High-Frequency Electronics Design (ME715) Instructor Information

Transcripción

High-Frequency Electronics Design (ME715) Instructor Information
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
High-Frequency Electronics Design
(ME715)
Jan-May 2009
19-22 hrs, Tuesdays
Classroom W-107
Instructor Information
José Ernesto Rayas Sánchez, Ph.D.
Office: T-333
Office hours: 10-14, 17:00-21:00 hrs
Tel: 3669-3598, Ext. 3096
Email: [email protected]
Website: http://iteso.mx/~erayas
General Description
This course will enable students for the analysis and design of high-frequency electronic circuits. Students
will identify the current relevance of RF and microwave techniques in modern electronics circuit design.
They will be able to describe some of the basic signal integrity concepts that characterize high-speed
links. Students will analyze high-frequency circuits using fundamental transmission line theory, in both
frequency and transient domains. They will design fundamental RF circuits such as impedance matching
networks, filters, and amplifiers. They will also learn how to design physical interconnect networks
implemented in typical planar technologies (microstrips, striplines, etc.). Students will be able to describe
the main performance parameters of an antenna, as well as to simulate their most fundamental
characteristics. High frequency distributed-circuit simulation tools and electromagnetics-based simulation
software will also be employed though out the course.
Prerequisites
No previous graduate course is required. However, it is expected that students taking this course have a
good understanding of basic electronics and circuit analysis. Experience with SPICE simulation would be
very useful. The students should already have some familiarity with Matlab or any other similar
numerical analysis tool.
Learning Objectives
By the end of the course the student will be able to:
A. Identify the technological and economical relevance of the RF and wireless systems
(COMPREHENSION).
B. Describe the main high-frequency effects on typical transmission media (APPLICATION).
C. Identify some of the main signal integrity concepts related to high-speed interconnects
1
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
(COMPREHENSION).
D. Calculate characteristic impedances, reflection coefficients, standing wave ratios, insertions losses,
etc., using fundamental transmission line theory (ANALYSIS).
E. Efficiently use the Smith Chart for basic and advanced transmission line calculations
(APPLICATION).
F. Analyze linear circuits in the frequency domain using scattering parameters and ABCD parameters
(ANALYSIS).
G. Analyze linear and nonlinear transmission line problems in the transient domain using lattice and
Bergeron diagrams (ANALYSIS).
H. Model basic passive components (lumped elements) for high-frequency applications (SYNTHESIS).
I.
Design planar interconnects for high-frequency applications in microstrip and stripline technologies
(SYNTHESIS).
J.
Design impedance matching networks using quarter-wave transformers, stub tuning and other similar
techniques (SYNTHESIS).
K. Efficiently use commercially available CAD tools for simulating high-frequency circuits, including
distributed circuit simulators and full-wave electromagnetic simulators (APPLICATION).
L. Design basic high-frequency amplifiers and filters (SYNTHESIS).
M. Explain the main performance parameters of an antenna (COMPREHENSION).
N. Simulate the fundamental characteristics of a basic printed antenna using full-wave field solvers
(APPLICATION).
Contents
1. An introduction to high-frequency circuits and signal integrity
2. High-frequency effects on transmission media
2.1. Common transmission media
2.2. Modeling uniform interconnects
2.3. Interconnect parasitics and their physical significance
2.4. EM-effects: Skin effect, proximity effect, edge and Indy effects
2.5. From lumped circuits to distributed circuits
3. Fundamental transmission line theory
3.1. Telegrapher equations and wave equation
3.2. Traveling waves
3.3. Characteristic impedance
3.4. Reflection coefficient along the line
3.5. Input impedance along the line
3.6. Lossless transmission lines
3.7. Power along the line
3.8. Return loss
3.9. Standing wave ratio
2
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
4.
5.
6.
7.
8.
3.10. Transmission coefficient
3.11. Insertion Loss
3.12. Input impedance in lossless transmission lines (TL)
3.13. Lossy vs Lossless Transmission Lines
3.14. The low-loss line
3.15. The lossy distortionless line
3.16. How to decide if transmission line theory is needed in practical interconnects
The Smith Chart
4.1. Smith Chart origin and interpretation
4.2. Mathematical foundation of the Smith Chart
4.3. Basic Smith Chart applications
4.4. Open circuit transformations
4.5. Short circuit transformations
4.6. Impedance-admittance transformations
4.7. The quarter-wave transformer
Frequency-domain analysis of transmission line circuits
5.1. Impedance and admittance parameters
5.2. Scattering parameters
5.3. The transmission (ABCD) matrix
5.4. Analyzing interconnects with discontinuities
5.5. Differential mode signaling
5.6. Mode conversion
5.7. Even and odd impedance
5.8. Differential S-parameters
5.9. Termination techniques for differential signaling
5.10. Two-Coupled Microstrip Lines
Transient-domain analysis of transmission line circuits
6.1. Quarter-wave transformer – transient response
6.2. Reflection coefficient revised
6.3. Concept of “transient impedance”
6.4. Applying DC to transmission lines
6.5. Lattice (or bouncing or reflection) diagrams
6.6. Building transient signals from bouncing diagrams
6.7. Under-driven and over-driven lines
6.8. Bouncing diagrams for multiple sections of transmission lines
6.9. Bergeron diagrams
6.10. Bergeron diagrams for fully nonlinear terminations
CAD tools for high-frequency simulation
7.1. SPICE-like simulation
7.2. Tools for distributed-circuit simulation
7.3. Tools for full-wave EM simulation
Fundamental passive components at high frequencies
8.1. Lumped resistors
8.2. Lumped capacitors
8.3. Lumped inductors
3
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
9. Analysis and design of basic interconnects
9.1. Strip lines
9.2. Microstrip lines
9.3. Coupled microstrip lines
9.4. Even and odd modes in coupled lines
9.5. Crosstalk
10. Impedance matching circuits
10.1. Benefits of impedance matching
10.2. Matching with L-sections
10.3. Driving capacitive loads
10.4. Single-stub tuning
10.5. Double-stub tuning
10.6. Impedance transformers
11. High-frequency filters
11.1. The insertion loss method to filter design
11.2. Filter scaling and transformations
11.3. Physical design of high-frequency filters in microstrip technology
12. High-frequency amplifiers
12.1. Transistor models
12.2. Data-sheets for high-frequency transistors
12.3. Stability
12.4. Input-output matching
12.5. Power gain
12.6. Bias circuits
13. An introduction to antennas
13.1. Antenna system parameters
13.2. Basic practical antennas
13.3. Antenna patterns
13.4. Efficiency, gain and temperature of an antenna
13.5. The Friis equation
13.6. Electromagnetic simulation of antennas
Relationship between Contents and Objectives
1
2
3
4
5
6
7
8
A B C D E F G H I
√
√ √
√ √ √
√ √
√
√
J
K L M N
√
√
4
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
√
9
10
11
12
13
√
√
√
√
√
√
√
Course Skeleton
Below it is shown the basic course skeleton. For the proposed course skeleton it is assumed: a group of 5
to 20 students; 3 hours per week of class meetings during approximately 15 weeks; simulation software
available at ITESO and/or at home (for SPICE simulation: WinSpice, OrCad PSpice, Electronic
Workbench or any other similar circuit simulator; for EM simulation: Sonnet and CST Microwave Studio;
for high-frequency circuit simulation: Aplac; for general computing: Matlab).
It is also expected that the student will be able to dedicate an average of 8 hours of work per week to this
course, including attending classes.
Week Activity
1
2
3
4
Assignment 1
5
6
7
Assignment 2
8
Week
9
10
11
12
13
14
15
16
Activity
Assignment 3
Assignment 4
Final project
Assessment
The overall grade in this course will be built from the following elements:
Assignments
Project
Participation
65%
30%
5%
Assignments will be posted through out the course in the instructor website.
Students will realize a final application project during the course. The topic chosen must be approved by
the instructor. The final project must be submitted following a template that will be indicated later in the
course. Students will make a technical presentation on their final project selected. Depending on the
selected topic and class size, the project and the corresponding presentation can be realized individually
or in teams of up to 3 students. The report must be hand in on the day of the presentation. The
presentation will be evaluated not only by the instructor but also by the classmates. Further instructions
about the technical presentations will be delivered later.
5
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
The quality of the participation of the students during the lectures will be graded. This participation will
be evaluated based on student’s attitude and performance during class: punctuality, willingness to ask
relevant questions, respect to others, attention during class, ability to answer questions, etc.
Teaching Methods
This course will use a variety of teaching methods including: lecturing, seminars, computer simulations,
assignments, readings, project report writing and self-conducted research work.
Important information related to the course will be posted in the instructor’s web site throughout the
semester. Open and frequent communication with the instructor is encouraged. Collaboration between the
students is also encouraged.
The course will be conducted mainly in Spanish. Most of the written material for the course will be
available in English.
Bibliographic References
Microwave Engineering
David M. Pozar
Wiley, 1998
RF Circuit Design: Theory nand Applications
Reinhold Ludwig and Pavel Bretchko
Prentice Hall, 2000
Microwave and RF Design of Wireless Systems
David M. Pozar
Wiley, 2000
Small Signal Microwave Amplifier Design
Theodore Grosh
Noble Publishing, 1999
Electromagnetics for High-Speed Analog and Digital Communication Circuits
Ali M. Niknejad
Cambridge University Press, 2007
High-Speed Digital System Design
Stephen H. Hall, Garret W. Hall and James A. McCall
Wiley-Interscience, 2000
High-Speed Circuit Board Signal Integrity
Stephen C. Thierauf
Artech House, 2004
6
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
Microstrip Lines and Slotlines
K.C. Gupta, Ramesh Garg, Inder Bahl, Prakash Bhartia
Artech House, 1996
Computer-Aided Design of Microwave Circuits
K. C. Gupta, R. Garg, and R. Chadha
Artech, 1981
Microwave Circuit Modeling Using Electromagnetic Field Simulation
Daniel G. Swanson and Wolfgang J. R. Hoefer
Artech Publishers, 2003
Other Resources
Instructor’s website:
http://iteso.mx/~erayas/hf_design.htm
CAECAS Research Group
http://www.desi.iteso.mx/caecas/
First IEEE MTT-S International Microwave Workshop Series in Region 9,
on Signal Integrity and High-Speed Interconnects
www.imws2009-r9.org
Agilent Educator’s Corner
http://www.educatorscorner.com/
MIT Open Courseware
http://ocw.mit.edu/index.html
Intel Higher Education Program
http://www.intel.com/education/highered/
Hyper-Physics - Georgia State University
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Software Tools
APLAC, EM and high-frequency circuit simulator
http://www.aplac.hut.fi/aplac/main.html
Sonnet, EM simulator
www.sonnetusa.com
7
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx
Instituto Tecnológico y de Estudios Superiores de Occidente
Departamento de Electrónica, Sistemas e Informática
Maestría en Diseño Electrónico
CST Microwave Studio
http://www.sonnetsoftware.com/products/cst/index.asp
WinSpice circuit simulator
http://www.winspice.com/
Cadence (Pspice Orcad)
http://www.cadencepcb.com/products/pspice/
____________
NOTA: En caso de alguna dificultad o confusión respecto de este programa de estudios (por estar en idioma
inglés), favor de consultar directamente con el profesor.
8
Periférico Sur 8585
45604 Tlaquepaque, Jal., México
Tel +52 33 3669 3598 / Fax 3669 3511
www.iteso.mx

Documentos relacionados