocidad
cada aspa minimiza el ruido y la vibración optimizando así
constante.
su resultado y mejorando la relación potencia/peso.
- Su sistema integral de navegación protege los componentes
Su “pedigree”
internos de la condensación y la corrosión.
Este producto ha sido desarrollado tras 25 años de continua
- Su potente alternador de baja velocidad convierte el
producción de pequeños sistemas de generadores eólicos
movimiento de la turbina en electricidad trifásica de corriente
y acuáticos para la carga de baterías. Su nuevo diseño
alterna.
viene dado por la experiencia obtenida de la distribución
- El sencillo montaje del poste permite una fácil fijación
de otros modelos y la respuesta de sus usuarios a lo largo
sobre cualquier mástil o torre.
de todo el mundo.
- El Ampair Pacific 300 funciona sin la necesidad de cortes
térmicos, estárters, aparatos conmutadores o complejos
controles electrónicos.
Referencias
A03 1012
12V DC (blanco). Salida AC trifásica. Con rectificador para carga de baterías
A03 1024
24V DC (blanco). Salida AC trifásica. Con rectificador para carga de baterías
Accesorios
Diámetro: 48mm
Peso total: 12Kg
Radio rotación: 620mm
102
A03 MO 30
Montaje en puente (con palo aluminio 550mm+base)
A03 MO 31
A03 MO 32
A03 MO 34
A03 REG S-12
Montaje en puente (con palo de acero inoxidable de 550mm+base)
Montaje en Sloop (kit montaje en popa)
Montaje en palo de mesana (mizzen bracket)
Regulador de dos niveles de carga, 300W, para una batería de 12V DC
A03 REG S-24 Regulador de dos niveles de carga, 300W, para baterías de 24V DC
A03 REG 300
Regulador de carga, 300W, 12-24V DC. Permite configurar doble voltaje,
doble entrada (eólica+solar) o doble salida (2 baterías)
Detalle montaje
Velocidad del viento
Características Técnicas
Potencia
Opciones de voltaje
Salida
Velocidad mín viento
Protección viento fuerte
Diámetro de la turbina
Peso
Aspas
Acabado
Colores
Accesorios:
Conector
Montaje en puente
300 Vatios a 12,6m/s (25 nudos) de velocidad del viento
12V o 24V DC
Trifásica AC
3m/s (6 nudos)
Control movimiento del aspa
1,2m
12kg
3
Aluminio anodizado (tropicalizado)
Blanco
Montaje en mesana
Interruptor
Regulador
103
Generador Eólico
Ampair Pacific 600
(24 ó 48V)
• Pensado para grandes aplicaciones
• Cargador de sistemas de baterías de
24/48V DC
• 15 años de vida operativa estimada
• Protección frente a fuertes vientos
Características
Optimización del equipo
Carga de baterías
El Ampair 600 es la última micro turbina de Ampair. Está
El Ampair 600-24/48V está diseñado para cargar sistemas
construido sobre la misma plataforma que los renombrados
de baterías de 24/48V DC de alta capacidad y debe ser
Ampair 100 y 300, tiene un diámetro optimizado en sus
instalado juntamente con el regulador A06 RG TS que
palas de 1,7m ideal para vientos de poca y mediana potencia.
incluye: regulador, salida de carga DC, rectificador, fusibles
Incorpora un sistema Powerful que aminora la turbina
y los disipadores de calor.
cuando hay fuertes vientos reduciendo así el ruido y las
Las cargas pueden ser tanto equipos de 24V o 48V como
cargas de sistema de voltaje.
un inversor senoidal aislado que puede usarse para
Puede usarse en grandes embarcaciones y está construido
abastecer equipos de 115 ó 230V AC.
siguiendo un amplio rango de especificaciones marinas.
Modelos
A06 1024
24V DC. Precisa regulador
A06 1048
48V DC. Precisa regulador
Accesorios
104
A06 RG TS24
Regulador de carga 600W, 24V DC (+rectificador+interruptor+fusibles)
A06 RG TS48
A00 MO 33
A06 MO 35
Regulador de carga 600W, 48V DC (+rectificador+interruptor+fusibles)
Kit montaje en popa
Conectores Estanco
Velocidad media del viento (m/s)
Velocidad del viento (m/s)
Características Técnicas 24V/48V
Potencia a 11,0m/s
Energía anual a 5,0m/s
Salida
Velocidad mín del viento
Velocidad máx del viento
Potencia máxima
Voltaje máximo
Corriente máxima
Protección viento fuerte
Entrada potencia
Área de barrido del rotor
Diámetro de la turbina
Peso
Material
Generador
Ruido
Longevidad
723W/741W (dentro de la batería)
1300KWh/año; 48KAh/año / 1394KWh/año; 25KAh/año
Trifásica AC - Se suministra con un rectificador externo
3m/s
n/a
1050W / 1140W
24/48V nominales
30A/17A
Control del movimiento del aspa y salida DC
<0,5W
2,27m
1,70m
16Kg (turbina y palas)
Cuerpo de aluminio, 3 palas de GRP
De imán permanente con salida trifásica
Máx. 1-3dBA sobre el suelo
15 años de vida operativa
105
Generador eólico
Ampair Pacific 6000
Turbina de 5,5m, 6.000W: la hermana mayor
Ampair da un salto de gigante desde el
aerogenerador de 600W hasta éste de 6.000W.
Es ideal para proveer energía a granjas remotas,
casas rurales, sistemas de telecomunicaciones,
edificios públicos, infraestructuras industriales o
escuelas, tanto para conexión a red de 230V o para
carga de baterías de 48V.
Al igual que las otras turbinas Ampair, está
manufacturada a partir de materiales de gran calidad
marina haciéndola especialmente indicada para
aplicaciones remotas, costeras o de climas fríos.
Simplicidad
En cumplimiento con el estándar IEC 61400-2 para
turbinas de Clase I, lo cual significa que puede ser
fácil y sencillamente instalada en cualquier lugar del
mundo. Es una unidad sellada por completo que no
requiere servicios anuales costosos.
Variedad de estilos
Hay disponible una amplia gama de mástiles. Al igual
que pasa con todas las turbinas, más altura
proporciona mayor potencia gracias al aumento de
Ampair 6000 montado en mástil de 10m dando electricidad
a una granja de Berkshire, Gran Bretaña.
la velocidad del viento, por ello Ampair puede proveer
mástiles desde 10 hasta 30 metros con variedad de
estilos, incluyendo el monoposte o la torre de celosía
(como las de radio).
La nueva turbina Ampair 6000 se hizo en su edición
del 2008 con el prestigioso premio “Rushlight
Windpower”. Este trofeo premia a las empresas que
aplican gran tecnología medioambiental e
innovaciones en el campo de las energías
106
Potencia a 11.0m/s
Corriente
Energía anual a 5.0m/s
Velocidad arranque viento
Inicio generación energía
Paro de generación de energía
Velocidad máxima del viento admisible
Potencia máxima
Voltaje máximo
Corriente máxima
Dirección de la rotación
Área de barrido del rotor
Diámetro del rotor
Velocidad del rotor
Salida del generador
Control de sobrevelocidad
Peso
Material del cuerpo
Material de las aspas
Tipo de generador
Torre
Ruido
Longevidad
Inspección
Rango de temperatura
Generación media (KWh/año)
Conformidad
220-240V AC red
48V DC carga de baterías
6000 W (a red)
6000W (a batería)
230V AC, 50Hz
48V DC
240V AC, 60Hz
8500kWh/año
3.0m/s
3.5m/s
15 - 25m/s
65m/s
6000W
600V al inversor
10.9A al inversor
Según agujas reloj mirando en la dirección del viento
23.74m2
5.5m
70 – 240rpm
3 fases al regulador o al inversor
Control electrónico velocidad y triple freno redundante
154kg cuerpo + 36kg aspas = 190kg en total
Revesitimiento de aluminio marinizado con apliques
de acero inoxidable también marinizados
Fibra rellena de polipropileno (twintex TM )
NeFeBr de transm. directa y escobillas magnéticas fijas
10m y 15m de elevación del mástil
54 dBA a 30m desde la turbina con viento de 11 m/s
Vida de diseño de 20 años
Inspección anual visual desde el nivel del suelo
-20°C a +40°C ambiente
BS EN 61400-2 (2006): micro aerogeneradores
BS EN 60335-1 (1994) seguridad en aplic. domésticas
LV Directiva 73/23/EC: EU directiva bajo voltaje
EMC Directiva 89/336/EC: EU EMC directiva
Inversor por VDE 0126-1-1; G59; UL1741
Velocidad media del viento (m/s)
Velocidad del viento (m/s)
107
Generador diésel
Refrigerados por aire
Los grupos electrógenos de la gama RUGGERINI 3000 r.p.m.,
han sido desarrollados desde la base de la experiencia de
más de treinta años en el sector, permitiendo acometer con
garantía de trabajo, servicio de reparación y post-venta,
aplicaciones como:
- Servicios de Emergencia
- Fallo de Red
- Sistemas Solares
- Cargadores de Baterías
- Sistemas de Riego
- Aplicaciones Industriales
- Uso doméstico y agrícola
Equipando motores diésel, Ruggerini 3000 r.p.m., refrigerados por aire y alternadores de primera marca
europea, se ensamblan (según versión) sobre un chasis tubular sobre el que se aloja el cuadro de control
y protecciones, resultando un compacto conjunto de ajustadas dimensiones.
El resultado es una máquina fiable, de larga vida útil, fácilmente ubicable y de versátil instalación. El depósito
de combustible está incorporado en la propia estructura del motor, si bien se pueden servir con depósitos
supletorios para mayor autonomía.
MOTORES SERIE RY:
MOTORES SERIE MD y RD:
- Diésel 4 tiempos refrigerado por aire
- Inyección directa
- Corrector de par
- Lubricación forzada mediante bomba a lóbulos
- Filtro de aceite a paso total incorporado
- Filtro de aire en seco
- Escape silenciador con protección
- Recirculación escape de aceite con disp. seguridad
- Suplemento automático de combustible en arranque
- Purga combustible en automático
- Descompresión automática
- Bancada en aluminio presofundido
- Cilindro en fundición integral
- Culata en fundición de aluminio
- Homologado según EPA TIER (1-2) y ECE R 24
- Diésel 4 tiempos refrigerado por aire
- Inyección directa
- Alimentación con bomba de combustible mecánica
- Corrector de par
- Arranque eléctrico
- Lubricación forzada mediante bomba a lóbulos o
engranajes
- Filtro de aceite a paso total con cartucho externo
- Depósito de carburante con filtro de gasoil incorporado
- Suplemento automático de combustible en arranque
- Regulador de velocidad centrífugo a masas
- Arranque eléctrico
- Bancada en túnel en aluminio presofundido
- Cilindros independientes rectificables en fundición
- Culatas independientes en fundición de aluminio
108
MODELOS
Grupo Electrógeno
FR4M/2
FR6M/2
FR8M/2
FR12M/2
4KW
6KW
8KW
12KW
3,5KW
5,5KW
7KW
9KW
CARACTERÍSTICAS
Potencia en emergencia
Potencia continua
Frecuencia (Hz)
50
Tensión
230V
3000rpm
Velocidad de Trabajo
MOTOR
Potencia Emergencia B-DIN
5,9CV = 4,4KWm
8,3CV = 6,1KWm
10,6CV = 7,8KWm
15,5CV = 11,4KWm
5,4CV = 4KWm
7,6CV = 5,6KW
9,7CV = 7,1KWm
14,3CV = 10,5KWm
1 / 315cm 3
1 / 401cm 3
1 / 505cm 3
2 / 851cm 3
Potencia continua A-DIN 6271
Nº de cilindors / cilindrada
Ciclo de Trabajo
Diésel cuatro tiempos
Directa / Natural
Inyección / Aspiración
Mecánico, precisión aprox. 4%
Regulación de velocidad
Consumo de combustible al
Capacidad del depósito
Arranque
1,3l/h
1,7l/h
2,3l/h
4,3l
5l
5l
4l
Eléctrico
Por batería a 12V
Por batería a 12V
Por batería a 12V
Tipo de refrigeración
3,4l/h
Aire Forzado
GENERADOR SINCRONO
KVA
3,5
6
Aislamiento
Otros
8
10
Autorregulado,
autoexcitado
Autorregulado,
autoexcitado, con compount
Monofásico
Tipo
Clase H
3,5
Autorregulado,
autoexcitado
GENERAL
Peso aprox. (Kg)
Dimensiones (mm)
Acoplamiento
87
91
93
160
800x570x650
800x570x650
800x570x650
900x570x650
Directo con alternador monosoporte
109
IG1000: Digital
Gasolina, 5.500 rpm
• Potencia máxima 1kVA para una amplia gama de aplicaciones
• Bajo nivel de ruido, alrededor de 54-59 db/7m
• Su reducido peso le hace ser fácilmente portátil, sólo 14Kg
• 4 horas de autonomía
• Su tecnología inverter proporciona una corriente de alta calidad,
100% estable
• Diseño y estilo patentado
• Sistema de circulación de aire único y patentado
KDE12EA: Gama Luxe
Diésel, 3.000 rpm
• Potencia máxima 9,5kVA
• Alarma de aceite
• Arranque eléctrico
• Panel digital de control con luminosos de alarma
• Nuevo AVR que reduce aún más la fluctuación de la corriente
• Equipado con el motor KM2V80, 2 cilindros, refrigerado por agua
• Depósito de gran capacidad
• 30mA
KDE12/16STA: Súper silenciosos
Diésel, 3.000 rpm
• Potencia máxima 9,5kVA ó 13kVA
• Insonorizado (72-74db)
• Equipado con el motor KM2 de 2 cilindros (modelo
KDE12STA) o motor KM376G de 3 cilindros (mod.
KDE16STA). Refrigerados por agua
• Panel digital de control
• Botón de parada de emergencia
• Nuevo AVR que reduce aún más la fluctuación de la
corriente
• 4 puertas con abertura a 180º para un fácil mantenimiento
110
KDE11/16SS: Ultra silenciosos
Diésel, 1.500 rpm
• Potencia máxima 9,5kVA ó 14,5kVA
• Insonorizado (51db)
• Panel digital de control
• Nuevo AVR que reduce aún más la fluctuación de la
corriente
• Botón de parada de emergencia
• Llenado automático de combustible
• Equipado con el motor KD388 de 3 cilindros (modelo
KDE11SS) o motor KD488 de 4 cilindros (mod. KDE16SS).
Refrigerados por agua
• 4 puertas con abertura a 180º para un fácil mantenimiento
Modelo
IG1000
KDE12EA
KDE12STA
KDE16STA
KDE11SS
KDE16SS
ESPECIFICACIONES
Frecuencia nominal (Hz)
50
50
50
50
50
50
Potencia nominal (kVA)
0,9
8,5
8,5
12
8,5
13
14,5
Potencia máxima (kVA)
1
9,5
9,5
13
9,5
Voltaje nominal (V)
230
230
230
230
230
230
Corriente nominal (A)
3,9
36,9
36,9
52,2
37
56,5
Velocidad nominal (rpm)
Número de polos
5.500
3.000
3.000
3.000
1.500
1.500
-
2
2
2
4
4
Factor de potencia
-
1
1
1
1
1
Grado de aislamiento
-
F
F
F
H
H
ATS
-
Opcional
Opcional
Opcional
Conexión ATS
AVR
-
-
Sí
Sí
Sí
Sí
-
Sí
Sí
Sí
Sí
Sí
Tipo de panel de control
-
Digital
Digital
Digital
Digital
Digital
Dimensiones (mm) lxpxa
460X248X395
1030x600x650
1210x650x760
1390x700x810
1570x780x1050
1570x780x1050
14
200
285
420
675
720
54-59
81-85
70-75
72-75
51
51
-
abierto
insonorizado
insonorizado
ultra-silent
ultra-silent
Número de fases
Peso neto (kg)
Generadores silenciosos
Nivel sonoro db/7m
Estructura
Monofásico
Opcional
Opcional
MOTOR
KG144
KM2V80
KM2V80
KM376G
KD388
KD488G
Tipo motor
1 cil, refrig. aire
2 cil, refrig. agua
2 cil, refrig. agua
3 cil, refrig. agua
3 cil, refrig. agua
4 cil, refrig. agua
53,5
2-80x79
2-80x79
3-76x73
3-88x90
4-88x90
794
794
993
1.642
2.190
1,3
12,5/3000
12,5/3000
13,5/3000
12,3/1500
16,4/1500
Ratio de compresión
-
23:1
23:1
21,5:1
18,2:1
18,2:1
Sistema de lubricación
-
-
-
-
alta presión
alta presión
Sistema de arranque
manual envolvente
eléctrico
eléctrico
eléctrico
eléctrico
eléctrico
Tipo de combustible
gasolina
diésel
diésel
diésel
diésel
diésel
Diámetro por carrera
Cilindrada CC
Potencia nominal kW (Hp)/rpm
Tipo de aceite
SAE10W30(multig) 15W30 ó 15W40
SAE10W30(multig) SAE10W30(multig) SAE10W30(multig) SAE10W30(multig)
Cap. de radiador agua (L)
-
-
-
-
8,5
12
Cap. cárter aceite (L)
-
-
-
-
6,9
8,5
Cap. motor arranque (V-kW)
-
-
-
-
12V 1,4Kw
12V 1,4Kw
Cap. generador de carga (V-A)
-
-
-
-
12V 15A
12V 15A
Autonomía (h. a pot. nominal)
4
8
8
9
-
-
Consumo combustible (l/kw/h)
0,315
0,29
0,24
0,25
0,29
0,27
Cap. depósito combustible (L)
2,6
25
25
38
65
65
111
ID10: Inverter
Diésel, 1.730 rpm
• P o t e n c i a m á x i m a 1 0 ’ 5 k VA pa r a u n a a m p l i a g a m a d e
aplicaciones
• Nivel de ruido bajo, alrededor de 57-63db/7m
• La tecnología inverter da una corriente de alta calidad,
1 0 0 % e s ta b l e
• D i s e ñ o y e s t i l o pa t e n ta d o
• A r r a n q u e e l é c t r i c o pa r a u n f á c i l e m p l e o
• E l m o t o r d i é s e l K D 3 7 3 G Ti p r o p o r c i o n a m u c h a s h o r a s
de funcionamiento con un consumo reducido
Características
KIPOR ha desarrollado el primer generador DIESEL a nivel mundial
aplicando tecnología INVERTER. Con esta tecnología, la salida de corriente
es 100% estable, el motor DIÉSEL puede trabajar a muy bajas revoluciones,
manteniendo al mínimo el consumo, el ruido y las emisiones de humos.
Además puede trabajar horas y horas sin descanso.
Es un verdadero generador ecológico.
Ficha Técnica
Frecuencia Nominal AC Hz
50
Voltaje Nominal (AC)
230
Corriente Nominal AC A
41,30
Velocidad Variable (rpm/min)
Potencia Nominal (kVA)
1730 / 2740
9.5
Potencia Máxima (kVA)
10.5
Interruptor Eléctrico
Disponible
Nº Fases
Monofásico
Modelo Motor
KD373GTi
Tipo
Cilindrada (c.c.)
979
Potencia Nominal Kw /rpm
Velocidad de rotación Variable (rpm)
Sistema de arranque
Consumo L/h (carga: 75% / 50% / 25%)
Aceite lubricante
Capacidad depósito combustible (L)
Autonomía horas (carga: 75% / 50% / 25%)
Combustible
Nivel de ruido (sin carga máx.)(dB( A)/7 m)
Cap. Motor arranque (V – Kw)
Capacidad generador carga (V – A)
Capacidad batería (V – Ah)
Medidas (LxWxH) (mm)
Peso
Regulación de velocidad del motor
112
Tres cilindros, 4 tiempos, refrigerado por agua
9.8
1730 / 2740
Eléctrico
3.17 / 2.11 / 1.06
SAE10W30 15W40
29
9 / 13.7 / 27.5
Diesel
57-63
12 V – 1.5 Kw
12 V – 35 A
12 V – 45 Ah
1250 x 650 x 790
285 Kg
Electrónica
D ossier Práctico
• MultiPlus
Pág. 3
• Carga de baterías
Pág. 13
• Cargadores de baterías
Pág. 21
• Consumo de energía
Pág. 24
MULTIPLUS: AHORRANDO DINERO
1 SISTEMA TÍPICO AUTÓNOMO CON GENERADOR DE CORRIENTE
ALTERNA
Éste es un caso típico muy extendido de lugares aislados de la red eléctrica convencional,
que hasta ahora están trabajando de este modo, sin beneficiarse de las bondades que
proporciona el MultiPlus y por, supuesto, sin beneficiarse de las ventajas de un sistema
solar, energía solar y respeto al medio ambiente
Siempre que un sistema solar autónomo o sistema tradicional aislado disponga de un
generador AC, el uso del MultiPlus nos proporciona una serie de ventajas muy atractivas
para nuestro bolsillo, aparte de lo impagable que es disfrutar del silencio y del medio
ambiente.
Lo que nos ofrece este equipo en cuanto al generador es:
•
Disponibilidad de potencia alterna silenciosa
•
Ahorro de combustible
•
Ahorro de costes y tiempo asociados a un reducido mantenimiento
•
Mayor vida del generador
•
Disponibilidad de potencia en alterna durante 24 horas al día, ininterrumpidamente
La figura 1 muestra el funcionamiento típico de uno de estos sistemas. En el ejemplo
podemos observar que existe un pico de 3kW durante dos horas, un nuevo pico de igual
dimensión al mediodía y un pico de 6kW por la tarde. Entre cada uno de estos picos la
necesidad de potencia alterna es relativamente baja, sobre unos 500W de media. Tras el
último pico, esta media se eleva a 1kW durante algunas horas.
Con un generador AC de 7.5kW como única fuente de corriente alterna, el generador
necesita trabajar durante 17 horas al día de las cuales el 70% el generador trabaja con una
carga menor al 15% y, por lo tanto, de su capacidad total para suministrar energía.
3
Fig. 1: Sistema con generador 7,5Kw
8000
7000
6000
Potencia (w)
5000
Pot. de generador
4000
Necesidades de pot.
3000
2000
1000
0
0 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 171 8 19 20 21 22 23 24
Tiempo (h)
2 AÑADIENDO UN MULTIPLUS AL SISTEMA
Al sistema anteriormente mencionado, le instalamos un MultiPlus. En este caso, un 24/3000/70
y un banco de baterías adecuado al sistema. El inversor es capaz de suministrar la energía
suficiente durante la mayor parte del tiempo. Cuando tenemos una demanda más alta (pico),
el generador comienza a trabajar automáticamente gracias a la orden del MultiPlus a través
de su relé libre de potencia (configurable a través del fantástico software VEConfigure II)
para suministrar esta demanda alta y puntual. Al mismo tiempo, el Control de Potencia del
equipo detecta que todavía dispone de potencia alterna del generador para cargar las
baterías.
La Figura 2 muestra el mismo sistema que en la figura 1 pero con un MultiPlus instalado.
Como se puede observar, las horas de trabajo del generador se han reducido únicamente
a 5 horas/día. Así se puede disfrutar de 12 horas de silencio impagables. Además, cuando
el generador ha trabajado, hemos aprovechado el 70% de su capacidad en lugar del triste
15% del caso anterior.
4
Fig. 2: Sistema con generador ac de 7,5Kw y MultiPlus
(sin control de potencia se necesitaría un generador de 10Kw)
8000
Generador
Inversor/Cargador
6000
Necesidades de pot.
Potencia (w)
4000
2000
0
01
23
45
67
89
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-2000
La corriente de carga se
reduce porque las baterías
están casi cargadas
La corriente de carga se
reduce automáticamente
para prevenir una
sobrecarga del generador,
ver sección 3
-4000
Tiempo (h)
Nota:
La línea azul muestra el flujo de potencia que circula por el equipo. Cuando la línea
azul está por encima del 0, se encuentra trabajando el inversor, extrayendo energía de las
baterías para suministrar a las cargas. En el caso contrario, se encuentra trabajando el
cargador, extrayendo energía del generador para cargar las baterías.
Por lo tanto, ¿en qué ahorramos?
2.1 En batería
Hemos incidido hasta ahora en el ahorro que supone instalar un MultiPlus, en cuanto al
generador se refiere. Pero también ahorramos en baterías. Como ya se ha podido deducir,
el tamaño de las baterías es más pequeño al esperado. En nuestro ejemplo, una batería
de 24V se ha descargado antes de que el generador arrancase, con 166Ah por la mañana,
y antes de que el generador arrancase por la tarde, otros 285Ah. Por lo tanto, una batería
de 24V/600Ah sería una buena elección. Más recomendable, un sistema a 48V y batería
de 300A/h.
5
2.2 En combustible
Un generador típico de 7.5kW puede consumir sobre 1.5 l/h de gasoil a bajo régimen y unos
2.3l/h a un 75%. Por lo tanto, el generador del ejemplo primero necesitaba 25.5 litros de
gasoil cada día, mientras que con el MultiPlus instalado sólo necesita 11.5 l/día para proveer
la misma energía. Esto nos supone ahorrar 5.110 litros de gasoil por año. Estando el gasoil
B a 0.70 euros el litro, esto nos supone 3.577 euros de ahorro anual (sin contar el tiempo
y dinero ahorrado en la operación de llenar el depósito).
2.3 Mantenimiento periódico
Los diferentes fabricantes de generadores recomiendan cambiar el aceite cada 150h de
trabajo del generador. Para el ejemplo primero, en un año el generador trabaja 6.205 horas,
mientras que con el MultiPlus instalado sólo trabaja 1.825 horas anuales. Esto supone un
ahorro de 29 cambios de aceite anuales. Suponiendo una media de 5 euros por litro de
aceite, nos ahorramos 725 euros anuales (insisto en no contar el tiempo invertido en ello,
ni en filtros, etc).
2.4 En vida del generador
Los generadores de r.p.m fijas del motor duran más trabajando con carga que en vacío.
Algunos fabricantes incluso recomiendan trabajar a un mínimo del 30% de la carga para
prevenir fallos prematuros.
Añadiendo un MultiPlus, la carga de trabajo del generador pasa del 15% al 70%. Podemos
esperar, por lo tanto, una vida más larga para este generador.
Resumiremos en una tabla:
Generador encendido
Sólo Generador
Generador con Multi
Ahorro
17 h
5h
12 h silencio
25.5 l/día
9307 l/año
41
205 l/año
15% de carga
11.5 l/día
4197 l/año
12
60l/año
70% carga
14 l/día
5110 l/año
29
145l/año
Horas/día
Gasoil litros/día
Gasoil litros/año
Cambios de aceite
Aceite litros/año
Carga de generador
para 70% del tiempo
Ahorro anual en gasoil y aceite
4.302 euros año
(sin incluir 3 veces más de duración del generador)
Ahorro en 5 años
6
21.510 euros
2.5 Conclusión
Independientemente del beneficio obvio de disfrutar del silencio, el ahorro en gasoil y el
recorte en mantenimiento son importantes cuando se decide instalar un MultiPlus
inversor/cargador en su sistema tradicional de generador.
Los resultados, obviamente, pueden variar en función del generador usado, las necesidades
de consumo y diversas variables más; pero a largo plazo los beneficios son reales en
cualquiera de los casos típicos.
Sin ceñirnos única y exclusivamente en un número de euros cualquiera, disponer de la
energía suficiente SIEMPRE, nos proporciona un confort y una seguridad para nuestras
tareas difícilmente calculables.
Por supuesto, la reducción sustancial del consumo de gasoil y aceite tiene una repercusión
ambiental incalculable en valor. De todas formas, Hispania Solar, S.L. y más concretamente
su división Solar, recomienda utilizar un sistema de generadores solares, usando un
generador de gasoil sólo en un caso de emergencia.
3 ¿POR QUÉ INSTALAR UN INVERSOR/CARGADOR MULTIPLUS?
Los que ya nos conocéis y disfrutáis de las excelentes prestaciones de estos equipos,
sabéis perfectamente de lo que son capaces estas “cajas azules” aunque todavía habrá
algo que os sorprenda. Para aquellos que todavía no conozcan esta opción todo esto será
sorprendente.
En el ejemplo anterior, hemos visto que existen una gran cantidad de beneficios y de ahorro
de costes decidiendo instalar un inversor/cargador en vuestro sistema tradicional. Existen
en el mercado muchos inversores/cargadores más baratos que los MultiPlus. En las próximas
líneas intentaremoa mostraros porqué este inversor/cargador debe de ser un MultiPlus y
no otro.
Aparte de los beneficios obvios de disponer de una salida senoidal pura y clara, tenemos
un ultra rápido conmutador de alterna, una construcción robusta y de alta calidad, marinizado,
tropicalizado y, por supuesto, la seguridad y el respaldo que proporciona una compañía
como Hispania Solar, S.L.
De todas formas, hay cinco características esenciales que quisiéramos destacar.
7
3.1 Control de potencia. Entrada AC
Una característica única del MultiPlus es la capacidad de definir un nivel de potencia
determinado, que el equipo trata de mantener en sus terminales de entrada AC. El MultiPlus
dispone de 2 niveles de gestión de potencia en AC. El primer nivel es el Control de Potencia
(PowerControl).
Control de Potencia
El control de potencia permite al MultiPlus decidir automáticamente si incrementar o
decrementar el nivel de carga del cargador dependiendo de la demanda de potencia en la
salida del inversor. Para entenderlo mejor podemos echar un vistazo a la figura 2 (mostrada
anteriormente).
La línea azul muestra el flujo de potencia que circula a través del MultiPlus. Cuando la línea
azul se encuentra por encima del cero, el inversor del MultiPlus está extrayendo potencia
desde las baterías para alimentar las cargas en AC. Cuando la línea azul se encuentra por
debajo del cero, es el cargador quien extrae potencia del generador para recargar las baterías
mientras se alimentan las cargas de AC a través del mismo generador mediante un “bypass” interno. Esta energía que necesitamos para recargar las baterías es una carga adicional
para el generador. Como se puede deducir fácilmente desde la anterior figura 1, esta carga
adicional puede acabar sobrecargando el generador entre las 18 y 19 horas debido a que
otras cargas se incrementan hasta 6kW precisamente a esta hora. Si añadimos otros 2.2kW
de la recarga de baterías, la carga total sube a 8.2kW cuando el generador sólo es de 7.5kW.
Para prevenirlo, el control de potencia del MultiPlus automáticamente reduce el nivel de
recarga de las baterías con el objetivo de no sobrecargar el generador.
Si todavía está leyendo, es usted sin duda un entusiasta o un profesional muy involucrado
en sistemas energéticos. En este caso, deje que le expliquemos uno de nuestros mejores
secretos.
Asistente de Potencia (Power Assist): el secreto del MultiPlus
La figura 3 mostrada a continuación, muestra una vez más nuestro ejemplo. Con el Power
Assist, el pico de demanda de 6kW de la tarde se sigue produciendo, pero esta vez el
generador sólo tiene 5kW. Elegir un generador más pequeño por supuesto ahorra en consumo,
ruido, espacio e inversión de dinero en el mismo.
El generador de 5kW no podrá hacerse cargo de tan alta demanda, incluso aunque el
MultiPlus reduzca la capacidad de recarga de las baterías a 0.
8
Ahora el Asistente de Potencia, el segundo nivel de control de potencia AC, es imprescindible.
Gracias al Asistente de Potencia, el MultiPlus es capaz de suministrar temporalmente la
potencia que le falta al generador, sincronizando con él mismo y desde las baterías. Así
pues, en el caso de sobrecarga entre las 18 y 19 horas, aunque el generador esté en
marcha, el MultiPlus está invirtiendo (línea azul por encima de cero) en lugar de cargando.
Hasta 3kW adicionales es capaz de suministrar el MultiPlus 24/3000/70, sincronizando con
el generador.
Fig. 3: Sistema con generador de 5Kw y MultiPlus
8000
Potencia de gen.
Pot. del MultiPlus
6000
Necesidades de pot.
Potencia (w)
4000
El MultiPlus añade
potencia al generador
trabajando en paralelo
con él
2000
0
01
23
45
67
89
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-2000
-4000
Tiempo (h)
Cuando la línea azul está por debajo de 0, se está cargando las baterías, cuando la línea
azul se encuentra por encima de cero, se está invirtiendo.
Regulación dinámica de potencia AC
En las secciones anteriores hemos visto que nuestro objetivo de ahorro añadiendo un
MultiPlus a nuestro sistema de generador se cumple y que el equipo controla automáticamente
y decide en cada momento la opción energética más eficiente, sin sobrecargar al sistema.
9
3.2 Factor de Potencia
Dicho llanamente, el factor de potencia de una carga en AC es el indicador de cuánta
potencia debe de ser suministrada en relación con la potencia real que la carga consume.
La potencia real se expresa en Vatios (W) y la potencia aparente que debemos suministrar
se expresa en Voltio-Amperios (VA). La siguiente fórmula las relaciona:
Pw= Pva x fp
donde fp es el factor de potencia o coseno de phi
El factor de potencia de muchos cargadores de baterías puede estar sobre el 0.7. Esto
significa que un cargador que consume 2kW, necesita 2.8kVA del generador para conseguir
su objetivo. Si el voltaje del generador es 230V, el generador debe ser capaz de suministrar
12.2A a este supuesto cargador. El generador sólo necesitaría suministrar 8.6A para el
mismo trabajo si el cargador tuviese un factor de potencia de 1, como es el caso del
MultiPlus.
Una causa de esta disparidad en el factor de potencia es que la corriente de carga no está
en fase con la tensión. La causa más importante de este desfase es que la corriente de
carga no es senoidal. Una corriente de carga no senoidal causará una distorsión armónica
en el bus de AC. Y dicha distorsión armónica puede provocar problemas en los bobinados
del generador, como cortos entre espiras y demás.
Para hacer frente a estos efectos adversos del mencionado desfase y de una corriente no
senoidal de muchos cargadores del mercado, los fabricantes de generadores recomiendan
sobredimensionar el generador hasta un factor de 2 (tenga en cuenta que sólo el generador
debe ser sobredimensionado y no el motor diesel, por lo tanto sólo la parte eléctrica del
mismo).
El MultiPlus proporciona un factor de potencia unitario (pf=1 o cosj=1). Un sistema con
Multis no necesita sobredimensionarse. Además, no introducen distorsión armónica alguna
en el sistema AC.
Las consideraciones expuestas anteriormente son muy importantes a tener en cuenta cuando
se decide incorporar un inversor-cargador a nuestro sistema.
10
3.3 Sistema modular
La tercera razón para escoger un MultiPlus es porque dispone de la posibilidad de ampliar
el sistema, colocando más MultiPlus en paralelo. Es tan sencillo como conectar un cable
entre ellos y no hay que hacer complejas configuraciones, ni usar hub, ni nada. Un solo
MultiPlus de 3kW tiene un impacto pequeño en un sistema de 40kW con generador diesel.
Pero al ser el MultiPlus un sistema modular, podemos ampliar hasta 15kVA en monofásico
y 54kVA en trifásico, simplemente añadiendo más equipos al sistema.
Así pues, usted no se ve forzado a desinstalar su inversor y comprar uno más grande, si
decide hacerse una piscina en su casa o instalarse un aire acondicionado o disponer
simplemente de más confort en su casa aislada que suponga más consumo de energía. De
igual manera, puede ampliar la producción de su granja, etc.
Fig. 4: Sistema con 5 MultiPlus en paralelo, generador y fuente alternativa
Panel de control
16/32A
Límite de corriente para
generador (0-80A)
RS485
máx. 16A
o 32A
Opcional: para equipamiento
pesado sólo utilizar si hay
suministro de toma de puerto
o generador disponible
PowerMan 230/80/2
45A
A caja de distribución
Red eléctrica máx. 80A
máx. 145A
máx. 65A
RS485
máx. máx. 350A
625A
Generador 12Kw
Arranque
automático del
generador
Monitor de
batería
Shunt
Red eléctrica
Cargador de batería 100A
Nota: Al otro lado del espectro de potencia, un MultiPlus se puede usar para elevar la salida
de pequeños generadores como los Honda serie I, por ejemplo.
11
3.4 Módulo externo de gestión de potencia AC
En el ejemplo de las figuras 2 y 3, tenemos generadores de 7.5kW y 5kW. En el caso de
sistemas más potentes, como el de la figura 4, con varios MultiPlus en paralelo, puede
resultar poco práctico usar el sistema de gestión de potencia AC interno de los equipos
(aunque hemos de remarcar que el sistema será capaz de “manejar” 16x5=80A en alterna
del generador). Por lo tanto, para sistemas más potentes, se pueden usar sistemas de
gestión de potencia como los que disponemos.
3.5 Conectividad
Además de los sistemas más conocidos como los paneles de control para MultiPlus y del
software de configuración VE Configure II, disponemos de nuevos sistemas, el VE.Bus y
VE.Net. Estos nos permitirán conectar más equipos en paralelo, podremos monitorizar
nuestro sistema remotamente (mediante móvil, Internet, etc) y otras muchas ventajas más
que comentaremos en su momento.
4 CONCLUSIÓN
En la sección segunda, hemos mostrado que añadir un inversor-cargador a un sistema de
generador AC tiene ventajas como disfrutar de energía silenciosa, limpia, ahorro en
combustible, en mantenimiento, alargar la vida del generador, etc.
En la tercera, hemos mostrado que para ser capaz de conseguir estos potenciales beneficios,
el inversor-cargador debe cumplir una serie de características técnicas y tecnológicas
concretas, que las encontrará en Hispania Solar y en su MultiPlus.
12
CARGA DE BATERÍAS: LA TEORÍA
1 INTRODUCCIÓN
Escribir sobre este tema sería muy sencillo si existiese una receta mágica, independiente
de las múltiples variables en juego, condiciones de uso y válida para todo tipo de baterías.
Pero esto no es así.
La batería es, sin duda, el corazón de una instalación aislada o autónoma y, lamentablemente,
la adecuada carga de baterías es, en la mayoría de los casos, no suficientemente valorada.
Entrando en materia, antes de que dejen de leer, nos encontramos factores adicionales al
simple hecho de conectar un cargador a la batería y una serie de cargas colgadas de ella,
cuyo consumo no conocemos. Una carga limitada en voltaje es la mejor manera de eliminar
la influencia de las cargas sobre la batería. Y trabajar con 2 voltajes límite como el de
absorción y flotación es un buen método generalmente aceptado para cargar baterías que
han sufrido una descarga profunda, de la manera más rápida posible.
Una vez más, Hispania Solar, S.L. no evoluciona, sino revoluciona el sistema estándar de
3 etapas (bulk, absorción y flotación). Se trata del método autoadaptable.
2 MÉTODO CLÁSICO DE 3 ETAPAS (I U ºU)
2.1 Fase Bulk
Cuando comenzamos a cargar una batería, el voltaje incrementa inmediatamente hasta
aproximadamente 12,6V (permítannos que lo estandaricemos todo a 12V) y, después, poco
a poco hasta alcanzar el primer límite de voltaje. Este límite finaliza la etapa bulk de carga
durante la cual la batería acepta el máximo de corriente de carga disponible. Más sencillo,
se trata de inyectarle a la batería una corriente constante, tan alta como nos permita el
cargador (entendiendo que el cargador ha sido correctamente dimensionado, como hacemos
en Hispania Solar, S.L.) durante un periodo de tiempo. Para un banco de baterías grande,
es conveniente acotar este límite a un 20% de la intensidad nominal de la batería o C/5.
O incluso mejor, un 10% o C/10 de los A/h marcados en la batería o baterías.
13
Por ejemplo, entre 100 y 200A para un banco de baterías de 1000A/h. Un banco de baterías
más pequeño frecuentemente se carga a un C/3 incluso cuando esto reduce la vida de la
batería. Una batería descargada profundamente aceptará una corriente de carga de esta
magnitud hasta el 80% de su carga.
Pues bien, hemos llegado al primer límite de voltaje o finalizado la primera etapa de carga.
Tenemos cargada la batería, aproximadamente a un 80%. De aquí en adelante, la absorción
de más corriente de carga se reduce rápidamente. Así pues, más allá del primer límite de
voltaje es lo que llamamos fase de absorción, limitada por el segundo voltaje de unos 14,4V14,8V dependiendo del tipo de batería.
Fíjennse que un valor elevado en la corriente de carga para la fase bulk aumenta la
temperatura de la batería (todo paso de electrones implica calor), aumenta la gasificación
interna de la batería y nos lleva a un tiempo de absorción necesario para cargar completamente
la batería muy elevado. Más sencillo, una corriente muy elevada de carga sólo acortará el
tiempo de la primera fase (bulk) pero no el total para disponer del 100% de la batería.
En cualquier caso, la corriente de carga debe ser limitada a C/5 o inferior una vez que el
voltaje de gasificación se ha alcanzado (a 20ºC este voltaje es de aproximadamente 14,4V).
Si no, la masa activa de la batería será expulsada del cátodo y el ánodo debido a un gaseo
excesivo.
2.2 Fase Absorción
Cuando alcanzamos el valor preseleccionado de voltaje de absorción (les recordamos que
los cargadores de Hispania Solar, S.L. les permiten definir EXACTAMENTE el valor que
deseen), la carga de la batería se limita a la cantidad de corriente que la misma es capaz
de absorber a un voltaje determinado. Esto implica que es muy importante que se puedan
definir los voltajes de carga con exactitud y en consonancia con lo que el fabricante nos
indica.
Durante la fase de absorción, la corriente de carga disminuye paulatinamente hasta que la
batería alcanza el 100% de su carga. Cargar y descargar una batería implica una difusión
interna. Este proceso de difusión, de hecho, nos proporciona mucha información sobre un
ciclo de carga-descarga.
14
Verán:
- Cuando una batería se somete a una descarga profunda se produce una pequeña
difusión interna del electrolito. Esta reacción química se limita únicamente a las placas del
ánodo y cátodo. Un corto periodo de tiempo de absorción o incluso ninguno será necesario
para recargarla. Para recuperar una batería desde una descarga profunda prolongada,
necesitamos un periodo muy largo de absorción para recuperar el electrolito o masa activa
desde lo más profundo de las placas del ánodo y cátodo.
- Las baterías de arranque de placa delgada necesitan menos tiempo de absorción que
una batería de placa gruesa o tubular. La etapa de absorción es una compensación entre
el voltaje y el tiempo (esto se debe a que incrementar un voltaje resulta en un campo
eléctrico fuerte que incrementa la velocidad de difusión). Sin embargo, aplicar un voltaje
alto a la batería incrementará el calor interno de la misma y, a su vez, la gasificación a un
nivel donde el material activo se expulsará de las placas y provocará un escape (venting)
que descargará la batería y acabará con ella. Especialmente en el caso de las baterías
selladas con válvula de escape.
Pero, ¿qué queremos decir con esto? ¿En qué afecta esto al voltaje y tiempo de absorción?
Podemos distinguir, básicamente, entre tres clases distintas de baterías:
1) Plomo-ácido líquidas. De esta familia existen infinidad de baterías en el mercado. Desde
las baterías de arranque clásicas, hasta las evolucionadas OpzS o similares. Permítannos que las
meta a todas en el mismo saco porque su principio científico es muy similar, aunque las OpzS y
similares están muy evolucionadas y enfocadas a aplicaciones solares, fundamentalmente por su
construcción. Bien, esta gama tan amplia nos lleva a voltajes de absorción desde 14V hasta 15,6V.
En este caso, para evitar gaseo excesivo, debemos limitar la corriente de carga entre un 10-20%
(C/10-C/5) de la capacidad nominal de la batería en A/h. Esto se consigue incrementando el voltaje
sobre unos 0,1V por celda y por hora (0,6 para 12V de batería) o limitando la corriente de carga
como hemos dicho antes.
Es importante saber que las baterías no necesitan ser totalmente cargadas tras cada descarga
(esto sólo es aconsejable para baterías de níquel-cadmio, litio y demás). Es generalmente aceptado
cargar hasta el 80-90%. De hecho, el uso en estado parcial de carga es lo que hacemos habitualmente
en una instalación solar aislada, excepto si no estamos usándola. Eso sí, recomendamos cargarla
al 100% por lo menos una vez al mes.
15
2) Baterías con malla de vidrio y celda espiral (AGM). Sólo las indicamos porque no
las usamos en aplicaciones solares y porque son selladas y admiten un amplio rango de
voltajes de absorción.
3) Baterías de gel selladas con válvula de escape (VRLA). Este tipo de batería tiene
un rango de voltajes de absorción limitado que NUNCA se debe sobrepasar. Si se sobrepasa,
se secan y se destruyen. Este tipo de batería sólo tiene este inconveniente (bueno, también
el precio). Por lo demás, son mucho más robustas que las de plomo ácido líquidas, necesitan
menos energía para ser recargadas, permiten más profundidad de descarga, son más
transportables, etc.
2.3 Fase Flotación
Ahora ya hemos cargado la batería al 100%. Así pues, tenemos que mantenerla cargada
al 100%. Esto se hace con un voltaje constante y bajo que compense la autodescarga propia
de cada batería. Si necesitamos mantener la batería en largos periodos de tiempo (meses),
el voltaje de flotación no debe desviarse en más de un 1% del recomendado por el fabricante
de la batería. Exceder este margen provoca corrosión de la placa positiva. Y por cada 50mV
de incremento por celda (0,3V para 12V) doblamos la corrosión de la placa positiva y, en
consecuencia, acortamos la vida útil de la batería. Claro que un voltaje insuficiente no
mantiene la batería totalmente cargada y podemos provocar sulfatación de las placas.
Vuelve a ser fundamental definir exactamente el voltaje de flotación tal y como hacen los
cargadores de Hispania Solar, S.L.
Bajo el punto de vista del voltaje de flotación, podemos distinguir diferencias entre las
baterías de líquido y las de gel:
1) Las recomendaciones en cuanto a carga de flotación en baterías líquidas, varía desde
12,9V hasta 14V. Cabe remarcar que este tipo de batería no está diseñada para largos
periodos de flotación o de no uso (meses). Esto es importante para aplicaciones solares
en aquella casa de la montaña donde sólo vamos en invierno, o aquella otra a la que vamos
sólo en verano. Por lo tanto los voltajes expresados anteriormente son válidos para unos
días, pero no para 6 meses de verano o 6 meses de invierno.
Según nuestra opinión, en el intento de encontrar un complejo equilibrio entre compensar
la autodescarga o exceso de voltaje que provoque gaseo, es mejor desconectar las baterías
y recargarlas, dependiendo de la temperatura, al menos una vez cada 4 meses, o reducir
el voltaje de flotación al mínimo y recargar regularmente la batería a un voltaje superior.
Este “refresco” regular de la carga DEBE ser una característica del cargador en estos casos.
16
2) Todas las baterías de gel pueden ser mantenidas en flotación durante largos periodos
de tiempo, incluso algunos estudios recientes insinúan un trato similar al propuesto por
nosotros para baterías de plomo-ácido líquidas para incrementar su vida útil de servicio.
3 ETAPA ECUALIZACIÓN
Si las baterías no están cargadas suficientemente se deterioran debido fundamentalmente
a: sulfatación, estratificación (para baterías de plomo ácido líquido) y desequilibrio de voltaje
entre celdas.
En general, las baterías alcanzan el 100% de su carga, incluyendo ecualización, durante
la etapa de absorción (de ahí que algunos fabricantes de cargadores o inversores/cargadores
hablen de supuestas etapas de ecualización, etc) o cuando se cargan en flotación durante
un largo periodo de tiempo.
Una carga en ecualización se realiza cuando, primero, hemos cargado la batería de forma
habitual y después se continúa cargando con una corriente muy pequeña del orden del 35% de la capacidad nominal de la batería en Ah, hasta que la gravedad específica del
electrolito termina de crecer. Esto nos lleva entre 3 y 6 horas. Tras dicha ecualización, todas
las celdas presentan el mismo voltaje. Recuerden aislar todas las cargas sensibles a
sobretensiones durante este periodo. Las baterías de arranque necesitan, especialmente,
realizar esta etapa de carga periódicamente.
¿Cada cuánto debe ser ecualizada una batería? Depende del tipo y del uso. Para baterías
con un dopaje de antimonio alto, la mejor manera es medir la gravedad específica del
electrolito tras una carga habitual. Si todas las celdas presentan 1,28V no es necesario
ecualizar. Por debajo de 1,24V es muy recomendable.
De todas formas, en baterías de gel y plomo-ácido líquidas, la gravedad específica no se
puede medir. La única manera fiable de saber si están cargadas al 100% es monitorizando
la corriente de entrada/salida de la misma durante la fase de absorción. La corriente de
carga debe de haber decrecido paulatinamente y después estabilizarse. Esto es un síntoma
inequívoco que la transformación química interna de la masa activa se ha completado con
éxito y que el único proceso químico interno que se está llevando a cabo es la electrólisis
del agua en oxígeno e hidrógeno.
Por este motivo, Hispania Solar, S.L. recomienda enérgicamente el uso de nuestro monitor
de baterías.
17
4 COMPENSACIÓN DE TEMPERATURA
Seguro que nos habrán oído decir más de una vez que la compensación por temperatura
es importante aunque no imprescindible. La absorción óptima y el voltaje de flotación son
inversamente proporcionales a la temperatura. Esto significa que en caso de una carga fija
en voltaje, una batería fría no será cargada suficientemente y una batería caliente será
sobrecargada y ambas cosas son dañinas. Recordemos que una variación del 1% en el
voltaje de flotación resultará en una reducción considerable de vida de la batería de hasta
un 30%, particularmente si el voltaje es demasiado bajo y la batería no ha conseguido el
100% de la carga. Así es como comienza la sulfatación de las placas.
Por otra parte, tener una sobrecarga nos puede llevar a sobrecalentamiento y éste provoca
fugas de calor, que en este caso se traduce en pérdida de amperios. Para que estos efectos
decrezcan con el aumento de temperatura, las corrientes de flotación y absorción necesitan
incrementarse cuando la batería se calienta y, a más paso de corriente, más temperatura.
Por lo tanto entramos en un bucle de calentamiento imparable que termina en un riesgo de
explosión de la batería debido a cortocircuitos internos y a alta presencia de oxígeno e
hidrógeno escapándose de la batería.
La corriente de carga recomendada por los fabricantes europeos se aplica a 20ºC y de
forma constante, mientras la temperatura de la batería se encuentra entre los razonables
15-25ºC. Aunque las recomendaciones de los diferentes fabricantes difieran sensiblemente,
una compensación de -4mV/ºC por celda es una cantidad generalmente aceptada como
media. Esto significa 24mV/ºC para una batería de 12V. Donde el fabricante especifica un
voltaje de absorción de p.e. 28,2 V a 20ºC, a 30ºC se debe reducir a 27,7V. Cuando a la
temperatura ambiental se le añade la interna de la batería, es muy normal que durante la
carga el voltaje de absorción se deba reducir a 27,2V. Sin una compensación en temperatura,
el voltaje de carga habría sido de 28,2V en todos los casos y destruiría, con rapidez perpleja,
un banco de baterías que nos ha costado unos cuantos miles de euros.
Resumiendo, esto significa que la compensación por temperatura es importante y debe ser
implementada, especialmente en grupos de baterías de gran capacidad, como los instalados
en casas aisladas, granjas, turismo rural, etc. Más aún cuando se usan altas corrientes de
carga.
Todos los cargadores de Hispania Solar, S.L. disponen de la capacidad de compensación
por temperatura. En las gamas altas vienen incorporados en los mismos cargadores, así
como en los MultiPlus.
18
5 CONCLUSIÓN: ¿CÓMO SE DEBE CARGAR UNA BATERÍA?
Como hemos comentado, no existe una fórmula mágica aplicable a todas las baterías y
condiciones de aplicación. De todas formas, tampoco hay una gran variedad de tipos de
batería en una instalación solar. Aunque sí que es cierto que cada aplicación y, por lo tanto,
cada instalación es diferente. Por este motivo, en Hispania Solar, S.L. podemos aconsejar
lo idóneo en cada caso.
Bueno, volvamos a lo que íbamos. Para haceros una mejor idea, déjennos, por favor, que
les plantee un ejemplo. Supongamos que tenemos dos baterías, una de arranque (típicamente
para el generador diesel de emergencia) y otra u otras de servicio. ¿Cómo se usan y cómo
deben ser cargadas?
5.1 Baterías de servicio en vivienda aislada
Básicamente tenemos tres maneras de usarlas:
1) Uso cíclico, en estado parcial de carga, cuando habitamos constantemente en esta
casa. Para este caso, es importante cargar tan rápido como nos permita la batería. La
compensación por temperatura es imprescindible para prevenir fallos prematuros debidos
al sobrecalentamiento de la batería (insistimos en que todo paso de corriente, por lo tanto
de electrones, se traduce en calor) y a la gasificación excesiva y por lo tanto pérdida de
electrolito.
2) Una mezcla entre uso en flotación y descargas grandes que se traduce en descargar
rápidamente cuando existe un consumo. En este caso, el riesgo es que el cargador se ve
forzado a entrar en la fase bulk directamente, debido al consumo grande repentino, y
después entra en absorción. El resultado de esto es que la batería está sometida
continuamente a una carga en absorción que la puede sobrecargar. Así pues, idealmente,
la duración de la fase de absorción ha de ser la misma que la profundidad de descarga que
la ha provocado. Aquí entra en juego el método de carga adaptable que Hispania Solar,
S.L. les recomienda. Para baterías OPzS (o cualquier otra de plomo-ácido líquido) si han
llegado a flotación y no existe ninguna demanda de consumo, el cargador baja la tensión
de la batería y la mantiene en perfectas condiciones (preparada para cualquier descarga
profunda repentina que se pueda producir) con un pico regular con determinada frecuencia.
3) Para aplicaciones de fin de semana, de veraneo o incluso de invierno, donde las
baterías permanecen en constante flotación o incluso desconectadas. Como ya hemos
19
comentado, las baterías de plomo-ácido líquido se deterioran rápidamente si la tensión de flotación
es de 13,8V durante mucho tiempo. Idealmente, se ha de bajar esta tensión hasta 12,9V-13,2V
o desconectarlas y recargarlas regularmente. Según nuestra experiencia y después de
“discutir” con diversos propietarios de casas aisladas con este tipo de uso, preferimos dejar
la batería desconectada o por debajo de la tensión de flotación que muchos cargadores
fijan en 13,8V indiscriminadamente, porque aunque en teoría las baterías pueden permanecer
en flotación durante largos periodos de tiempo, la realidad es que acaban dañándose por
sobrecarga.
5.2 Baterías de arranque
La batería de arranque está sujeta a dos condiciones de uso: demanda repentina de energía
en gran cantidad para arrancar un generador una o dos veces al día y sin apenas demanda
de energía. Lo mejor sería este uso, pero muy frecuentemente este tipo de batería se usa
como batería de vivienda, lo cual sería aceptable siempre y cuando se elija el tipo adecuado
y se asuma que su vida será muy corta.
Así pues, en todos los casos vemos que necesitamos un muy buen cargador de baterías
para que el corazón de nuestra instalación se mantenga sano. ¿Qué quiere decir un buen
cargador? Quiere decir un cargador que pueda configurarse totalmente. Que pueda definir
la tensión de absorción y de flotación, el tiempo de absorción y flotación, cada cuánto se
quiere ecualizar las baterías. Un cargador que sepa en cada momento la carga que tiene
que aplicarle a la batería. Una carga adaptable. Porque estamos de acuerdo en que cada
instalación tiene una firma muy determinada y es diferente.
En definitiva, necesitamos un cargador como el que les ofrece Hispania Solar, S.L.
20
CARGADORES DE BATERÍAS:
De Corriente Alterna a Corriente Continua
1 INTRODUCCIÓN
En el anterior capítulo hemos discutido cómo deben ser cargadas las baterías y cómo éstas fallan
si no se hace correctamente. Lo ideal es instalar un buen cargador que asegure una perfecta curva
de carga, que se adapte a las diferentes variables que entran en juego, configurable y automático.
Efectivamente, como los que Hispania Solar, S.L. ofrece.
Permítannos no entrar en cómo cargar baterías a través de un alternador ya que es algo más
típico en aplicaciones móviles (caravanas, etc) que en Solar Fotovoltaica. Por eso vamos directamente
a hablar de cargadores profesionales.
Con un cargador profesional todo es más sencillo. Todos nuestros cargadores disponen de sondas
de temperatura y de tensión de una forma u otra. Esto nos permite controlar dos parámetros
fundamentales. También realizan algoritmos de carga de tres etapas, en algunos casos, y de
cuatro en la mayoría de ellos.
En las conclusiones explicaremos con más precisión qué es un cargador profesional y cómo
trabaja.
2 OPTIMIZAR EL PROCESO DE CARGA
Esperamos haber conseguido dejar claro en anteriores capítulos la importancia y complejidad que
requiere cargar bien una batería, especialmente cuando las condiciones de uso varían
constantemente, como es el caso de la Energía Solar Fotovoltaica.
Hispania Solar, S.L. ha aplicado su conocimiento y experiencia práctica (know how) para el
desarrollo de los cargadores que os ofrecemos. La innovación en el cargador es, sin duda, el
sistema de gestión de carga “adaptable” de baterías controlado por microprocesador.
21
Esto proporciona, en nuestro caso, ventajas tales como:
-
-
-
El usuario puede elegir entre 5 “recetas” de carga diferentes en función del tipo de batería
a cargar. Y totalmente configurables, para adaptarse a cualquier tipo de batería y circunstancia.
Cuando recargamos una batería, el cargador (nos referimos a los modelos configurables por
software y controlados por microcontrolador) ajusta automáticamente el tiempo de absorción
a la profundidad de descarga que le ha precedido. Cuando sólo ha habido una baja descarga,
el tiempo de absorción se mantiene corto para prevenir sobrecargas de batería. Tras una
descarga profunda, el tiempo de absorción automáticamente aumenta para asegurarse que
la batería queda cargada totalmente.
Si el voltaje de absorción configurado excede los 14,4V, se activa el modo BatterySafe, es
decir, el coeficiente de aumento una vez superados los 14,4V se limita para prevenir gaseos
excesivos no deseados. La característica BatterySafe permite valores elevados de carga sin
riesgo de dañar su batería por excesivo gaseo de la misma.
Las recetas de carga para baterías de plomo-ácido líquidas permiten dos niveles de tensión
de flotación. Si se produce una leve descarga de batería, se mantiene un nivel de tensión de
flotación de 2,3V por celda (13,8V), con una carga corta y regular en su fase de absorción.
En caso que no haya descarga alguna (casa de fin de semana, casa de verano, etc) el
cargador pasa automáticamente al modo Storage. Éste deja el nivel de voltaje de flotación
en 2,17V por celda (13V), también con una carga corta y regular en absorción. El modo Storage
gestiona perfectamente baterías de plomo-ácido líquidas en épocas de no uso.
3 CARGAR MÁS DE UN BANCO DE BATERÍAS
Para este problema existen básicamente tres soluciones:
-
Instalar un cargador de baterías con múltiples salidas. Es la solución más sencilla y la
más común. Sólo hay que tener cuidado con un pequeño detalle: si por ejemplo es un
cargador 12V/50A con dos salidas, no habrá nunca 50A en cada salida. Puede haber
50-0 ó 20-30 ó 0-50, etc. Hay algunos desaprensivos que venden cargadores de esta
manera. Como decía, cada salida está aislada de la otra mediante diodos.
Sólo tenemos que hacer referencia a las compensaciones por temperatura y por voltaje en
este caso de cargador con múltiples salidas.
Por temperatura: no acostumbra a ser fiable porque cada banco tiene su propia temperatura.
Recordemos que la compensación en temperatura es especialmente importante para baterías
de gel selladas con válvula de escape.
22
Por voltaje: si sensamos un banco, podemos sobrecargar el resto.
- Un cargador para cada banco. Ésta es la mejor solución, pero a un precio, claro.
Una opción es un cargador profesional para nuestro “carísimo” banco de baterías de nuestra
casa y algo más sencillo para las baterías instaladas en otros bancos para otros menesteres
no tan importantes. De todas formas, en Energía Solar Fotovoltaica no suele ocurrir que
existan varios bancos de baterías. En el caso de las mal denominadas instalaciones mixtas
con grupo electrógeno de apoyo (no de emergencia, entonces sí que sería mixta si se
hubiese instalado eólica), existe una batería de arranque del grupo (sí, ya saben, aquella
batería que luego no funciona cuando se necesita porque no la hemos cargado, ¡a todos
nos ha pasado!).
- El clásico puente de diodos. Es lo mismo que tienen dentro los cargadores de múltiples
salidas. Hispania Solar, S.L. dispone de un puente de mosfets. Los transistores tipo mosfet
no tienen prácticamente caída de tensión. Además, se aíslan los diferentes grupos de
baterías y las carga de forma independiente. Además, se fabrican con microcontrolador.
4 CONCLUSIONES
Un cargador ha de tener una serie de características. Debemos poder definir y configurar totalmente
la curva de carga en función del tipo de baterías. Se ha de tener en cuenta las diversas variables
(que son muchas) que entran en juego: sensor de temperatura, si es posible de tensión, profundidad
de descarga antes de recargar la baterías, tensión de flotación adecuada en función de si la batería
está descargada o no. Realizar una ecualización de vez en cuando para mantener la batería en
óptimas condiciones.
Si tenemos en cuenta que la batería es el corazón de la instalación Solar Fotovoltaica Aislada, está
claro que un buen cargador profesional que las “mime” también es muy importante, casi tanto como
las propias baterías.
Por lo tanto, la mejor opción es instalar un cargador profesional como el que les ofrece Hispania
Solar, S.L. o un Multi que utiliza la misma tecnología sofisticada.
23
CONSUMO DE ENERGÍA: DISFRUTEMOS DEL
1 INTRODUCCIÓN
Ahora que ya sabemos cargar baterías, más o menos, llega el momento de hablar de los
consumos, para hablar de la descarga. Para entender mejor el impacto de los consumos
en el global de nuestro sistema Solar Fotovoltaico Aislado, los dividimos en tres categorías:
- Consumos continuos. Por ejemplo: el standby del DVD, el reloj electrónico y, sobre todo,
la nevera y el congelador.
- Consumos de larga duración. Los que necesitan energía desde una hora hasta varias a
lo largo del día. Por ejemplo: el aire acondicionado, para algunos la TV, un ordenador, etc.
- Consumos de corta duración. Los que necesitan energía desde unos segundos al día
hasta una hora. Por ejemplo: bombas de agua, microondas, cocinas eléctricas, lavadora,
lavavajillas, horno, etc.
Según nuestra experiencia, todo el mundo tiende a subestimar los consumos continuos
pequeños y los de larga duración. Sin embargo, se sobrestiman los consumos de corta
duración, sobre todo cuando hablamos de bombas de agua o similares.
2 POTENCIA Y ENERGÍA
Especialmente con sistemas de acumulación o batería, es importante discernir entre potencia
y energía. Potencia es algo instantáneo, es energía en un instante o digamos un segundo
para acotar un poco. Se mide en vatios o kilovatios si hablamos de potencia eléctrica.
Energía es el producto de la potencia por tiempo.
Por lo tanto, una batería almacena energía y no potencia. De ahí que un consumo pequeño,
pero continuo, puede resultar mucha energía consumida y, sobre todo, energía extraída de
nuestra batería. La energía eléctrica se mide en vatios hora o kilovatios hora (Wh ó kWh).
Energía también es el producto de la capacidad de la batería y su voltaje, es decir Ah x V=
Wh.
Así pues, una potencia de 2kW durante una hora produce un consumo de energía eléctrica
de 2kWh y desaparecerá de mi batería de 12V 167 Ah. Sin embargo, 2kW durante un
segundo, suponen sólo 0,046Ah que volarán de nuestra batería. Vamos, nada. Y si ese
mismo consumo se mantiene constante durante 10 horas, consumirá 1667Ah y necesitaremos
24
una batería enorme y, por cierto, muy cara.
Por lo tanto, es muy importante conocer el consumo y, en consecuencia, los consumidores.
Pero, más aún, es predecir con la máxima precisión posible el tiempo y, por lo tanto, la
energía que consumirán cada día.
Echemos un vistazo a cómo se comportan los consumidores más típicos.
3 LA NEVERA Y EL CONGELADOR EN LA PRÁCTICA
Mientras funciona, un compresor de una nevera o congelador consume aproximadamente
50W (depende, claro, del fabricante, nevera, etc). Por lo tanto, hablamos de 4,2A de una
batería de 12V. Estos compresores se acostumbran a disparar por un termostato que
conmuta cuando la temperatura supera un valor preseleccionado por nosotros, desde el
propio interior de la nevera o congelador.
Suponiendo un ciclo de trabajo del 100%, tendríamos 4,2A cada hora durante 24 horas,
101Ah. Realmente, sería una pesadilla. Si consideramos un ciclo de trabajo del 50%
tendríamos 50 y así sucesivamente. Nos interesa, obviamente, el menor consumo posible.
¿Cómo lo conseguimos?
Hablar de gradientes de temperatura entre el condensador y el evaporador, de aislamiento
térmico, etc. no tiene sentido. Mucho menos cuando los electrodomésticos ya vienen
catalogados mediante letras A, B, C… refiriéndose a su eficiencia en consumo.
Eso sí, recomendamos, ya que siempre existirá un inversor disponible en el sistema Solar
Fotovoltaico, que compren electrodomésticos de clase A (bajo consumo) normales y corrientes
de cualquier tienda de electrodomésticos de cualquier lugar. No les recomendamos neveras
de continua o similares puesto que son caras, no consumen tan poco como parece y,
además, para cualquier problema cuesta horrores encontrar servicio técnico. Recuerden
que la potencia es potencia y que 100W son lo mismo si tenemos 12V y 8,33A como si
tenemos 230V y 0,44A.
Un frigorífico con congelador de clase A consume aproximadamente 40,5Wh. En otras
palabras, necesita 40,5A cada día de una batería de 24V.
25
4 LA LAVADORA, EL LAVAVAJILLAS Y LA SECADORA
Un ciclo de lavado a 60ºC, con una lavadora estándar de casa, consume 900Wh. Es decir,
a 12V 75Ah. A 40ºC unos 50Ah. La energía que consume un lavavajillas es similar. ¿Por
qué esta curiosa similitud? La mayoría del gasto energético se emplea en el calentamiento
del agua. Ya sea para lavar ropa o platos, claro. Noten la diferencia que hay entre lavar a
60 ó 40ºC.
Alimentar la toma de agua de la lavadora o lavavajillas con agua caliente podría ayudar.
Y decimos “podría” si el agua caliente viene de un sistema Solar Térmico o porque las
tuberías de agua pasan por el algún sitio donde el sol calienta el agua. Por cualquier otro
procedimiento no ayuda porque hemos de gastar electricidad o gas o gasoil para hacerlo
en otro punto de la vivienda.
Ya que estamos puestos, una secadora también necesita la mayoría de la energía que
consume para calentar el aire. Una secadora común gasta unos 3kW, es decir: ¡250A!
Obviamente, este calentamiento de aire es necesario para evaporizar el agua que ha
quedado en la ropa tras su lavado.
5 ¿ES POSIBLE COCINAR CON UN SISTEMA FOTOVOLTAICO AISLADO
DE BATERÍA + INVERSOR?
Pues sí, lo es. No es creíble hasta que no se realizan los cálculos y se prueba. Hoy en día, lo más
típico es una cocina eléctrica. De todas ellas, nuestra favorita es la de inducción porque calienta
directamente el fondo de la sartén, olla u otro utensilio similar. De esta manera, no se calienta un
material intermedio que al final acaba calentando la olla o lo que sea. Aparte de la seguridad que
proporciona la inducción, el calentamiento es mucho más rápido y más eficiente. Alrededor de un
20%.
La parte teórica de esto es simple. La capacidad de adquirir calor de 1 litro de agua es de 1,16Wh
por ºC. Llevar 1 litro de agua de los 20ºC a hervir nos llevará 93Wh, cosa que en la práctica,
acostumbra a ser algo más dependiendo de las pérdidas de calor, etc.
Por lo tanto, redondeamos a 100Wh por litro. Esto nos sirve para saber lo costoso que resulta
calentar agua y esto liga directamente con la lavadora y el lavavajillas de antes. Consideremos la
operación de calentar agua como costosa energéticamente hablando.
Hemos realizado un caso práctico y hemos medido el consumo de la cocina eléctrica para todo el
proceso. La receta es bien sencilla, pasta con salsa boloñesa y de postre un pudding.
26
La cuestión es que cocinando para cuatro personas, hemos gastado 550Wh para hervir la
pasta, otros 470Wh para hacer la salsa y 330Wh para el postre. En total 1350Wh, o lo que
es lo mismo, 56Ah de una batería de 24V. Si prueban de hacer un menú similar, con tres
platos calientes para 4 personas, el consumo varía entre 1200 y 1400Wh.
Así pues, es perfectamente factible cocinar con una cocina eléctrica en un sistema fotovoltaico
aislado de uso continuo.
6 ¿CÓMO MANEJAR PICOS DE ARRANQUE?
Esto es aplicable a bombas eléctricas, aire acondicionado, ventiladores industriales, etc. Nuestros
inversores soportan con heroicidad aproximadamente el doble de su potencia nominal durante el
tiempo que aguanten las baterías (esto no es una afirmación taxativa puesto que influyen muchos
otros factores como temperatura ambiente, pérdidas en cables, etc).
Obviamente, una solución inadecuada sería sobredimensionar los inversores o los generadores
diesel, fotovoltaicos, etc.
Para no caer en esta trampa, proponemos dos soluciones básicamente:
Instalando un Multi o varios y con la configuración adecuada se puede hacer. Eso sí, en un sistema
fotovoltaico puro no es viable. La realidad es que cuando existen estos elementos en nuestra
instalación, siempre se dispone de un generador diesel. Pues bien, el Multi o Multis arrancan el
generador y es éste quien se ocupa de arrancar el motor correspondiente. Cuando esta situación
transitoria desaparece, el Multi apaga el generador y se trabaja en modo normal.
Otra opción es alimentar el motor con un generador trifásico y añadir un variador de frecuencia, con
una salida trifásica para el generador y una entrada monofásica para conectar el inversor o multi.
El variador de frecuencia eliminará la corriente de arranque elevada y permitirá trabajar correctamente.
7 BOMBA DE CALOR Y AIRE ACONDICIONADO
Quisiéramos no extendernos demasiado en esta parte. Todo lo que viene ahora sirve para la nevera
(frigorífico+congelador), el aire acondicionado y, en definitiva, para cualquier máquina de frío/calor.
27
BOMBA DE CALOR
Hoy en día, la mayoría de los aires acondicionados del mercado incorporan bombas de
calor. También habrán oído hablar de la famosa tecnología inverter. Pues bien, el compresor
se puede “mover” mediante un motor en AC o en DC. Este motor comprime un gas el cual
es refrigerado en lo que se llama el condensador. Dicho condensador suele ser un pequeño
radiador refrigerado por aire o por agua. En el condensador, el gas se convierte en líquido.
Es en este proceso donde se le extrae calor al gas. El líquido (gas) se lleva al evaporador
(esa parte tan fría en los aires acondicionados, neveras o congeladores que funcionan
igual). Una vez en el evaporador, se reduce la presión inicial (el motor que lo ha comprimido
al principio) y el líquido se evapora y se vuelve a convertir en gas. Cuando se evapora, una
gran cantidad de calor es absorbida. El gas vuelve al compresor y vuelta a empezar.
Por lo tanto, en este proceso de convertir un gas en líquido y convertir un líquido en gas
es donde obtenemos frío y calor.
Existe una fórmula matemática que relaciona energía, temperatura y eficiencia:
CoP=n r x n c=n r x Tev/(Tcon-Tev)
donde nr es la eficiencia de la máquina, Tev es la temperatura del evaporador y Tcon la del
condensador. Y CoP es el coeficiente de funcionamiento. Es una fórmula muy simplificada de lo
que ocurre en realidad. Pero suficiente para nosotros.
Por lo tanto, necesitamos incidir en dos factores para ahorrar energía: este coeficiente que relaciona
la eficiencia del equipo y el aislamiento. Eso en cuanto al equipo que decidamos comprar.
Por otra parte, si leen cualquier manual de un frigorífico, aire acondicionado, etc., verán que siempre
se aconseja no introducir comida caliente en el frigorífico, mantener las puertas abiertas el menor
tiempo posible, congelar todos los alimentos de una vez, ventilar las habitaciones de forma rápida
y abundante, etc.
AIRE ACONDICIONADO
Este elemento de confort requiere una gran cantidad de energía eléctrica. Especialmente aquellos
que se encuentran entre 1kW y 5kW (3.400Btu a 17.000Btu) porque habitualmente son poco
eficientes.
Si en su instalación fotovoltaica aislada disponen de un generador y además trabaja constantemente,
ningún problema en este sentido (ya saben que pueden disfrutar del silencio y la energía limpia,
pero bueno). Pero si el aire acondicionado debe funcionar a través de las baterías, la eficiencia de
la máquina es muy importante.
28
El funcionamiento teórico de un aire acondicionado es el mismo que el de la bomba de
calor, el frigorífico y el congelador. Así pues, y ya para acabar, volvemos atrás. La sencilla
fórmula matemática anterior nos da un número sin unidad. Este número nos dice la cantidad
de energía eléctrica que gastaremos.
Ejemplo:
Una nevera con un 25% de eficiencia. Temperatura de condensador de -5ºC y de evaporador
45ºC. Su coeficiente de funcionamiento es de 1.34. Esto quiere decir que por cada kWh de
calor que se introduce en nuestro frigorífico (recuerden que el calor específico del agua es
de 1,16Wh por ºC y para un kg de comida o un litro de bebida es muy similar), se necesita
0,75 kWh de energía eléctrica para sacarlo de dentro y volver a la temperatura fría que
queremos.
Un aire acondicionado pequeño tiene un coeficiente de entre 2 y 3 (en ocasiones hasta 6).
Supongamos que es de 2,5. Para conseguir 2kW de frío (unas 1800 frigorías) necesitamos
0,8kWh. Eso, durante 10 horas, es una pesadilla.
8 CONCLUSIÓN
Un aire acondicionado es un gran consumidor de energía para un sistema fotovoltaico aislado puro.
Si sólo el aire me consume 8kWh/día, necesitamos sólo para él 334A/h de una batería. Mucho. Por
lo tanto, si disponemos de generador diesel, es un artículo de lujo. Con generador, se puede instalar
perfectamente. Mucho mejor con un Multi.
La bomba de calor, lo mismo. Pero hoy en día no es necesaria porque podemos instalarnos un
buen sistema Solar Térmico.
Los motores de alterna tienen sólo el problema del arranque. En régimen nominal, no hay problema
si tenemos instalado un buen Multi o inversor, como los que ofrecemos en Hispania Solar, S.L.
Los electrodomésticos, siempre de clase A, acostumbran a suponer el 40% del consumo total de
una vivienda habitual.
De iluminación no hemos hablado. Pero siempre de bajo consumo. Si se instalan de corriente
continua hay que tener en cuenta que las baterías acostumbran a presentar frecuentemente
tensiones de 28V (los reguladores de los paneles y, más aún, estos maximizadores tan famosos,
acostumbran a elevar las tensiones bastante). Por lo tanto, si instalan halógenas, que sean de 28V.
29
Por lo tanto, se cumple la máxima que apuntábamos al principio. Los consumidores constantes
son los que más consumo tienen y los que hay que tener más en cuenta. Y, precisamente,
los que más “miedo” dan en un principio son los menos preocupantes bajo un punto de vista
energético.
Un sistema solar fotovoltaico aislado de uso continuo, al contrario de lo que se piensa,
puede disponer del mismo confort que un sistema de red eléctrica. Sólo necesitamos saber
muy bien lo que hacemos y cómo lo hacemos. En este sentido, Hispania Solar, S.L. tiene
toda la experiencia en aplicación y en producto, lo cual les puede ser de mucha ayuda para
conseguir una buena instalación solar fotovoltaica aislada.
30
www.hispaniasolar.es
www.hispaniasolar.es
www.hispaniasolar.es
hispania solar
todo en fotovoltaica
OFICINA CENTRAL
HISPANIA SOLAR DE ENERGÍAS
FOTOVOLTAICAS, S.L.
Camí del Mig, 20
08349 Cabrera de Mar
(Barcelona) ESPAÑA
Tel. 93 754 19 67
Fax 93 754 20 19
[email protected]
HS-CAT-12
w w w. h i s p an i as o l ar. es

Documentos relacionados