Mapa de Amenaza Volcánica Volcán Masaya

Transcripción

Mapa de Amenaza Volcánica Volcán Masaya
Mapa de Amenaza Volcánica
Volcán Masaya
Dr. Hugo Delgado Granados
Ing. Martha Navarro Collado
Ing. Isaac A. Farraz Montes
Managua, Nicaragua 23 de diciembre, 2002
Mapa de Amenaza Volcánica del Volcán Masaya
CONTENIDO
Presentación
Introducción
Marco Geológico General
o
Estratigrafía General
o
Evolución Tectónica
o
Perfil Regional
o
Estructura
Geología del Volcán Masaya
o
Introducción
o
Breve reseña de los estudios en el área de Managua
o
Morfología y Estructura
o
Estratigrafía
o
Estratigrafía detallada de los productos explosivos
o
Petrología
o
Mecanismos Eruptivos
o
Evolución
Historia Eruptiva Reciente
o
Eventos Históricos
o
Reportes del GVN
o
Reportes Recientes del INETER
Amenaza Volcánica
o
Procesos efusivos
o
Procesos explosivos
o
∗
Balísticos
∗
Caída de tefras
∗
Nubes volcánicas
∗
Flujos piroclásticos
∗
Oleadas piroclásticas
Lahares
1
Mapa de Amenaza Volcánica del Volcán Masaya
Presentación
La cultura moderna de protección o defensa civil implica la prevención y
mitigación eficiente de los peligros o amenazas naturales. La prevención implica,
como premisa fundamental, que se conozca a fondo la naturaleza del fenómeno
en cuestión. Sólo de esa manera se puede anticipar la mejor manera de mitigar
los fenómenos, cuando éstos ocurren. Los desastres “naturales” se presentan
cuando la capacidad de respuesta de la sociedad es rebasada al desconocer los
fenómenos naturales que tienen lugar en una región.
En el caso de los fenómenos volcánicos, éstos pueden prevenirse y
mitigarse, si se reconocen a tiempo. La evaluación de la amenaza volcánica
debe hacerse de acuerdo a los conocimientos científicos más recientes sobre
sus mecanismos, productos, formas de emplazamiento, movimiento, etc.
También se hace necesario el conocimiento, lo más profundo posible, de los
antecedentes geológicos regionales y locales de los volcanes. La anticipación de
las erupciones volcánicas implica el estudio detallado de los procesos, historia
eruptiva, comprensión del funcionamiento de un volcán, seguimiento de su
comportamiento y reconocimiento de los alcances de sus productos, todo ello
sintetizado y plasmado en forma que permita a no especialistas, entender el
potencial de las erupciones volcánicas.
Un mapa de amenazas muestra en forma gráfica diversos escenarios
eruptivos, para que autoridades y población conozcan objetivamente los posibles
alcances de los productos volcánicos. En este trabajo aplicamos los
conocimientos volcanológicos y las herramientas de cómputo accesibles en la
actualidad, concientes de las limitaciones de las herramientas y lo fragmentario
de los conocimientos geológicos. No obstante, la construcción de mapas de
amenaza es una labor de alta prioridad que debe realizarse con oportunidad.
2
Introducción
El volcán o caldera Masaya, está ubicada a 25 km al Sur de la ciudad de
Managua, en las coordenadas 11.984° norte, 86.161° oeste, con una altura de
635 m. El volcán Masaya forma parte del Cinturón Volcánico Cuaternario de
Centro América (Figura 1). Se trata de un volcán cuya composición química es
de carácter basáltico a basáltico-andesítico con datos sobre erupciones
históricas desde el tiempo de la conquista; posiblemente es el volcán con
mayores descripciones de sus erupciones mas violentas; desde 1670 a 1772.
Figura 1. Localización del volcán Masaya (en verde). Se muestra la Cadena Volcánica de
Centroamérica, en el sector nicaragüense (modificado de L. Topinka, 1998).
3
El volcán es considerado Parque Nacional desde 1985. Alrededor de este
volcán, vive la mayor parte de la población de Nicaragua (Figura 2). No obstante,
en una circunferencia de 25 km de diámetro (tomando como centro el volcán)
viven millón y medio de habitantes. Adicionalmente, la región aledaña a este
volcán es la que posee el mayor desarrollo de infraestructura y por tanto es la
zona de mayor desarrollo económico. Por ello, se hace necesaria la evaluación
de las amenazas asociadas con eventuales eventos eruptivos en este volcán.
Figura 2. Mapa que muestra algunas de las poblaciones más importantes, cercanas al volcán
Masaya (tomado del archivo del INETER para las fallas de Managua).
4
Existen los antecedentes geológicos e históricos para esperar la ocurrencia
de erupciones volcánicas. El volcán Masaya ha tenido actividad eruptiva pliniana
durante los últimos 7 mil años y actividad eruptiva de diferentes magnitudes en
21 ocasiones desde 1524 al 2001. El último evento en particular, fue de carácter
vulcaniano y mostró la vulnerabilidad de los visitantes al Parque Nacional Volcán
Masaya (PNVM). Algunos de los depósitos del volcán Masaya se pueden
reconocer en los cortes de carretera y en excavaciones hechas en Managua, lo
que indica que la capital del país puede ser afectada por una erupción o
alcanzada por derrames de lava provenientes del volcán o sus fisuras
asociadas, como sucedió en el pasado. El posible impacto de una erupción
mayor en la infraestructura, en la población de Managua y en los visitantes del
PNVM puede ser prevenido mediante el análisis de las amenazas volcánicas,
mientras que la mitigación de fenómenos eruptivos puede hacerse mediante la
vigilancia cercana del volcán y establecimiento de planes de emergencia
basados en el análisis de las amenazas.
Para la construcción del mapa de amenaza volcánica se ha hecho necesario
llevar a cabo una extensa labor de recopilación bibliográfica y cartográfica, para
posteriormente integrarla, procesarla y extraer la información útil para
conformarlo. La primera parte de este trabajo muestra esta compilación.
5
Marco Geológico Regional
El volcán Masaya está ubicado en la porción occidental de la Depresión de
Nicaragua, en la esquina suroeste del graben de Managua (McBirney y Williams,
1965). Al suroeste de la depresión, se encuentra el Anticlinal Plioceno de San
Cayetano, al sur de Masaya (Weinberg, 1992) (Figura3).
Figura 3. Marco tectónico regional que muestra las macroestructuras. El sentido de movimiento a
lo largo de la cadena de volcanes es inferido y corresponde la etapa de deformación que
prevalece desde el Pleistoceno Tardío (Weinberg, 1992). En amarillo se muestra la localización
aproximada del volcán Masaya.
La estratigrafía refleja una serie de eventos y procesos geológicos que
abarcan una larga historia desde el Cretácico Tardío, como resultado de
cambios en la configuración de las placas tectónicas en la vecindad de la región
y que pueden tener una influencia en el comportamiento de los volcanes. Por
6
ello, se presenta una revisión de los aspectos geológicos, con el fin de reconocer
a este volcán desde el basamento mismo donde se encuentra.
ESTRATIGRAFIA GENERAL
La estratigrafía regional en la Planicie Costera del Pacífico (PCP), es factible que
se encuentre subyaciendo al edificio volcánico, lo mismo que las secuencias
correspondientes a la Depresión de Nicaragua (Elming et al., 1998; Hodgson,
1998; Ehrenborg, 1996). Un resumen de esta estratigrafía se presenta a
continuación:
Planicie Costera del Pacífico. Comprende cinco formaciones sedimentarias que
abarcan desde el Cretácico Tardío al Plioceno y sobreyacen a rocas del
Jurásico-Cretácico Medio (Hodgson, 1998).
Las rocas más antiguas que se encontrarían en la base de la columna
estratigráfica serían materiales volcánicos correlacionables con el Complejo
Nicoya Superior (Cretácico Medio) del occidente de Costa Rica encontradas en
pozos perforados en Rivas y El Ostional.
La Formación Rivas (Cretácico Superior) es una secuencia de 2850 m de
espesor con interestratificaciones de lutitas tobáceas, limolitas, grauvacas,
conglomerados y calcarenitas.
La Formación Brito (Eoceno) está compuesta de 2570 m de sedimentos
detríticos, tobáceos fosilíferos, conglomerados y dos unidades de calizas
intercalados con varias rocas intrusivas y extrusivas.
La Formación Masachapa (Oligoceno) comprende 1683 m de limolitas y
areniscas en la parte inferior, lutitas tobáceas y calcáreas, sobreyacidas por
aglomerados y conglomerados, con intercalaciones de maderas silicificadas y
capas de lava andesítica a basáltica.
7
Conjuntamente, las secuencias de las Formaciones Rivas, Brito y
Masachapa son consideradas como una secuencia tipo “flysch” (Weyl, 1980;
Seyfried et al., 1991).
Formación El Fraile (Mioceno). Son 2700 m de areniscas interestratificadas
con lutitas, calizas, conglomerados y madera silicificada. La parte inferior incluye
conglomerados y la parte superior contiene piroclastos, así como lutitas y
limolitas tobáceas. Esta formación se interdigita con partes de la Formación
Tamarindo, una unidad caracterizada por depósitos volcánicos.
La Formación El Salto (Plioceno) comprende 50-100 m de conglomerados y
margas ricas en fósiles de moluscos (parte inferior), calizas recristalizadas (parte
media) y lutitas con areniscas fosilíferas, arenas, arcillas y conglomerados (parte
superior).
Depresión de Nicaragua. Comprende en general, dos grupos de rocas
cuaternarias. El Grupo La Sierra (Pleistoceno) y el Grupo Managua (PleistocenoHoloceno) (Hodgson, 1998).
El Grupo La Sierra (1Ma a 100 ka) comprende 3 miembros que incluyen
depósitos de flujos de lodo y de flujos de cenizas con pómez con un espesor
promedio de 640 m, pero que puede llegar hasta 2000 m en el centro del
graben. Estos depósitos pueden observarse descansando sobre la Formación El
Salto (Plioceno).
El Grupo Managua (21 ka a 4 ka) comprende 3 miembros: el miembro inferior
incluye la pómez Apoyo, el Lapilli Fontana y la tefra Masaya; el miembro medio
está constituido de lavas y otros productos volcánicos provenientes de los
volcanes del lineamiento Nejapa-Miraflores; el miembro superior comprende a la
Formación Toba Retiro, las formaciones de pómez de Jiloá y Apoyeque, así
8
como la Formación San Judas con interestratificaciones de lapilli y toba. La
estratigrafía se describe con mayor detalle en la sección de geología de la
caldera que, debido a su complejidad y falta de acuerdo consensuado acerca de
las denominaciones de las unidades y a la luz de nuevos estudios, requiere un
tratamiento aparte.
EVOLUCION TECTÓNICA
El reconocimiento de la evolución tectónica de la región circunvecina al volcán
Masaya puede permitir que se reconozcan los rasgos más importantes que esta
evolución ha heredado al terreno ya sea como sistemas de fracturamiento fósil o
activo, los cuales eventualmente pueden estar siendo utilizados para canalizar
las inyecciones magmáticas. A continuación se muestra el resumen de tal
evolución, recopilada por Cruden (1989, 1998) y Weinberg (1992).
Cretácico Medio (85-80 Ma). Yuxtaposición de los bloques de Chortis y
Chorotega a lo largo de la sutura sinistral de Santa Elena, establecimiento de la
subducción de Mesoamérica y formación de las toleítas primitivas de arco del
Complejo Nicoya Superior.
Cretácico Tardío – Eoceno (70-40 Ma). Sedimentación antearco de turbiditas
de abanico submarino (Formaciones Rivas y Brito). Alrededor de los 50 Ma la
fuente que alimenta al Complejo Nicoya Superior cambia hacia la provincia
andesítica extensiva que da lugar al Grupo Matagalpa en el noreste.
Oligoceno – Mioceno Temprano (29 – 15 Ma). Levantamiento y erosión,
como respuesta a la partición de la Placa Farallón en la Placa Gorda y la de
Cocos, para posteriormente resurgir, continuando con la sedimentación antearco
y el volcanismo. Depósito de materiales subaéreos en la zona de antearco,
como aglomerados y conglomerados intercalados con maderas silicificadas y
lavas (Formación Masachapa). Más al noreste, se depositan secuencias
9
tobáceas y sedimentos lacustres cubriendo a lavas andesíticas, tobas y brechas
intrusionadas por rocas hipabisales (Grupo Matagalpa Superior).
Mioceno Temprano – Plioceno (10 – 5 Ma). Reordenamiento mayor de las
zonas de esparcimiento en los límites de la Placa de Cocos, acompañado de
levantamiento, plegamiento y cabalgamiento de los sedimentos de la cuenca
antearco en el suroeste de Nicaragua (Formaciones El Fraile y El Salto). Esto
pudo deberse a una disminución del ángulo de subducción de la Placa de Cocos
que causó también un cambio en el volcanismo (Grupo Coyol). Esta es una
etapa de compresión NE-SW que genera pliegues con orientación NW-SE, fallas
de cabalgadura con vergencia hacia el SW, fracturas conjugadas E-W y NNE,
así como fallas de transferencia con orientación NE (Figura 4a, Tabla 1). En el
Plioceno, los anticlinales deSan Cayetano y Rivas (asociado a fallas de
cabalgadura) y un sinclinal asociado se formaron al plegarse las formaciones
tipo flysch (Borgia y van Wyk de Vries, 2001) y las equivalentes formaciones
volcánicas terciarias 100 km al noreste, pertenecientes al Grupo Matagalpa
(Figura 5 y 6) dando lugar a la Depresión de Nicaragua.
(a)
(b)
(c)
Figura 4. Evolución del elipsoide de esfuerzos y las estructuras relacionadas con el transcurrir
del tiempo en el suroeste de Nicaragua. (a) Compresión Mioceno Tardío-Plioceno; (b)
Compresión Plioceno-Pleistoceno; (c) Transtensión diestra Holoceno-Reciente (Cruden, 1998).
10
Figura 5. (a) Mioceno Tardío-Plioceno Temprano. Diagrama idealizado de la colisión entre las
placas del Caribe y de Cocos durante la primera fase de deformación con un ángulo de
subducción θ. Se nota la presencia del volcanismo de la Formación Coyol. El inserto muestra el
fracturamiento asociado con el plegamiento. (b) Plioceno Tardío –Pleistoceno. Segunda fase de
deformación, el ángulo θ se incrementa resultando en la migración del arco volcánico hacia la
trinchera y se forma la Depresión de Nicaragua. La tasa de convergencia disminuye (V1>V2)
también como consecuencia del aumento en el ángulo de subducción o de una disminución en el
movimiento hacia el occidente de la Placa del Caribe (modificada de Weinberg, 1992).
11
Plioceno Tardío – Pleistoceno (∼3 – 1 Ma). El volcanismo migra hacia el
oeste, para establecerse en su posición actual (Cadena Volcánica de
Nicaragua), debido a un nuevo incremento en la inclinación del ángulo de
subducción (Figura 5). El escape noreste del Bloque de Chortis entre la Cuenca
del Caimán y el Escarpe Hess es acomodado por extensión en el oeste de
Nicaragua y el resultado es la formación de la Depresión de Nicaragua. En esta
etapa se presenta una extensión en dirección NE-SW que genera fallas
normales NW, fracturas N-S y ENE, con reactivación de las fallas de
transferencia NE (Figura 4b, Tabla 1). A partir del Plioceno, la erosión de las
formaciones “flysch” en el creciente Anticlinal de Rivas y los productos
volcaniclásticos de las Tierras Altas son sedimentados en la Depresión de
Nicaragua (Figura 6).
Tabla 1. Evolución tectónica del occidente de Nicaragua (según Weinberg, 1992).
12
Pleistoceno Tardío – Reciente (1 – 0 Ma). Rotación contra las manecillas del
reloj del Bloque de Chortis resulta en un componente de cizallamiento derecho a
lo largo de la Depresión de Nicaragua y estructuras relacionadas. El volcanismo
permanece en su posición (Grupos La Sierra y Managua) y nacimiento de la
mayoría de los volcanes activos de Nicaragua, en la Depresión de Nicaragua
surgen los volcanes Concepción y Madera (Borgia y van Wyk de Vries, 2001).
Del Holoceno al Reciente se presenta una transtensión derecha que reactiva las
fracturas N-S como fallas normales y desgarres de tensión, continúa el
deslizamiento extensional oblicuo sobre las fallas NW y las NNE-SSW en el
graben de Managua (Figura 4c, Tabla 1).
Figura 6. (A) Mapa geológico general simplificado del occidente de Nicaragua, indicando la
localización del volcán Masaya (modificado de Elming et al., 1998).
13
PERFIL REGIONAL
En la región, la corteza continental y la corteza oceánica litosféricas encuentran
su límite a menos de 18 km de profundidad, mientras que el Moho podría
encontrarse a una profundidad de 40 km, aunque la cuña del manto entre las
cortezas oceánicas involucradas (subducente y subducida) puede llegar hasta
una profundidad de 10 km (Walter et al., 1999) (Figura 7).
Figura 7. Estructura profunda del arco volcánico nicaragüense. Modelo cortical de un transecto a
través de la margen Pacífico de Nicaragua. Se muestran las velocidades en una escala de tonos
de gris (tomado de Walter et al., 1999)
Los estudios de geofísica, tanto sismológicos (Walter et al., 1999) como
gravimétricos (Elming, 1998), indican que debajo de la Depresión de Nicaragua,
la corteza sufre un adelgazamiento (Figura 7, 8 y 9).
ESTRUCTURA
La Caldera de Masaya se encuentra en el borde de la Depresión de Nicaragua,
en el punto donde el escarpe de la Falla Mateare pierde la claridad de su
expresión.
14
Figura 8. Mapa geológico de Nicaragua mostrando el trazo del transecto gravimétrico de la
Figura 9 (tomado de Elming, 1998)
Figura 9. Modelo gravimétrico del oeste de Nicaragua tomando en cuenta datos
magnetotelúricos, sísmicos y de densidad. La anomalía de gravedad de Bouguer medida se
observa señalada en cruces y la línea sólida representa la anomalía calculada (tomado de
Elming, 1998)
15
La Falla Mateare forma parte de un escarpe espectacular que se extiende
por 30 km, desde las Sierras de Managua hasta Nagarote (van Wyk de Vries,
1993) (Figura 10). Aunque Brown y otros (1973) han sugerido el estado activo de
esta falla, no parece haber habido eventos sísmicos importantes a lo largo de su
trazo durante los últimos 20 años. El salto de la falla tiene un máximo de 300 m
cerca de la población de La Palanca y se conserva cercano a estas dimensiones
de salto estructural hasta El Crucero. Hacia Nagarote el salto puede ser de 100
m y hasta 200 m.
Figura 10. Mapa del sistema de falla Mateare (van Wyk de Vries, 1993)
16
Según Weinberg (1992), la historia de la deformación del occidente
nicaragüense comprende 3 etapas de deformación (Tabla 1). La tercera tiene
lugar entre el Pleistoceno y el Holoceno y es activa en el presente, causando
sismicidad a lo largo de fallas someras. El terremoto de Managua de 1972 se
caracterizó por un movimiento sinistral a lo largo de la Falla Tiscapa (Figura 11),
con rumbo N30°E, formando abultamientos con orientación este-oeste y
fracturas de tensión con rumbo norte-sur. Estas estructuras definen un eje de
acortamiento con máximo norte-sur y un eje de máxima extensión este-oeste.
Figura 11. Fotografía que muestra el trazo de la Falla de Tiscapa, una semana después del
sismo de 1972 (colección Steinbrugge).
Un rasgo adicional, asociado con esta fase de deformación es el
alineamiento norte-sur de los conos cineríticos holocénicos de Nejapa-Miraflores
(Figura 12), así como las estructuras asociadas al volcán Mombacho y al cerro
Negro. El alineamiento norte-sur de pequeña escala en echelón, a lo largo de la
cadena volcánica, alineada noroeste-sureste sugiere un movimiento potencial de
tipo lateral derecho. Los esfuerzos asociados con este movimiento lateral
derecho se expresan también en la formación del Graben de Managua, que
17
resultaría ser una cuenca de desgarre, rotacional, debida a transtensión
derecha, en la zona donde la cadena volcánica activa es interrumpida y
desplazada 13 km hacia el sur (Figura 3 y 13).
Figura
12
(arriba).
Rasgos
estructurales
locales
en
los
alrededores
de
la
caldera de Masaya. El
modelo
digital
de
elevación muestra los
rasgos principales y
permite percibir las
formas
del
relieve
asociadas. La figura en
color permite reconocer
las estructuras y definir
mejor su ubicación
(tomado de la página
web de INETER).
Figura 13 (derecha).
Modelo
cinemático
reciente del graben de
Managua,
el
cual
concuerda con aquél
publicado por Weinberg
en 1992 (tomado de la
página web de INETER)
18
El graben de Managua, una estructura de 25 km de largo y 13 km de ancho, está
limitada por dos sistemas de fallamiento normal, símicamente activos: la falla
Nejapa-Miraflores en el oeste y el Sistema Cofradías en el este, ambas con
rumbo general norte-sur (Figura 14). Eventos volcánicos se han asociados a
ambos sistemas de fallamiento. En el caso del fallamiento de Nejapa-Miraflores,
no existe una falla claramente definida, se infiere su existencia a partir de la
presencia de más de 20 cráteres y conos, así como de un desnivel de oeste a
este de la estructura de 150 m. Las rocas volcánicas emitidas a partir del trazo
de esta falla, son los productos más primitivos reportados en Nicaragua, aunque
otros productos más evolucionados, también han sido extruídos a partir de este
sistema.
Figura 14. Mapa estructural del graben de Managua donde se muestran los rasgos estructurales
y volcánicos, así como el sentido de movimiento del sismo de 1972 (tomado de van Wyk de
Vries, 1993).
19
A lo largo de la Falla Cofradía se han llevado a cabo erupciones fisurales con
producción de flujos de lava, conos de material soldado y dos anillos de toba de
composición basáltica similar a los productos de Masaya (Williams, 1983). Sólo
en las cercanías de La Cofradía, se observa un desnivel de 20 m asociado con
la falla y el trazo puede seguirse muy bien en los modernos modelos digitales de
elevación (Figura 11). Adicionalmente, la ribera del Lago de Managua sigue el
trazo de la falla hacia el norte y varios manantiales termales son evidencia de su
presencia desde Tipitapa, hasta El Playón a 25 km de distancia.
20
Geología del Volcán Masaya
INTRODUCCION
Para poder evaluar los peligros volcánicos del Masaya, es necesario contar con
información geológica que permita reconocer los diferentes procesos eruptivos
desarrollados en el pasado geológico e histórico del volcán y analizar la
posibilidad de que vuelvan a presentarse. Entre la información más importante
se encuentra la estratigráfica.
Increíblemente, a pesar de los 42 artículos y trabajos publicados en revistas,
memorias y libros, de 9 tesis de posgrado (3 de maestría y 6 de doctorado)
hechas por extranjeros (aparte las que se hayan llevado a cabo en la UNAN), no
existe mayor información estratigráfica de este volcán desde 1983 (tesis doctoral
de S. N. Williams, 1983) o 1993 en términos de la estratigrafía de productos
efusivos (Walker et al., 1993). La tesis doctoral de Bice (1980) se refiere al
estudio de la estratigrafía de la zona de Managua. Los trabajos recientes de los
geólogos de la República Checa y de diversas compañías privadas se han
enfocado a estudiar el registro estratigráfico de la cuenca de Managua, con el fin
de evaluar las amenazas naturales asociadas o directamente para obtener
información relevante para la construcción de obras de infraestructura.
Existe una vasta literatura científica acerca del volcán Masaya, sin embargo,
la mayor parte de los trabajos publicados hacen referencia a la naturaleza de
sus gases volcánicos y procesos de desgasificación. Más recientemente, un
grupo de investigadores británicos han conjuntado esfuerzos para observar de
manera más cercana la estructura de la caldera (Rymer et al., 2002). Las
discusiones y descripciones que se presentan a continuación son compilaciones
e integración de resultados de los trabajos mencionados. Se presenta primero,
una reseña importante de trabajos en el área de Managua.
21
BREVE RESEÑA DE LOS ESTUDIOS GEOLÓGICOS EN EL AREA DE
MANAGUA
McBirney y Williams (1965). Trabajo clásico sobre la estructura geológica,
tectónica y volcanismo de Nicaragua. Centran el área de Managua dentro de la
problemática de la Depresión de Nicaragua y muestran en un perfil la fosa
tectónica o graben. Describen una secuencia de rocas en un corte de la
carretera cerca de Mateare (El Esfuerzo), que incluye capas de pómez dacítica
(provenientes de Apoyeque), cenizas (de grano fino) y escorias de colores gris y
negro. Otras exposiciones de pómez fueron descritas por estos autores como un
horizonte importante en varias localidades dentro de Managua.
Kuang (1971). Define formaciones volcano-sedimentarias de edad Cretácico Pleistoceno. Se describen los centros volcánicos del Sistema Miraflores –
Nejapa y formaciones como el Grupo Las Sierras. Este grupo es descrito con
650 m de espesor e interdigitado con la Formación El Salto, en cuya sucesión
predominan rocas máficas, sobre todo ignimbríticas. Se correlaciona con las
Formaciones Bagaces y Liberia en Costa Rica.
Parsons Corporation (1972). Mencionan que sismos catastróficos como los de
1931 y 1968 podrían volver a ocurrir. También describen al Grupo Las Sierras.
Schmoll y colaboradores (1975). Llevan a cabo estudios estratigráficos,
cartografían fallas y centros volcánicos desde la Cresta de Mateare en el E hasta
Tipitapa en el O y, desde el Lago de Managua hasta la Cordillera del Pacífico (la
Cresta de Las Nubes) en el sur y, asimismo, hasta la Caldera de Masaya.
Mencionan que los materiales piroclásticos que se hallan en Managua tienen
influencia de los volcanes Masaya y Apoyeque. Denominan “Proto Masaya” a
un aparato volcánico anterior a la creación de la actual caldera y que emitió los
productos de la Formación Fontana.
22
Woodward y Lungren (1975). Se propone la primer columna estratigráfica
general del área de Managua. Se mantiene el Grupo Las Sierras sobreyacido
por los productos piroclásticos del “Grupo Managua”. El horizonte inferior del
Grupo Managua es el “Lapilli Fontana” (proveniente de Masaya). Además, notan
la presencia de tres capas de pómez provenientes de la caldera de Apoyo. En la
parte superior de la secuencia reportan tres capas de escoria (San Judas) del
Holoceno. Menciona la presencia de cenizas consolidadas “El Retiro” cuya edad
se establece en 2.5 – 3 mil años.
Woodward y Clyde (1976). Establece parámetros de correlación de las capas en
Managua. Llaman la atención hacia depósitos emplazados por subsidencia,
derrumbes y temblores. Mencionan la pómez de Apoyeque, y estiman una edad
de 1 - 5 mil años.
Bice (1980). Trabajo fundamental de la estratigrafía de Managua. Describe al
Grupo Managua incluyendo rocas volcaniclásticas, epiclásticas y sedimentarias
aflorando en Managua y sus alrededores. Incluye la capa de lapilli Masaya, las
pómez Apoyeque Inferior, Apoyo, Apoyeque Superior, el horizonte de las Tres
Capas, la pómez Jiloá y la Toba Masaya, separadas por sedimentos y suelos
fósiles (Figura 15). Una contribución muy importante de Bice (1980), es la
determinación de los centros eruptivos que emitieron la columna propuesta, a
través de la reconstrucción de las fuentes de emisión usando mapas de
isopacas.
Williams (1983). Este es el trabajo más importante de la caldera de Masaya
desde el punto de vista volcanológico. Describe diversos depósitos piroclásticos
de caída (plinianos) del Grupo Masaya cuya fuente de emisión fue el volcán
Masaya (depósitos Fontana y San Judas). Adicionalmente, describe depósitos
de oleadas piroclásticas excepcionalmente voluminosas y potentes, que
establecen un precedente importante sobre erupciones explosivas de gran
magnitud en volcanes de composición basáltica. Aporta una estratigrafía básica
23
de los productos explosivos y efusivos, útiles en el entendimiento de la evolución
del sistema volcánico. Se estiman las edades de numerosas unidades
estratigráficas descritas en este trabajo.
Figura 15. Columna estratigráfica de Bice (1980).
Hradecký y Taleno (1988). Estudian el volcán Apoyeque y sus productos,
modificando parcialmente la estratigrafía establecida por Bice (1980).
Walker y colaboradores (1993). Estudian las características geoquímicas de las
secuencias efusivas establecidas por Williams (1983) utilizando diversos análisis
químicos de elementos mayores, tierras raras e isotópicos.
24
Van Wyk de Vries (1993). Estudio petrológico regional de lavas y productos
piroclásticos de volcanes de Nicaragua. Su enfoque es sumamente importante al
aportar una visión tectonovolcánica de los rasgos geológicos regionales y en
particular del Graben de Managua. Define la Caldera Las Sierras, previa al
complejo volcánico de Masaya.
Frischbutter (1997). Trabajo sobre tectónica, incluyendo el Graben de Managua.
Describe su naturaleza de cuenca transtensional o de desgarre (pull-apart bsin),
naturaleza establecida por Weinberg (1992). No obstante, enfatiza la naturaleza
activa de las fallas que conforman este sistema transtensional.
Fujiwara y colaboradores (1993). Establecen una columna litoestratigráfica de
Managua, enfocada a su uso en trabajos de ingeniería.
Hradecky y colaboradores (1997). Estudios geológicos integrados para el
reconocimiento de amenazas geológicas en el área de Managua. Se realizan
numerosos mapas (geológicos, geomorfológicos, de isopacas, etc.) y nuevos
trabajos de estratigrafía que establecen nuevos y numerosos nombres informales.
MORFOLOGÍA Y ESTRUCTURA
Los estudios desarrollados por los investigadores Checos, acerca de las
amenazas naturales de la zona de Managua, incluyeron la conformación de un
mapa geomorfológico (Figura 16). En este mapa se nota la relación íntima entre
tectónica y volcanismo en el graben de Managua. Se señalan las zonas de
inestabilidad de taludes por la cercanía a zonas de falla o colapso de estructuras
volcánicas, se hacen evidentes los trazos de zonas de fracturamiento y la
posición de centros eruptivos, asociados a tales rasgos estructurales.
25
El volcán Masaya es un gran volcán escudo basáltico compuesto de una serie
de calderas y cráteres anidados, el más grande de los cuales es el escudo y
caldera Las Sierras (Rymer et al., 1998; van Wyk de Vries, 1993) (Figura 17).
Figura 16. Mapa morfoestructural de la zona vecina a la caldera de Masaya. 1. Centros
volcánicos recientes, 2. Remanentes de las pendientes estructurales de las Sierras de Mateare y
Managua, 3. Depresiones tectónicas con rellenos, 4. Relieve tectónico, 5. Planicies de
depositación de los materiales de Masaya y Apoyeque, 6. Planicie volcanosedimentaria de
Tipitapa (Hradeky, 1997).
Dentro de la caldera Las Sierras se encuentra el volcán Masaya sensu stricto,
que es un escudo bajo compuesto de lavas y tefras basálticas. Dentro de la
caldera Masaya, ha crecido un complejo basáltico a través de una serie de
fuentes eruptivas principalmente semicircular que incluye a los conos Masaya y
Nindirí, que albergan los cráteres Masaya, Santiago, Nindirí y San Pedro. Las
26
paredes de los cráteres indican que ha habido varios episodios de formación de
conos y cráteres (Figura 18).
Figura 17. Mapa de localización regional del volcán Masaya. Se muestra la caldera Las Sierra (b)
que engloba la caldera Masaya, que a su vez contiene bocas más recientes (círculos negros). El
mapa (c) muestra la zona activa actual y los rasgos estructurales como fisuras eruptivas
(punteadas), límite de los cráteres (dentados) y bordes de los cráteres de explosión, algunas
lavas y fisuras indican la fecha de su erupción (Rymer et al., 1998).
27
El piso de la caldera de Masaya está cubierta pobremente por vegetación,
indicando quizá su origen en menos de 1000 años. No obstante, sólo dos flujos
de lava han surgido desde el siglo XVII (en 1670 desde el cráter Nindirí y en
1772 desde un flanco del cono Masaya).
Figura 18. Estructura de los cráteres. a) Esquema del cráter Santiago, L indica lavas, línea
punteada indica tefras y el moteado brechas, se muestran también cavernas y bocas que se han
abierto de 1986 a 1997. b) Mapas que muestran la evolución del cráter desde 1986 a 1997
(Rymer et al., 1998).
28
La actividad histórica se ha restringido a los conos Masaya y Nindirí, con
pendientes muy pronunciadas en sus flancos occidental y sur. Las paredes
internas de los cráteres revelan la predominancia de material piroclástico
(escoria gruesa o capas de material soldado). Las laderas norte y oriental son
más suaves y están cubiertas por materiales lávicos, los cráteres en su interior
confirman la predominancia de material efusivo en esos flancos. Rymer y
colaboradores (1998) explican que la construcción asimétrica de del volcán se
debe a que los vientos son principalmente del oriente.
El cráter Masaya (en el cono Masaya) posiblemente se formó después del
siglo XVI y es un cráter relleno de lava. El cráter Nindirí está relleno de lavas que
constituyeron varios lagos de lava, notablemente en 1570, 1670 y en 1852,
aunque luego de la emisión de lavas de 1670, el piso del cráter se hundió a
través de un sistema de fracturas circulares, visibles en la actualidad debido a
que las cortan los cráteres San Pedro y Santiago. El cráter San pedro es un
cilindro de paredes verticales de 400 m de diámetro y 200 m de profundidad, su
piso pudo haber sido otro lago de lava. El cráter Santiago se formó entre 1858 y
1959 y ha sido el principal sitio de actividad en el Masaya, particularmente de los
eventos de desgasificación. Consiste de un cráter principal de 150 m de
profundidad y un cráter interno también de 150 m de profundidad, donde la boca
actual se encuentra localizada. En las paredes este y norte quedan expuestas
capas de lava que cubren un cono cinerítico hacia el sureste. Las paredes viejas
del cráter (suroeste y noreste) están compuestas de capas de ceniza fina y
escoria. Su pared occidental muestra el relleno del cráter Nindirí, exponiendo
fallas concéntricas con inclinaciones de 70° - 80° en forma radial y se extienden
hacia zonas altamente fracturadas y en varias áreas roca masiva representa el
relleno de cavidades con magma, hacia la parte inferior del cráter (Figura 19).
29
Figura 19. Fotografía y esquema estructural de la pared Nindirí del cráter Santiago (Rymer et al.,
1998).
Prácticamente todos los cráteres del volcán Masaya son cilindros de paredes
casi verticales o cercanamente extra plomadas, cortan todo tipo de litologías, los
30
pisos de sus cráteres tienen forma de embudo excepto cuando están cubiertos
por lagos de laga y sus colapsos se llevaron a cabo a través de sistemas de
fallas con inclinaciones radiales hacia afuera. Según Rymer y colaboradores
(1998), tales paredes verticales se formaron por colapso por encima de los
juegos de fracturas. El cráter interno del Santiago, sin embargo, pudo formarse
de una manera distinta, al quedar sin techo cámaras pequeñas primero dejando
un agujero y luego colapsándose hasta dejar al descubierto cavernas de 5 a 30
m de diámetro.
ESTRATIGRAFÍA
Williams (1983) definió la estratigrafía general de la caldera de Masaya y Walker
et al. (1993) particularizó en la estratigrafía de productos efusivos (Figura 20).
Figura 20. Mapa geológico de la caldera Masaya (Walker et al., 1993).
31
Formación Las Sierras (TQv)
Es un complejo grupo de flujos de lava, ignimbritas, depósitos de caída y
sedimentos volcanogénicos que afloran en un área amplia. En la caldera, la
Formación Las Sierras ocurre como un “flujo de lodo” rico en líticos o,
posiblemente, como un depósito ignimbrítico de composición andesítica. Esta
unidad puede llegar a tener un espesor de hasta 680 m. Aunque la edad se ha
considerado Plio-Pleistoceno debido a que se interdigita con la parte superior de
la Formación Brito, una muestra de carbón hallada en la unidad ignimbrítica
arrojó una edad de 29,200 años AP.
Pared de la Caldera y Ceniza Escoriácea (Qaw1)
Depósitos de caída estratificados que se observan muy bien en la parte
occidental de la caldera. Esta unidad incluye el Lapilli Fontana (Bice, 1980,
estimó su edad en 30,000 años AP) (Figura 21) y la Formación San Judas
(Figura 22).
Figura 21. Mapa de isopacas del Lapilli Fontana, las unidades están dadas en cm (Williams,
1983).
32
Figura 22. Mapa de isopacas de la Formación San Judas, las unidades están dadas en cm
(Williams, 1983).
Lavas de la Pared de la Caldera (Qaw2)
Flujos de lava basáltica con estructura pahoehoe (notablemente sin brechas de
flujo) y posibles unidades ignimbríticas en la parte NW de la caldera. Cubren a la
secuencia piroclástica en la parte oeste de la caldera, cerca de donde aflora el
Lapilli Fontana. La edad de estas lavas se ha determinado por análisis K/Ar de
roca total entre 95,000 y 360,000 años AP.
Depósitos de Flujo Piroclástico (Qf3)
Una brecha tobácea aflora cerca de la cima de la pared de la caldera. Se trata
de una ignimbrita o depósito de flujo piroclástico basáltico (Figura 23).
Depósito de oleada piroclástica (Qs4)
Son los depósitos pre-caldera más jóvenes. Contienen bloques líticos
subangulares en capas masivas o en series de estratificación cruzada con
gradación normal con escorias y cenizas de caída en la parte superior del
33
depósito. Su composición es basáltica (Figura 24). Su distribución es muy amplia
y en la ciudad de Managua puede ser en promedio de 15 a 100 cm (Figura 25).
Figura 23. Distribución de la ignimbrita Qf3 dentro y alrededor de la caldera Masaya. El espesor
está dado en m. La línea sólida muestra la distribución del escenario de volumen mínimo (1.1
km3) y la línea punteada el caso de volumen máximo (1.7 km3). Si se toman en cuenta productos
coignimbr´ticos los volúmenes totales podrían ser de 2.2 a 3.4 km3 (Williams, 1983).
Productos de la Caldera
(Qv5)Flujos de lava y depósitos de caída asociados basálticos, producidos
después del colapso de la caldera a partir de una serie de centros eruptivos en o
cerca de las fallas que limitan la caldera. Los flujos de lava son tipo aa y su
distribución no es muy extensa.
34
(Ql6)Flujo de lava “Vía del Tren”. Flujo masivo extruído posiblemente a partir de
una boca en la falla que limita la caldera por el norte.
Figura 24. Sección esquemática de la oleada piroclástica Qs4. Se muestran los parámetros de
tamaño de grano y clasificación en las unidades masivas basales (Williams, 1983).
(Qv7)Estos son los depósitos más viejos en el piso de la caldera.
(Qv8)El Complejo del Cráter Santiago consiste sólo de un cono cinerítico y flujos
de lava expuesto en la pared sur del cráter. Las paredes este y norte están
35
compuestas de material derivado del cráter Masaya y en el lado oeste del cráter
Nindirí.
Figura 25. Mapa de isopacas de la oleada piroclástica Qs4 en metros. Se muestran espesores
acumulados de estratos masivos y unidades de oleada piroclástica con estratificación cruzada y
los depósitos de caída asociados (Williams, 1983).
(Qv9)El Complejo del Cráter Masaya es un grupo de flujos de lava, lagos de lava
y depósitos de escoria y material soldado de caída que afloran en las paredes
del cráter.
36
(Qa10)Depósito de cenizas y escoria de caída que cubren las faldas bajas del
cráter Masaya.
(Ql11 – Qa11)Flujo de lava en bloques con cenizas y escorias asociadas,
aglutinadas y fisuradas provenientes del Comalito.
(Ql12)Flujo de lava Casa Vieja caracterizado por sus cristales de plagioclasa de
hasta 1 cm de largo.
(Ql13)Flujo de lava pahoehoe que aflora en una amplia zona baja en la ladera
NW del cráter Masaya.
(Ql14)Es el flujo de lava más extenso y con el mayor volumen de todos. Su fuente
fue probablemente el cráter San Juan y se caracteriza por sus vesículas
alineadas con cristales brillosos provenientes de fases de vapor y por su bajo
contenido de cristales.
(Qa15)Depósito de escoria (aglutinada) de caída proveniente del cráter San Juan
producida posiblemente por explosiones estrombolianas.
(Qa16)Depósito de escoria con una distribución mayor proveniente del cráter
Masaya con espesores de 1 a 2 m. Un suelo lo separa de Qa14. Ocasionalmente
contiene grandes bloques líticos angulares de gabro
(Ql17)Lava potente en bloques proveniente de un lago de lava del cráter Masaya,
parecido al de 1670 (Ql27).
(Ql18)Flujo de lava aa ampliamente distribuido, cubriendo completamente el
sector noreste del piso del cráter. Proviene de una colina pequeña cubierta por
cenizas al oeste de Montoso.
37
(Ql19)Flujo de lava aa muy ampliamente distribuido cubriendo la parte norte del
piso de la caldera.
(Qv20)El Complejo Nindirí consiste de flujos de lava, conos de ceniza y lagos de
lava desarrollados en etapas diferentes durante la evolución del cráter Nindirí.
Uno de sus lagos de lava estuvo activo en 1524 a la llegada de los
conquistadores
(Ql21)Flujo de lava inusualmente potente, expuesto abajo del Ventarrón en la
pared oeste de la caldera.
(Ql22)Flujo de lava de pequeño volumen que aparentemente hizo erupción a
partir de un sitio donde actualmente se encuentra el cráter San Pedro.
(Ql23)Brechas de flujo en bloques provenientes de una fisura de orientación
noroeste en los flancos del cráter San Pedro.
(Qa24)Depósito de cenizas y escoria que cubre el Complejo Nindirí y se extiende
a corta distancia de su origen.
(Ql25)Flujo de lava pahoehoe con abundantes y grandes tubos de lava, tal vez
formado en 1835, justo antes de la formación del cráter Santiago. Se caracteriza
por la abundancia de fenocristales de plagioclasa y pequeñas vesículas de 3 mm
de diámetro. Este flujo también está presente en el fondo del cráter Masaya,
desde donde alimentó un pequeño cono y un flujo subsidiario.
(Ql26)Flujo de lava Oviedo, lava pahoehoe con abundantes fenocristales de
plagioclasa justo debajo de la Plaza Oviedo en la orilla norte del cráter Santiago.
(Ql27)Flujo de lava aa de 1670. Rellenó el cráter Nindirí con una serie de lagos
de lava y finalmente se derramó por el flanco norte del cono Nindirí.
38
(Ql28 – Qa28)Flujo de lava de 1772 con sus cenizas y escorias asociadas,
provenientes de una boca de 3 m de ancho por 5 m de alto sobre una fisura a
mitad de un flanco del cráter Masaya y simultáneamente a lo largo de una fisura
con tendencia N-S, que probablemente es una extensión de la Falla Cofradía.
Estas lavas fluyeron a casi 3 km al norte de la orilla sumergida de la caldera,
siguió al este hacia la ribera del Lago de Masaya y posiblemente ingresó al lago.
(Ql29)El lago de lava de 1965 del cráter Santiago subió hasta cubrir los
escombros que habían rellenado el fondo el fondo del mismo desde la anterior
etapa eruptiva en 1950.
(Qal)Aluvión erosionado de las paredes de la caldera y que cubre actualmente el
piso de la caldera.
ESTRATIGRAFIA DETALLADA DE LOS PRODUCTOS EXPLOSIVOS
Adicionalmente a los trabajos de Bice (1980) y Williams (1983), que son los
trabajos que establecen la estratigrafía básica para la caldera de Masaya,
recientemente Hradecky y colaboradores (1997) han revisado tal estratigrafía
(Figura 26). Esta nueva estratigrafía sigue siendo informal (y de hecho no se
recomienda el uso de estas denominaciones hasta que no sean formalmente
publicadas), pero se anexan sus descripciones con el fin de contar con
información abundante sobre los depósitos y así, entender mejor los procesos
que ocurren en el volcán.
Grupo La Estrella. Formado predominantemente por tobas vítreas y líticas
soldadas con
intercalaciones de depósitos de oleadas piroclásticas y escorias.
La parte inferior está formada por depósitos de flujos piroclásticos y de caída de
cenizas coignimbríticas, de composición toleítica a calcialcalina. Sus rocas fueron
formadas por las explosiones del volcán La Estrella, la fase más vieja de Masaya
39
(Caldera La Estrella). Su edad se estima de 0.6 a 1.6 Ma. Su espesor máximo es
de alrededor de 50 m.
Figura 26. Columna estratigráfica reportada por Hradecky y colaboradores (1997).
40
Grupo Planetario. Constituido por toba arenosa de grano grueso con
intercalaciones de pómez y horizontes de escoria. En su parte superior se
observan depósitos de oleadas piroclásticas y rocas depositadas en ambientes
subacuáticos. Sus fuentes probablemente son: un centro volcánico en el área del
pueblo El Planetario, para los productos félsicos, la caldera Las Nubes (fase vieja
de Masaya) y un centro volcánico del lineamento Miraflores – Nejapa (rocas
andesíticas, las más predominantes). Su espesor máximo es de 35 m. Se le
encuentra cerca de la carretera vieja a León. Su edad es correlacionable con la
del Grupo Las Nubes (200 a 600 mil años), con la que tiene contacto transicional.
Grupo Las Nubes. Formado por la erupción de la caldera Las Nubes (Proto
Masaya de Schmoll y colaboradores, 1975, Caldera Las Sierras de van Wyk de
Vries, 1993). La roca típica es una toba arenosa de grano grueso con
intercalaciones de escoria. Los materiales corresponden a depósitos de flujos
piroclásticos, brechas volcánicas y pómez, con composiciones de basaltos
toleíticos a calcialcalinos y son ricos en Ti y Ni. También se incluyen depósitos
provenientes de otros centros volcánicos (lineamento Miraflores – Nejapa y el
volcán La Mina). El espesor máximo es de alrededor de 34 m. Subyace a las
Escorias Fontana y sobreyace a los depósitos del Grupo Estrella. Se estima una
edad de 200 a 600 mil años.
Escorias Fontana. Escorias negras relativamente homogéneas de composición
basáltica de afinidad toleítica. Trabajos anteriores las reconocen como Capas de
Lapilli Masaya (Bice, 1980) o Lapilli Fontana (Williams, 1983). Son depósitos
piroclásticos de caída que muestran estratificación o laminación. Se distribuyen
ampliamente en la cresta y en el sur de Las Sierras de Managua, en la zona sur
de Managua y en las cercanías de la carretera vieja a León. El espesor máximo
es de 6-7 m u 8–9 m si se toma en cuenta un depósito de caída adicional.
Sobreyace al Grupo Las Nubes y están cubiertas por los depósitos de El Crucero
y del volcán Ticuantepe. Se estima su edad en 50 - 100 mil años.
41
Subgrupo El Crucero. El subgrupo pertenece al Grupo Managua y yace sobre las
Escorias Fontana. Formado por bancos de tobas arenosas basálticas de afinidad
toelítica, contiene intercalaciones de escorias negras y es típica la presencia de
horizontes de meteorización y suelos fósiles. Su espesor máximo es de 10 m.
Los centros volcánicos fuentes de los productos piroclásticos son Masaya y
centros volcánicos de Miraflores - Nejapa. Se le encuentra en Las Sierras de
Managua y en las cercanías de la población El Crucero. El Crucero yace debajo
de la pómez Apoyeque y sobre Las Escorias Fontana. Su edad se estima en 27 35 mil años.
Escorias San Judas (Masaya Triple Layer). Nombrada así por Woodwardt y
Lundgren en 1975 y reconocida como la Capa Triple por Bice (1980). Tiene una
estructura estratificada de intercalaciones de cenizas y escoria negra (contiene
lapilli acrecional) de caída y en su base depósitos de oleada piroclástica. En su
base se observan abundantes hojas y tallos de plantas. Esporádicamente se
encuentran espesores de hasta 2.5 m. Las Escorias San Judas representan el
producto de una erupción pliniana del volcán Masaya (altura de columna de más
de 18 km) que produjo 1.7 km3 de materiales volcánicos fragmentados hace
6,500 a 7,500 años. La altura de la columna de la erupción fue calculada por el
método de Wilson a 18,4 km presuponiendo la rapidez del viento 30 km/hora. Se
supone, que la cobertura de la masa arrojada puede representar 1.74 (Bice,
1972).
Escoria Superior. Cubre a la Escoria San Judas y se distribuye entre La Sierra
de Managua y la ciudad de Managua, excepto en sus barrios meridionales, en
las pendientes de la Sierra de Managua y en las partes culminantes de ésta
sierra (Figura 27). Su espesor disminuye al Oeste, donde su extensión está
limitada aproximadamente por la línea Santa Ana - Laguna de Asososca. Es una
escoria de color negro con ocasionales fragmentos de rocas volcánicas: el
centro volcánico de Masaya y un centro del sistema Miraflores - Nejapa. El
42
espesor actual de la Escoria Superior oscila alrededor de unos decímetros.
Figura 27. Mapa de isopletas de la Escoria Superior (Hradecky y colaboradores, 1997).
Tobas Ticuantepe. En la vecindad Oeste y Noroeste de la caldera Masaya se
conocen lugares con notable acumulación de deposiciones de escorias de color
gris oscuro a negro, descritas por Williams (1983). Representan productos de las
43
oleadas piroclásticas de una erupción pliniana del Volcán Masaya. Afloran en
muchos lugares cerca del volcán y también en la parte occidental de la ciudad.
Están acompañadas por los depósitos denominados “Talpetate”. Woodward y
Clyde (1975) las llamaron Formación El Retiro. Su espesor alcanza los 10 m y 3
m el depósito de caída. Las escorias negras (de composición basáltica y afinidad
toleítica) del depósito de oleada piroclástica se intercalan con tefras de caída
amarillas que contienen una gran cantidad de lapilli acrecional de hasta 2 cm de
diámetro.
Escoria Última (EU). Escoria que aflora en las periferias meridionales, suroccidentales y en el norte de Managua. La capa de Escoria Última alcanza 0.5
m, excepcionalmente hasta 1 m de espesor (El Crucero). En la columna
estratigráfica del Grupo Managua, representa el producto explosivo más joven
de todos. Yace sobre las tobas de Ticuantepe, cuya edad se estima en 3 mil
años. Por su posición y distribución, la Escoria Última es muy importante para la
evaluación de amenaza volcánica de una erupción moderada del Volcán Masaya
(Figura 28).
PETROLOGÍA DE LOS PRODUCTOS ERUPTIVOS
Las lavas y material piroclástico (basáltico a basáltico-andesítico) del Complejo
de la Caldera de Masaya posee numerosas características geoquímicas
distintivas: una relativa homogeneidad composicional, contenidos bajos de Al2O3
y altos de FeO, un patrón de diferenciación toleítica (baja presión) y elevadas
concentraciones de elementos litófilos de radio iónico grande (por ejemplo: el
contenido de Ba de 800 ppm aproximadamente). En diagramas de fase CMAS,
sus composiciones siempre caen en o cerca de bajas presiones cotécticas.
Adicionalmente, los basaltos de Masaya tienen inusualmente altas relaciones
87
Sr/86Sr y 10Be.
44
El Masaya ha exhibido ciclos composicionales de mediano plazo, que se
refleja en los patrones con cambios bruscos en el contenido de TiO2 y de
FeO*/MgO. También numerosos cambios composicionales abruptos de largo
plazo coinciden generalmente con la formación de la caldera.
Figura 28. Mapa de isopletas para la Escoria Ultima (Hradecky y colaboradores, 1997).
45
Los diversos rasgos geoquímicos de Masaya, conjuntamente con las
observaciones volcanológicas, indican que este volcán es subyacido por una
cámara magmática grande (de 10km3) y somera que constituye un sistema
abierto. Aunque la cristalización fraccionada es un proceso significativo en la
cámara de sistema abierto de Masaya, la mezcla de magmas y contaminación
magmática también son importantes. La mezcla de magmas es importante para
explicar los cambios estratigráficos discontinuos en composición de magmas
observados en el Masaya. También, la contaminación cortical es necesaria para
explicar las concentraciones generalmente elevadas de
87
Sr/86Sr y elementos
litófilos de radio iónico grande.
Walker et al. (1993) han concluido que dos componentes se hayan
mezclados en la cámara magmática de Masaya: un componente basáltico pobre
en elementos litófilos de radio iónico grande (como el emitido en los conos
cineríticos de Nejapa y Granada) y un componente félsico rico en dichos
elementos (como el emitido en las vecinas calderas de Apoyo y Apoyeque). Las
primeras, sin embargo han dominado, su mezcla con las segundas, terminan
con formación caldérica. Irónicamente, el sistema abierto ha ejercido un control
fundamental
en
el
mantenimiento
de
una
relativa
homogeneidad
de
composición.
El volcán Masaya es un volcán muy interesante desde el punto de vista
petrogenético al poseer las relaciones de
10
Be/9Be más altas dentro de los
volcanes asociados a márgenes activas. En función de las gráficas U/La-Ba/Th
(Patiño y otros, 2000), se piensa que este volcán recibió una dosis completa de
componentes
de
subducción
–
MORB
alterado,
carbonatos
y
lodos
hemipelágicos. Desde los puntos de vista volcanológicos y geoquímicos, se
piensa que una fuente rica en volátiles alimenta al Masaya, haciendo de éste un
volcán sumamente peligroso (Carr, 2001).
46
MECANISMOS ERUPTIVOS
Volcanismo efusivo. Williams y McBirney (1979) definieron el volcanismo de la
caldera tipo Masaya como un volcanismo en donde los flujos de lava en las
laderas no juegan un papel preponderante. Williams (1983) hace notar que,
precisamente en las paredes de los cráteres del volcán Masaya se observa que
el volcán está construido por la apilamiento de lavas en sucesiones importantes.
Williams (1983) muestra información acerca de 13 flujos de lava que cubren
el piso de la caldera solamente y, en total, cubren un área de cerca de 40 km2,
representando un volumen de material emitido de 0.2 km3. Es entonces de
esperar que el volumen de magma emitido en forma de lavas puede ser mucho
mayor y que aún está pendiente de ser evaluado.
El flujo de lava de 1670 cubre 2.12 km2 y representa un volumen de 0.0106
km3. El flujo de lava de 1772 cubre 7.51 km2 y con un volumen de 0.0225 km3.
Los flujos de lava más recientes muestran que éstos pueden alcanzar hasta 10
km de distancia, aunque algunos flujos, extraordinariamente voluminosos
pueden llegar hasta 25 km del cráter.
Volcanismo explosivo. Los trabajos desarrollados por Bice (1980) y Williams
(1983) son fundamentales para entender los mecanismos eruptivos explosivos
en la caldera Masaya. Más recientemente, Hradecky y otros (1997) han tratado
de complementar tal información. De lo anterior, resulta por una parte el análisis
de los mecanismos de procesos de lluvia de piroclastos y, por otra, flujo de
piroclastos.
a)
Los depósitos de caída producidos en el volcán Masaya (por ejemplo
Lapilli Fontana y Formación San Judas) permiten vislumbrar que en
esta estructura volcánica basáltica han ocurrido en el pasado
geológico, eventos explosivos de gran magnitud (plinianos). Los
depósitos de caída plinianos revelan volúmenes eruptivos de 1.7 a 4.3
47
km3, con alturas de columna eruptiva calculadas entre 18 y 50 km, con
tasas de erupción de 104 a 105 m3/s y de corta duración (alrededor de
2 horas).
b)
Los depósitos de oleada piroclástica (los asociados a la ignimbrita
basáltica y el surge de Williams, 1983) están asociados con
explosiones freatomagmáticas de gran magnitud.
Formación de calderas. El trabajo clásico de McBirney (1956) sirvió para
establecer dentro de la clasificación de calderas, la caldera tipo Masaya:
“las calderas tipo Masaya se forman por subsidencia paulatina de una
depresión amplia y somera (tipo caldero) ocupando mayormente la porción
central de un volcán escudo bajo e inconspicuo, sin erupciones a partir de las
fisuras arqueadas y radiales asociadas y casi todas las lavas están contenidas
dentro de los escarpes que la limitan... Los márgenes ondulados de la depresión
sugieren una sucesión de colapsos aproximadamente cilíndricos que resultan de
una migración periódica del magma en el subsuelo. Las erupciones explosivas y
flujos de lava por los flancos no juegan un papel preponderante en el desarrollo
de la depresión”. (Macdonald, 1972; Williams y McBirney, 1979).
Los trabajos de Bice (1980) y Williams (1983) contradicen esta definición al
mostrar la presencia de varias sucesiones importantes de depósitos producto de
eventos explosivos de gran escala, tanto de caída como de flujo. De hecho, en
este volcán se demostró por primera vez la existencia de flujos piroclásticos
soldados de gran espesor y alcance de composición basáltica.
Rymer y colaboradores (1998) proponen la formación de estos cráteres
verticales mediante dos procesos: retirada del magma (propuesto primero por
McBirney
en
1956)
y
creciente
colapso
de
sistemas
de
cavernas
(particularmente después de una fase de desgasificación). Estos dos procesos
48
resultan en un descenso del nivel de piso del cráter hasta alcanzar el techo del
cuerpo de magmas hasta exponerlo nuevamente en la superficie (Figura 29).
A pesar de las contradicciones entre los modelos de McBirney (1956) y las
evidencias mostradas por Bice (1980) y Williams (1983), el trabajo de Rymer et
al. (1998) apoya la hipótesis de formación de los cráteres por colapso durante
los procesos de retirada de cuerpos magmáticos, pero no se excluye la
posibilidad de que algunos cráteres sean consecuencia de erupciones
explosivas. La combinación de ambos procesos podrían dar lugar a la formación
de los cráteres y depósitos. Tal vez ésta sea la razón por la cual, el número de
cráteres no coincide con el número de secuencias reportadas, aunque es
necesario decir que aún falta mucho trabajo estratigráfico por desarrollar.
49
Figura 29. a) Cambios en la anomalía gravimétrica observada y calculada entre febrero de 1993
y abril de 1994, a lo largo de las líneas de sección que se muestran en la figura 17. b) Cuerpo
subterráneo de densidad reducida. c) Sección interpretada del cráter Santiago (Rymer et al.,
1998).
COMENTARIOS GENERALES A LA GEOLOGIA
El estudio de Bice (1980) es un trabajo extraordinariamente completo que
incluyo trabajo estratigráfico fundamental (es aún vigente), geoquímica,
fechamientos, volcanología física y cartografía. No obstante, este trabajo se
enfocó al área de Managua, razón por la que no era necesario detallar aún más
en los procesos eruptivos y estratigrafía específica del volcán Masaya.
50
Por su parte, el estudio de Williams (1983) sentó las bases de la estratigrafía
del volcán Masaya y reportó, por primera vez, la existencia de productos
piroclásticos resultantes de explosiones plinianas en volcanes basálticos. Hasta
el trabajo de Williams, no se conocían las “ignimbritas” basálticas ni las oleadas
piroclásticas de gran alcance y magnitud volumétrica como las encontradas en el
volcán Masaya. La importancia de estos descubrimientos fue, tal vez, la razón
por la que depósitos de menor magnitud explosiva (pero importantes para el
análisis de peligros o amenazas volcánicas), no fueran detallados tan
minuciosamente como los primeros.
El estudio de Hradecky y colaboradores (1997) introduce nuevos elementos
estratigráficos y reporta la presencia de secuencias piroclásticas no reportadas
por Bice (1980) o Williams (1983). No obstante, el trabajo carece de un enfoque
volcanológico que permita reconocer mejor las características de los eventos
explosivos asociados a tales depósitos. Un aspecto desafortunado de este
laborioso trabajo es la creación de confusiones debido al inadecuado uso de la
terminología volcanológica, de la nomenclatura estratigráfica (ya sea mediante el
uso del Código de Nomenclatura Estratigráfica para Norteamérica o la Guía
Estratigráfica Internacional), la ausencia de secciones geológicas u otros
elementos que permitan reconocer interpretación o conclusión alguna.
Es sumamente importante, llevar a cabo estudios de carácter estratigráfico y
de cartografía geológica detallada, sistemática y congruente, acompañada de
estudios volcanológicos y de geofísica (sísmica de reflexión, resistividad
eléctrica, etc.) para poder detallar mejor la geología de la zona.
El volcán o caldera Masaya parece ser parte de una estructura mayor, una
estructura mayor o estructura volcanotectónica reconocida genéricamente como
el graben de Managua, producto de un ambiente transtensional. En este
contexto, los peligros asociados no solamente son los esperados para un volcán
51
central, sino también, fenómenos de carácter tectónico, migración y creación de
nuevos centros eruptivos.
Trabajos adicionales de cartografía y estratigrafía volcánica, permitirán definir
con precisión los sitios de tal actividad y su posible migración espacial.
Asimismo, los trabajos volcanológicos servirán para reconocer con la menor
ambigüedad posible, el número, distribución y magnitud de los eventos
explosivos y efusivos de Masaya y de los volcanes del lineamiento NejapaMiraflores. Aunado a esto, es necesario integrar estudios de carácter estructural
para definir con precisión el trazo de las fallas y su naturaleza. Aunado a esto, es
necesario integrar los trabajos de geofísica y realizar otros más con el fin de
establecer lo más precisamente posible las dimensiones, trazo y signos de
actividad de los elementos estructurales (fallas y fracturas) en la región.
En este trabajo, sólo nos limitaremos al análisis de las amenazas del volcán
Masaya, conscientes de que éste es sólo un trabajo parcial del análisis que es
necesario. Para el reconocimiento de las amenazas reales, será necesario
plantear estrategias de estudio adicionales y de mayor envergadura.
52
Historia Eruptiva Reciente
El Volcán Masaya es uno de los volcanes más importantes de Nicaragua,
también figura entre los más activos. Con el fin de reconocer la actividad
eruptiva reciente se compilan las erupciones históricas, los reportes de actividad
en el boletín volcanológico mundial y se listan algunas notas informativas del
INETER.
EVENTOS HISTORICOS DEL VOLCAN MASAYA (WWW-INETER)
Los siguientes eventos fueron obtenidos de la información disponible en la
página electrónica del INETER. La Tabla 2, posee mayores datos acerca de
estas erupciones.
1520
Fuerte erupción.
1670
Presentó violenta fase eruptiva entrando después en largo período de relativa calma.
Derrame de lava.
1772
El 16 de marzo entró en violenta erupción la cual duraría aproximadamente ocho días.
Derrame de lava.
1853
Violenta erupción.
1858
Fuerte actividad eruptiva.
1902
Presentó fuerte período eruptivo.
1918
En enero arrojó gran cantidad de humo y fina lluvia de arena cayó sobre poblaciones a
aledañas al volcán.
53
1919
Durante los meses de julio y agosto fuertes retumbos y sismos alarmaron poblaciones
cercanas a la ciudad de Masaya.
1921
En noviembre y diciembre produjo fuertes retumbos y se sintieron varios sismos en
sectores próximos al volcán.
1924
Durante el mes de octubre arrojó gran cantidad de humo, produjo fuertes retumbos,
enormes llamas se observaron en su cráter y lanzó fina lluvia de arena sobre Masaya y
poblaciones cercanas.
1925
En el mes de abril se observaron gigantescas llamaradas saliendo de sus cráter
mientras en sus cercanías se sentían leves temblores.
1946
Retumbos procedentes del volcán y leves sismos alarmaron provocaron alarma entre
las poblaciones cercanas.
1947
De julio a diciembre se observaron llamas y abundante salida de gases; se escucharon
fuertes retumbos producidos por el volcán y se sintieron varios sismos. La ceniza
arrojada afectó a las poblaciones cercanas.
1948
Durante el mes de septiembre gigantescas llamaradas y espesa columna de humo
salían de su cráter mientras fuertes retumbos del volcán ponían en alerta a las
poblaciones aledañas.
1953
En enero fuertes retumbos, sismos y derrumbes en el cráter provocaron alarma en
Masaya y sus alrededores
1965
En el mes de noviembre presentó marcada actividad eruptiva, ocurrieron potentes
explosiones y se produjeron grandes derrumbes en sectores cercanos al volcán.
54
Tabla 2. Reseña de la actividad eruptiva reciente en el volcán Masaya.
Observaciones
Altura de
Columna
(km)
Tefra
< 104
Actividad Central
Lago de lava
< 0.1
1551
Tefra
< 104
Actividad Central
Lago de lava
< 0.1
1570
Tefra
< 104
Actividad Central
Lago de lava
< 0.1
1670
Tefra
(1x107)
3-15
1772
Tefra
(1x106)
1852
Tefra
(1x106)
Actividad Central
Explosiva
Flujo de lava
Actividad Central
Explosiva
Flujo de lava
Fisuras radiales
Actividad Central
Explosiva
Fisuras radiales
Flujo de lava
1853
Tefra
(1x104)
Actividad Central
Explosiva
Freática
0.1-1
1856
Tefra
(1x106)
Actividad Central
Explosiva
1-5
1858
Tefra
(1x106)
Actividad Central
Explosiva
1-5
1902
Tefra
(1x106)
Actividad Central
Explosiva
1-5
1904
Tefra
(1x106)
Actividad Central
Explosiva
1-5
Fecha
Depósitos
(m3)
1524
Daños
1-5
1-5
55
Observaciones
Altura de Columna
(km)
Tefra
(1x106)
Actividad Central
Explosiva
Fisuras radiales
1-5
1913
Tefra
(1x104)
Actividad Central
Lago de lava
0.1-1
1919
Tefra
(1x106)
Actividad Central
Explosiva
1-5
1946
Tefra
(1x104)
0.1-1
1965
Tefra
(1x104)
Actividad Central
Explosiva
Lago de lava
Actividad Central
Explosiva
Flujo de lava
Lago de lava
1987
Tefra
(1x104)
0.1-1
1989
Tefra
(1x104)
Actividad Central
Explosiva
Freática
Actividad Central
Explosiva
Flujo de lava
Lago de lava
1993
Tefra
(1x104)
Actividad Central
Explosiva
Lago de lava
0.1-1
Fecha
Depósitos
(m3)
1906
Daños
1997
2001
0.1-1
0.1-1
Actividad Central
Explosiva
Flujo de lava escoriáceo
Daños a turistas,
destrucción de
vehículos
Explosión con salida de
bombas que alcanzaron hasta
500 m en la plaza de Oviedo
56
DESCRIPCIONES DE LA RED GLOBAL DE VULCANOLOGÍA
Adicionalmente a la información anterior, se tiene la información publicada en
el Boletín de la Red Global de vigilancia volcánica (GVN, por sus siglas en inglés
de Global Volcanic Network), que incluyen relatos y descripciones en idioma
inglés de la actividad volcánica del Concepción reportada por viajeros o
vulcanólogos visitantes. Para evitar la pérdida de información debida a
problemas de traducción, las descripciones se listan en el idioma original de su
publicación. Algunas de estas actividades no son fidedignas o confirmadas y se
deben tomar con cautela, sin embargo, se incluyen en esta recopilación con el
fin de reunir toda la información disponible posible.
04/70 (CSLP 38-70) Minor explosions and lava emission from central vent on old
lava lake
Card #0924 (30 April 1970)
Jose Viramonte forwarded the following concerning activity at Santiago
Crater. "On 4 and 5 April 1970, a little eruption from the central vent on the
old lava lake could be observed. The eruption consisted of two of fluidic lava
flows. There were many cracks in the surface of the old lava lake through
which fumaroles and sublimates showed. Two major explosions were heard
on 4 and 5 April. During our visit to the volcano, minor explosions took pace,
and strong fumarolic activity from the central vent was present as well."
Information Contact: Jose Viramonte, Central American University,
Managua.
04/78 (SEAN 03:04) Increasing lava lake activity at pit crater
The past four months have produced a gradual increase in the intensity
of activity at Masaya. Fissures have appeared in the floor of Santiago Crater
(figure 1) a collapse feature that formed, along with neighboring San Pedro
crater, in 1858. The vent opening about 100 m below the rim of Santiago's
pit crater has widened to about three times its size of a few months ago. The
persistent lava lake inside the pit crater is usually not visible from Santiago's
rim, but splashes of lava can occasionally be seen and minor amounts of
lava clots are sometimes thrown from the vent. When the volcano was
visited in late March, rare bursts of scoria reached the rim of the pit crater.
Gas emission was strong, but has not seriously damaged nearby coffee
trees.
57
Figure 1. Oblique airphoto of the
Masaya Complex looking SE, 6
November 1975. The four craters
seen in this photo are (clockwise
from upper left) Masaya, Santiago,
Nindiri, and San Pedro. The
Masaya Crater is about 500 m in
diameter. Photograph taken by
IGN; courtesy of Jaime Incer.
Information Contacts: D. de Jerez, Parque Nacional Volcán Masaya;
D. Shackelford, CA.
02/80 (SEAN 05:02) Active lava lake several times larger than in 1977
In early February, the plume appeared larger than any observed
between 1968 and 1977. The diameter of the active lava lake in the pit crater
was several times larger than in 1977 and the level of lava has dropped
since then.
Information Contacts: R. Stoiber, S. Williams, and M. Bruzga,
Dartmouth College.
07/80 (SEAN 05:07) Large plume; high SO2 output
Emission of a very large plume continued in June. Remote sensing of
SO2 gas revealed high output rates. The gas plume allowed only brief
glimpses of the small pit crater in which an active lava lake had been
observed on many occasions since 1970. The lake was not seen during the
brief clear moments, nor did a glow appear in photographs of the pit. The
lake's characteristic roaring noise, if present, was masked by the sounds
created by gas emission. There were no night observations at Masaya.
Information Contacts: R. Stoiber and S. Williams, Dartmouth College;
M. Carr and J. Walker, Rutgers Univ.; A. Creusot, INETER.
58
12/80 (SEAN 05:12) Continued emission of a large gas plume
Emission of a very large gas plume has continued without interruption
since fall, 1979. Remote sensing of SO2 revealed continued high level flux,
with a 1,500-2,000 t/d average for the entire year. The hole through the
surface of the lava lake was larger than in previous years and a great deal of
sublimation was occurring around its edge. No lava or red glow was visible
during daylight. Acid gas and rain continued to cause considerable damage
downwind.
Information Contacts: R. Stoiber, S. Williams, H. R. Naslund, L.
Malinconico, and M. Conrad, Dartmouth College; A. Aburto Q., D. Fajardo
B., Instituto de Investigaciones Sísmicas.
01/81 (SEAN 06:01) Gas emission event continues
The gas emission event that began in fall 1979 continued with a steady
release of very large amounts of SO2 in early 1981. Strong winds carried the
gas plume onto populated areas at high elevations. A day of notable rockfall
activity in the crater was followed for 1 day by a significantly larger rate of
gas release.
Information Contacts: R. Stoiber and S. Williams, Dartmouth College;
D. de Jerez, IRENA, Managua; D. Fajardo B., Instituto de Investigaciones
Sísmicas.
03/81 (SEAN 06:03) Gas emission continues unabated; pit crater enlarges
"Scientists from Dartmouth College, IRENA, and the Instituto de
Investigaciones Sísmicas report the following based on their continuing
cooperative observation of Nicaraguan volcanoes.
"The fourth gas emission crisis of this century continued unabated.
Extensive remote measurement of SO2 output (by COSPEC) has revealed a
greater variability in emission rates than had previously been recognized
(several hundred to several thousand t/d). The pit crater from which the gas
is emitted continued to increase slowly in diameter and was strongly
elongate in the NW-SE direction. Night observation of the activity was
possible and confirmed the complete absence of any incandescence in the
pit where lava was visible as recently as November 1978."
Information Contacts: S. Williams, R. Stoiber, Dartmouth College; D.
de Jerez, IRENA; D. Fajardo B., Instituto de Investigaciones Sísmicas.
12/81 (SEAN 06:12) Large white vapor plume and high SO2 emission rates
continue
59
"Emission of a very large white vapor plume continued in late
November. SO2 emission rates, measured using COSPEC, were at the
same high levels reported since February 1980. Acid rain and gas
fumigation continued to cause problems downwind. Incandescence was
seen in the bottom of the inner crater through the crust on the surface of
Santiago Crater lava lake on 29 November. Park rangers reported that this
incandescence has been visible since September 1981, but it was not noted
by several observers who specifically looked for it while working around the
crater 25-29 November. The roaring sound of gas emission (or possibly lava
splashing) may have been louder than in March 1981."
Information Contacts: R. Stoiber, S. Williams, H.R. Naslund, J.B.
Gemmell, D. Sussman, Dartmouth College; D. Fajardo B., Instituto de
Investigaciones Sísmicas.
01/82 (SEAN 07:01) Small explosion heard followed by ashfall several kilometers
south
"A small eruption occurred from the hole in Santiago Crater lava lake in
the early evening of 16 December. No one witnessed the event, but people
living S of the caldera reported hearing an explosion that was followed by
ashfall several kilometers to the S. Highly vesiculated scoria fragments up to
20 cm in diameter fell as much as 200 m S of Santiago pit crater. As of late
January, no subsequent explosive activity had been observed. A very large
plume was still being continuously emitted. Incandescence was not readily
visible during the day but was evident at night."
Information Contacts: R. Stoiber, S. Williams, Dartmouth College; D.
Fajardo B., Instituto de Investigaciones Sísmicas.
03/82 (SEAN 07:03) Bright yellow incandescence seen at night
"Bright yellow incandescence was plainly visible at night in Santiago
Crater in early March. No change had occurred except for a small collapse
of the inner crater walls. The huge gas plume still poured out continuously."
Information Contacts: S. Williams and R. Stoiber, Dartmouth College;
I. Menyailov and V. Shapar, IVP, Kanchatka; D. Fajardo B., INETER.
08/82 (SEAN 07:08) Strong, continuous gas emission; lava lake glow
Emission of acid gas from Santiago Crater was strong and continuous in
early August. Incandescence from the small pit in Santiago Crater's lava
lake was visible at night. The gas and associated acid rain affected
vegetation downwind. An explosive gas emission event occurred 6 June at
1622. As of early August, seismographs recorded constant tremor.
60
Information Contacts: D. Fajardo B., INETER; R. Parnell, Jr.,
Dartmouth College.
10/82 (SEAN 07:10) Small explosion; strong vapor emission; seismicity
A small, brief, explosive eruption from the bottom of the lava lake in
Santiago Crater occurred at dawn on 7 October. Tephra, including blocks
with volumes to 55 cm3, fell 300 m SE and covered an area of 150,000 m2.
The eruption killed a few trees and animals near the summit. Heat from the
ejecta melted asphalt on a road, which was also slightly damaged by impact
from larger tephra. Rumbling and explosion sounds were heard through the
day. After the initial explosion, no additional tephra was ejected, but gas
emission increased considerably, forming wide vapor columns that reached
high altitudes.
The eruption was preceded by a change in the pattern of seismicity and
accompanied by a magnitude 2.3 event lasting 3.7 seconds. After the
eruption, small earthquakes occurred about every 6 minutes until 1100 on 8
October.
The 7 October eruption was larger than Masaya's previous explosion on
26 December 1981 (7:1). Strong vapor emission has made observations of
the bottom of the crater difficult, obscuring any changes that may have
occurred to the lava lake.
Information Contact: G. Hodgson V., INETER.
11/82 (SEAN 07:11) Gas emission continues; incandescence within the inner crater
"The approximately 3-year gas emission crisis from Santiago Crater
continued in late 1982. Total SO2 flux was apparently reduced from the very
large levels reported before. Incandescence within the inner crater was dull
red-orange, as compared to the brilliant orange observed in February, 1982.
The 7 October, 1982 explosion threw out abundant, juvenile, highly
vesiculated scoria, which was often flattened and oxidized against the
ground surface. Numerous fragments of sublimate minerals torn from the lip
of the inner crater were ejected with the juvenile scoria. No new explosions
have thrown debris out of Santiago Crater but several gas bursts have been
reported by Park guards."
Information Contacts: S. Williams, R. Stoiber, Dartmouth College; G.
Hodgson V., D. Fajardo B., INETER.
04/83 (SEAN 08:04) Gas column and incandescence from lava lake
A strong gas column was observed. Through 9 March, incandescence
was noted.
Information Contact: D. Fajardo B., INETER.
61
05/85 (SEAN 10:05) Small ash eruptions
In December 1983, 4,993 microearthquakes were recorded at Masaya.
Early that month, a very large gas column was continuing to emerge from
Santiago Crater. A series of small ash eruptions occurred in April 1984.
There was a small gas explosion on 23 January 1985, and another ash
eruption occurred in April 1985.
Information Contact: D. Fajardo B., INETER.
08/85 (SEAN 10:08) 400 km plume sighted
An apparent volcanic plume roughly 400 km long was sighted in the
Masaya area, extending W over the Pacific Ocean. Its exact source could
not be clearly ascertained as Masaya was obscured by clouds. It was
broader and appeared to be more dense then the San Cristóbal plume but
was still relatively diffuse.
Information Contact: C. Wood, NASA, Houston.
11/85 (SEAN 10:11) Gas column heights in 1985
Heights of the gas column above the rim of Santiago Crater (485 m
above sea level) were measured on three occasions in 1985: 22 January (48
m), 17 June (78 m), and 21 October (78 m).
On 3 December, during re-entry from mission 61-B, Space Shuttle pilot
Brian O'Connor took three 35-mm photographs (nos. 61B-12-020, 021, and
022) of Masaya. These showed a large white plume extending at least 25
km due W toward the Pacific Ocean.
Information Contacts: D. Fajardo B., INETER; C. Wood, M. Helfert,
NASA, Houston.
Further Reference: Stoiber, R.E., Williams, S.N., and Huebert, B.J.,
1986, Sulfur and Halogen Gases at Masaya Caldera Complex, Nicaragua:
Total Flux and Variations with Time; JGR, v. 91, no. B12, p. 12215-12232.
11/86 (SEAN 11:11) Rock landslides and wall collapse in Santiago Crater
Intensive rock landslides began at midday on 12 November on the S
and W sides of Santiago Crater. Part of the SW wall collapsed, extending
Santiago into a section of Nindirí crater (figure 2). A floor collapse
accompanied the slides. Two seismographs near the crater have recorded
only seismicity produced by rockfalls down the 350-m crater wall.
62
Figure 2. Topographic map of
Masaya showing craters and lava
flows (from Mooser and others,
1958).
Reactivation of two faults or fissure systems facilitated continued wall
collapse. One prominent fault cuts NE/SW through the crater and the other
extends NW around the edge of the crater. A substantial decrease in
fumarolic activity followed the collapse with only several small fumaroles
remaining along the NE/SW fault in the crater bottom.
Guatemalan newspapers reported that the Civil Defense staff closed
access to Masaya Volcano National Park on 20 November. A government
communique stated that the rock slides closed a fissure (possibly the pit
crater) that formerly emitted large plumes and lava.
References: Stoiber, R.E., and Williams, S.N., 1986, Sulfur and
halogen gases at Masaya Caldera Complex, Nicaragua: total flux and
variations with time: JGR v. 91, no. B12, p. 12, 215-12, 231.
Mooser, F., Meyer-Abich, H., and McBirney, A., 1958, Catalogue of the
active volcanoes of the world, Part VI, Central America, 146 p.
Information Contacts: Douglas Fajardo and Petr Hradecky, INETER;
Prensa Libre newspaper, Guatemala City, Guatemala
05/87 (SEAN 12:05) Collapse and small eruptions from inner crater
Santiago Crater has been in a very active degassing phase, the 4th in
this century, since 1979. Such episodes have previously occurred at
intervals of 20-25 years and lasted 4-10 years. Volcanic gases, primarily
H2O, SO2, HCl, and CO2, have been emitted. The plain of Pacaya (Crucero),
in the direction of predominant gas movement, has been most affected by
the quantity of SO2, making raising of crops impossible in the area.
Degassing phases and the presence of a lava lake are characteristic of
Santiago Crater. It is evident that gases emerge along a fissure system, from
faults that strike NW-SE.
63
The landslides from the walls and interior of Santiago Crater that began
12 November 1986 were facilitated by the descent of the magma column or
a pressure change of part of the magma chamber below the volcano. The
existence of a fracture zone in the crater also facilitated the breakup of its
walls. These events were not preceded or accompanied by tremors. The
landslide debris partly plugged the gas conduits, although during the next
few days a successive resumption of degassing was observed. Thus,
sudden transport of gases was expected to lead to a small eruption.
On 18 December 1986 there was a small collapse within the inner crater
floor (figures 3 and 4), forming a circular hole and permitting a major flow of
gases. No significant changes were observed in January and the beginning
of February. On 15 February at 0020 a small eruption occurred in the
circular hole. The pressure of lava erupted ash and blocks, the blocks falling
back into the bottom of the vent.
Figure
3.
Photograph
of
Santiago's inner crater at Masaya,
taken after the collapse events of
late 1986 and early 1987. Courtesy
of Douglas Fajardo.
Figure 4. Another photograph of
Santiago's inner crater at Masaya,
taken after the collapse events of
late 1986 and early 1987. Courtesy
of Douglas Fajardo.
On 20 February, a new hole, also in the bottom of the inner crater,
formed by collapse, expelling a larger quantity of gases than from the
circular vent. The gas column was persistent, rising above the rim of
Santiago Crater. The gas that emerged from the new vent was darker
because of its higher content of magmatic gases.
A larger increase in gases has been reported since 22 February. The
circular vent continued to produce small eruptions. After each eruption, the
64
vent was completely clear, without gases. At the beginning of April,
incandescence began to be noted at night.
The inner crater is 180 m in diameter and 72 m deep.
Information Contacts: Douglas Fajardo B. and Petr Hradecky,
INETER.
01/88 (SEAN 13:01) Vigorous degassing continues; small tephra eruptions and
glow
When geologists visited the volcano on 25 December 1987 and 6 and
18 January 1988, two new, growing vents were visible (figure 5). The N vent
was the hottest (table 1) and most active, emitting the majority of gases. By
18 January, the inner crater occupied half of Santiago's floor, while Santiago
expanded westwards by collapse of the floor of neighboring Nindirí Crater.
The NW side of Nindirí also seemed to be sagging along boundary faults.
Gas output varied from vigorous (similar to 1985-86) to very little, perhaps
because of periodic blockage of the two vents by landslides and rockfalls.
One large gas burst was preceded by a loud roar and slightly raised
temperatures.
Figure 5. Sketch map of the
craters of the Masaya complex as
of 18 January 1988, showing the
locations
of
temperature
measurements in table 1.
Table 1. Temperatures in Santiago Crater measured by infrared radiometer
in late 1987 and early 1988. Surface brightness temperature was measured
in the 8-14 µm range with emissivity set at 1. Locations of observation points
are shown on figure 5.
Date
1
Location
2 3(Vn) 4(Vn) 5
25 December 1987 35-40° 54.6° 66-125° 100.5° 80°
06 January 1988 40° -- 110° 121° -18 January 1988 36° -- 161° 160° --
65
Information Contacts: B. van Wyk de Vries, H. Rymer, and G. Brown,
Open Univ; P. Hradecky and H. Taleno, INETER.
02/89 (SEAN 14:02) Lava lake develops in new collapse crater
Geologists observed increased steam emissions within Santiago's inner
crater and incandescent fissures on its SE vent walls 12 February.
Fracturing progressed gradually until 19 February at 1900, when collapse
occurred beneath the SE vent floor. A lava lake, first observed late 20
February inside the SE vent, was about 5 m in diameter at 2200 and had
increased to about 30 m by 0600 the next day (figure 6).
Figure 6. Sketch of the inside of
Santiago Crater at Masaya based
on a photograph taken on the SW
crater rim looking NE, February
1989. Courtesy of D.A. Rothery.
There was some evidence of strong explosive activity, possibly at 2000
on 20 February. Large amounts of Pelé's hair fell on Santiago crater's floor
and on the volcano's SW slope. A large hole formed early 21 February in the
N wall of the vent. Geologists observed continuous intense lava fountaining
(40 m high) in the center of the lava lake that day and the lake level
fluctuated by 5-8 m over periods of about 10 minutes. Fluctuations increased
to 10-12 m over periods of about 6-8 minutes on 22 February between 2000
and 2400. The lava lake was crescent-shaped and had reached a maximum
size of about 40 x 18 m on 22 February. Measurements on 26 February
showed the new lava lake to be 175 m below Santiago's crater floor. The
lake area varied from hour to hour because of crusting, remelting, and
collapse, averaging about 40 m2 28 February-7 March and never exceeding
about 100 m2 during that period. Small Strombolian eruptions from the lake
surface were frequent. The maximum recorded brightness temperature of
the lake was 1,148°C (measured with a Minolta Cyclops 52 infrared
thermometer, bandpass 0.8-1.1 µm, 0.33° field of view) during a sustained
66
fountaining event that ejected spatter to ~20 m height. Maximum brightness
temperatures for other fountains generally ranged from 1,048° to 1,094°C.
A new vent appeared 23 February in the N corner of the lava lake and
exhibited intermittent Strombolian activity. A vent in that vicinity ("glowing
vent" in figure 6) had a brightness temperature of 940°C on 28 February,
although lava was not visible within it. On 25 and 26 February, small lava
flows were slowly extruded from the area between the new vent and the lava
lake. Minor amounts of tephra were discharged from the same area on 28
February. Above and west of the lava lake, a third vent that widened by
collapse and glowed weakly was the site of considerable degassing but
ejected no tephra. Since 20 February, continuous glow and intermittent
Strombolian activity inside the 30-m-wide SW vent have suggested the
presence of another small lava lake.
Pelé's hair found near the S and SW rims on 1 and 4 March was
probably erupted the previous week. Sounds similar to pistol shots were
frequently heard from the direction of the active region. A continuously
recording seismic station near the summit had registered normal levels of
volcanic tremor before the eruptive episodes 19 and 20 February. Beginning
21 February, continuous, high-amplitude, low-frequency tremor was
detected.
The last surface lava lake at Masaya was reported in June 1974 and
remained continuously visible until January 1978 (3:04). Intermittent glow
and deep roaring sounds have been noted since November 1986, when
collapse enlarged the crater to 150 m in diameter and 85 m depth (11:11). A
small eruption occurred from the inner crater in February 1987 (12:05) and
collapse formed 3 small vents in March, June, and December 1987. By
January 1988, the inner crater occupied half of Santiago's crater floor
(13:01).
Information Contacts: Alain Creusot, Dept of Volcanology, Instituto
Nicaraguense de Energía, Managua, Nicaragua; C. Oppenheimer and D.
Rothery, Open Univ; B. van Vyk de Vries, O. Castellon, and L. Urbina,
INETER
04/89 (SEAN 14:04) Lava lake drains; rockslides; gas emission
A local newspaper (the Barricada, citing Alain Creusot) reported that on
7 March, the level of the active lava lake in Santiago's crater had dropped
considerably (since late February). Spatter was occasionally ejected outside
the vent. The lake apparently drained on 9 March. Geologists visited the
crater on 14 March and measured a temperature of 76.6°C on the surface of
the frozen lake (all reported temperatures were measured by an 8-14
micrometer bandpass infrared thermometer from a distance of about 300 m
unless otherwise stated). The two incandescent vents that first appeared on
67
23 February (14:02) were still present in the lake's N corner. The
temperature of the hottest glowing vent was 667°C. On 16 and 18 March,
fumes collected in the crater and limited observations. By 28 March, debris
from rockslides on the SW inner wall of the crater had covered the site of the
former lake, at least 175 m below the floor of Santiago Crater. Gas emission
was strong. The two incandescent vents (maximum surface temperature
607°C) remained visible at night. On 12 April, the frequency of rockslides
(audible about every 5 minutes) had increased significantly. Most occurred
on the SW inner wall of the crater and many lasted for minutes. When
geologists drove past Masaya on 18 April the amount of fuming appeared to
have dramatically decreased.
Information Contact: C. Oppenheimer, Open Univ.
06/89 (SEAN 14:06) Lava lake freezes; small explosions
The February-March lava lake in Santiago Crater (14:02) probably froze
over in early March, and degassing from the lake vent had apparently
ceased by 12 March. Other vents remained open through April, with
occasional strong degassing episodes. Beginning around ll May, collapses
from the W, S, and N sides of the main crater blocked all vents. Little, if any,
gas emission was evident until 22 May when park rangers reported more
collapses and a plume visible from the Masaya road (6 km from the crater).
On 25 May, geologists found fresh scoria and lithic fragments scattered
from Plaza Sapper to the San Pedro crater (figure 7, top). Ten-cm fragments
were found to 20 m from the edge of Santiago, 5-cm fragments to 50 m, and
fragments <2 cm were found farther away (90% <1 cm). All tephra was
highly vesicular, often with smooth surfaces indicating solidification in flight.
Many Pelé's tears were found. The fragments were concentrated in small
areas, suggesting a number of discrete explosions. Tephra from the
explosions rose an estimated 100-300 m above the crater. Most fragments
were glassy basalt with occasional small (1-3 mm) fresh plagioclase. Lithic
fragments were porphyritic basalts with 10% plagioclase and some were
slightly altered hydrothermally.
68
Figure 7. Sketch of the summit
complex at Masaya, May-June
1989 (top) and Santiago Crater, 3
June 1989 (bottom). Courtesy of B.
van Wyk de Vries and O.
Castellón.
A 3 June visit revealed small amounts of fresh scoria up to 5 cm in
diameter as far as 50 m SW of the crater. The tephra was probably erupted
on 2 June when inhabitants reported a "brown cloud". Crater geometry was
similar to that in February. The lava lake vent and the "cannon" (3rd vent in
14:02) were blocked by collapse debris, but vent No. 2 (glowing vent in
14:02) had enlarged and was thought to be the source of the eruptions. On
25 May the vent was oval and about 4 m across, oriented vertically, rather
than horizontally as in February. On the 26th it had enlarged by 1 m, and by
3 June it was 7 x 3 m and rectangular. There appeared to be a considerably
larger chamber beneath the vent. The cannon (3rd) deepened slightly
between 25 May and 3 June.
Periodic fumarolic activity on the W wall and from a fault on the N side
(figure 7, bottom) was also observed. Weak fumaroles along the trend of the
fault (on the Nindirí crater floor below La Cruz) had temperatures <45°C.
Fumarolic activity decreased from May to June.
Information Contacts: B. van Wyk de Vries and O. Castellón, INETER.
04/90 (BGVN 15:04) Fumarolic activity
During fieldwork on 17 and 25 April, gas emission in Santiago Crater
was limited to a few patches of weakly fuming ground within the inner crater,
below the level of the frozen 1965 lava lake. The highest temperature
measured on the fuming ground (using an 8-14 µm infrared thermometer
from the crater rim) was 50.7°C. Small rockfalls from the inner crater walls
69
were frequently audible. Much of the floor of the innermost crater was
covered by debris and the "cannon" vent (first reported in February 1989;
14:02) was no longer visible. However, an opening had formed at the site of
a former incandescent vent N of the February-March 1989 lava lake. No
incandescence was evident in the crater after dusk on 25 April. Tangential
fissures crossing the S rim parking area and nearby had widened in recent
weeks.
Information Contacts: C. Oppenheimer, Open Univ; B. van Wyk de
Vries, INETER.
02/91 (BGVN 16:02) Rockfall activity declines after November 1989 collapse
"Growth of Santiago crater has slowed since the November 1989
collapse when 50,000 m3 of rock fell from the S (Plaza Sapper) side (figure
8). The overlook with protective wall and part of the parking lot were lost in
this event. Cracks continue to open and widen on Plaza Sapper, but
rockfalls decreased to negligible levels by April 1990. Seismic activity has
been recorded at a station in the Masaya Volcano Museum, 5 km from the
crater, and occasionally at a station in Nindirí crater, but overall, very little
activity was detected. The tremor associated with the February 1989 lava
lake and subsequent Strombolian activity (May-June 1989) was absent.
Three samples of the 1989 ejecta were analysed at the Open Univ (UK); all
are typical Masaya tholeiitic basalt, similar to that of 1965 and 1772.
Fumarolic activity in Santiago is restricted to a few points surrounded by
damp ground. Small areas of yellow sulfur deposits have built up locally.
Vegetation has started to colonize the Nindirí and San Pedro craters, and
some small grass patches have been established on the 1965 lava lake in
Santiago.
Figure 8. Sketch map of
Santiago crater, Masaya, 19
December 1990. Courtesy of
B. van Wyk de Vries.
70
"A water well that was drilled 3 years ago, about 5 km N of the caldera
(near the village of Veracruz) on the volcanic alignment extending from the
volcano, was reported to have started to produce hot (almost boiling) water.
Geologists from INETER are investigating the cause of this phenomenon.
Two maar craters lie 1 km NE of the well."
Information Contacts: B. van Wyk de Vries, O. Castellón, A. Murales,
and V. Tenorio, INETER.
04/92 (BGVN 17:04) Weak gas emission; acid gas and rain effects diminish
During a 26 April visit to Santiago Crater, extremely weak emissions
were observed from two or 3 small, quiet fumaroles at the base of the talus
in the inner crater and up the W wall (toward Nindirí Crater). COSPEC
measurements indicated an SO2 flux of <10 metric tons/day (t/d), compared
to 1500-2000 t/d during lava lake activity in 1980 (5:12). Simultaneous use of
SO2 and HCl INTERSCAN instruments at the crater indicated HCl
concentrations several times greater than SO2. A drive on the WSW
(downwind) ridge, the site of extensive acid gas deposition and acid rain
during the early 1980's (5:12; 6:12; and 7:08), showed that vegetation had
recovered somewhat; the same stark deforested appearance was still
evident, but low shrubs were healthier and larger.
Information Contacts: S. Williams, Arizona State Univ; Martha Navarro
C. and Silvia Arguello G., INETER.
03/93 (BGVN 18:03) Crater walls stabilizing
"Masaya's Santiago crater, visited on 7 and 13-14 January, contains a
few weak fumaroles on the rim of the 1989 vents and on the wall adjoining
the Nindirí crater. The crater walls have stabilized since the 1989/90
collapses, and there is now little rockfall activity. Vegetation is beginning to
colonize the crater walls."
Information Contacts: Andrea Borgia, Instituto Nazionale di Geofisica,
via di Vigna Murata 605, 00143 Roma, Italy; B. van Wyk de Vries, Open
Univ; and Peter J. Baxter, Dept of Community Medicine, Fenner's, Gresham
Road, Cambridge, England.
06/93 (BGVN 18:06) New lava lake appears
A lava lake reappeared in the bottom of Santiago crater in late June for
the first time in 3 years, but seismicity has not increased. The temporary
network of seismic stations intermittently installed around the summit area
has documented a progressive decline in seismicity since late 1989.
Epicenters have mainly been located below the N and NE flanks of the
71
volcano. Since 1989 the number of locatable events decreased to about 12/week, with focal depths of 400-800 m. In late 1991 and 1992, maximum
fumarole temperatures of 380-400°C were measured during expeditions into
the 200-m-deep inner crater. Fumaroles were located just above the
previous lava lake, active February-March 1989 (14:2, 4, and 6) and covered
by landslides in 1990 (15:04). A part of the S crater wall collapsed in
November 1989 (16:02), dropping 50,000 m3 of rock into the crater. Activity
in January 1993 consisted of a few weak fumaroles on the rim of the 1989
vents and on the wall adjoining the Nindirí crater.
An increase in SO2 emission was detected in late May 1993, and 3
seismometers were deployed around the crater in early June. An expedition
8 June installed one seismic station on the crater floor 100 m from the N rim.
That same day, a significant increase in the rate of gas release was
observed, with temperatures estimated at 400-500°C. Park rangers reported
new incandescence in the bottom of the crater the evening of 16 June.
Another descent to the crater floor on 20 June revealed a 7-8 m diameter
vent with liquid lava splashing at a depth of about 30-40 m; small lava
fragments were occasionally ejected. The vent slowly increased in diameter
through the end of June, and was elongated NW-SE.
Information Contact: Alain Creusot, Instituto Nicaraguense de
Energía, Managua, Nicaragua.
07/93 (BGVN 18:07) Small ash eruption precedes formation of lava lake; fumarole
temperatures rise
In the last week of March 1993 a fissure was observed to open in the
bottom of Santiago crater, with no associated seismic activity. Enlargement
of the fissure to 10 m in diameter was accompanied by high-pressure gas
emissions. In the first week of April, an earthquake swarm occurred
approximately 3 km E of Masaya City; the largest event was M 2.7. At the
same time, minor microearthquake activity was registered beneath Santiago
crater (1-2 events/day). On 16 June a small ash eruption in the late
afternoon lasted for about 13 minutes. That same night incandescence was
observed in the bottom of the Santiago crater (18:06).
A 7-8 m diameter vent with liquid lava splashing at a depth of about 3040 m was present on 20 June according to a report by Alain Creusot (18:06).
An additional report from Creusot indicates that an incandescent hole that
had opened above the lava lake was 1-2 m larger in late July. A significant
increase in gas emission has maintained a plume rising from the crater. As
of 28 June, the temperature of gas emissions from the crater had increased.
INETER reported that fumarole temperatures have generally been around
50°C since the beginning of the year, but have now increased to almost
250°C. Seismicity has generally remained low, with a slight increase on 4
July.
72
Information Contacts: Oscar Leonel Urbina, Departamento de
Volcanes, INETER; Alain Creusot, Instituto Nicaraguense de Energía,
Managua, Nicaragua.
09/93 (BGVN 18:09) Incandescence in lava lake
Bright yellow incandescence was observed on the evening of 31 August
through a window in the cooling lava lake at the base of Santiago Crater.
Jetting sounds made by escaping gases could be heard from the crater rim.
New incandescence in the bottom of the crater, reported on 16 June (18:67), was the first since February-March 1989 (14:2, 4, and 6). Fumaroles
located on the narrow plateau between Santiago and Masaya craters were
passively degassing, and their temperatures ranged from 45-65°C.
Information Contacts: M. Conway and A. Macfarlane, FIU; Charles
Connor, CNWA Bldg. 168, Southwest Research Institute, 6220 Culebra
Road, San Antonio, TX 78228-0510; Oscar Leonel Urbina and C. Lugo,
INETER.
10/93 (BGVN 18:10) Incandescent hole in lava lake remains active
Scientists approached the incandescent window of the lava lake in
Santiago's inner crater on 19 October to sample lava ejected during an
episode of increased explosive activity at the beginning of October. The
window was 15 m in diameter and 50 m deep with lava splashing every 1015 seconds. Bright yellow incandescence was reported on 31 August and
was first observed on 16 June of this year (18:6, 7, and 9).
Information Contact: Alain Creusot, Instituto Nicaraguense de
Energía, Managua, Nicaragua.
03/94 (BGVN 19:03) Incandescence visible in daylight; small eruptions
When visited by a team of scientists from INETER and FIU during 10001100 on 1 March 1994, Masaya exhibited two adjacent incandescent
openings in the cooling lava lake. The 4- to 7-m-diameter openings
appeared at the base of the N wall of a smaller crater within Santiago crater.
In September 1993 incandescence was only visible at a single opening, and
only at night. According to Canadian Missionaries living in Leon, the second
incandescent opening was exposed in mid-February 1994. Several tourists
reported seeing ash ejected from the incandescent openings on several
occasions, an event documented by a second research team later in the
month (see below).
INETER-FIU researchers saw a "diffuse, white, sulfur-rich plume . . .
punctuated every several minutes by stronger, short-lived (tens of seconds)
73
pulses of gas. The pulses were accompanied by jetting sounds that were
easily heard on the S rim." They also noted a mantle of fresh black ash on
the crater floor immediately adjacent to the incandescent openings.
During the period 7-11 March 1994, a research team from Open Univ
(OU) revisited a 21 km leveling network established in February 1993. They
resurveyed the network using precise leveling to find the vertical
deformation. Errors in this portion of their survey were several millimeters.
The OU team found that relative to stations 5 km E on the shore of Laguna
de Masaya, the summit had shifted 2-3 cm upwards. A zone of uplift trended
NE across the summit; the greatest uplift occurred near the caldera wall 2
km SW of the summit.
On 7 March at 1100 the OU team noted that the two incandescent
openings remained separate, but by 1800 they had merged as the division
between them collapsed. On 11 March the team tied this incandescent
opening into their survey net. They used electronic distance measuring
(EDM) instrumentation, shooting with double bearings, to determined the
elevation of the opening as 233 m (error of 0.2 m). This elevation is
equivalent to 294 m below the level of the car parking area on the S rim
(150-200 m above sea level). The vent that contained the incandescent
openings was elongate N-S, about 12-m long, and at least several meters
deep.
Since their previous visit in February 1993, the OU team reported
increased summit activity, including "strong smell of SO2" and a "fainter whiff
of HCl at times." One team member felt that there were more fumaroles in
Santiago crater and also along the uppermost arcuate fracture on the N side
of Nindirí crater than in recent years. On 31 August 1993 fumaroles were
found between Santiago and Masaya craters (18:09), but during March 1994
they were absent. From observations of activity, OU researchers suggested
that the top of the magma body is perhaps 30-80 m below the level of the
vent.
During the interval 7-22 March the OU team reported that
incandescence remained visible, ". . . glowing bright red even in broad
daylight." Audible gas exhalations were monitored 16 times during this
interval: they averaged 30-40 puffs/minute. Bombs were typically ejected
slightly less than once per minute, but each explosion produced 1-10 bombs.
They landed at most about 30 m from the vent, to the WSW, W, or NW.
Maximum bomb diameter was 50 cm. The blanket of tephra in this quadrant
grew noticeably during the observation period.
Even though in September 1993 only one incandescent opening was
visible, a short time later, in early October 1993, Masaya underwent an
episode of increased explosive activity that included lava splashing every
10-15 seconds (18:10). Some previous Masaya reports described
fluctuations in the color of incandescent openings (for example in 1982,
7:11).
74
In addition to their geological observations, the OU team also remarked
that "Hundreds of parrots, which had deserted the crater last year, have
returned to nest in holes and crevices in the S walls of Santiago crater now
that it is active again." In 1979 Masaya became Nicaragua's first National
Park.
Information Contacts: Cristian Lugo, INETER; Michael Conway,
Andrew Macfarlane, and Peter LaFemina, Florida International Univ (FIU); J.
Murray, B. van Wyk de Vries, and A. Maciejewski, Open Univ.
07/94 (BGVN 19:07) Sulfur-rich plume and incandescent ejections from opening in
lava lake
Scientists from FIU and INETER visited Masaya for about an hour on
the afternoon of 26 May 1994 and noted that the two incandescent openings
(5-7 m in diameter) in the cooling lava lake observed on 1 March near the N
wall of Santiago crater (19:03) had coalesced into a single opening 10-12 m
long. A sulfur-rich plume was being emitted from the opening at a rate of
several pulses/minute; the pulses were accompanied by jetting sounds
easily heard from the S rim. Fresh, black ash covered the crater floor
immediately SW of the opening. INETER scientists reported that small
Strombolian explosions ejected incandescent material from the opening
several times during May and June 1994.
Information Contacts: Peter C. La Femina, Michael Conway, and
Andrew MacFarlane, FIU; Christian Lugo, INETER.
09/94 (BGVN 19:09) Temperatures and SO2 flux from incandescent opening
continue rising
A red incandescent area that opened in the inner crater during mid-June
1993 remained active at least through June 1994. An unbroken gas plume
has often been observed extending several kilometers from the volcano.
Average fumarole temperatures, measured with an infrared pyrometer,
began increasing in May 1993 from around 50°C to almost 250°C by July
1993 (figure 9 and 18:07). Fumarole temperatures slowly increased to
almost 400°C by May 1994, when they suddenly increased again, reaching
almost 600°C by the end of July 1994. Measurement of SO2 emissions at
the summit were carried out using colorimetric and chemical techniques. An
increase from background to ~5 mg/m3 was detected in June 1993 after the
incandescent opening first appeared. SO2 increased to ~15 mg/m3 between
July and August, and again increased sharply during September-November
1993 to ~30 mg/m3. Steady increases in the SO2 emission rate since then
resulted in measurements of ~35 mg/m3 in May-July 1994.
75
Figure 9. Average fumarole
temperatures in the summit crater
of Masaya, January 1993-July
1994. Courtesy of INETER.
Information Contacts: H. Taleno, L. Urbina, C. Lugo, and O. Canales,
INETER.
11/94 (BGVN 19:11) Red glow from vent on crater floor; gas emission
When observed during November, the vent in Santiago crater was the
same shape as in April 1994. It was possible to see ~20 m down into the
hole, which was 10-20 m wide. During daylight a red glow could be seen
from the lip of the vent inwards, but no lava or ejecta were observed. Pulses
of gas emission occurred every 3-5 seconds.
Information Contacts: B. van Wyk de Vries, Open Univ; Pedro
Hernandez, INETER.
04/96 (BGVN 21:04) Incandescent vent in Santiago crater emitting large amounts
of gas
Masaya was visited on 15-16 March by a joint team from the Open
University, the Universite de Montreal, Reading University, and INETER.
Large amounts of gas exiting a 5-m-wide vent at the bottom of Santiago
crater formed a distinct plume clearly visible from the Managua airport. The
vent was intensely incandescent, even during mid-day. Eight correlation
spectrometer (COSPEC) traverses beneath the gas column on 16 March
measured an SO2 flux of 600 ± 290 metric tons/day (t/d). These fluxes are
similar to those measured during the degassing crisis of the early to mid1980's (Stoiber and others, 1986). Microgravity measurements revealed a
continued decline of the gravity field in the summit region since re-activation
of the volcano in 1993 (Bulletin v. 18, no. 6). Systematic decreases of up to
160 µGal have been recorded during this time near the active crater.
Reference: Stoiber, R.E., Williams, S.N., and Huebert, B.J., 1986,
Sulfur and halogen gases at Masaya caldera complex, Nicaragua: Total flux
and variations with time: Journal of Geophysical Research, v. 91, p. 12,21512,231.
Information Contacts: Hazel Rymer and Mark Davies, Department of
Earth Sciences, The Open University, Milton Keynes MK7 6AA, United
Kingdom (Email: [email protected]); John Stix, Dora Knez, Glyn
76
Williams-Jones, and Alexandre Beaulieu, Departement de Geologie,
Universite de Montreal, Montreal, Quebec H3C 3J7, Canada (Email:
[email protected]); Nicki Stevens, Department of Geography,
University of Reading, Reading RG2 2AB, United Kingdom; Martha Navarro
and Pedro Perez, INETER, Apartado Postal 2110, Managua, Nicaragua.
03/97 (BGVN 22:03) Strombolian explosion; incandescent vent in Santiago crater;
seismicity increases
A small Strombolian explosion on 5 December 1996 ejected blocks (<10
cm in diameter), ash, and some Pelee's hair. Some of the inner crater walls
collapsed, partly closing the incandescent vent. Prior to this eruption the
vent's gas temperature was 1,084°C; afterwards, it dropped to 360°C.
During three consecutive days in 1997, COSPEC SO2 fluxes varied as
follows: on 12 February, 159 ± 73 metric tons/day (t/d) (1 sigma, n = 5); on
13 February, 363 ± 182 t/d (1 sigma, n = 6); on 14 February, 290 ± 65 t/d (1
sigma, n = 4). The 363 t/d figure is a minimum estimate since on the first 3
traverses the instrument went off the choosen recording scale indicating still
larger values than reported.
A visit in March 1997 yielded COSPEC values of 300-400 t/d; these
values were lower than those obtained during March 1996 (Bulletin v. 21, no.
4). Nightime observations of the active Santiago crater revealed that large
amounts of incandescent gas were being released frequently through a
conduit that had partially collapsed on 5 December 1996. As a result of the
collapse, it was not possible to see incandescent magma during the night.
Seismicity increased since September 1996; in January 1997, 41 events
(4 high- and 47 low-frequency) were recorded along with constant tremor.
During 22 February-20 March, 18 events occurred, 15 of which were lowfrequency and three high-frequency. Since November 1994 background
levels of RSAM have varied between 12 and 16 RSAM units. Since midJanuary, however, RSAM increased, fluctuating between 22 and 32 units.
In the crater area, gravity decreased steadily during 1993-95; it
remained stable in 1996 and possibly increased a little in 1997.
A NE-trending fracture at the base of Comalito cone emitted gases
reaching 68°C. In this same vicinity soil gas concentrations contained up to
25% CO2.
Information Contacts: Hazel Rymer and Mark Davies, Department of
Earth Sciences, The Open University, Milton Keynes MK7 6AA, United
Kingdom (Email: [email protected]); John Stix, Dora Knez, Glyn
Williams-Jones, and Alexandre Beaulieu, Departement de Geologie,
Universite de Montreal, Montreal, Quebec H3C 3J7, Canada (Email:
[email protected]); Nicki Stevens, Department of Geography,
University of Reading, Reading RG2 2AB, United Kingdom; Martha Navarro
and Pedro Perez, INETER, Apartado Postal 2110, Managua, Nicaragua.
77
06/97 (BGVN 22:06) Stable and non-eruptive during May-June
Besides the strong degassing and high tremor, which are normal for this
volcano, Masaya lacked signs of abnormal activity during May and June
1997.
Information Contacts: Wilfried Strauch, Department of Geophysics,
and Marta Navarro C., Department of Volcanoes, Instituto Nicaragüense de
Estudios Territoriales (INETER), P.O. Box 1761, Managua, Nicaragua
(Email: [email protected]).
07/97 (BGVN 22:07) Minor morphologic changes and fluctuating incandescence in
May
"On 25 May, observers saw that the small active vent had grown by 30
m and had ceased to be incandescent. Large volumes of gas were still
escaping and forming plumes that blew to the W. Masaya park guards
reported a resumption of incandescence on 3 June. During the previous day,
there was little wind and high humidity, conditions which allowed the gas to
produce a sustained vertical column above the crater."
Information Contacts: Benjamin van Wyk de Vries, Department of
Earth Sciences, The Open University, Milton Keynes MK7 6AA, United
Kingdom
(Email:
[email protected];
URL:
http://exodus.open.ac.uk/world/uk_groups/open_volcano.html).
09/98 (BGVN 23:09) Integrated scientific studies of the caldera area
Four teams of Canadian, British, and Nicaraguan volcanologists carried
out studies of Masaya caldera during January-April and September 1998.
The volcano was examined using correlation spectroscopy (COSPEC),
microgravity, Open Path Fourier Transform Infrared spectroscopy (OPFTIR), and soil-gas studies.
Vent degassing appeared to have increased significantly. COSPEC
measurements during February-April 1998 showed SO2 flux varying from
680 t/d to a maximum of 5,580 t/d. Measurements made during the previous
year (January-March 1997) showed more stable fluxes of approximately 380
t/d. Measurements in September 1998 showed flux levels varying from 320
to 1,420 t/d.
OP-FTIR measured from the Plaza Oviedo overlooking the "Santiago"
pit crater showed consistent SO2/HCl and HCl/HF volume ratios of 2 and 7,
respectively. Using the COSPEC-derived SO2 flux, scientists inferred HCl
fluxes of 340 to 2,790 t/d and HF fluxes of 97 to 797 t/d.
78
CO2 soil-gas measurements at the foot of the Comalito cinder cone
increased from 23 to 31.3% between March 1997 and February 1998.
Fumarole temperatures also increased from 70 to 84°C during February
1998.
Microgravity surveys during March 1997-February 1998 showed a slight
increase in gravity immediately beneath the Santiago pit crater. They also
showed evidence (increased noise recorded on the meter) of significant
seismic activity around the Santiago crater. Similar measurements acquired
in September 1998 indicated increased seismic activity throughout the
caldera.
Temperatures at the active vent, measured using a Cyclops infrared
camera, ranged between 170 and 400°C. The higher measurements
occurred when incandescence of the vent walls was visible. In March, a
small fumarole emitting low levels of gas appeared, ~15 m from the active
vent.
Information Contacts: Glyn Williams-Jones, Dave Rothery, Hazel
Rymer, Peter Francis, and Lisa Boardman, Department of Earth Sciences,
The Open University, Milton Keynes MK7 6AA, United Kingdom (Email:
[email protected]); Alexandre Beaulieu, Dany Harvey, Pierre
Delmelle, Katie St-Amand, and John Stix, Département de Géologie,
Université de Montréal, Montréal, Québec H3C 3J7, Canada (Email:
[email protected]); Mike Burton, Clive Oppenheimer, and Matthew
Watson, Department of Geography, University of Cambridge, Downing
Place,
Cambridge,
CB2
3EN,
United
Kingdom
(URL:
http://www.geog.cam.ac.uk/); Hélène Gaonac'h, Département des sciences
de la Terre, Université du Québec - Montréal, Montréal, Québec H3C 3P8,
Canada; Martha Navarro and Wilfried Strauch, INETER, Apartado Postal
2110, Managua, Nicaragua; Benjamin van Wyk de Vries, Departement des
Sciences de la Terre, Universite Blaise Pascal, 63038 Clermont-Ferrand,
France (Email: [email protected]).
04/99 (BGVN 24:04) Continued degassing and marked gravity decreases;
previously unreported small explosions
The present activity began in mid-1993 with the brief formation of a lava
pond and gradual increase in degassing (Bulletin v. 18, nos. 4 and 7). Small
explosions in Santiago Crater on 17 November 1997 and 14 September
1998 ejected lava bombs up to 50 cm in diameter onto the western rim.
Canadian, British and Nicaraguan scientists returned between February and
March 1999 to continue the study of the degassing crisis (Bulletin v. 23, no.
9).
A gas plume was continuously emitted from a vent with a diameter of
15-20 m at the bottom of Santiago Crater. A characteristic sound, like the
breaking of waves, was created by gas emission. Incandescence of the vent
walls was visible only at night. Temperatures recorded at the vent with an
79
infrared thermometer, 200-380°C, were highly dependent upon the opacity
of the gas plume.
COSPEC measurements of SO2 revealed continued high flux, varying
from 1,300 to 4,060 metric tons/day. Remote sensing of the gas plume
composition using an open-path Fourier transform infrared spectrometer
(OP-FTIR) in a variety of modes reveals a SO2/HCl volume ratio of about 2,
comparable to that obtained in February-April 1998.
The OP-FTIR was also run simultaneously with direct plume sampling
using a filter pack-collection technique at the summit and on the Llano
Pacaya ridge, 15 km from Santiago Crater. Acid gases (CO2, SO2, H2S, HCl
and HF) were passively collected from the crater rim using concentrated
KOH solutions exposed to the atmosphere. These experiments should allow
for a comparison between remote and direct sampling techniques and
provide information on variations in plume composition as it disperses.
Fumigation of the land downwind from Santiago Crater continues to
affect the local communities. SO2 plume dispersion and deposition was
monitored with a large network of diffusion tubes and sulfation plates.
Preliminary results indicate that dispersion of the plume is strongly
influenced by local topography. Near-ground SO2 concentrations above 100
ppb were measured on the Llano Pacaya ridge in February-April 1999.
These high values may indicate a serious local health hazard. Acid rain
collected at the summit and about 7 km downwind on 15 March 1999 had pH
values between 3.5 and 4.
Microgravity surveys between March 1997 and February 1999 appear to
show a consistent decrease in gravity (up to 90 microgals) immediately
beneath the Santiago pit crater. This decrease is of the same order as that
measured between 1993 and 1994 at the start of the degassing crisis.
Information Contacts: Pierre Delmelle and John Stix, Département de
Géologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
(Email: [email protected]); Glyn Williams-Jones, Dave Rothery,
Hazel Rymer, Lisa Horrocks and Mike Burton, Department of Earth
Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom
(Email: [email protected]); Peter Baxter, Department of
Community Medicine, University of Cambridge, Cambridge CH1 2H8, United
Kingdom (Email: [email protected]); José Garcia Alavarez, Martha
Navarro, and Wilfried Strauch, INETER, Apartado Postal 2110, Managua,
Nicaragua (Email: [email protected]).
07/00 (BGVN 25:07) Summary of activity; nearby M 5.4 earthquake at 1 km focal
depth on 6 July
Since the last report on Masaya, of continued degassing and marked
gravity decreases (Bulletin v. 24, no. 4), there have been sporadic reports
80
about its activity, which are summarized below prior to discussion of a
nearby M 5.4 earthquake on 6 July 2000.
Reports of ash-and-steam emissions. Between November 1999 and
January 2000 there were several reports from the Washington VAAC of ashand-steam emissions from Masaya. On 22 November 1999 the VAAC
reported that GOES-8 imagery suggested that Masaya may have awakened.
Satellite imagery showed activity at or very near Masaya, including a plume
of ash or "smoke" moving to the WSW, and a hotspot that was visible for
over two hours. At about 1600 the imagery suggested that an explosion may
have occurred and by 1615 the resultant plume was at ~800 m (near
Masaya's summit), and had been blown WSW.
On 22 December 1999 the Washington VAAC issued an ash advisory
stating that a continuous low-level plume was being emitted from Masaya.
Volcanic activity was confirmed by INETER who noted that seismic activity
was consistent with ash emissions. The cloud was ~2 km in altitude and was
blown to the WSW.
On 18 January 2000 the VAAC reported that GOES-8 imagery through
0845 detected a low-level thin ash plume from Masaya's summit. The plume
reached an altitude of ~900 m, was blown to the SW, and rapidly dissipated.
Seismic activity during April 1999-March 2000. Seismic activity at the
volcano remained low with eight microearthquakes registered for the month.
The RSAM (seismic tremor) stayed at ~30 units. During the first two weeks
of April the RSAM signal was not obtained due to technical problems in the
seismic power station. On 23 April two explosions were detected by RSAM,
which were confirmed by observers at the Masaya Volcano National Park. In
that case, RSAM began to show a small increase until 0800, and an hour
later the two explosions occurred.
May 1999: The number of microearthquakes was 21 for the month. The
RSAM stayed at ~24 units. June: The number of microearthquakes was 18
for the month. The RSAM stayed at ~24 units. August: The number of
microearthquakes was 47 for the month. The RSAM remained at ~40 units.
Constant gas emissions occurred. September: The number of
microearthquakes was 87 for the month. The RSAM stayed constant at ~40
units. Constant gas emissions occurred. October: The number of
microearthquakes was 22 for the month. The RSAM stayed constant at ~20
units. Constant gas emissions occurred. November: There were 49
microearthquakes for the month. The RSAM stayed constant. Constant gas
emissions occurred. December: Twenty one earthquakes were registered for
the month. The RSAM stayed constant.
January 2000: Eleven earthquakes were registered for the month. The
RSAM stayed constant. At 1145 on 6 January an explosion occurred in
Santiago crater. February: Six microearthquakes and the RSAM remained
constant. March: There were three microearthquakes for the month. The
RSAM was at a similar level as the previous month.
81
July 2000 seismicity near Masaya and Laguna de Apoyo. During
July 2000 there were over 300 earthquakes near Laguna de Apoyo (Apoyo
volcano) and Masaya. The earthquakes, determined to be of tectonic rather
than volcanic origin, caused surficial damage at both volcanoes.
At 1329 on 6 July a small M 2 earthquake occurred near the N rim of
Laguna de Apoyo that was followed at 1330 by a M 5.4 earthquake (figure
8). It was located ~32 km SE of Managua, at 11.96°N, 86.02°E, with a focal
depth less than 1 km (figure 9). The earthquake was felt in most of
Nicaragua and was most strongly felt in the cities of Managua (Modified
Mercalli V-VI) and Masaya (VI), and in the region near Laguna de Apoyo
(maximum intensity of VII or VIII). The earthquake caused numerous
landslides down the volcano's crater walls and surface faulting was
observed. In towns located in the epicentral zone, trees and electric lines fell
and many houses were partially or totally destroyed. About 70 people were
injured and four children were killed by collapsing walls or roofs of homes. At
Masaya volcano, ~8 km from the epicenter, there were minor collapses of
Santiago crater's walls. No change in degassing was observed at the
volcano.
Figure 8. Seismogram showing
the M 2 and M 5.4 earthquakes
near the Masaya volcano station
on 6 July 2000. Courtesy of
INETER.
Immediately after the earthquake there were many smaller, shallow
earthquakes in a zone that includes the area between Masaya, Laguna de
Apoyo, and W of Granada (figure 9). In the epicentral zone property was
destroyed, cracks opened in the ground, landslides occurred, and trees fell.
Several landslides occurred at the edges and steep walls of Laguna de
Apoyo. A large number of earthquakes continued until 10 July (figure 10 and
table 3). The number of earthquakes then diminished until 1554 on 25 July
when a M 4.8 earthquake took place, initiating a series of smaller
earthquakes that lasted until about 27 July.
Figure 9. Epicenters near Masaya
for the M 5.4 earthquake on 6 July,
and the M 4.8 earthquake on 25
July 2000 (stars). The aftershocks
from these earthquakes are also
shown (small circles). Courtesy of
INETER.
82
Figure 10. Graph showing the
number of earthquakes in the
Masaya region between 4 and 30
July 2000. Courtesy of INETER.
Table 3. A summary of earthquakes in vicinity of Masaya and Laguna de
Apoyo in early July 2000. Courtesy of INETER.
Date
Time Number of daily earthquakes
Maximum magnitude
07 July 1330
180
5.2
08 July 1100
70
3.8
09 July 1200
81
3.6
10 July 1800
27
3.1
11 July 1800
6
3.3
13 July 1800
16
2.8
The July earthquakes were the most destructive seismic events since
the 1972 Managua earthquake. The epicentral zone of the July 2000
earthquakes correlates with the same active zones of past earthquakes,
which are caused by fault movement between the Cocos and Caribbean
plates.
Background. The 7-km-wide, lake-filled Apoyo caldera is a large silicic
volcanic center immediately SE of Masaya caldera. An early shield volcano
contructed of basaltic-to-andesitic lava flows and small rhydocitic lava
domes collapsed following two major dacitic explosive eruptions. The
caldera-forming eruptions have been radiocarbon dated at about 23,000
years before present. Post-caldera ring-fracture eruptions produced lava
flows below the scallaped caldera rim. Eruptions along a slightly arcuate N-S
fracture system 2 km E of the caldera rim formed the Granada cinder cones
and La Joya collapse craters. The age of the latest eruptive activity is not
known.
Masaya is one of Nicaragua's most unusual and most active volcanoes.
It is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m
high that is filled on its NW end by more than a dozen vents erupted along a
83
circular, 4-km-wide fracture system. Masaya lies within the massive
Pleistocene Las Sierras pyroclastic shield volcano. The twin volcanoes of
Nindiri and Masaya, the source of historical eruptions, were constructed at
the southern end of the fracture system and contain multiple summit craters.
A major basaltic plinian tephra was erupted from Masaya about 6500 years
ago. Historical lava flows cover much of the caldera floor and have confined
a lake to the far eastern end of the caldera. A lava flow from the 1670
eruption overtopped the N caldera rim. Masaya has been frequently active
since the time of the Spanish Conquistadors, when an active lava lake
prompted several attempts to extract the volcano's molten "gold."
Information Contacts: Wilfried Strauch and Virginia Tenorio, Dirección
General de Geofísica, Instituto Nicaragüense de Estudios Territoriales
(INETER),
Apartado
1761,
Managua,
Nicaragua
(URL:
http://www.ineter.gob.ni/; Email: [email protected]); Washington VAAC,
Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science
Center Room 401, 5200 Auth Road, Camp Springs, MD 20746 USA (URL:
http://www.ssd.noaa.gov/).
09/00 (BGVN 25:09) Small ash eruptions in March; decreasing levels of degassing
A previous report (Bulletin v. 25, no. 7) reviewed evidence for steamand-ash emissions between November 1999 and January 2000, seismicity
during April 1999-March 2000, and increased seismicity in the vicinity of both
Masaya and Laguna de Apoyo in July 2000. Previously unreported
observations and information from March-April 2000 regarding an ongoing
international degassing study, and fumarole temperature measurements
from INETER, are included below.
Degassing studies during March-April 2000. The current degassing
crisis at Masaya began in mid-1993 with the brief formation of a lava pond
and gradual increase in degassing (Bulletin v. 18, nos. 4 and 7). Canadian,
Belgian, British, and Nicaraguan scientists returned to Masaya caldera
between March and April 2000 to continue the study of the ongoing
degassing crisis (Bulletin v. 23, no. 9, and v. 24, no. 4). Significant amounts
of Pele's hair around the W and S rims of Santiago crater (first noted by
Alvaro Aleman, Masaya Park guard) were likely the result of a gas-rich
explosion one night either at the end of February or during the first week of
March 2000. Two minor explosions, which produced small ash plumes, were
witnessed at Santiago crater on 2 March at about 1545 and 1645.
A large gas plume was still being emitted from a vent (15-20 m in
diameter) at the bottom of Santiago crater. Incandescence of the vent walls
was visible only at night. Temperatures recorded at the vent with an infrared
thermometer ranged between 200 and 380°C, and were highly dependent
upon the opacity of the gas plume. COSPEC measurements of SO2
revealed decreasing but nevertheless high emission rates, ranging from 740
± 200 t/d to 1,850 ± 300 t/d. Remote sensing of the gas plume composition
using an open-path Fourier transform infrared spectrometer (OP-FTIR) in a
variety of modes revealed an average SO2/HCl molar ratio of 1.7,
84
comparable to that obtained in February-April 1998 and February-March
1999. The acid emissions continued to affect a vast area downwind of the
volcano, and the rural population subsisting on soil cultivation has been
severely impacted.
Microgravity measurements between March and April 2000 appeared to
show a leveling off of the previous (1993-94 and 1997-99) decreasing gravity
change immediately beneath the Santiago pit crater. These values are
essentially the same (within error, ± 20 mGal) as those measured at Masaya
in June 1999. This leveling off of gravity change and apparent decrease in
gas flux is similar to a cycle of activity between 1994 and 1997 and may
suggest that Masaya is entering the waning period of the current degassing
crisis.
Fumarole temperatures during December 1999-April 2000.
Fumaroles from the Cerro El Comalito area (table 1) showed uniform
variations in their monthly average temperatures between December 1999
and April 2000. The fumaroles are close to one another, so this outcome
was expected. Fumaroles in the Filete San Fernando area exhibited more
variation, with some increasing in temperature and others decreasing.
Table 1. Average fumarole temperatures from the Cerro El Comalito and
Filete San Fernando areas of Masaya during December 1999-April 2000. All
the measurements were carried out with a thermocouple. Courtesy of
INETER.
Fumarole Dec 1999 Jan 2000 Feb 2000 Mar 2000 Apr 2000
Cerro El Comalito
1
72.8ºC 67.3ºC
2
74.0ºC 68.2ºC
3
77.6ºC 69.0ºC
4
76.2ºC 69.5ºC
5
68.6ºC 63.3ºC
6
61.3ºC 56.5ºC
74.6ºC
72.9ºC
77.0ºC
76.5ºC
69.8ºC
60.2ºC
73.2ºC
74.8ºC
76.3ºC
76.5ºC
68.2ºC
59.0ºC
74.7ºC
73.1ºC
75.3ºC
76.5ºC
69.8ºC
60.8ºC
Filete San Fernando
1
61.4ºC 60.7ºC 60.0ºC 59.7ºC 59.1ºC
2
61.2ºC 57.2ºC 59.2ºC 58.9ºC 58.7ºC
3
60.2ºC 69.2ºC 59.2ºC 59.3ºC 59.4ºC
4
58.6ºC 64.7ºC 55.8ºC 55.3ºC 55.4ºC
INETER also noted that there were no reports of landslides or
incandescence from the lava lake in Santiago crater during March-April
2000. Seismic tremor was low throughout that period, and there were only
six microearthquakes registered in March, followed by 12 in April.
Information Contacts: Glyn Williams-Jones, Dave Rothery, Hazel
Rymer, Department of Earth Sciences, The Open University, Milton Keynes,
United Kingdom (Email: [email protected]); Pierre Delmelle,
Unité des Sciences du Sol, Université Catholique de Louvain, Louvain-laNeuve, Belgium (Email: delmelle@ pedo.ucl.ac.be); Clive Oppenheimer and
85
Hayley Duffell, Dept. of Geography, University of Cambridge, Cambridge,
United Kingdom; José Garcia Alavarez and Wilfried Strauch, INETER,
Apartado
Postal
2110,
Managua,
Nicaragua
(Email:
[email protected]).
04/01 (BGVN 26:04) Tourists experience a brief, bomb-charged 23 April 2001
explosion: no fatalities
INETER report. The Nicaraguan group INETER (Instituto Nicaragüense
de Estudios Territoriales) stated that Masaya's active summit crater,
Santiago, produced an explosion at 1426 on 23 April. The explosion
continued for ~2 minutes and a new 10-m-diameter vent opened on the
crater floor ~30 m S of the previous vent. Fragments up to 60 cm in diameter
flew through the air, falling up to 500 m from the crater. Episodic ashfall was
reported near the settlement of Tecuantepe, 6 km NW of Masaya volcano,
and people there contended with abnormal concentrations of volcanic gases.
Scientists from Cambridge University (UK) who carried out gas
measurements at Santiago crater left just one hour before the explosion and
had not noticed any unusual precursory behavior. Preliminary, post-event
scrutiny of the seismicity failed to reveal precursory signs.
After the explosion, the volcano returned to its typical stable state and
monitored parameters remained at normal levels. INETER volcanologists
who continuously monitored Santiago in the afternoon and during the night
reported several smaller explosions, gas outbreaks and minor collapses of
the crater wall. Following the explosion, Masaya National Park closed public
access to the crater-rim areas (including the Plaza Sapper visitor platform
and parking lot) for the next several days.
The 24 April report noted minor ash-bearing explosions (specifically
mentioning one at 1526), but these events did not exceed those typically
seen nor did they accompany abnormally large seismic signals. On this day,
the previously active vent no longer gave off gases. The report noted that in
the current circumstances, the area of primary hazard lay within 500 m of the
vent. It also said that areas farther out, particularly as far away as local
habitations or along the Managua-Masaya highway, should not be affected.
SO2 monitoring at the visitor's plaza was conducted at 1020 on 24 April.
It indicated that, with respect to 23 April at 1800, the ambient gas
concentration there had decreased more than 72%. Since these were not
flux measurements but were only ambient SO2 concentrations, fresh winds
may have contributed to the decreased concentrations. The 25 April report
on Masaya noted slightly larger output than the day before, including ash
deposition, but noted 29% lower SO2 concentration than the day before. In
harmony with the SO2 concentration decrease on 25 April, sulfurous gases
then measured ~2.0 ppm in local settlements (Comarcas La Borgoña and
San José de los Ríos), half the value measured the previous day.
86
The 27 April report noted few episodes of strong degassing during the
previous two days, but normal tremor and little seismicity. A second seismic
station was installed on the volcano at a spot near the visitor's platform.
23 April eyewitness account and photos. What started out as a
routine sightseeing stop escalated into a local crisis as over 120 tourists
found themselves on the crater rim during what was one of the more
energetic Masaya explosions reported in the Bulletin in the past 30 years.
Few, if any, of those earlier events had been witnessed at close range, and
in retrospect it seems fortuitous that in this event no one was killed.
The event highlights the difficulty of assessing, preparing for, and
conveying the possibility of infrequent, sudden events. The accompanying
photos document the ambiguity of assessing the event's magnitude during
the explosion's critical early stages. After the event, the majority of eye
witnesses with photographs and videos quickly departed from Nicaragua,
having shared almost no information with authorities.
Figures 22-28 show selected scenes the tourists captured on film during
and just after the explosion. The photos were taken from the 500-m-diameter
Santiago crater's N side (for maps of the crater area see Bulletin v. 14, no. 6;
and v. 16, no. 2). Figures 22-25 are in chronological order; figures 26-28
show selected scenes in the aftermath of the explosion, after the parking
area had been largely vacated of vehicles.
The buses were parked in the crater rim area's N parking area.
Progressing upslope and along the crater rim, a foot trail leads to the
elevated overlook (~200 m W of the parking lot's center). During the
explosion this trail became very exposed to ash and ballistics. Although not
shown on any of the included photos, a large cross stands at the elevated
overlook in the vicinity of where many of the photographers were standing at
the time of the eruption (not shown in figures here but labled "La Cruz" on
maps in earlier Bulletins).
The photos were furnished to the Bulletin by Joanne Gordon; Mark
Headrick also helped explain the significance of some features in the photos.
Photos shot by Headrick used an auto-focusing camera with a fixed-focus
lens.
Figures 22-24 show the early progression of the ash- and bombcharged plume. Although in these photos the rising plume can be seen
blown towards the W, during the explosion significant numbers of bombs
also fell well beyond the plume's margins. For example, some bombs began
pelting the N parking lot, forcing people there to take shelter in buses and
cars. Fortunately, comparatively few bombs were launched over the local
high adjacent the NNW rim where photographers shot figures 22-25. The
tens of tourists who had stood at the elevated overlook later retreated in
haste cross-country down the hill's more sheltered but trackless back-side
(figure 25).
87
Figure 22. The earliest of several
available photos taken of Masaya's
23 April 2001 explosion that vented
from Santiago crater. This photo
was taken looking SW from the
elevated overlook on the NNW rim.
The crater floor appears as the
dark zone in the lower left-hand
corner. Photo credit: Lillian Reyes.
Figure 23. In this view from the
elevated overlook on the NNW
crater rim of Masaya, the ash- and
bomb-laden plume-top had risen
slightly above the rim early in the
23 April eruption. Photo credit: Jay
Barron.
Figure 24. The steam- and ashdominated clouds from Masaya's
23 April 2001 explosion rose well
above the crater rim before the
hazard presented by the explosion
was
universally
recognized.
Among the onlookers in the lowerright of the photograph is a small
baby wearing a broad-brimmed hat
(second from left). Photo credit:
Jay Barron.
88
Figure 25. Masaya's 23 April 2001
explosion taken in a southwardlooking direction on the backside of
the elevated overlook. The scene
clearly shows tourists making a
hasty off-trail retreat away from the
crater rim. Photo credit: Mark
Headrick.
Figures 26 and 27 show portions of the bomb-strewn parking lot. Many
bombs of roughly half-liter to several-liters in volume can be easily seen.
Parking stalls in the lot can be assumed to be roughly 2 x 3 m in size (~6 m2)
and typically contain about 1 to 3 such bombs. This implies that on average,
roughly 1 such bomb landed in each 2 to 3 m2 area.
Some bombs landing in the parking lot broke into bits on impact and
sprayed local areas of the lot with their light-colored fragments (figure 27).
Both figures 26 and 27 document local, sometimes circular grass fires,
suggesting that some of the bombs were hotter than the several hundred
degree kindling temperature of the dry, brown vegetation. Several bombs
significantly damaged vehicles in the lot, causing fires, breaking windows,
and puncturing and deforming bus roofs. One bomb landed in a thenunoccupied bus seat, and another plowed deep into the hood and engine
compartment of a car (figure 28).
Figure 26. Fresh bombs litter the
N parking area (foreground) as a
result of the 23 April Masaya
eruption. Tour buses had been
parked adjacent the tile-roofed
shelters but had moved by the time
this shot was taken. Hot ejecta
started grass fires, which can be
seen in this photograph still
burning on the slope behind the
shelters. Photo credit: Mark
Headrick.
89
Figure 27. Following Masaya's 23
April explosion, tourists who had
been at the elevated overlook
regrouped at the edge of the
bomb-strewn N parking lot. Some
bombs
shattered
into
small
aggregates that left several lightcolored arrays splashed across the
pavement. Fires and smoke
appear in the background. Photo
credit: Mark Headrick.
Figure 28. A ballistic bomb from
Masaya's 23 April eruption ended
up lodged in a passenger car's
hood. The car was occupied at the
time of the incident but there were
only minor injuries. Photo credit:
Pamela Tores.
Joanne Gordon recounted the events of 23 April as follows: "While
traveling by cruise ship from Costa Rica through the Panama Canal towards
our final destination of Aruba, we made a one-day stop in Nicaragua for a
city bus tour. The Nicaragua stop was the second day of our seven-day
cruise. Approximately 150 cruisers [in] five buses were scheduled for the city
tour and a short visit to Masaya volcano. The first two buses visited the
volcano and were scheduled to have ~ 30 minutes to view the crater. Many
of the tourists reported that the odor of sulfur greatly increased during their
visit . . . . Those two buses left before the following three buses arrived.
"I was on the last bus to arrive at the crater. After getting off the bus my
brother and I excitedly ascended to the top lookout point next to the cross
overlooking the lip of the crater. The climb to the top of the crater was about
200 steps up a very unstable staircase . . . . Once we arrived at the top I
took a few pictures of the crater and of us. Then I heard a deep rumble and
the ground began to shake. It sounded as if it was a huge landslide at the
opposite side of the crater. Within seconds I could see a massive black
mushroom-shaped cloud of smoke filling the inside of the crater. At that point
I ran—thinking, ‘Is this normal?' but not wanting to stand at the edge of the
crater to find out.
90
" . . . I ran down the [steep] back side of the hill not realizing it was like
running down a slope of marbles . . . . Then I heard a second boom followed
by more black smoke, and I heard rocks being thrown from the crater—
people screaming—children crying . . . . "I heard a little girl's voice . . . [then]
I lost my footing and rolled down the hill. After falling for the second time, I
stopped to look for her. She had fallen and was caught on some brush. I
could see the sky was black but the smoke was moving away from us and
the explosion had stopped. I waited with her, trying to calm her . . . . I could
see her dad and my brother rushing down the hill trying to keep from falling.
When they caught up to us we traversed our way down the hill to the buses,
which had been parked about 10-15 feet [3-5 m] from the crater and had
now moved out of sight. They had driven away, moving out from under the
shower of rocks.
"At this point I had thought it was just the 30-50 people crowded at the
top lookout point that were in danger. Little did I know that while I was
running to get away from the blast of smoke from the top, the people at the
bottom were dodging rocks. It looked like a war zone. Bus windows [had]
broken . . . [and (according to Mark Headrick) one bus with its backside
facing the crater suffered extensive damage from ejecta, including the loss
of its rear window and severe damage to the fiberglass engine cowling. The
damage went deeper, and although it drove a short distance away, this bus
soon ceased functioning and had to be abandoned]. One lava rock had
landed on the top of a bus, and . . . [wedged into the roof where it caught fire
to combustible material]. People [were] bleeding, limping, crying, and
desperate to get as far away as possible. The hillside next to the parking lot
was filled with burned circles. As the lava rocks hit the ground they caught
fire to the surrounding brush.
"We all piled on buses and drove a little ways to the park entrance to
make sure all were accounted for. I got out of the bus for first aid. I suffered
abrasions down both of my arms and legs . . . . We all wanted to get in the
buses and get the heck away from the mountain as quickly as possible. We
left just before the news cameras and fire department arrived. We drove for
about an hour and a half back to the port to board the ship and . . .
[departed] Nicaragua.
"At least 15 of the 90 people on the last buses were treated by the
ship's infirmary for wounds ranging from a broken arm [wrist], broken foot,
abrasions, and cuts and bruises from falling or being struck by rocks. Most of
the people that were struck with rocks were injured after the rocks bounced
and hit the legs, shoulders, and backs.
" . . . [the cruise line] was very accommodating—they flew a crisis
counselor to the ship to comfort the passengers and the 28 crew members
that were also at the volcano."
91
Report from the ship's doctor. Medical doctor Sydney Schneidman
practices emergency medicine and was the acting physician on board the
cruise ship, which was moored at San Juan del Sur when the accident
occurred. As injured people returned to the ship, Schneidman quickly
learned that the people suffered from both physical and psychological
trauma, and many of the injuries within each of these groups were quite
similar.
He recalled that the most serious physical injury was a broken wrist due
to a fall. This and many other injuries to 10-15 people occurred when people
fleeing the fallout took the steep, off-trail escape route described above. The
visitors were forced to move quickly in this direction because flying debris
blocked the trail leading back to the parking lot and the buses. Many of the
abrasions obtained on this forced evacuation route were leg wounds from
sharp-edged volcanic rocks. In addition, Schneidman noted two or three
missile injuries, one a head puncture, two others to the flank (side of the
stomach), and one to a hip. (Joanne Gordon noted that a broken foot bone
sustained by one of the passengers was diagnosed sometime after the trip
was over.)
Regarding the psychological aspect of the injuries, Schneidman
described these as mental trauma from people who thought they were going
to die. He advised the visitors be treated without delay by a psychologist
skilled in dealing with "critical-instance stress" (CIS) debriefing, and when in
Panama one day later, the cruise ship had arranged to pick up a
psychologist flown in from the USA specializing in trauma counseling. Over
the next several days the psychologist held group therapy sessions. Studies
have shown that rapid treatment for trauma can circumvent or decrease
several years of difficulties, including sleeplessness, anxiety, and depression
(Goenjian and others, 2000; Schmookler, 1996).
Media coverage. The explosion and its effect on tourists were
discussed in news articles in the Los Angeles Times and at least one other
Southern-California paper (Reich, 2001; Lee, 2001). The television show
Inside Edition aired videos and photos taken of the explosion by visitors
returning from the cruise ship (Inside Edition, 2001). At the time, Nicaraguan
papers covering the story included few if any details about the experiences
of the tourists from the cruise ship because they lacked contact with them.
Background. Masaya is one of Nicaragua's most unusual and most
active volcanoes. It is a broad, 6 x 11 km basaltic caldera with steep-sided
walls up to 300 m high. The caldera is filled on its NW end by more than a
dozen vents erupted along a circular, 4-km-diameter fracture system.
Masaya lies within the massive Pleistocene Las Sierras pyroclastic shield
volcano. The twin volcanoes of Nindiri and Masaya, the source of historical
eruptions, were constructed at the southern end of the fracture system and
contain multiple summit craters. A major basaltic plinian tephra was erupted
from Masaya about 6,500 years ago. Historical lava flows cover much of the
92
caldera floor and have confined a lake to the far eastern end of the caldera.
A lava flow from the 1670 eruption overtopped the N caldera rim. Masaya
has been frequently active since the time of the Spanish Conquistadors,
when an active lava lake prompted several attempts to extract the volcano's
molten "gold."
References: Goenjian, A.K., Steinberg, A.M., Najarian, L.M., Fairbanks,
L.A., Tashjian, M., and Pynoos, R.S. , 2000, Prospective study of
posttraumatic stress, anxiety, and depressive reactions after earthquake and
political violence: American Journal of Psychiatry, v. 157, no. 6, p. 911-916.
Inside Edition, 2001, Volcano survivors: King World Productions, 8 May
2001 telecast (video ordering information at the phone number 212-8175656 ext. 5583); 515 W 57th St., New York, NY 10019 USA.
Lee, Jasmine, 2001, Tested by fire—Area residents recount terror of
volcano blast in Nicaragua: Daily Breeze (A Copley Newspaper, Torrance,
CA), 3 May 2001, p. A1 and A9.
Reich, Kenneth, 2001, Volcano's eruption shook up vacation of
southland sisters—Nicaragua: The two dodged rocks and ash on a
sightseeing stop at a crater during a Latin American cruise; one broke her
arm: Los Angeles Times, Metro News, 3 May 2001, p. B2.
Schmookler, Edward L., 1996, Trauma treatment manual (URL:
http://amsterdam.park.org/Guests/Stream/ trauma_manual.htm).
Information Contacts: INETER, Apartado Postal 2110, Managua,
Nicaragua (Email: [email protected]); Joanne Gordon, 222 East
Carrillo, Ste. 106, c/o PaineWebber, Santa Barbara, CA 93101 USA (Email:
[email protected]); Sydney Schneidman, M.D., 1757 Holicong Rd.,
New Hope, PA 18938 USA (Email: [email protected]).
93
REPORTES RECIENTES DEL INETER DISPONIBLES EN LA RED
Comunicado Vulcanológico
EXPLOSIÓN EN EL VOLCÁN MASAYA
INETER informa que en el cráter Santiago del Volcán Masaya ocurrió hoy a las 02:26
p.m., una explosión de gases volcánicos.
INETER envió inmediatamente un grupo de especialistas al volcán; las siguientes
informaciones se basan en sus reportes y en los datos de la Estación Sísmica ubicada en
las laderas del volcán Masaya.
La explosión tuvo una duración de dos minutos y se desarrolló en tres etapas. En la
primera etapa los gases volcánicos bajo alta presión abrieron una nueva boca en el fondo
del cráter. Fragmentos de rocas de hasta 60 cm de diámetro fueron lanzados al aire. Las
rocas y piedras cayeron hasta en distancias de 500 m del cráter, provocando daños a
vehículos parqueados en la plataforma de los visitantes e hirieron a una de las personas
que se encontraban en esta zona.
En una segunda y tercera fase salieron chorros de gases calientes mezclados con pedazos
de lava y ceniza volcánica. Este material caliente causó un incendio en la vegetación seca
cerca del cráter. Después de la explosión salieron grandes cantidades de gases mezclados
con ceniza volcánica pero la cantidad de ceniza desminuyó rápidamente.
Después de la tercera etapa el volcán regresó a su estado normal y hasta la hora de
elaborar este comunicado no ha presentado ninguna otra señal de actividad anormal.
Antes de la explosión el sismograma del Volcán Masaya que INETER también publica
en tiempo real en su página Web, no mostró ninguna anomalía relevante, lo mismo que la
actividad microsísmica del volcán que continuamente se registra en INETER. Cabe
destacar que eventos similares se han producido en otras ocasiones en el volcán Masaya,
sin mayor trascendencia.
Se estima que otras explosiones podrían ocurrir pero que peligro existe solamente para la
zona muy cercana al cráter, es decir hasta distancias de aproximadamente 500 m. No
existe peligro para la ciudad de Masaya o poblaciones aledañas; tampoco para la
circulación sobre la carretera Managua-Masaya.
INETER mantiene un grupo de vulcanólogos en la zona y esta realizando monitoreo de la
concentración de gases. Reportará cualquier anomalía en el comportamiento del Volcán
Masaya.
Managua, 23 de Abril de 2001, 05:30 PM
94
COMUNICADO VULCANOLÓGICO N° 2
Disminuye Actividad Explosiva en el
VOLCÁN MASAYA
INETER informa que la actividad explosiva en el cráter Santiago del Volcán Masaya ha
disminuido, manteniendo hasta la hora de emitir este comunicado una fase relativamente
estable.
Los especialistas de INETER, que se mantuvieron en el volcán durante las últimas 24
horas, reportaron algunas explosiones de menor magnitud que arrojaron pequeñas
cantidades de ceniza volcánica. La desgasificación no sobrepasa los niveles
acostumbrados en el cráter Santiago. La Estación Sísmica del Volcán Masaya indica
niveles normales de tremor sísmico, no registrándose ningún sismo en el volcán o en sus
cercanías.
El día de hoy se observó que por lo general los gases volcánicos salen con baja presión de
la nueva boca, que tiene un diámetro de aproximadamente 10 m y que se formó a 30 m al
Sur de la anterior, la cual ya no presenta salida de gases. A las 03:26 PM del día de hoy,
ocurrió una explosión de regular intensidad que arrojó ceniza volcánica.
Se espera que la actividad continué disminuyendo, aunque se recomienda prudencia
porque otras explosiones podrían ocurrir. Existe peligro solamente para la zona muy
cercana al cráter, es decir hasta distancias de aproximadamente 500 m. No existe peligro
para la ciudad de Masaya o poblaciones aledañas; tampoco para la circulación sobre la
carretera Managua-Masaya.
INETER mantiene un grupo de vulcanólogos en la zona que observan la actividad, y
personal que está continuamente monitoreando la concentración de gases. El
comportamiento de las concentraciones de SO2 en la Plazoleta de Visitantes el día de hoy
a las 10:20 AM, con respecto a lo registrado el día de ayer a las 06:00 PM, disminuyeron
en más del 72%. Esta situación ha sido favorecida por la velocidad del viento y por la
disminución de las emanaciones que ha presentado el volcán. Las concentraciones de
Anhídrido Sulfuroso en las Comarcas La Borgoña y San José de los Ríos, son del orden
de 3.5 y 4.0 ppm, respectivamente.
Se continuará reportando cualquier anomalía en el comportamiento del Volcán Masaya.
Managua, 24 de Abril de 2001. (05:30 PM)
95
COMUNICADO VULCANOLÓGICO N° 3
Disminuye Actividad Explosiva en el
VOLCÁN MASAYA
INETER informa que la actividad explosiva en el cráter Santiago del Volcán Masaya ha
disminuido, manteniendo hasta la hora de emitir este comunicado una fase relativamente
estable.
Los especialistas de INETER, que se mantuvieron en el volcán durante las últimas 24
horas, reportaron salida de gases continua que no sobrepasa los niveles acostumbrados en
el cráter Santiago. Durante la noche ocurrieron pequeñas explosiones con salida de ceniza
que se depositó en el segundo mirador.
Las concentraciones de SO2 en la Plazoleta de Visitantes del Parque Nacional Volcán
Masaya el día de hoy ha bajado en un 29%, con respecto a lo registrado el día de ayer.
Esta situación ha sido favorecida por la velocidad del viento y por la disminución de las
emanaciones que ha presentado el volcán. Las concentraciones de Anhídrido Sulfuroso
en las Comarcas La Borgoña y San José de los Ríos, son del orden de 2.0 ppm,
respectivamente.
La Estación Sísmica del Volcán Masaya indica niveles normales de tremor sísmico. No
se registró ningún sismo en el volcán o en sus cercanías.
Se espera que la actividad continué disminuyendo, aunque se recomienda prudencia
porque podrían ocurrir otras explosiones. Existe peligro solamente para la zona muy
cercana al cráter, es decir hasta distancias de aproximadamente 500 m.
INETER mantendrá el puesto de observación durante toda la semana, se hará un nuevo
comunicado si la actividad se incrementa en el Volcán Masaya.
Managua, 25 de Abril de 2001. (05:30 PM)
COMUNICADO VULCANOLÓGICO N° 4
Disminuye Actividad en el
VOLCÁN MASAYA
INETER informa que, en los últimos dos días, la actividad en el cráter Santiago del
Volcán Masaya continuó disminuyendo.
Los especialistas de INETER, que se mantuvieron en el volcán durante las últimas 48
horas, reportaron salida de gases continua que no sobrepasan los niveles acostumbrados
en el cráter Santiago. Durante los últimos dos días ocurrieron pocos episodios de
desgasificación fuerte.
96
La Estación Sísmica del Volcán Masaya indica niveles normales de tremor sísmico. No
se registró ningún sismo en el volcán o en sus cercanías.
INETER, temporalmente, instaló una segunda estación sísmica en el volcán, cerca de la
plataforma de visitantes. Personas interesadas pueden ver las señales de ambas estaciones
en la página Web de INETER.
INETER mantiene su vigilancia permanente sobre el Volcán Masaya, y emitirá un nuevo
comunicado si la actividad se ve aumentada.
Managua, 27 de Abril de 2001, 05:30 PM.
97
Amenaza Volcánica
PROCESOS EFUSIVOS
La lava es el producto más familiar de la actividad volcánica y consiste en
corrientes de roca fundida (Miller, 1989) producidas cuando el magma alcanza la
superficie de la corteza a través de los conductos de los volcanes o bien por
medio de fisuras.
Las lavas no son más que la salida a la superficie del planeta de los
magmas, que son productos de la fusión parcial de las rocas que existen a
profundidad. De acuerdo con el sitio geodinámico que se trate, será el tipo de
magmas producidos.
Las lavas se producen cuando el magma alcanza la superficie de la corteza a
través de los conductos volcánicos centrales o bien por medio de fisuras. La
salida del magma se inicia con la adición de un magma a una cámara
produciendo que la presión del fluido total de la cámara magmática exceda el
esfuerzo mínimo principal y el esfuerzo tensional de la roca encajonante
llevando al rompimiento del techo de la cámara magmática y a la salida del
magma.
Tilling (1993) señala que el mayor riesgo relacionado a flujos de lava
representa el daño parcial o la destrucción total por enterramiento, trituración o
incendio, de todo lo que encuentran a su paso. Sin embargo, flujos relativamente
grandes probablemente pueden cubrir áreas de algunos cientos de kilómetros
cuadrados. La mayoría de los flujos se mueven lentamente permitiendo que la
gente pueda fácilmente moverse fuera de su alcance.
Amenaza por flujos de lava en el volcán Masaya. Los flujos de lava son
los elementos eruptivos más frecuentes en este volcán. Las lavas tienden a
98
formar lagos de lava, así como emitir lavas fisurales o derrames por los flancos.
La geología compilada permitirá calibrar las simulaciones necesarias para
pronosticar posibles distribuciones, focos de emisión y alcances. Es necesario
señalar, que los posibles focos de la actividad efusiva son numerosos, con
distribuciones no determinadas por un solo conducto central, sus distribuciones
en el tiempo será necesario evaluarlas.
PROCESOS EXPLOSIVOS
Los fenómenos explosivos tienen diversas facetas. Por una parte, éstos
producen la lluvia de piroclastos a partir de una columna eruptiva. Flujos
piroclásticos por el colapso de la misma u oleadas piroclásticas en el caso de
eventos freatomagmáticos. En todos los casos, la formación de nubes de
cenizas y emisión de bloques y bombas son una consecuencia, sin distinción de
la magnitud del fenómeno explosivo, aunque los alcances y distribución
dependen de su magnitud.
A continuación se mencionan algunas generalidades de los procesos
asociados con erupciones explosivas como preámbulo a la evaluación preliminar
de las amenazas relacionadas en relevancia con el volcán Masaya
PROYECTILES BALÍSTICOS. Son fragmentos de roca que son expulsados
hacia la atmósfera y que luego caen nuevamente sobre la superficie terrestre,
varían de tamaño desde ceniza (<2 mm), a lapilli (2-64 mm), hasta bloques y
bombas (>64 mm) que pueden alcanzar diámetros de varios metros (Fisher,
1961). Las densidades varían desde pómez y escoria vesiculares de baja
densidad, hasta cristales y fragmentos líticos muy densos. El material puede ser
de tipo juvenil (formado a partir de magma involucrado en la erupción) o de tipo
accidental
(formado
de
rocas
preexistentes).
los
proyectiles
balísticos
abandonan el cráter a velocidades que varían de decenas a centenares de
99
metros por segundo, y siguen trayectorias que no son afectadas por la dinámica
de la columna eruptiva o por el viento. En consecuencia, estos proyectiles se
hallan restringidos a 5 km del centro de emisión (Blong, 1984).
Los proyectiles balísticos son una amenaza para la vida y las propiedades
por la fuerza del impacto de los fragmentos al caer. El peligro de impacto por
grandes fragmentos es máximo cerca del cráter y decrece al incrementarse la
distancia desde el mismo. Las personas pueden sobrevivir la caída de bombas
pequeñas en un refugio mínimo; sin embargo, las caídas de bombas grandes
pueden afectar a las personas hasta en refugios sólidos.
Amenaza por proyectiles balísticos en el volcán Masaya. Existen numerosos
ejemplos de proyectiles balísticos en las secuencias estratigráficas del volcán
Masaya. Actualmente, se han podido reunir datos de campo, para los alcances
de productos balísticos asociados a erupciones plinianas (en depósitos de la
“Capa Triple”) y para erupciones de carácter vulcaniano (abril de 2001) para
poder englobar a los escenarios máximo y mínimo.
CAÍDA DE TEFRAS. Las tefras son fragmentos de roca que son expulsados
hacia la atmósfera y que luego caen nuevamente sobre la superficie terrestre,
varían de tamaño desde ceniza (<2 mm), a lapilli (2-64 mm), hasta bloques y
bombas (>64 mm) que pueden alcanzar diámetros de varios metros (Fisher,
1961). Las densidades varían desde pómez y escoria vesiculares de baja
densidad, hasta cristales y fragmentos líticos muy densos. El material puede ser
de tipo juvenil (formado a partir de magma involucrado en la erupción) o de tipo
accidental (formado de rocas preexistentes).
La tefra está constituía por fragmentos de roca y lava que han sido expulsados
hacia la atmósfera como producto de una erupción explosiva y que luego caen
nuevamente sobre la superficie terrestre. Las partículas son transportadas hacia
100
arriba por medio de columnas eruptivas, las cuales consisten de una zona
inferior de empuje por gases, y una zona superior convectiva (Sparks y Wilson
1976). Una columna continuará ascendiendo por convección hasta que su
densidad sea igual a la de la atmósfera circundante. Luego sufrirá una
expansión lateral, pero también continuará ascendiendo debido a la inercia, y
formará una amplia nube en forma de paraguas (Sparks, 1986, Sparks et al.,
1986), la cual juega un papel importante en el transporte de piroclásticos (Carey
y Sparks, 1986).
Los depósitos de caída de tefra típicamente cubren la superficie preexistente
del terreno con una capa de espesor casi uniforme en una zona dada de relieve
bajo a moderado. En un terreno escarpado, el retrabajo durante e
inmediatamente después de la deposición puede conducir a cambios
pronunciados en el espesor (p.e. Duffield et al., 1979).
Los depósitos de caída de tefra tienen una clasificación de moderada a
buena comparada con otros tipos de depósitos piroclásticos y comúnmente
están estratificados. Las capas de grano grueso generalmente tienen soporte de
grano con escasa o ninguna matriz. Cambios en la energía de la columna
eruptiva, la composición del material emitido, y la dirección y velocidad del viento
producen variaciones en las capas sucesivas.
Las caídas de tefra son una amenaza para la vida y las propiedades por:
•
sepultamiento
•
formación de una suspensión de partículas de grano fino en el agua y
aire
•
el transporte de gases nocivos, ácidos, sales y en las cercanías el
calor.
Las caídas de tefra constituyen el peligro directo de mayor alcance derivado
de erupciones volcánicas.
101
El enterramiento por tefra puede provocar el colapso de los techos de
edificios, destruir líneas de transmisión de energía y comunicaciones, y dañar o
acabar con la vegetación. La tefra seca y no compactada tiene densidades que
varían entre 0.4-0.7 g/cm3, mientras que la tefra húmeda y compactada alcanza
valores de densidad de hasta 1 g/cm3 (Blong, 1981, 1984). De esta manera, la
carga impartida por una capa de cáida de tefra de 10 cm de espesor puede
variar de entre 40-70 kg/m2 para tefras secas y hasta 100-125 kg/m2 para tefras
húmedas. La humedad también incrementa la cohesión de la tefra.
Los efectos del enterramiento sobre la vegetación son muy variables, capas
delgadas de tefra pueden causar daños, dependiendo de las especies vegetales,
la época del año y de la etapa de crecimiento de la planta (Rees, 1979; Blong,
1982).
Las caídas de tefra han causado incendios, tanto por rayos generados en las
nubes eruptivas, como por fragmentos incandescentes. En la erupción de 1707
del Monte Fuji se generaron incendios a 10 km de distancia originados por
fragmentos de pómez de 20 a 30 cm. de diámetro. En ciertos casos, y a varios
kilómetros del cráter, los depósitos de caída de tefra pueden ser tan calientes
que los fragmentos pueden quedar soldados entre sí (Writht, 1980; Mahood &
Hildreth, 1983). Los efectos de episodios de este tipo podrían ser catastróficos.
Cuando la tefra se dispersa sobre una cuenca hidrográfica, ésta puede
inducir
cambios
importantes
en
las
relaciones precipitación/escorrentía.
Depósitos de cenizas finas con una baja permeabilidad llevan a un aumento en
la escorrentía, a una erosión acelerada y a un ajuste en los canales de los ríos
(Segerstrom, 1950; Waldron, 1967; Davies et al., 1978b; Collins et al., 1983;
Lehre et al., 1983). Al contrario depósitos potentes de tefra de grano grueso
pueden incrementar la capacidad de infiltración y prácticamente eliminar la
escorrentía.
102
Los fenómenos explosivos en fracturas asociadas a un edificio volcánico
pueden derivar en la acumulación de tefras que lleguen a construir un edificio
volcánico parásito o cono cinerítico adventicio. Los peligros asociados con la
construcción de conos adventicios son los mismos que para un volcán mayor,
sólo que el rango de alcance de los productos puede ser menor, aunque no
siempre es así. La aparición de un cono nuevo implicaría el sepultamiento de la
zona donde éste tenga su nacimiento y las zonas aledañas sufrirían los efectos
del cubrimiento de superficies por cenizas en zonas que podrían se de 25 km2 o
más.
Amenaza por caída de tefras del volcán Masaya. Este es uno de los procesos
para los cuales existe información útil. Por una parte, existen los mapas de
isopacas de Bice (1980) y Williams (1983), para los fenómenos explosivos
plinianos. Adicionalmente, existen datos que permitirán delinear las isopacas
para los eventos recientes de mayor magnitud (Hradecky et al., 1997). También,
existe la información de vientos para el área de Managua.
Volcanes como el Masaya llevan a cabo su actividad eruptiva explosiva, no
solamente a partir del conducto central, sino además, a partir de conductos o
fisuras laterales. En este caso, es necesario realizar mayores estudios en la
región de Nejapa-Miraflores para identificar los posibles alcances y sitios de
erupción posibles. Mientras tanto se evaluará la posibilidad de que algunos
centros eruptivos estén asociados a las estructuras actuales dentro de la
caldera.
NUBES DE CENIZAS. La suspensión de partículas de grano fino en el aire
afecta la visibilidad y la salud (especialmente a personas con problemas
respiratorios), y puede estropear maquinaria desprotegida (especialmente
motores de combustión interna). El transporte aéreo, ferroviario y en carreteras
103
es especialmente vulnerable. Caídas de ceniza delgadas (<2 cm) pueden causar
graves daños a servicios comunitarios críticos, centrales de generación eléctrica,
plantas de bombeo, sistemas de drenaje y plantas de tratamiento de aguas
(Schuster, 1981, 1983). La ceniza fina puede producir cortocircuitos en las líneas
de transmisión. Adicionalmente, las comunicaciones se pueden ver afectadas
por daños en las líneas telefónicas y estaciones transmisoras de radio y
televisión, y por desórdenes de tipo eléctrico causado por rayos. La oscuridad
producida durante el día por las caídas de tefra puede persistir hasta varios días
(Blong, 1982), puede causar pánico y complicar otros problemas.
Amenaza de las nubes de cenizas del volcán Masaya. El volcán Masaya se
encuentra muy cercano a la ciudad de Managua y a su aeropuerto. Aunque los
vientos preferentemente soplan en una dirección contraria a la posición de la
ciudad y del aeropuerto, las erupciones grandes pueden enviar cenizas a gran
altura, donde los vientos predominantes soplan hacia el norte y hacia el este.
Las erupciones pequeñas sin embargo, pueden interrumpir las operaciones
aeronáuticas hacia el sur de Nicaragua y causar daños a la vida económica.
Patrones de viento. Con el fin de conocer mejor las áreas de influencia de las
nubes de cenizas del volcán Masaya, se realizó un análisis de los patrones de
viento utilizando los datos meteorológicos disponibles, por mes y por año, para
diferentes altitudes.
FLUJOS PIROCLASTICOS. Los flujos piroclásticos son mezclas secas y
calientes (300 a 800oC) de escombros piroclásticos y gases que se movilizan a
ras de la superficie a velocidades de un rango de 10 a varios cientos de metros
por segundo. Un flujo se compone de dos partes: a) un flujo basal, denso y
ceñido al piso, y b) una oleada en forma de nube turbulenta de ceniza que
precede o cabalga sobre el mismo. Nubes convectivas de ceniza
también
104
pueden estar asociadas a flujos piroclásticos y forman un depósito de caída de
tefra.
Los flujos piroclásticos se forman de varias maneras:
•
por colapso gravitacional de columnas eruptivas verticales de gran
altura
•
a partir de columnas eruptivas de poca altura que se derraman sobre
el filo del cráter y que pueden preceder el desarrollo de una columna
eruptiva de gran altura.
•
por la destrucción gravitacional o explosiva de domos lávicos y flujos
de lava calientes.
Una vez que el flujo se inicia, varios procesos lo sustentan, uno de ellos es el
de la fluidización parcial del flujo por medio del escape de gases. Los gases que
fluidizan el flujo provienen de:
• la desgasificación de los piroclastos en el flujo
• aire y gases magmáticos atrapados durante la formación del flujo
• aire recogido durante el avance del frente del flujo
• vaporización del agua de superficie, nieve o hielo
Los flujos piroclásticos presentan una amplia gama en composición y
temperatura, volumen y tasa eruptiva, lo cual se manifiesta en el amplio rango
de extensiones que pueden alcanzar.
Dependiendo de su composición varia su movilidad, flujos piroclásticos de
bloques y cenizas son de baja movilidad y generalmente están restringidos a
pocas decenas de kilómetros de los centros de emisión. Por el contrario, flujos
105
piroclásticos pumíticos compuestos principalmente por lapilli y ceniza pueden
extenderse hasta 200 kilómetros de distancia de su centro de emisión y cubrir
miles a decenas de miles de kilómetros cuadrados.
La inercia impartida a los flujos piroclásticos pumíticos de gran volumen por
su masa y velocidad permite a estos flujo sobrepasar barreras topográficas de
cientos de metros de altura por lo que tienen la capacidad de afectar áreas que
yacen fuera de las cuencas hidrográficas cuyas cabeceras apuntan hacia al el
volcán que los origino.
Debido a su masa, alta temperatura, alta velocidad y gran movilidad potencial
presentan una amenaza de muerte por asfixia, enterramiento, incineración e
impacto. Además de estos efectos directos, los flujos piroclásticos se pueden
mezclar con agua superficial o agua de fusión de nieve y hielo para formar
lahares y crecientes, que pueden causar graves daños valle abajo. Los flujos
piroclásticos también son capaces de generar incendios, los cuales pueden
extenderse mucho más allá de los límites del flujo mismo.
Amenaza por flujos piroclásticos en el volcán Masaya. Los trabajos de
Williams (1983) muestran la ocurrencia de flujos piroclásticos durante las fases
de erupción plinianas.
Los flujos piroclásticos han jugado un papel importante durante las
erupciones de gran magnitud, debido a que incluso, se observan flujos
piroclásticos soldados.
OLEADAS PIROCLÁSTICAS. Son dispersiones gas-sólido, turbulentas, bajas
en concentraciones de partículas, que fluyen sobre la superficie del terreno a
altas velocidades. Las oleadas piroclásticas se dividen en dos categorías:
106
oleadas caliente y oleadas frías. Las oleadas piroclásticas calientes son
generadas por muchos de los mismos procesos que dan lugar a los flujos
piroclásticos; las oleadas piroclásticas frías son generadas por explosiones
hidromagmáticas o hidrotermales.
Las oleadas piroclásticas frías, u oleadas basales, se originan en explosiones
hidrovolcánicas en las cuales el agua subterránea somera o agua superficial
interactúa con magma: Estas oleadas generalmente contienen agua y/o vapor y
se encuentran a temperaturas inferiores al punto de ebullición del agua. Es típico
que las oleadas basales se encuentren restringidas a un radio de 10 km de sus
centros de emisión.
Se forman a partir de dispersiones sólido-gas de baja concentración y por lo
tanto son menos controladas por la topografía que los flujos piroclásticos. Los
depósitos de una oleada individual normalmente son más delgados que los flujos
piroclásticos. Los depósitos de ambos tipos de oleada piroclástica, caliente y fría
o
basal
generalmente
están
bien
estratificados,
presentan
capas
unidireccionales y tienden a cubrir la superficie del terreno así como también a
embalsarse en áreas bajas.
Capas o láminas individuales de oleada pueden presentar una clasificación
relativamente
buena,
pero
el
tamaño
de
grano
normalmente
varía
marcadamente a través de un conjunto entero de capas, y en general los
depósitos de oleada tienen un sorteo pobre. Los depósitos de oleada basal
típicamente muestran evidencias de que las oleadas fueron húmedas: lapilli
acrecional, y deformación sin y post deposicional indicadora de condiciones
húmedas.
107
Si bien los flujos piroclásticos están gobernados por la topografía, las oleadas
derivadas de los mismos tienen una movilidad más alta y por lo tanto pueden
afectar áreas bastante alejadas de los límites del flujo piroclástico. Oleadas
piroclásticas calientes pueden afectar áreas localizadas a varias decenas de
kilómetros de los centros de emisión.
Las oleadas piroclásticas representan una serie de peligros, los cuales
incluyen destrucción por nubes de ceniza que se mueven a gran velocidad, el
impacto de los fragmentos de roca y el enterramiento por depósitos de jados por
la oleada. Las oleadas piroclásticas calientes presentan algunos peligros
adicionales, como son la incineración, los gases tóxicos y la asfixia. Catástrofes
volcánicas notables han sido producidas por el impacto de oleadas piroclásticas
calientes: Vesubio (79 D.C.), Mt. Lamington (1951) y El Chichón (1982).
Debido a sus elevadas velocidades (algunas decenas de metros/s) y a su
gran movilidad, cualquier escape es imposible una vez que la oleada ha sido
generada. El único método efectivo de mitigación es la evacuación de las de las
áreas amenazadas desde el inicio de la erupción.
De acuerdo con (Kiefer, 1981), citado en (Martí J. & Araña V., 1993) Las
explosiones laterales pueden definirse como "expulsiones de tefra de relativa
corta duración donde la componente lateral del momento es elevado debido a
las grandes sobrepresiones que se desarrollan en la boca de emisión", otra
definición (Tilling, 1993) menciona que "las grandes explosiones lateralmente
dirigidas son fenómenos complejos que comparten características de flujos
piroclásticos y oleadas, pero que se tratan separadamente por cuanto tienen una
componente inicial de ángulo bajo y pueden afectar amplios sectores de un
volcán de hasta 180 grados y alcanzar distancias de decenas de kilómetros", es
importante
agregar
que
estas
explosiones
se
mueven
a
velocidades
108
excepcionalmente altas (mayores a 100 m/s) y tienen una movilidad muy alta,
por lo que casi no les afectan los rasgos topográficos.
Resultan de la despresurización repentina del sistema magmático y/o
hidrotermal
dentro
del
volcán,
dicha
despresurización
se
origina
por
deslizamientos (Christiansen & Peterson, 1981; Kieffer,1981; Eichelberger &
Hayes, 1982) en (Tilling, 1993). Dichos deslizamientos pueden producirse por
actividad magmática la cual es responsable del rompimiento de un área de
significativa deformación (como en el caso de la erupción del monte Santa Elena
en 1980), la sismicidad es otro factor que contribuye al deslizamiento, la
actividad freática y la debilidad estructural de un sector del edificio volcánico
contribuyen también en la generación de las explosiones dirigidas (Chester,
1993).
Las fuentes de amenaza son: el calor (de hasta algunos cientos de grados
centígrados), la propagación de ondas de choque, la alta velocidad (mayor a 100
m/s), la mezcla de gases y partículas volcánicas es nociva, la alta movilidad (que
provoca que los flujos soprepasen la topografía preexistente), la dirección de la
explosión y una gran zona de afectación (que llega a ser de 50 km de radio en
torno a la fuente).
El impacto se manifiesta en amplias zonas de afectación (gran alcance), en
forma de incendios, daño parcial ó total (derribamiento, abrasión, enterramiento
e impacto de escombros) y asfixia.
Amenaza por oleadas piroclásticas en el volcán Masaya. Las observaciones
de Williams (1983) son fundamentales para documentar las oleadas piroclásticas
más singulares reportadas hasta el momento. Los depósitos de oleadas
piroclásticas del volcán Masaya son importantes por sus espesores y por sus
alcances.
109
COLAPSO ESTRUCTURAL
El colapso estructural en volcanes, normalmente se refiere a procesos de
deslizamiento de laderas o “derrumbes gigantes”. En el caso de los colapsos
que se toman en cuenta en este trabajo, se hace referencia a colapsos
estructurales a lo largo de fallas y fracturas circulares como parte del proceso
evolutivo de los cráteres como Nindirí, Santiago, san Pedro, etc.
Estos procesos de colapso son de gran importancia para el análisis de
amenaza pues, los procesos pueden implicar hundimientos importantes y
sismos, que pueden ser de importancia no sólo en las áreas cercanas al volcán,
sino también en la s zonas más cercanas a zonas pobladas.
Amenaza por colapso estructural en el volcán Masaya. Este tipo de
procesos no están bien documentados, aunque afortunadamente existe un
trabajo reciente de Rymer y colaboradores (1998) donde se discute el proceso
de formación de los cráteres de Masaya. Este trabajo es de importancia para el
análisis que interesa, conjuntamente con los análisis geodinámicos para
identificar patrones de migración y edad de los procesos de colapso caldérico.
LAHARES. Los lahares son mezclas de escombros rocosos movilizados por
agua, que fluyen rápidamente, y se originan en las pendientes de los volcanes
(Crandell, 1971). Las propiedades físicas están controladas por el tamaño de
grano y contenido de agua (Fisher, 1971), pero típicamente incluye una alta
resistencia a punto cedente, una densidad total alta (alcanza los 200 kg/m3) y
viscosidad alta. Las velocidades de lahares históricos han variado ampliamente
debido a diferencias en las dimensiones de los canales, volumen y distribución
del tamaño de grano. Los lahares del Monte Santa Helena en 1980 tenían
velocidades tan bajas como 1.3 m/s a lo largo de zonas distales de baja
pendiente, y tan altas como 40 m/s en pendientes fuertes cercanas al volcán.
110
Son también definidas como mezclas fluidas de agua y partículas volcánicas
de tamaños diversos cuya concentración es igual o mayor a la de los flujos
hiperconcentrados (Smith & Fritz, 1989, Smith & Lowe, 1991). Incluyen tanto a
los flujos hiperconcentrados como a los de flujos de escombros.
Los flujos hiperconcentrados: son mezclas fluidas de agua y sólidos
granulares las cuales poseen un esfuerzo de cedencia medible (probablemente
menor a 400 dinas/cm2) dicho esfuerzo se produce aproximadamente cuando la
concentración de partículas sólidas se encuentra entre 55 a 60% en peso o 35 a
40% en volumen. (Feí, 1983; Mayor & Pierson, 1992).
Los flujos de escombros: son mezclas fluidas de agua y sólidos granulares
sumamente viscosas que tienen un significativo esfuerzo de cedencia, son
capaces de transportar partículas del tamaño de la grava y la concentración de
partículas sólidas se encuentra entre 75 a 80% en peso o 55 a 60% en volumen
(Pierson & Scott, 1985; Pierson, 1986). Cabe considerar que un flujo de
escombros puede diluirse y transformarse en un flujo hiperconcentrado.
Las áreas de inundación y la longitud de un lahar son altamente influenciadas
por
el
volumen
del
lahar,
sus
características
granulométricas,
las
transformaciones durante el flujo y la topografía. Un gran volumen, un alto
contenido de arcilla y el confinamiento en un valle angosto favorece el recorrido
de grandes distancias; algunos de estos lahares históricos han recorrido
centenas de kilómetros aguas abajo, Por el contrario, la descarga pico de
lahares que tienen un bajo contenido de arcilla se atenúan rápidamente aguas
abajo; lo mismo ocurre con lahares que se esparcen sobre áreas amplias de
relieve bajo.
Los lahares pueden ser generados de muchas maneras (Tilling, 1993):
111
•
Mezcla de escombros de roca y agua en un volcán
•
Explosiones volcánicas pueden desaguar en forma catastrófica en
lagunas cratéricas
•
Avalanchas de escombros saturadas en agua pueden transformarse
en lahares
•
Avalanchas de escombros que llegan a detenerse pueden generar
lahares al soltar agua
•
Flujos piroclásticos pueden entrar en ríos e incorporar agua
Existen otros mecanismos que pueden generar lahares y que están
indirectamente relacionados con la actividad volcánica:
•
Represas formadas por flujos de lava, avalanchas de escombros,
flujos
piroclásticos
o
bordes
cratéricos,
pueden
fallar
por
desbordamiento o derrumbe
•
Aguaceros torrenciales de tefra depositada u otro material no
consolidado
•
Ocurrencia simultánea de tormentas y columnas eruptivas
De acuerdo con Blong (1984) existen lahares primarios y secundarios que
pueden ser generados por las siguientes causas:
Causa
A.
Ejemplo
Lahares primarios-asociados con erupciones
1. Erupción a través de un lago cratérico
Kelut, 1991
Ruapehu, 1969
2. Fusión de nieve y hielo
Cotopaxi, 1877
Tokachi, 1926
112
3. Descenso de un flujo piroclástico sobre las corrientes de un río Asama, 1783
Bezymianny, 1956
B. Lahares
erupciones
1.
secundarios-
asociados
indirectamente
con
Lluvia de tefra asociada con un incremento en el coeficiente
Santa María, 1902
de escorrentía
Mayon, 1968
Irazú, 1963-64
Fusión rápida de nieve o hielo
Mt. Shasta, 1926, 1932
Kautz Creek, Mt. Rainier, 1947
Usu, 1977
2.
Colapso de un lago cráter
Ruapehu, 1953
3.
Iniciados por sismos
Mauna Loa, 1868
Los lahares amenazan la vida y las propiedades tanto en los volcanes como
en los valles que los drenan. Debido a su alta densidad y a su velocidad, los
lahares pueden destruir la vegetación y hasta estructuras importantes a lo largo
de sus rutas tales como puentes. Los depósitos de lahar pueden enterrar
profundamente obras de infraestructura y campos cultivados. También pueden
enterrar profundamente obras de infraestructura y campos cultivados. Pueden
rellenar canales de ríos disminuyendo su capacidad de drenaje de crecientes. El
aumento en la sedimentación puede afectar la capacidad de navegación de
estos canales (Tilling, 1993).
Sin embargo debido a que la mayoría de los lahares fluyen por los valles, las
áreas de mayor peligro pueden ser identificadas fácilmente. Sin embargo los
lahares pueden viajar grandes distancias valle abajo a gran velocidad, cubriendo
grandes áreas con pesados depósitos. Al parecer los lahares son mucho más
113
peligrosos que los flujos piroclásticos. Ciertamente los lahares se mueven más
lentamente y siguen un camino más predecible, además de que el peligro
continua durante varios meses después de la erupción (Blong, 1984).
Amenaza por lahares en el volcán Masaya. No existe al momento, ningun
trabajo sobre posibles eventos laháricos en la zona de influencia del volcán
Masaya, sin embargo, sería de esperar la ocurrencia de estos eventos en el
caso de ocurrir eventos explosivos, con emisión de materiales fragmentados.
AGRADECIMIENTOS
El presente análisis fue realizado gracias al apoyo de la Agencia de Cooperación
Internacional de Japón y del Gobierno de México hacia el Instituto Nicaragüense
de Estudios Territoriales. El Ing. Claudio Gutiérrez permitió el apoyo logístico
para llevar a cabo el reconocimiento de campo y las facilidades para llevar a
cabo este trabajo. El Dr. Wilfried Strauch aportó sugerencias importantes y
discusiones productivas a lo largo de la realización de este trabajo.
114
BIBLIOGRAFÍA (EN ORDEN CRONOLÓGICO DESCENDENTE)
En revistas:
Williams-Jones, G., Rymer, H., and Rothery, D.A., 2002. Gravity changes and
passive degassing at the Masaya caldera complex, Nicaragua. Journal
of Volcanology and Geothermal Research, In press.
Delmelle, P., Stix, J., Baxter, P.J., Garcia-Alvarez, J. and Barquero, J., 2002.
Atmospheric dispersion, environmental effects and potential health
hazard associated with the lowaltitude gas plume of Masaya volcano,
Nicaragua. Bulletin of Volcanology, 10.1007/s00445-002-0221-6.
Delmelle, P., Stix, J., Bourque, C.P.A., Baxter, P.J., Garcia-Alvarez, G. and
Barquero, J., 2001. Dry deposition and heavy acid loading in the vicinity
of Masaya volcano, a major sulfur and chlorine source in Nicaragua.
Environmental Science & Technology, 35, 1289-1293.
Duffell, H., Oppenheimer, C. and Burton, M., 2001. Volcanic gas emission rates
measured by solar occultation spectroscopy. Geophysical Research
Letters, 28, 3131-3134
Delmelle, P., Baxter, P., Beaulieu, A., Burton, A., Francis, P., Garcia-Alvarez, J.,
Horrocks, L., Navarro, M., Oppenheimer, P., Rothery, D., Rymer, H., St.
Amand, K., Stix, J., Strauch, W., and Williams-Jones, G., 1999. Origin,
effects of Masaya volcano's continued unrest probet in Nicargua. EOS
Transactions, American Geophysical Union, 80, 575-581.
Horrocks, L., Burton, M., Francis, P., and Oppenheimer, C., 1999. Stable gas
plume composition measured by OP-FTIR spectroscopy at Masaya
volcano, Nicaragua, 1998-1999. Geophysical Research Letters, 26,
3497-3500.
Oppenheimer C., Francis P., Burton M., Maciejewski, A., and Boardman, L.,
1998. Remote measurement of volcanic gases by Fourier transform
infrared spectroscopy. Applied Physics, 67, 505-515.
115
Rymer, H., van Wyk de Vries, B., Stix, J., and Williams-Jones, G., 1998. Pit
crater structure and processes governing persistent activity at Masaya
Volcano, Nicaragua. Bulletin of Volcanology, 59, 345-355.
Métaxian, J.-P. and Lesage, P., 1997. Permanent tremor of Masaya Volcano,
Nicaragua:Wave field analysis and source location. Journal of
Geophysical Research, 102:B10, 22529-22545.
Tazieff, H., 1994. Permanent lava lakes: observed facts and induced
mechanisms. Journal of Volcanology and Geothermal Research, 63:1-2,
3-11.
Condomines, M. and Sigmarsson, O., 1993. Why are so many arc magmas close
to 238U-230Th radioactive equilibrium? Geochimica et Cosmochimica
Acta., 57:18, 4491-4497.
Francis, P., Oppenheimer, C. and Stevenson, D., 1993. Endogenous growth of
persistently active volcanoes. Nature, 366:6455, 554-557.
Walker, J. A., Williams, S. N., Kalamarides, R. I. and Feigenson, M. D., 1993.
Shallow open-system evolution of basaltic magma beneath a subduction
zone volcano: the Masaya Caldera Complex, Nicaragua. Journal of
Volcanology and Geothermal Research, 56, 379-400.
Kieffer, G. and Creusot, E. A., 1992. La Caldeira de Masaya (Nicaragua); une
depression polyphasee de type "maar" Comptes Rendus de Refereed
Publications Theses l'Academie des Sciences, Serie 2, Mecanique,
Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 315:11,
1403-1409.
Connor, C. B. and Williams, S.N., 1990. Interpretation of gravity anomalies,
Masaya caldera complex, Nicaragua. Transactions of the 12th
Caribbean Geological Conference, Aug. 7-11, 1989, United States Virgin
Islands, 12, 495-502.
Gregg, T. K. P. and Williams, S. N., 1986. Explosive mafic volcanoes on Mars
and Earth: Deep magma sources and rapid rise rate. Icarus, 122, 397405.
116
Johnson, N. and Parnell, R. A., 1986. Composition, distribution and neutralization
of "acid rain" derived from Masaya volcano, Nicaragua. Tellus, 38, 106117.
Parnell, R. A., 1986. Processes of soil acidification in tropical Durandepts,
Nicaragua. Soil Science, 142:1, 43-55.
Stoiber, R. E., Williams, S. N. and Huebert, B. J., 1986. Sulfur and halogen
gases at Masaya caldera complex, Nicaragua: Total flux and variations
with time. Journal of Geophysical Research, 91:B12, 12215-12231.
Bice, D. C., 1985. Quaternary volcanic stratigraphy of Managua, Nicaragua:
Correlation and source assignment for multiple overlapping plinian
deposits. Geological Society of America Bulletin, 96, 553-566.
Tazieff, H., 1984. Permanent lava lakes: observed facts and induced
mechanisms. Journal of Volcanology and Geothermal Research, 63, 311.
Williams, S. N., 1983. Plinian airfall deposits of basaltic composition. Geology,
11, 211-214.
Baxter, P. J., Stoiber, R. E., and Williams, S. N., 1982. Volcanic gases and
health: Masaya volcano, Nicaragua Lancet, 2, 150-151.
Crenshaw, W. B., Williams, S. N. and Stoiber, R. E., 1982. Fault location by
radon and mercury detection at an active volcano in Nicaragua. Nature,
300, 345-346.
McNutt, S., 1982. Analysis of volcanic tremor from Pavlof, Fuego, Pacaya, San
Cristobal and Masaya volcanaoes. Boletin de Vulcanologia (Costa Rica),
14, 55-58.
Stroiber, R. E., 1982. Sulfur dioxide and other gas emission from Masaya
Volcano, Nicaragua. Boletin de Vulcanologia (Costa Rica), 14, 49-51.
Cazenave, A. and Daillet, S., 1981. Lunar tidal acceleration from Earth satellite
orbit analyses. Journal of Geophysical Research, 86, 1659-1663.
Eckstein, Y., 1980. New geothermal anomaly in Nicaragua. Geothermal Energy,
8:1, 12-2.
117
Stoiber, R.E. and Jepsen, A., 1973. Sulfur Dioxide Contributions to the
Atmosphere by Volcanoes. Science, 182, 577-578.
Ui, T., 1973. Recent Volcanism in Masaya-Granada Area, Nicaragua. Bulletin
Volcanologique, 36, 174-190.
Viramonte, J., 1973. Las ultimas erupciones volcanicas en Nicaragua (Periodo
1968-1970). Publicaciones Geologicas del ICAITI, 4, 69-80.
Lagana, T., 1960. Observaciones sobre la actividad de los volcanes Santiago
(Masaya) y Cerro Negro (Leon). Nicaragua Servicio Geol. Nac. Bol. 4, 712.
Zoppis-de-Sena, R., 1957. El volcan Masaya de Nicaragua. Nicaragua Servicio
Geol. Nac. Bol., 1, 45-64.
McBirney, A. R., 1956. The Nicaraguan volcano Masaya and its caldera.
Transactions - American Geophysical Union, 37, 83-96.
Schoenberg, J. W., 1934. Die Fumarolen des Masaya [Nicaragua]. Zeitschr.
Vulkanologie, 15:4, 261-263.
Schoenberg, J. W., 1927. Bericht ueber die juengsten Ereignisse und Arbeiten
am Masaya, Nicaragua. Zeitschr. Vulkanologie, 11:2, 128-134.
Heim, A., 1926. Vulkanische Ereignisse; berichte ueber die juengste vulkanische
Taetigkeit in Mittelamerika. Zeitschr. Vulkanologie, 10:2, 114-119.
Sapper, K. T., 1925. El infierno de Masayo; documentos historicos publicados
con una introduccion. Estudios sobre America y España, Serie
geografica (publicaciones del Instituto americanista de la Universidad de
Wuerzburgo), 2, pp. 65.
Sapper, K. T., 1916. Alte und neue Bilder des Masaya und Momotombo
[volcanoes, Nicaragua]. Zeitschr. Vulkanologie, 2, 226-231.
Sapper, K. T., 1914. Die Hoelle von Masaya [Nicaragua]. Neues Jahrbuch fuer
Mineralogie, Geologie und Palaeontologie, Abhandlungen, Abteilung A:
Mineralogie, Petrographie, 415-445.
Sapper, K. T., 1906. Erdbebenserie von Masaya (Nicaragua) 1. bis 5. Januar,
1906. Zentralblatt fuer Mineralogie, Geologie und Palaeontologie, 257259.
118
Sapper, K. T., 1904. Die vulcanischen Ereignisse in Mittelamerika im Jahre 1902.
Neues Jahrbuch fuer Mineralogie, Geologie und Palaeontologie,
Abhandlungen, Abteilung A: Mineralogie, Petrographie, 39-90.
Tesis Doctorales:
Williams-Jones, G., 2001. Integrated Geophysical Studies at Masaya Volcano,
Nicaragua. Unpublished Ph.D. thesis, The Open University, Milton
Keynes, UK..
Horrocks, L.A., 2001. Volatile fluxes in active volcanoes Unpublished Ph.D.
thesis, The Open University, Milton Keynes, UK.
Maciejewski, A. J. H., 1998. Remote measurements of volcanic gases:
Applications of Open-path Fourier transform infra-red spectroscopy (OPFTIR) and Correlation spectroscopy (COSPEC). Unpublished Ph.D.
thesis, Department of Earth Sciences, The Open University, U.K., 348
pp.
Métaxian, J-P., 1994. Étude Sismologique et Gravimétriqe d'un Volcan Actif:
Dynamisme Interne et Structure de la Caldera Masaya, Nicaragua.
Unpublished Ph.D. thesis, Laboratoire D'instrumentation Géophysique,
Université de Savoie, France, 319 pp.
Van Wyk de Vries, B., 1993. Tectonics and magma evolution of Nicaraguan
volcanic systems. Unpublished Ph.D. thesis, Department of Earth
Sciences, The Open University, U.K., 328 pp.
Williams, S. N., 1983. Geology and eruptive mechanisms of Masaya Caldera
complex, Nicaragua. Unpublished Ph.D. thesis, Dartmouth College,
United States, 169 pp.
Tesis de Maestría:
Beaulieu, A., 1999. The nature and origin of spatial and temporal variations in the
gravity fields of Telica and Masaya volcanoes, Nicaragua. Unpublished
M.Sc. thesis, Département de géologie, Université de Montréal,
Montréal, Canada, 138 pp
119
Marceau, J.-F., 1999. Corrélations gravité - marées au volcan Masaya,
Nicaragua.
Unpublished
B.Sc.
honours
thesis,
Département
de
Géologie, Université de Montréal, Montréal, Canada.
St-Amand, K., 1999. The distribution and origin of radon, CO2, and SO2 gases
and multifractal behaviour of SO2 at Masaya Volcano, Nicaragua.
Unpublished M.Sc. thesis, Département de géologie, Université de
Montréal, Montréal, Canada, 270 pp.
120

Documentos relacionados