Presentación - Fomento de San Sebastián

Transcripción

Presentación - Fomento de San Sebastián
Sustainable & Smart Cities
ENERGÍA SOSTENIBLE EN ENTORNOS
URBANOS
SUSTAINABLE ENERGY IN URBAN
AREAS
Jornada 11 Junio 2015, Donostia
Evaluación de Sostenibilidad en Ciudades
Evaluación de Sostenibilidad en Ciudades
[Banco Interamericano de Desarrollo - Iniciativa Ciudades Emergentes y Sostenibles]
PILARES SMART CITY TECNALIA
Innovación y Tecnología
Aplicación de la innovación y la tecnología a las ciudades y regiones para conseguir
procesos más eficientes y con un menor consumo de recursos.
PILARES SMART CITY TECNALIA
Gobernanza
Implicación de todos los agentes, especialmente los ciudadanos, a través del desarrollo
de modelos de gobernanza integrados.
PILARES SMART CITY TECNALIA
Proyectos y Planificación
Proyecto de ciudad sostenible a largo plazo, para el que la estrategia Smart City sirve
como primera etapa.
PILARES SMART CITY TECNALIA
Financiación
Nuevos modelos de financiación, a través de Colaboraciones Público-Privadas, Compra
Pública Innovadora, Inversiones Territoriales Integradas de los Fondos Estructurales
Europeos 2014-2020, Proyectos de Innovación de Horizon 2020, etc.
PILARES SMART CITY TECNALIA
Modelo de desarrollo económico basado en el conocimiento
Potenciación de nuevos sectores económicos basados en la innovación y la tecnología,
que respondan a modelos abiertos, transversales y emergentes
ÁMBITOS DE ACTUACIÓN
Energía Sostenible y
Planeamiento Urbano
Que es “energía sostenible”?
Empleo
Acceso a la energía
€
Sustainability & Life Cycle Thinking
Goals of Life Cycle Thinking
Reduce resource use and
environmental impact as well as
improve socio-economic performance
throughout the life cycle.
AVOID “BURDEN SHIFTING”
Going beyond the traditional focus
on production sites and manufacturing
processes.
Environmental, social, and economic
impact of a product over its entire life
cycle, including also the consumption
and end of use phase.
Source: www.unep.fr
Sustainability & Life Cycle Thinking Energy Technologies
Source: NREL, 2012 ,Life Cycle Assessment Harmonization Project.
Sustainability & Life Cycle Thinking Energy Technologies
Environmental Impacts
Source: IPCC, 2011
Sustainability & Life Cycle Thinking Energy Technologies
Social Impacts
Source: UNEP , Green Economy Report, 2011.
Sustainability & Life Cycle Thinking Energy Technologies
Economic impacts -> Life Cycle Costs - Including externalities?
Buscando la sostenibilidad energética:
• Lograr un bajo consumo energético en
el ciclo de vida, en edificios, servicios y
transporte
• Aprovechar el potencial de recursos
renovables.
• Hacer un uso eficiente de fuentes de
calor residual (ej. aprovechamiento en
calefacción de distrito)
• Facilitar energía distribuida mediante el
desarrollo de infraestructuras
Buscando la sostenibilidad energética:
EF
IC
A
GÍ E
ER BL
EN OVA
N
RE
IEN
CIA
Sigue aplicándose
“Trias Energética”
a nivel de barrio o
ciudad?
AHORRO - CONSERVACIÓN
Estrategia hacia la sostenibilidad energética
Ahorro + Eficiencia + Energías renovables
AHORRO
-- Medidas pasivas
EFICIENCIA ENERGÉTICA
-Cogeneración
-Recuperación de calor (ej. Industrial)
-Bombas de calor para calefacción y/o refrigeración
-Calefacción de distrito
-Almacenamiento energía térmica (corto y largo periodo)
USO DE ENERGÍAS RENOVABLES
–Solar térmica
–Solar fotovoltaica
–Bioenergía
–Eólica
CONSERVACIÓN: Estrategias Pasivas
Climate Analisys
before you start designing
analyze the climatic conditions.
Tools like Climate consultant, weather tool…
-
_
2
,
1
40
40
30
30
20
20
10
10
0
0
-10
-10
7
14
21
28
7
14
21
28
7
14
21
28
7
14
21
28
7
14
21
28
Capture the greatest amount of heat through the glazed openings
Define the first general
strategies.
Collect this heat captured by the thermal mass of the building.
Leverage internal heat loads.
…
CONSERVATION: Passive Strategies
Solar/shadows Analisys
Source: Oregi Isasi, X.
District
Building height, width of streets, geometry proportions…
Building
optimize orientation, window sizing, need for shading…
Define the first
strategies about.
CONSERVATION: Passive Strategies
Building Thermal behaviour optimization
• Envelope transmitance value (U)
directly related with the insulation.
• Envelope thermal inertia.
• Internal gains.
• Windows properties: Transmitance and solar factor.
• Building Use: occupation, schedule, distribution.
PASSIVE Refurbishment:
improve the characteristics of different
elements that directly affect building
energy consumption.
CONSERVATION: Passive Strategies
LIMITATIONS
In many cases it will be impossible to provide passive solutions
Appliances and non-building related energy use is increasingly important
Define new solutions to improve environmental and energy performance of
our buildings and cities
• USE OF RENEWABLE ENERGY.
• EFFICIENT USE OF ENERGY.
RENEWABLE ENERGY TECHNOLOGIES:
Solar Thermal - Information
Solar radiation of the city (Bilbao) : 1300 kWh /m2 year
RENEWABLE ENERGY TECHNOLOGIES:
Solar Thermal
glazed flat-plate collector
Flat plane collectors
unglazed solar collector
Evacuated-Tube Collectors
Solar air heating/cooling system
(Source: Franz Mauthner and Werner Weiss. Solar Heat Worldwide.
Markets and Contribution to the Energy Supply 2011. IEA Solar
Heating & Cooling Programme, May 2013)
(Source:
Victoria
Sustainability.)
RENEWABLE ENERGY TECHNOLOGIES:
Photovoltaics – Current Technologies and future trends
Singlecrystalline silicon cells:
Wafer-based crystalline Multicrystalline silicon cells:
Ribbon silicon technologies:
Thin film
efficiencies 13-18%
efficiencies 11-16%
efficiencies 10-14%
Amorphous silicon (a-Si)
Cadmium telluride (CdTe)
efficiencies 6-9%
Copper-indium-gallium-diselenide (CIGS)
RENEWABLE ENERGY TECHNOLOGIES:
Geothermal - Resources
EFFICIENT TECHNOLOGIES:
GSHP – Types pf Earth Connection
-5-6 m between boreholes
-Specialized installations
-Small suface neededs
Vertical (GCHP)
-Good in wet grounds
-Non specialized installation
Horizontal (GCHP)
-Large areas needed
-Cost reductions
-Impact reductions
Groundwater (GCHP)
Thermoactive foundations (GCHP)
Source: www.retscreen.com
Source: Geothermal Energy. Clauser . 2006)
-New technology. Temperature
variation effects?
RENEWABLE ENERGY TECHNOLOGIES:
Wind Turbines - Considerations
•
•
•
•
•
Wind resource
Grid access
Power purchase agreement
Planning issues
Aesthetics & Marketing
RENEWABLE ENERGY TECHNOLOGIES:
Biomass – Fuels
Farmed Fuels
• Short Rotation Croppice
• Straw
Waste fuels
• Sawmill residue
• Forestry residue
• Municipal waste
Processed Fuel
• Pellets
• Briquettes
EFFICIENT TECHNOLOGIES:
Seasonal THermal Energy Storage: STES
Solar Thermal STES.
Neckarsulm, Germany.
4 MW solar thermal
power installed - 63.000
m3 STES into the soil.
Solar Thermal STES .
Maarstal, Denmark. 13
MW solar thermal power
installed - 10.000 m3 PIT.
Solar Thermal plant for district
heating in Kungälv, Sweden. 7
MW solar thermal power
installed - 1.000 m3 steel tank.
Solar Thermal plant for
district heating in Graz,
Austria. 1 MW solar thermal
power.
EFFICIENT TECHNOLOGIES:
District Heating
- WASTE HEAT RECOVERY
- COGENERATION
- RENEWABLES (STES,
SOLAR THERMAL PLANT,
BIOMASS ETC..)
Thermal generation plant. Centralysed heat and / or cold production in a large installation that generates thermal energy
required to meet the demand of all users. Thermal energy can be generated by turbine engines, cogeneration system, waste heat
and / or solar plants.
Distribution pipe network. The distribution pipe network enables the supply of fluids (hot and/or cold) and is formed by isolated
pipes to minimize heat losses. Usually the pipes are distributed in underground drains that follow the layout of streets in urban
areas.
Substations. The heat transfer between the distribution network and consumers (buildings or homes) is done through a
substation. It consists on a heat exchanger, the elements that regulate and control the correct operation and the measuring
elements to bill the energy.
EFFICIENT TECHNOLOGIES:
Case Study: STES & Cogeneration & District Heating
Electricity generation by cogeneration systems is limited by the use of the heat produced.
In summer, when buildings´ heating demand is at lowest annual levels, electricity
consumption is progressively increasing through the world, mainly due to the use of airconditioning systems. In summer, therefore, the electricity/heat needs ratio is not the most
favourable for cogeneration. Seasonal thermal energy storage is a strategic technology
for its integration with cogeneration systems, as it makes possible a continuous
electricity production during the whole year.
Matching Energy Demand and Supply options
CONSERVATION + EFFICIENCY + RENEWABLES
Need for an integrated approach for design and measuring
performance…
Matching Energy Demand and Supply options
CONSERVATION + EFFICIENCY + RENEWABLES
Need for an integrated approach for evaluating performance…
.. while maintaining the life cycle
perspective for sustainability
evaluation
Thank you!
Eskerrik asko!
Gracias!
Patxi Hernandez
Energy & Environment Division
[email protected]

Documentos relacionados

Edificio

Edificio (Source: Franz Mauthner and Werner Weiss. Solar Heat Worldwide. Markets and Contribution to the Energy Supply 2011. IEA Solar Heating & Cooling Programme, May 2013)

Más detalles