Document

Transcripción

Document
SUPERCONDUCTIVIDAD: DEL
EXOTISMO CUÁNTICO AL
MEGAVATIO
Xavier Obradors
Institut de Ciència de Materials de
Barcelona
CSIC
OUTLINE
• Superconductivity: principles
• Materials and quantum exotism
• High performance materials
• Applications: towards Mw control
• Conclusions
What is a SUPERCONDUCTOR ?
The unusual electrical properties of a superconductor
SUPERCONDUCTOR: PERFECT
ELECTRICAL CONDUCTOR
Tc
ELECTRICAL CONDUCTION
“normal” State
Superconducting State
Atoms
Atoms
of the
lattice
Single
electrons
Electrical resistance due to
collisions of e- → energy losses
Cooper pair
Electrons are bounded in pair
and cannot be scattered at
impurities → NO energy losses
What is a SUPERCONDUCTOR ?
The unusual magnetic properties of a superconductor
“The effect of a magnetic field”
PERFECT DIAMAGNETISM
SUPERCONDUCTOR: PERFECT
DIAMAGNET
Meissner Effect: A superconductor
expels the magnetic field
R. Meissner
W.Ochsenfeld
Berlin, 1933
SUPERCONDUCTOR: EL EFECTO
JOSEPHSON (1961)
La coherencia cuántica al alcance de la Humanidad
insulating
barrier
superconductor
superconductor
I
I
~ 20 Å
V
•
Sensores magnéticos ultrasensibles (SQUID)
•
Ordenadores cuánticos (Petaflops con bajo consumo)
EL ESTADO TERMODINÁMICO
EL estado superconductor es el estado termodinámico con la
energía más baja
Three Critical Parameters
Critical temperature Tc
Critical field Hc
Critical current density Jc
Superconductivity: Frontier of Discovery-Class Science
1913
1972
1973
1987
Onnes
BCS
Giaver
Josephson
Müller
Bednorz
Discovery
Hg
Onnes
1911
transport
Meissner
Ochsenfeld
Ginzburg
Landau
Abrikosov
vortices
Bardeen
Cooper
Schreiffer
theory
1933
1950
1957
1957
phenomenology
thermodynamics
Abrikosov
Ginzburg
Leggett
Josephson
tunneling
Cuprate
HTS
Müller &
Bednorz
MgB2
1962
1986
2001
microscopic theory
phonon pairing
electrodynamics
flux patterns
2003
layered metals
exotic pairing
vortex melting
glasses/dynamics
two
gaps
PuCoGa5
CaC6
NaCoO2
• H2O
…
Continuing
Surprises
ELEMENTS
20 AÑOS DE SUPERCONDUCTIVIDAD
DE ALTA TEMPERATURA
“Superconductors: The
startling breakthrough that
could change our world”,
Time, May 11, 1987
ρ(Ωcm)
La1.85Ba0.15CuO4
35 K
J.G. Bednoz and K.A. Müller
Z. Phys.B, 64, 189 (1986)
0K
100 K
200 K
300 K
LA REVOLUCIÓN CIENTÍFICA DE LOS
SUPERCONDUCTORES DE ALTA TEMPERATURA
O
Perovskite
structure:
Ba
Y
Ba
Cu02
Cu-0
YBa2Cu3O7
Material families
Nuevos materiales
superconductores
•MgB2 : un superconductor
(Tc= 40K ) desconocido en la
estantería
•Acoplo e-ph : ligereza B !!
•¿Cuantos más quedan por descubrir?
MgB2
Akimitsu et al, Nature 2001
Nuevos materiales
superconductores
• Pongamos agua
en los
superconductores !
: un nuevo
material
superconductor
(Tc= 5 K)
•Óxidos de cobalto
: ¿Una nueva serie
de materiales
superconductores?
Nature 2003
Nuevos miembros en el club
B-doped Diamond
T=2.500-2.800K
P~100.000 atm
Nuevos miembros en el club
Laser B-doping
~5-8 %
Normal P, Tc ~0.35 K
(From Steve Girvin’s lecture (Boulder Summer School 2000), courtesy of Matthew Fisher)
Estructura HTS
O
Reserva de carga
Cadenas
metálicas
Ba
Bloque
Aislante
Cu
O
Bi
Sr
Y
Planos
conductores
Ca
CuO2
Cu
YBa2Cu3O7 : Tc=93K
Bi2Sr2CaCu2O8 : Tc=85K
Universal HTcS Diagram
Non-conventional superconductors
•Antiferromagnetismo muy intenso
•Competición entre interacciones
•Dopaje óptimo para la Superconductividad: infra y sobredopados
Microscopic Theory
Order Parameter Symmetry
s-wave (l=0)
•Isotropic
Gap
ky
∆s
•Forbidden
states
•ElectronPhonon
coupling
d-wave (l=2, dx2-y2)
∆d
ky
Gap
kx
N(E)
•Anisotropic
kx
N(E)
•Nodes at
the density
of states
•Magnetic
coupling?
-∆ EF ∆
E
-∆ EF ∆
E
Symmetry of the order
parameter
s-wave (l=0)
Conventional SC
d-wave (l=2)
High-Tc SC
STM local
density of
states
Pseudogap: Precursor states to
Superconductivity
Tc
dI/dV (GΩ-1)
4.2 K
84 K
Tc= 83 K
• Pseudogap appears at high
temperatures for the
underdoped material
• Cooper pair formation (Tp)
and Bose condensation (Tc)?
• Electronic correlation (Tp)
and Cooper pairs (Tc)?
293.2 K
V (mV)
Ch. Renner et al, PRL 80, 149 (1998)
Differential Conductance Along Line
Position (Å)
0
20
Nanoscale Inhomogeneity in
560 Å
BSCCO-2212
αβ
as grown
40
60
∆ map
80
Cren et al. 2001
100
Pan et al. 2001
Lang et al. 2002
Howald et al. 2002
120
140
-100
-50
0
50
100
Sample Bias (mV)
Spectral gap in LDOS varies by factor of 2-3 over distances 20-30 Å
A.A.A. : “can you please make the resolution less?”
Estructura electrónica de los
cupratos
•Temperatura de
transición versus gap y
pseudogap (ARPES)
•Creación de pares de
Cooper y condensación
de Bose- Einstein
podrían ser dos procesos
diferenciados
•La interacción AF
parece fijar la escala de
energía para la
formación de pares de
Cooper
Microscopic Theory
Cooper pair breaking by non-magnetic impurities in
d-wave superconductors
STM atomic resolution
Zn atom
Differential conductance
Zn position
Bi2Sr2Ca(Cu1-xZnx)2O8+δ, x=0.6%
Bi-2212 is dx2-y2
Pan et al, Nature 403, 746 (2000)
High Tc Superconductivity
mechanism ?
Antiferromagnetic interactions may be the
responsible for the high Tc
High Tc Superconductivity: Everything You Wanted to Know
About Pair Formation (But Were Afraid to Ask)
ee
-
(the electron-phonon version)
1. A negative e- attracts positive ions
2. Ions shift position from red to blue
3. This e- moves away
4. Another e- sees + ions and moves
to former position of the first e5. The electrons are thus “paired”
Attractive interaction is local in space
(s-wave pairs, L=0, S=0)
but is retarded in time
(Tc << Debye frequency of the ions)
What is the pairing glue? (phonon, magnon, exciton,
plasmon, anyon, moron …)
UN RETO CIENTÍFICO DEL S. XXI
Theory Status
“Since the discovery of the high-Tc superconductivity a
qualitatively new understanding of the field has emerged,
that superconductivity is a much more ubiquitous
phenomenon than it had been thought before. Conventional
electron-phonon BCS superconductivity, the only kind
known for the first 85 years since the discovery of
superconductivity, is but a tip of the iceberg and now we
are just starting to scratch the surface of this iceberg
beyond that tip.”
Three questions/challenges that theory faces:
1. WHY? what is the origin of a superconducting state in a particular class of
superconductors?
2. HOW? how does it manifest itself, what are the properties of a given
superconducting state?
3. WHAT? Which materials would have desired superconducting properties?
Synergistic Research Actions
Action
• Advanced synthesis of known superconductors
• Discovery of new superconductors
• Nanoscale superconductor materials
Action
Materials Discovery
&
Synthesis
Novel
Phenomena
Action
• Electromagnetic spectroscopies
• Thermodynamics and magnetism
• Vortex phenomena
• Making superconductors useful
• Energy considerations of
superconductivity
• Future utilization and functionality
Applications
Theory
&
Computation
Action
• Mechanisms and fundamental
issues
• Computational superconductivity
& design of new materials
• Theory of superconductor
interface phenomena
• Superconductor Properties:
theory to applications
20 AÑOS DE SUPERCONDUCTIVIDAD
DE ALTA TEMPERATURA
DEL “PUBLISH OR PERISH”
La creación de una nueva Ciencia
AL “APPLY OR DIE”
La implementación de una nova tecnologia
Physics : Nobel Prizes 2003
Valery Ginzburg
Alexei Abrikosov
Anthony Leggett
Moscow, 1916
Moscow 1928
London 1938
TYPE-I and TYPE-II Superconductors
Meissner state: magnetic
field is completely
expelled
κ < 1/√2
Type-II
Mixed state: magnetic
field can partially
penetrate
Hc 1 =
Φ0
(ln κ + 0.50 )
2
4πλ
H c 2 = H cκ 2
κ > 1/√2
Mixed State: The Abrikosov Lattice
Type-II superconductor in the mixed state
Magnetic decoration
Flux lines (vortices) repel each other
forming a lattice: The Abrikosov lattice
What is a vortex ?
Door to the nano-scale world
Vortex in superconductivity
~nm !!
Vortex in atmosphere
Aircraft Wake
vortices
Vortex in water
Motion of vortices: Dissipation
Lorentz force: FL= J x B
MOTION MUST BE
AVOIDED
Flux lines tend to move transverse to J inducing an electric
field, E= B x v, and power is dissipated
Vortex Pinning Centers
Pinning centers are nanometer defects
Superconductivity
is a nano-scale
phenomena
Ordered Commensurate Pinscapes
a
hole arrays
pin every vortex
magnetic dot arrays
induce fixed vortices
> 1995
> 1997
Priour and Fertig 04
embedded magnetic columns
strong magnetic pinning
F-S multi-layers
domain wall pinning
F
S
F
> 2005
> 2000
discover vortex structure and dynamics
innovative lithographic fabrication
ordered pinscapes in bulk superconductors
NANOSCALE PHENOMENA IN
SUPERCONDUCTORS
Artificial pinning arrays : Nanostructured
templates
Superconducting
layer grown on
top
E-beam lithography
Au dots
Nanoimprint
Nanoscale Pinscapes by Self
Assembly
vortex spacing at 1 T ~ 40 nm ⇒ self-assembly
electrochemical
assembly AAO
500 nm
chemical assembly
block copolymers
Stoykovich and Nealey
2005
Z. Xiao 2002
develop self-assembled templates
pattern nanoscale pinscapes
biological assembly
protein structures
chaperonin
self-assembled 3D bulk pinscapes
McMillan et al
2002
HTcS Magnetic Phase
Diagram: Equilibrium Phases
Magnetic Field
Anisotropy: γ
Coherence Length: ξ
Penetration length: λ
Thermal activation: U~kT
Temperature
Irreversibility Line
40
Helium
Neon
Nitrogen
Methane
Hydrogen
Field (T)
30
Nb3Sn
BSCCO
20
YBCO
10
Hg-Re1223
Nb-Ti
MgB2
0
0
30
60
90
Temperature (K)
120
150
Physical limits of
Irreversibility line
• Individual vortices can be pinned in
the vortex liquid state: where is the
maximum of Hirr(T)?
p. 402
Pinning by anisotropic defects in
Vortex
line tension
persists up to
the
liquid
state
“Evidence for vortex line tension”
θa
θ
80
88.5K
60
ρ (µΩ cm)
a maximum T
H=1T
88.25 K
40
87.4 K
88 K
87.7 K
20
0
-90
-60
-30
0
Tirr(θ)
30
60
90
θ (degree)
Reduced dissipation atθ< θc due
to correlated disorder (columnnar
defects, twin boundaries)
Flux Transformer
Measurements: vortex
correlation
H=0.5,…9T
7
V
6
top
10
8
V
4
bot
Tlt
3
H (T)
v (arb.units)
5
2
6
4
2
1
0
thermal
T
T*
74
76
78
80
82
84
T (K)
86
88
90
92
0
0.88
0.90
0.92
0.94
0.96
0.98
1.00
T/Tc
The limit of vortex correlation coincides with the limit of
influence of correlated defects.
Intrinsic origin
Loss of vortex line tension
Loss of vortex line
tension
Φo 2
−2
J ( 0) =
λab
2
4π
2λc
λab
Energy of vortex depinning (2λ ) and vortex
length increase (2λab)
U = U c + U ab ≈ 2ξ cJ ( 0 ) + 2ξ ab J (90 º ) ≈ 2U cc
λ ab
Minimum
bulge
Vortex line energy
− 2
( T , H ) = λ ab
− 2
 ( H c 2 (T ) − H 

( T , 0 ) 
H c 2 (T )


Φo 2 γ 1  Hc 2(T ) − H 


U (T , H ) = A 2
4π κ λab  Hc 2(T ) 
U (T , H ) ≈ kT
Decrease of superfluid
density under H
Energy cost of deformation
at different H
Minimum energy for vortex
fluctuations= maximal excitation
of bulges
Loss of vortex line
tension
H l (T ) =4 πH2 c 2 (T )[1 − ( g / A ) t (1 − t )
g =
Φo γ
2
kT c κλ ab ( 0 )
−1/ 2
]
•Line of loss of vortex line tension
2λc
λab
•Linear defects can not be effective pinning centers
beyong this line
•NbTi: Tc=10K, γ=1, κ=30, λ(0)=150 nm
g = 0.0004
Hl≈Hc2
•BSCCO: g ~1 at 77K
Minimum
bulge
No line tension
•YBCO: γ-1=7, κ~100, λab(0)=150-200nm, g~0.09-0.12
Hl(T)<Hc2(T) T=77K : Hl ≈ 1.5 Hm ~ 14 T
Very significant room for pinning improvement
Intrinsic upper limit of
Irreversibility line
12
10
H l(T)
H c2 (T)
H (T)
8
6
4
H m (T)
2
0
0,84
0,88
0,92
0,96
1,00
T/T c
Single vortex pinning in the liquid state can
amplify considerably the Bose glass phase
New HTcS Magnetic
Phase Diagram
20
Magnetic Field (T)
15
amorphous
vortex glass
line
liquid
Hc2
pancake
liquid
Hucp
10
Vortex Lattice
Bose glass
5
Hlcp
θ
50
60
70
Temperature (K)
80
90
Power applications:
limits
Max H REBCO: loss of line tension
100
irr
Transformers
•Tc=91K
•YBCO
anisotropy
80
•Fp in the
limit
60
T (K)
Cables
SMES
FCL
40
20
0
0.01
Fusion
Motors
generators
MRI NMR
0.1
1
B(T)
10
100
Los materiales Superconductores
con elevadas prestaciones
Bloques
Cerámicos
texturados
YBCO
Conductores
BSCCO
(1ª generación)
Conductores
epitaxiales YBCO
(2ª generación)
Capa protectora
Superconductor
Capa tampón
1mm
Substrato metálico
•Producción industrial
•Record campo magnètico
atrapado: 17 T a bajas
Temperaturas
•Conductores kilométricos
•Buenas prestaciones a
bajas Temperaturas
•Densitat corrent x 10 respecto
Cu sin disipación (-10%)
•Materiales nanoestructurados
con longitudes kilométricas
•Campos magnétics y T elevados
Los materiales Superconductores
con elevadas prestaciones
Je (A/cm2)
Transformer
Fault Current Limiter
Magnet
for
Silicon
monocrystal
pulling
Y-system
MAGLEV
Cable
Bi-system
(77K)
(20K)
(60K)
Y-system
(77K)
B // c-axis
Magnetic Field (T)
•Progreso extraordinario en prestaciones de los 3 tipos de materiales
•Excelentes prestaciones a bajas Temperaturas de los 3 tipos de materiales
•Cintas 2ª generación presentan excelentes prospectivas al N2 líquido
Materiales para aplicaciones:
CONDUCTORES EPITAXIALES
Cap layer : Ag
thickness ≈ 0.2 - 0.5 µm
SC layer : YBCO
~ 1.0 µm
Buffer layers : CeO2 , YSZ, STO,…
~ 0.1 µm
Metallic substrate: RABiTS Ni,
SS-IBAD
thickness = 80 µm
width = 1 cm
Deposición de capas tampón y
YBCO
Metodologías físicas y químicas
Metal-organic
decomposition
YBCO-PLD
Descomposición Metal-orgánica
Deposición química en fase vapor
Deposición por pulsos de làser Epitaxia en fase Líquida
Sputtering
Materiales Nanostructurados
Haz de electrones
en longitudes kilométricas
DESCOMPOSICIÓN METAL-ORGÀNICA DE
LÁMINAS DE YBa2Cu3O7
METODOLOGÍA DE LOS TRIFLUOROACETATOS
Metal-organic solution
Reacción
Growth
Pyrolysis
Pirólisis
Oxigenación
Oxygenation
T
T 2, t
Solution
deposition
dT 1 /dt
T1
- dT 2 /dt
T 3, t
dTEpitaxial
2 /dt
layer
- dT 3 /
Substrate
Coating
PO
PH 2 O
Gas2 ,Flow
PO 2 de
, PHGas
O
Flujo
2
T(PHGas
O)
2 Flow
PO 2 , PH 2 O
PO2
SUPER3C
HIPERCHEM
SOLUCIÓN DE PRECURSORES
TRIFLUORO ACETATOS
TFA evita la formación de BaCO3 y permite
la síntesis a bajas temperaturas de la fase
YBCO
Concentración: 0.4 - 1.5 M ~ 100 - 400 nm
ICP : 1 : 2.1 : 3.1
pH ~ 2 - 4
viscosidad = 2 - 7 mPas
EACH STEP NEEDS STRICT CONTROL
FILM SHRINKAGE IS A VERY IMPORTANT ISSUE
Wet and dried film
500-600%
Pyrolyzed
film
Quenched at
high temp
Grown
+250%
+100%
300 nm
Temperature
0.2 µm
O2+H2O
Time
O2
Láminas de YBa2Cu3O7 con elevadas
prestaciones a partir de Trifluoro-acetatos
Textura biaxial elevada:
∆ω ~ 0.5º , ∆φ ~ 1º
Propiedades
superconductoras:
Tc= 90 K , Jc (77 K)~ 3 MA/cm2
grosor ~ 0.3-1.0 µm
Microstructura:
Baja porosidad
Crecimiento Laminar
Interfície abrupta
Defectos Planares
•10 m long tape with CeO2 + LZO textured buffer layer
•Strategic technological choice for low cost CC
SUPER3C
HIPERCHEM
Reel to reel coating system:
buffer layers
Nano-scale control of natural
defects is a must for high Jc -SC
Precipitates
In-plane
misoriented cgrains
Grain boundary
Twin boundary
a-axis
grains
C-axis
a
b
b
a
Substrate
Point defect
Stacking fault
Nano-defects pin vortices
Out-of-plane
Misfit
dislocation misoriented
c-grains
Anti-phase
domain
boundary
Anisotropy and dimensionality of the defects is an important issue
Artificial pinning arrays in
Nanostructured Superconductors
Vortex pinning by nano-scale defects of THICK
YBCO films is a need for HIGH FIELD applications
Nanodots, nanorods, threading dislocations, …
1.
Coherent nano-structures at random
2.
Nano-structures originated by
interfacial templates
single crystal
HIPERCHEM
YBCO
SUPER3C
H
single crystal
YBCO
φo
Strain-induced oxide nanodots
Heteroepitaxial growth
film
2D
Lattice mismatch ⇒ Elastic strain energy↑↑
substrate
σsubst>σfilm
3D
substrate
substrate
Volmer
-Weber
Release of elastic energy…
but additional surface energy
Stranski-Krastanov mode
σsubst<σfilm
Nanodots and heteroepitaxial growth: selfassembling and self-organization
InAs/GaAs
0,5 µm
SiGe/Si
Nature
1 µm
Energy of an island:
Ei = Esurface + Erelaxation + Eedge + Einteraction
NANOESTRUCTURAS AUTO-ORGANIZADAS
PARA ANCLAR LOS VÒRTICES
h~7 nm
0
0.5
1
1.5
2 µm
nm
0
0.2
0.4
0.6
0.8
1
1.2
1.4
D~20 nm
nm
Nanopuntos de BaZrO3 sobre
SrTiO3 con soluciones químicas 8
4
20
18
16
14
12
10
8
6
1.6
4
1.8
2
2
µm
0
Nanopilares de BaZrO3 sobre
2π/kCeO
∼ 852nm
por PLD (soluciones
Preferential químiques?)
La minimización de las tensiones elásticas sonordering
la fuerza motriz para
0
el auto-ensamblaje
100
200
300
400 nm
ARTIFICIAL PINNING
CENTERS
PLD deposition of
nanocomposites
BaZrO3
Dislocations
YBCO
TOWARDS ALL CHEMICAL NANOCOMPOSITES
•J.L. MacManus et al., Nature Mat. (2004)
•IFW (BaIrO3), App.Phys.Lett. (2005)
Microstructure of the
nanocomposites
YBCO
BZO nanoparticles≈10-20 nm
YBCO
BZO
LAO
LAO
Interfacial-epitaxial and bulk-random BZO particles are observed
Extended defects and lattice disorder may emanate from interfacial
BZO particles
A breakthrough: Record
Pinning Force
YBCO
single crystal
TFA-BZO ICMAB
PLD-SmBCO
20
T=77K
H//c
3
Fp(GN/m )
25
15
NbTi 4.2 K
10
TFA (YSm)BCO
5
TFA YBCO
Strong pinning by randomly
oriented nanodots and
induced defects
0
0
2
4
6
µ0H (T)
8
Best worldwide superconducting performances at 77 K
10
Pinning Force
3
Fp (GN/m )
100
T=65K
80 H //c
TFA-BZO ICMAB
60
40
Ho/Er-doped AMSC
20
NbTi 4.2K
The highest pinning force observed TFA
so ICMAB
far in HTSC,
0well above NbTi at 4.2 K!
0
2
4
6
8
10
+500 %µatH65
(T)K !
0
Fp (TFA-BZO) = 13 Fp(TFA)
X.Obradors et al, Patente Esp200603172
Power applications at 77 K are possible!
Nano-tubes by CSD
Alumina and polymeric templates
Ferromagnetic nanotubes by
CSD : La1-xSrxMnO3
Polycrystaline
nanotubes of
~10-20 nm grain
size
Nanocomposites TFAYBCO/LSMO can be
prepared by all chemical growth
El árbol de las aplicaciones
de la Superconductividad
Barco
MHD
Tren de
Levitación
Comunicaciones
SQUID
MRI
Separadores
Magnéticos
Cojinetes
magnéticos
Procesos industriales
Medicina
Imanes
Aceleradores
Transporte
Ciencia
SQUID
Digital
Componentes
Microondas
Electrónica
SMES
Transformador
HTSC
FCL
Ing.Potencia
Cable
Tecnología básica
Química de
Materiales
Física de
Materiales
Física
Aplicada
Motor
Superconductivity Applications
Already there are commercial
technologies that are enabled or
improved by superconductivity
magnetic sensors for medical
diagnostics and highsensitivity MRI
improved microwave filters
for advanced communication
systems (3G PCS)
Superconductivity Applications
Search and discovery is advanced
by superconductivity as a tool
Magnets, resonant cavities, etc. for
large-scale experimental devices …
SNS
Fermilab
And for smaller-scale laboratory
experiments
The Impact of Superconductivity
superconductivity
hydro
wind
lighting. heating
refrigeration
solar
coal
gas
heat
mechanical
motion
electricity
power
grid
transportation
motors
industry
nuclear
fission
fuel cells
information
technology
Capacity: demand for energy will double by 2050, triple by 2100
Efficiency: 7-10% of electrical power is lost to resistive heating
Reliability: local power outages cause $10B economic loss/yr
Superconductivity Applications
Near future: “… significant impact in science and energy
relevant technologies…”
Power utility sector
transmission and large
machines
The enabler is superconducting wire that
approaches ideal properties
HTS tape
CAMPOS
MAGNÉTICOS Tesla
106
Estrellas de neutrones
104
Estrellas enanas blancas
102
Hilos Superconductores
Hilos
Cu
Sensores Magnéticos
1
10-2
10-4
10-6
10-8
10-10
Sensores
Superconductores
Bobinas SC RMN/Fusión
Bobinas SC IMR/Imán permanente
Imán permanente/Motores
Timbre/Dinamo
Campo
terrestre
Ruido urbano
Coche a 50 m
Corazón Humano
Corazón Feto
10-12
10-14
10-16
Respuesta cerebro humano
Magnetómetre SQUID
LOS INCENTIVOS PARA LAS
INNOVACIONES
Actividad
Prestaciones
Ganancia
económica
XX
Interés
social
XXX
Biomedecina
ElectrónicaInformación
Energía
XX
X
XXX
X
XX
XXX
Transporte
X
X
XX
Ciencia
XXX
X
---
Procesos
industriales
X
X
XX
X
RESONANCIA MAGNÉTICA
(>23 T: 1 GHz)
Tsukuba Magnet Laboratory,
NIMS, Japan
•Diseño molecular: Biología,
Química, Genómica, Farmacia
•IRM : 60 Millones de imágenes humanos/año
•IRM: segundo gran descubrimiento después
de los Rayos X en diagnosis Médica
SQUID : EL SENSOR DE CAMPOS
ULTRADÉBILES
CardioMag Imaging System Neuromag® 306-Channel
for Magnetocardiography SQUID System for
Magnetoencephalography
Neo-Natal MEG
babySQUID® Tristan
Technologies 76 channel
Magnetocardiograma:
Madre i feto
SUPERCONDUCTIVIDAD: EL SEGUNDO
SIGLO DE LA ELECTRICIDAD
‚Local Tuning‘
SMES, Flywheel
sensitive load
Transformer
Current Control
Current limiter/controller
Power Link
power plant
Transformer
Power Cable
Generación, distribución y usuarios finales
Electricidad eficiente y limpia
Reducción generación : ≈ 5-10 % producción mundial
Reducción emisión gases efecto invernadero
Gestión sostenible de la energía (energías renovables)
El segundo siglo de la electricidad
HTS can contribute to a safer supply with
energy … and to its conservation
•1.050 M$ loss (36 M$/hour)
New York
14 August 2003 16:11 Blackout
El segundo siglo de la electricidad
Potencia eléctrica en China
Cortes de potència en 21 provincias el último año
Aumento de potencia del 15% por año: superconductividad puede ser
una solución
El Reto de la Energía
EL EFECTO
INVERNADERO
ANTROPOGÉNICO
(IPCC)
• ∆T = 0.6±0.2ºC
• Aumento emisiones
CO2 S. XX: 31±4%
Precisamos un nuevo programa Apolo (R.E.Smalley, Premio Nobel)
2003
2050
6.500
1010
Millones de personas
Persones
Necesitamos ~ 10 TW de energia
limpia (50% consumo) !
Energía superconductora: sistemas
convencionales y nuevas funcionalidades
Reducción peso/Volumen
Reducción pérdidas
Aumento densidad Potencia
Mejores Eficiencias
Optimization of Conventional Systems
Cable
Transformer
Motor
Novel Applications
Flywheel
Sc. Magn.
Energy
Storage
(SMES)
Fault Current
Limiter
Siemens
Higher Power
Density
Retrofit
Energy Savings
Life
Safety
Volume, Weight
Energy Savings
Energy Density
Energy Savings
Safety
Availability
Savings of
Ressources
Novel Power Grids
Savings of
Ressources
Power Quality
ENERGIA ELÉCTRICA
SUPERCONDUCTORA
Generación
BENEFICIOS
Cables
Ahorro
Fiabilidad
Distribución
Calidad
Transformadores
Motores
Menos
emisiones
y aparataje
Limitadores
Almacenamiento
Usuarios
•Generación, distribución y uso limpio y eficiente de la electricidad
•Reducción de la energía generada: ≈ 10 % producción mundial
•Gestión más flexible: favorecer las energías renovables
APLICACIONES
Generador
Estabilidad
CABLES
• Aumento de potencia: 300-500% .
Conectados a la red (USA,
Dinamarca, Japón)
• Viable en zones urbanas y en zones
amb restriccions mediambientals
(eliminació de línies d’alta tensió
aèries)
• Voltaje más bajo para la misma
potencia : complejidad reducida
permite instalación de redes en
túneles o puentes existentes
• Sin polución electromagnética
• Energías renovables se promueven
• Segunda generación de
conductores de YBCO presentan
excelentes perspectivas
HTS cable types
Cold dielectric concept
Outer Cable Sheath
Outer Cryostat Wall
Inner Cryostat Wall
LN2 Coolant
Protection Layer
Copper Shield
Stabilization
HTS-Shield
High Voltage Dielectric
HTS Tape
Former
REDUCCIÓN DE EQUIPAMIENT=:
TRANSFORMADORES 400kV/110 kV
350 MVA
Costes
elevados:
Equipo y
espacio
Dimensiones
(incl. insulators)
length
18,0 m
width
5,3 m
height
10,8 m
Weight
total
Oil only
383 t
70 t
Les super-autopistas energéticas:
Electricitat junto con el Hidrógeno
El cable superconductor podría asociarse al transporte de
H: simbiosis electricidad y combustible
EPRI: Electrical Power Research Institute (USA)
TRANSFORMADORES
• ≈ 10 % reducción de
pérdidas en distribución
de energía
• Densidad aumentada de la
potencia : menos volumen
y peso
• Sin aceite : seguridad
aumentada y sin impacto
ambiental
• Segunda generación
conductores YBCO tienen
pérdidas reducidas y
potencial pare un coste
reducido
Primer sistema FCL conectado a la red
EL FCL más potente del mundo (10 MVA)
Mejora la calidad de la red, seguridad aumentada,
generación distribuida
Aplicación : generación energías
renovables
110 kV
FCL
FCL
10 kV
5...50
MVA
G
10-kV-grid
Ssclim = 250 MVA
G
1...10 MVA
Nuevos centros de generación aumentan la corriente de cortocircuito
El FCL hace posible la conexión directa
Motores Superconductores y
generadores
•Aumento de la densidad de potencia
y eficiencia aumentada
Motor superconductor axial
ICMAB-MAVILOR-UPC
•Menos volumen y peso
•Motores para barco
REVOLUCIONANDO MERCADOS ANTIGUOS :
MOTORES PROPULSORES DE BARCOS
ntally
ly!
36.5 MW Conventional
(300 tons)
Transforming a 100-year old industry
•
•
•
•
•
Less than half the size
Less than one-third the weight
Higher net efficiency
Equivalent prices
Inherently quieter
36.5 MW HTS
(75 tons)
Levitación: Transporte
(Trenes de levitación Magnética)
Tren Japonés de Levitación
Yamanashi test line
Πvelocidad record (12/1997): 550km/h en la via de ensayo
Πvelocidad planeada: 500km/h entre Tokio y Osaka
Heavy Load HTS Bearing
First Heavy Load HTS Bearing for Industrial Application with
shaft loads up to 10 kN
Rotor setup as collector
array of NdFeB magnets
stabilized by CFR-rings
(Øa 319 mm, L 305 mm)
World´s biggest HTS bearing
BMWA-Project Dynastore
Flywheel with HTS-Bearing
HTS bearing by NSC
Application: UPS, power quality
Producer: Piller / Langley
Power: 2-3 MW (not feasible with conventional devices)
Weight: 3000 kg
Customer benefit: doubled power at half weight
REACTORES DE FUSIÓN: CONFINAMIENTO
MAGNÉTICO CON SUPERCONDUCTORES
• Campos magnètics muy intensos (H
~ 10T) en volumenes elevados
(bobinas D~12 m)
• Proyecto ITER (2005-2025) con
LTS
• Seguimiento con HTS (50 K): <50%
coste
Plasma confinado
magnéticamente
CONCLUSIONS
• The exotic quantum nature of High Temperature
Superconductivty still remains a mystery
• Superconductivity is an old Nanoscience:
Nanotechnology is being developed
• YBCO material is the best choice for high current-high
temperature applications, mainly as coated conductors
• Chemical solution deposition appears as a very promising
methodology for low cost production of coated
conductors
• Magnetic resonance imaging, accelerators, SQUID
sensors are superconducting realities
• Excellent prospectives for high power applications in all
electrical needs: sustainable and safe electricity

Documentos relacionados