PROCESSING AND CHARACTERIZATION OF GRAPHENE

Transcripción

PROCESSING AND CHARACTERIZATION OF GRAPHENE
PROCESSING AND CHARACTERIZATION OF
GRAPHENE-BASED POLYMER MATRIX
COMPOSITES:
Methods for the incorporation of chemically derived
graphene sheets into organic media for the realization
of conducting polymer nanocomposites
José M. Kenny
University of Perugia, Terni – Italy
and
Institute of Polymer Science and Technology, CSIC, Madrid – Spain
[email protected]
Why Nanocomposites
• High increase of some properties with small
amount of reinforcement
• Potential cost and weight reduction
• Processability close to those of charged polymers
(lower equipment wear)
• Better barrier properties and flame stability
• Homogeneous material
• Recyclability
Main advantages offered by Polymer
Nanocomposites in terms of
Structural and Functional properties
- Mechanical properties: rigidity, strength, creep
- Dimensional stability (lower shrinkage)
- Thermal properties: thermal stability
- Flame resistance (barrier effects)
- Lower gas and liquid permeability (barrier effects)
- Controled electrical properties (dielectrics, conductive)
- Optical properties (transparency, photovoltaic effects)
- Sensibility to external agents (sensors, scavenger agents)
The effects of nanofillers in plastics are strongly dependent on the matrixnanofiller interaction: role of interpahases/interfaces.
Carbon: diamond
sp3 hybridization
Carbon: graphite
sp2 hybridization
Graphene
What is
graphene?
• 2-dimensional
hexagonal lattice of
carbon
• sp2 hybridized
carbon atoms
• Basis for C-60
(bucky balls),
nanotubes, and
graphite
• Among strongest
bonds in nature
A. K. Geim & K. S. Novoselov. The rise of graphene. Nature Materials Vol 6 183-191 (March 2007)
K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, Science 306, 666 (2004)
A. K. Geim & K. S. Novoselov. The rise of graphene. Nature Materials Vol 6 183-191
(March 2007)
er to disperse
Properites:
• Electrical conductivity
conductivity of 0.96x106 Ω-1cm-1 for graphene.
This is somewhat higher than the conductivity of
copper which is 0.60x106 Ω-1cm-1.
• Optical transparency
Graphene absorbs only 2.3% of the light intensity
• Thermal conductivity
1. The thermal conductivity of graphene is
approximately 5000 Wm−1K−1.
2. Thermal conductivity of 401 Wm−1K−1.
Thus graphene conducts heat 10 times better
than copper.
• Strength
1. Graphene has a breaking strength of
42N/m.
2. Steel breaking strength of 0.084-0.40 N/m.
Thus graphene is more than 100 times
stronger than the strongest steel.
Graphene production (1/3)
I. Mechanical cleavage
 Interlayer van der Waals
interaction energy 2 eV/nm2
 The force needed to exfoliate
graphene ~ 300 nN/mm2
 Common adhesive tape is sufficient
 Substrate which provides contrast
for graphene monolayer is necessary
(e.g. SiO2( 300nm)/Si or SU8/PMMA)
Graphene production (2/3)
Graphene production (3/3)
II. CVD growth
 Development of methods capable of
producing large and defect-free
monolayers
 Different substrates – Cu, Ni, Pt, Ru, Ir,
TiC, TaC
Li et al., Science (2009), Nano Lett. (2009)
 Formation of graphene either by
catalytic decomposition of the
hydrocarbon gas at the substrate (e.g. Cu),
or by dissolution of carbon in the substrate
and precipitation of graphene layers upon
cooling (e.g. Ni)
 CVD on Cu substrate seems to be the
most promising at the moment, allowing
mass production in the near future
Bae et al., arXiV 2010
CF4 Plasma Treated Graphene
(substrate indium tin-oxide)
Graphene production:
 Synthesis and characterization of
FGS:
Oxidation
Graphite
Graphite
oxide
Brödie
method
0,34 nm
Thermal
FGS
expansion
0,6 nm
J. Mater. Chem., 2011, 21, 3301–3310 | 3301
Graphene oxidation
Graphene oxidation
CF4 Plasma Treated Graphene
(substrate indium tin-oxide)
Graphene
Graphene used for this
research*
*J. Mater. Chem., 2008, 18, 2221
PREPARATION OF GOPs
GOPs:
Thickness: 0.34 – 100 nm
Length/width: 0.3- 10 μm typical
Hummers–Offeman methods
.
Nanotubos de Carbon
(CNTs)
Tubos constituidos de una hoja de grafene (SingleWallNanoTube)
o hojas multiples (MultiWallNanoTube)
20 nm
Diametro CNTs 1 - 500 nm;
Longitud CNTs m - mm
La structura geometrica da propiedades mecànicas y
eléctricas excepcionales
Functionalization
Allows the improvement of the solubility and
processability of carbon nanotubes
Defect
Non-Covalente
SWNT
π-stacking
Covalente
Interna
SPECIFIC OUTLINE ON GRAPHENE
NANOCOMPOSITES
• Production methods for Graphene and Graphene
Oxide Platelet (GOP)?
• What is a graphene oxide platelet (GOP)?
• How are GOPs made?
• Unique features of GOPs.
• Potential applications
nanocomposite.
• Current research issues.
of
GOPs
in
polymer
PRODUCTION AND PROCESSING
of GRAPHENE OXIDE
Graphite
Graphite
Oxide
GO
Dispersion
GO Film
rGO
Dispersion
GO-host
Solution
GO-host
Solution
rGO Film
rGO Composite Film
GO+H2O
Surface area
roughness 10 nm
UV lamp
Surface area
roughness 40 nm
S. Bittolo Bon et al., Diamond and Rel. Mater.
20 (2011) 871
P. Yao et al., Adv. Mater. 2010, 5008 , 22, 5008
C=O carbonyl stretching at 1733 cm–1
O–H deformation vibration at 1412 cm–1
S. Bittolo Bon et al. Express Polymer Lett. 5 (2011) 819.
PRODUCTION AND PROCESSING
of GRAPHENE OXIDE
Graphite
Graphite
Oxide
GO
Dispersion
GO Film
rGO
Dispersion
GO-host
Solution
GO-host
Solution
rGO Film
rGO Composite Film
O. C. Compton et al., Small 2010, 6, 711
C. Mattevi et al., Adv. Funct. Mater. 2009, 19, 2577
PRODUCTION and PREPARATION
of GOPs
SONICATION
(750 W, 60%
amplitude for 1 hour)
CENTRIFUGATION
(600 rpm for 30 min)
After tape transferring
PLASMA THINNING
e-
Ar-
Pressure: 0,2 mTorr
Flow rate: 20 sccm
Power: 25 W
Bias: 200 V
Time of
treatment:
5', 20', 40'
PLASMA THINNING
5'
20 '
Plasma effects on
morphology and thickness
40 '
L. Valentini et al.,
Chem. Phys. Lett. 508 (2011) 285
O. C. Compton et al., Small 6 (2010) 711
C. Mattevi et al., Adv. Funct. Mater. 19 (2009) 2577
PLASMA REDUCTION
GOPs after 40‘ of Ar PLASMA
UNTREATED GOPs
1733 cm-1 C=O carbonyl stretching
RAMAN
D peak (~1340 cm-1):
increases with disorder (i. e.
with the plasma treatment),
decrease of FWHM
TIME of
TREATMENT
Graphite
Graphene
Oxide
2D peak (~2646 cm-1): induced by
layering
Si peak (~960 cm-1): thinning
Reduced
GO
S. Stankovich et al., Carbon 45 (2007) 1558
Graphene based composites prepared through exfoliation
of graphite platelets in methyl methacrylate/PMMA
The liquid monomer solubilizes the polymer chains that for the lowest polymer
content are able to intercalate between the graphiticplanes (Fig. 4(a)). Increase of the
polymer content hinders this mechanism and the packed graphitic sheets are
surrounded by polymer chains (Fig. 4(b)) allowing a longer flocculation time in the
liquid phase and preventing their sedimentation.
TEM images of GNPs in MMA/PMMA with a PMMA concentration of 1
mg mL−1 (d), 12 mg mL−1 (e) and 24 mg mL−1 (f) after 7 h of
sedimentation.
2D Raman spectra of films consisting of GNPs in MMA/PMMA
with a PMMA concentration of 1 mg mL−1, 6 mg mL−1, 12mgmL−1 and 24
mg mL−1 (from bottom to top) after 7 h of sedimentation.
L. Valentini et al., Polymer International (2012) in press.
FLUORINATION of GRAPHENE SHEETS (GSs)
by PLASMA
Fluorocarbon plasmas
produce fast etching (roughness) and
fluorination
CF4 Plasma
11/19/2013
K. Leifer et al., J. Phys. D: Appl.
Phys. 43 (2010) 045404
P. Kràl et al., J. Am. Chem.
Soc. 130 (2008) 16448
Roughening
Fluorination
40
FLUORINATION of GSs (F-GSs): METHOD and
SURFACE ANALYSIS
ULTRASONICATION in CHLOROFORM
(2mg/20ml FOR 1H)
GSs
DROP CASTING ONTO A METALLIC
HOLDER
ANNEALING (70°C FOR 2H)
PLASMA ASSISTED DECOMPOSITION
CF4 (13.56 MHz, 21 sccm for 45 min )
XPS characterization
*
L. Valentini
11/19/2013et al., J. Mater. Chem., 2010, 20, 995.
F-GSs
41
PRODUCTION AND PROCESSING
of GRAPHENE OXIDE
Graphite
Graphite
Oxide
GO
Dispersion
GO Film
rGO
Dispersion
GO-host
Solution
GO-host
Solution
rGO Film
rGO Composite Film
PRODUCTION AND PROCESSING
of GRAPHENE OXIDE
Graphite
Graphite
Oxide
GO
Dispersion
GO Film
rGO
Dispersion
GO-host
Solution
GO-host
Solution
rGO Film
rGO Composite Film
Electric field assisted thermal annealing
reorganization of graphene oxide/polystyrene
latex films
180°C
20V
PS
GO
Glass
S. Bittolo Bon et al., Express Polymer Lett. 5 (2011) 819.
GO+H2O
GO+H2O+ C4H11N
2,11-di-tert-butyl-6,7,15,16tetrakis(hexylthio)quinoxalino[2’,3’:
9,10]phenanthro[4,5-abc]phenazine
(TQPP)
Amino Modified GSs and Pyrene-Based Semiconductor
TQPP+NMP
TQPP+GSs/NMP
TQPP+BAM
TQPP+GSs/BAM
TQPP+GSs/BAM
S. Bittolo Bon, et al. J. Phys. Chem. C 114 (2010) 11252.
Amino Modified GSs and Pyrene-Based Semiconductor
Cell = TQPP+BAM
Cell = TQPP+GSs/BAM
Cell = TQPP+GSs
Cell = TQPP+BAM/GSs or TQPP+BAM or TQPP+GSs
AM1.5D 100 mWcm–2
Amino Modified GSs and Pyrene-Based Semiconductor
GRAPHENE/PEDOT:PSS COMPOSITE FILMS in POLYMERIC
SOLAR CELLS
Al
LiF
P3HT:PCBM
Fluorination
PEDOT:PSS
GLASS+ITO
Xu et al., Nano Res. 2 (2009) 343.
11/19/2013
48
GO+H2O
GO+BAM+H2O
After
centrifugation
Preparation of extended alkylated graphene oxide conducting layers and effect
study on the electrical properties of PEDOT:PSS polymer composites
L. Valentini, et al. Chem. Phys. Lett. 494 (2010) 264.
Preparation of extended alkylated graphene oxide conducting layers and
effect study on the electrical properties of PEDOT:PSS polymer
composites.
Exfoliated Graphene on ITO.
• Tapping mode AFM in ambient conditions.
• The sheet thickness is ~1 nm corresponding to a
single sheet (in graphite oxide, d = 0.71 nm).
• Most sheets have a thickness of < 2 nm.
• Percentage of the single sheets and the aspect
ratio distributions have to be determined.
S. Bittolo Bon et al., Chem. Mater. (2009, in press).
AFM Imaging of Amine Modified GSs
NANOESTRUCTURACION: SELF-ASSEMBLING
(MATRIX POLIMERICA) – BOTTOM-UP (NP)
GOAL: desarrollar una nueva clase de materiales nanocompuestos
basándonos en la capacidad de los copolímeros de bloque de auto‐
organizarse, así como confinar en uno de los bloques las
nanocargas.
Matrices de copolímeros de bloque:
• poli(estireno‐b‐isopreno‐b‐estireno) (SIS)
• poli(estireno‐b‐butadieno‐b‐estireno) (SBS)
Nanoparticulas:
• esfericas de plata
• nanotubos de carbono
• grafenos
Para generar la
nanoestructuración
de estos NC:
compatibilización
SURFACTANTE
COPOLIMEROS DE BLOQUE = materiales poliméricos
nanoestructurados ‐ dos polímeros químicamente diferentes
están unidos covalentemente por un enlace:
• la separación a escala macroscópica a priori está impedida
• la incompatibilidad entre ambos conduce a una separación a
nivel local:
como resultado se origina la formación espontánea, en
las condiciones adecuadas, de una estructura periódica
- dada la conectividad de los bloques se sitúa en la
escala del radio de giro de las macromoléculas, de 5100 nm - que potencialmente forma la base para varias
aplicaciones tecnológicas.
Para explicar los cambios morfológicos hay que tener en cuenta el
diagrama de fase de un copolímero, y sus transiciones de orden‐orden
y de orden‐desorden.
L
H
S
G
HPL
Dependiendo del parametro de incompatibilidad XN:
The Weak Segregation Limit (WSL) for XN < 10
The Intermediate Segregation Regime (ISR) for 10< XN < 100
The Strong Segregation Limit (SSL) for XN > 100
La importancia de los copolímeros no solo está en el hecho que
son materiales capaces de autoensamblarse en estructuras
nanométricas sino que además, pueden actuar como plantillas
(templates) para incorporar nano‐objetos.
Es importante relacionar la morfología de la matriz con la
geometría de los nano‐objetos que se quieren añadir para evitar
problemas de impedimento estérico:
Funcionalizar las nanoparticulas:
un buen surfactante tiene que ser capaz de
‐ grafting confinar las NP en un solo bloque del BC
‐ surfactante
(parametros de solubilidad)
Parte Hidrofobica – Matriz
Parte Hidrofilica – NPs
ODASWCNT dissolved in
toluene tend to exist as
bundles
DT/ODASWCNT
isolated SWCNT
DT
L. Peponi, et all. Express Polymer Letters, . 2011, 5, 2, 104-118.
L. Peponi, et all. J. Nanosci. Nanotechnol.2009, 9, 2128-2139.
L. Peponi, et all. Compos. Sci. Tech. 2008, 29, 3, 321-325.
L. Peponi, et all. J. Nanostruc. Polym. Nanocomp. 2008, 12, 57-63.
2%Ag
3%Ag
BC
5-10 %
5%Ag
10%Ag
0.5-1 %
2-3 %
1-D NANOPARTICLES: ODA SW CNT
SIS : cylindrical self-assembled domain
octadecylamine-functionalized SWCNTs
1 wt % DT/ODASWCNT/SIS
Lamellar self-assembled nanostructure
L. Peponi, et all. Carbon, 2009,
47, 10 2474-2480.
1 wt % DT/ODASWCNT/SIS
Lamellar nanostructure
L. Peponi, et all. Carbon, 2010,
48, 9, 2590-2595.
L. Peponi, et all. Carbon, 2009,
47, 10 2474-2480.
progressive
exposition
time
heigh
t
heigh
t
L. Peponi, et all. Macrom.Mat.
Eng. , 2010, 48, 9, 2590-2595.
phase
phase
phase
phase
DT/ODASWCNTs
DT/ODASWCNTs/SIS los tubos
estan confinados en el bloque de
estireno, por lo tanto no hay
contaminacion esterna (umedad,
oxigeno…) - el tubo se
comporta como material
semicontuctor de tipo p
respondiendo a bias negativos.
ODA-SWCNTs/SIS no hay
confinamiento de los tubos en la
matrix, la respuesta electrica esta
influenzada por el ambiente
externo – respuesta ambipolar,
y pueden responder a bias
negativos y positivos
indiferentemente.
ODASWCNTs
L. Peponi, et all. Carbon, 2010,
48, 9, 2590-2595.
L. Peponi, et all. J.
Physical Chemistry C,
2009, 113, 42,
17973-17978.
CONCLUSIONS:
BC are able to self‐assembled in ordered nanostructure
Dispersion of filler inside one block of the BC can be reach by using surfactants
The confinement of nano‐objects in only one phase of the BC can be obtained Not only 0‐D nanoparticles but also 1‐D and 2‐D nano‐objects can be selectively confine in
the host BC matrix.
The use of EFM to investigate BC behavior as host for NP positioning, and more specifically
for the imaging of the NP inside the block copolymer domains.
NANOCOMPUESTOS: SELF-ASSEMBLING (MATRIX
POLIMERICA) – BOTTOM-UP (NP)
CURRENT RESEARCH
AND OPEN ISSUES
•
Production of large-area graphene sheets for device
applications.
•
Functionalization and integration of graphene oxide
for nanocomposite applications.
•
Experimental
determination
of
electrical
and
morphological properties of GOPs.
•
Many unique properties (e.g. for energy applications)
have yet to be discovered.
Acknowledgments
 ICTP-CSIC, Madrid, Spain:





Laura Peponi
Nicoletta Rescignano
Ivan Navarro Baena
Alicia Mujica Garcia
University of Perugia, Terni, Italy








Luigi Torre
Luca Valentini
Debora Puglia
Silvia Bittolo Bon
Marta Cardinali
Elena Fortunati
Andrea Terenzi
Maurizio Natali
Acknowledgments
 Materials
Science
 Biology/
Medicine













M. Lopez Manchado, R. Verdejo, CSIC, Madrid, Spain
Francesca Nanni, Università di Roma Tor Vergata, Italy
Alberto Mariani, Università di Sassari, Italy
Enrique Gimenez, Valencia Polytechnic, Spain
Analia Vazquez, Universidad de Buenos Aires, Argentina
Lars Berglund, KTH, Sweden
Philippe Dubois, Unversity of Mons, Belgium
Jovan Mijovic, University of New York, USA
Antonio Martinez Richa, Universidad de Guanajuato, Mexico
Alfonso Jimenez, University of Alicante, Spain
Vera Alvarez, INTEMA, Mar del Plata, Argentina
Silvia Barbosa, PLAPIQUI, Bahia Blanca, Argentina
Inaki Mondragòn, Universidad del Pais Vasco, San Sebastian, Espana
 Gabriela Ciapetti, Laboratory for Pathophysiology of Orthopaedic
Implants, Istituti Ortopedici Rizzoli, Bologna, Italy
 Carla Emiliani, Sabata Martino, Dip. di Medicina Sperimentale e
Scienze Biochimiche, Università di Perugia
 Livia Visai, Center for Tissue Engineering (CIT), Pavia.
 Higinio Arzate, Universidad Nacional Autónoma de México.
 R. Calafiore, Dipartimento di Medicina Interna, University of Perugia
Grupo de Polímeros
Nanocompuestos
Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC
69
Scientists:
Dr José M. Kenny
Dr Miguel A. Lopez-Manchado
Dr Raquel Verdejo
Dr Laura Peponi
Technician - José M. Fernandez
PhD Students:
Leandro Casaban – High performance
Marianella Hernandez – Natural rubber
Natacha Bitinis – Packaging applications
Mar Bernal – EMI applications
Justo Brasero – Latex
Ivan Baena – Block Copolymers
Mario Martín – Thermal conductivity
Laura Jimenez – DEA
Líneas de Investigación
-
Síntesis y Funcionalización de Nanopartículas
- Nanotubos de carbon, grafenos, nanocelulosa,
nanoparticulas polimericas (PLA, PGA, etc.)
- Desarrollo de Nanocompuestos:
- Bionanocomposites
- Termoestables y termoplásticos de alta performance
- Elastómeros
- Espumas
- Desarrollo de Materiales con Memoria de Forma:
- Actuadores Poliméricos
- Copolímeros
- Producción de Nanofibras Poliméricas por Electrospinning
[email protected]
Italian Consortium for Science and Technology of Materials
(Univ. of Perugia at Terni* and PROPLAST at Alessandria*)
ECNP Partners
INSAVALOR (Lyon *)
Leibniz Institut fur Polymerforschung Dresden
Czech Academy of Sciences - IMC)
SWEREA SICOMP
Italy
France
Germany
Czech Rep.
Sweden
Fundacion TECNALIA
Spain
Foundation for Research and Technology – Hellas
Greece
Politechnika Lodzka (Technical University of Lodz)
Poland
Umbria Innovation
Italy
Instituto de Ciencia y Tecnologia de Polimeros –
CSIC (Madrid*)
Spain
73
Next ECNP and ECNP-GROWTH Meetings:
Biopol 2013
Roma, 1-3 October 2013
8th International Conference on
Multifunctional Nanostructured
Polymers and Nanocomposites
Dresden, September 16th-19th, 2014
www.ecnp-eu.org, [email protected]
[email protected]
POCO PROJECT
Confinement Strategies to Develop Novel
POlymer Matrix COmposites
Grant agreement no.: CP-IP 213939-1
Coordinator: Tekniker
Grant agreement for: Large scale collaborative project
www.poco-project.com
POCO will pave the way towards CNT/polymer nanocomposite
products for the aerospace, automotive, building and biomedical
industries.
AERONAUTICS
(EADS)
Composite
materials
CFRP = Carbon Fibre Reinforced Plastics
+ Lightness
+ Excellent mechanical properties
- Susceptible to impact damages
AERONAUTICS (EADS)
Coatings
- increase of the mechanical
strength of coatings
(abrasion and erosion resistance)
- increase of electrical
conductivity to the paints
Erosion Protection
Rain erosion
Sand erosion
Electrical Conductivity
Envisaged application:
- primer coating on aircraft exterior
parts made out of carbon fibre
reinforced also epoxy based plastics
AUTOMOTIVE (FIAT RESEARCH CENTRE)
Structural frame in the body closure panel such as bonnets
(hoods) or tailgates (hatchbacks).
This kind of part is traditionally made by metal (steel or
aluminium) but the need to reduce weight is moving towards new
materials adoption.
Reduce the amount of glass in the matrix. This means less
weight and better rheological properties for the moulding
process.
BUILDING CONSTRUCTION (ACCIONA)
Interest:
- Increase of the mechanical
properties
- Fire resistance improvements
Final application:
- Beam composite structure valid
for 5 m span pedestrian bridge
BIOMEDICAL (PURAC-PLA)
Replace metallic implants by polymeric, degradable implants
• HTTP/CNT systems
• PLA/CNT composites
CNT nanocomposite membrane and
scaffolds processes
•
Filter of 0,2m pore size
 PTFE
 PES
CNT dispersion filtered
CNTs embedded in spin-coated polymer

Documentos relacionados