1 Demographics, Human Capital and Economic Growth in Mexico

Transcripción

1 Demographics, Human Capital and Economic Growth in Mexico
Demographics, Human Capital and Economic Growth in Mexico: 1950-20051
Rodrigo García-Verdú2
Poverty Reduction and Economic Management unit
Latin American and the Caribbean region
The World Bank
First draft: June 12, 2007
This draft: June 15, 2007
Abstract
This paper analyzes Mexico’s economic growth over the period 1950-2005. It
focuses on the contributions to growth in real GDP per capita of: (i)
demographics, meaning changes in the population and its age structure; and (ii)
human capital accumulation, including increases in educational attainment and in
life expectancy at birth. For this purpose, the paper performs two growth
accounting exercises to decompose the growth rate of real GDP into the
contributions of: (i) the employed population and the total population; and (ii)
physical capital, human capital, and total factor productivity. Finally, the paper
applies a methodology recently developed to impute a monetary value to the
increases in life expectancy at birth and thus obtain a measure of the
contributions of improved health to economic growth. The results show that over
this period: (i) the demographic changes registered in Mexico are key in
explaining its economic growth performance; (ii) growth in the capital stock
accounted for nearly a third of the observed growth in real GDP, increases in
educational attainment also accounted for about a third, while growth in total
factor productivity accounted for the remaining third; and (iii) increases in life
expectancy at birth have been a major contributor to improvements in welfare,
accounting for nearly half of the increase in a measure of augmented or full
income.
Keywords: Economic Growth, Growth Accounting, Sources of Growth, Total
Factor Productivity, Demographic Transition, Human Capital.
JEL Classification: O47, O54
1
Preliminary and incomplete. Comments welcome. Paper prepared for the Regional Seminar on
“Economic Growth in Latin America,” organized by the Economic Development Division of the
United Nation’s Economic Commission for Latin America and the Caribbean (ECLAC), Santiago,
Chile, June 14-15, 2007. I am grateful to Omar Bello and Osvaldo Kacef for the invitation to
participate in the seminar, and to Igor Paunovic, Ernesto Sepúlveda and seminar participants for
very helpful comments and suggestions. I have benefited from several discussions with David
Rosenblatt. None of them is responsible for any remaining errors. The findings, interpretations,
and conclusions are the author’s own and should not be attributed to The World Bank, its
Executive Board of Directors, or any of its member countries.
2
E-mail: [email protected]
1
1. Introduction
This paper analyzes Mexico’s economic growth over the past half century. It
improves upon the existing literature by using new time series data and better
economic measurement. The result is a more nuanced understanding about the
sources of economic growth in Mexico.
The paper begins by dividing the 1950-2005 period into five distinctive growth
episodes, corresponding to the years 1950-1970, 1971-1982, 1983-1987, 19881994, and 1995-2005. This division is based on the behavior of five key
macroeconomic variables: (i) the growth rate of real GDP per worker; (ii) the
volatility of real GDP; (iii) inflation; (iii) fiscal balances; and (v) current account
balances.
This division of the 1950-2005 period into episodes serves two purposes. First, it
places the growth rates of real GDP per worker in the broader macroeconomic
context, which is necessary to assess growth performance. For example, a high
growth episode that is accompanied by high and volatile inflation and large and
increasing fiscal and current account deficits (e.g. 1971-1982), may be assessed
to be inferior to another similarly high growth episode accompanied by low and
stable inflation and moderate fiscal and current account deficits (e.g. 1950-1970).
Second, the five episodes are used for two standard growth accounting
exercises, which decompose the growth rate of real GDP into the contributions
of: (i) the employed population and the total population; and (ii) physical capital,
human capital, and total factor productivity. Typically these growth accounting
exercises are performed for different sub-periods and are compared across
them. Thus, the particular years included in each episode matter, which explains
why the choice is based on the behavior of key macroeconomic variables.
Finally, the paper applies a methodology recently developed by Becker,
Philipson, and Soares (2005) and Murphy and Topel (2003) to impute a
monetary value to the increases in life expectancy at birth and thus obtain a
measure the contributions of improved health to economic growth. This section is
based on García-Verdú (2006), which obtained a measure of the contribution to
wellbeing of the increases in life expectancy at birth across states in Mexico over
the period 1970-1995.
The results of the paper show that the period 1950-2005: (i) the demographic
changes registered in Mexico are key in explaining its economic growth
performance, and particularly the differences between the growth rates of real
GDP per capita and real GDP per worker; (ii) the growth of the capital stock
accounted for nearly one third of the observed growth in real GDP, the observed
increases in educational attainment also accounted for about a third, while
growth in total factor productivity accounted for the remaining third; and (iii) the
2
observed increases in life expectancy at birth have been a major contributor to
improvements in welfare, accounting for nearly half of the increase in a measure
of augmented or full income.
2. Economic Growth in Mexico in Historical Perspective
It is useful to begin by placing Mexico’s economic growth experience over the
period 1950-2005 in long-term historical perspective and to compare it to its own
previous growth record. For this purpose one can use time series data from two
sources: (i) data on real GDP per capita (in constant 1970 pesos) for the period
1845-1997 from INEGI; and (ii) data on real GDP per capita (in 1990 international
$) for the period 1500-1997 from Maddison (2003).
Figure 1
Average annual growth rate of real GDP per capita in Mexico: 1845-2006
3.5%
3.03%
3.0%
2.5%
2.0%
Percent
1.63%
1.56%
1.5%
0.89%
1.0%
0.5%
0.0%
-0.5%
-1.0%
-0.74%
1845-1860
1877-1910
1921-1949
1950-1973
1973-2006
Periods
Sources: Instituto Nacional de Estadística, Geografía e Informática (2000) and the references
cited theirein for the period 1825-1949, and Groningen Growth and Development Centre (2007)
for the period 1950-2006.
Figure 2
Average annual growth rate of real GDP per capita in Mexico: 1500-1988
3
3.5%
3.17%
3.0%
2.5%
2.22%
Percent
2.0%
1.5%
1.28%
1.0%
0.85%
0.5%
0.18%
0.0%
-0.24%
-0.5%
1500-1820
1820-1870
1870-1913
1913-1950
1950-1973
1973-1998
Periods
Source: Madisson (2003).
The growth rates from the two time series do not coincide due to the different
periods considered as well as to the fact that they are based on different sources
and deflators used. Nevertheless, the broad picture they describe is largely the
same.
Based on the two time series depicted above, the long-run growth experience
can be summarized as follows: (i) from 1500 up until around 1870 the average
growth rate of real GDP per capita was close to zero; (ii) growth accelerated
remarkably between 1870 and 1910; (iii) the growth rate declined over the period
1910 and 1950 to less than half of that registered during the previous period; (vi)
the average growth rate of around 3% per annum achieved over the period 19501973 is the highest on record; (vi) the average growth rate declined significantly
after 1973, to between a half and a third of the growth rate achieved in the
preceding period.
Given the prominence that demographics have in explaining Mexico’s growth
performance over the period 1950-2006, it is also useful to place its population
growth record in long-term historical context. As the next figure shows, Mexico
experienced an enormous increase in its total population relative to its previous
historical experience. Over the course of the twentieth century its population
increased from around 13.6 millions in 1900 to about 103.3 millions in 2005.
Figure 3
Total Population in Mexico: 1790-2005
4
110
103.26
100
90
Millions of Persons
80
70
60
50
40
30
20
13.61
10
2000
1990
1980
1970
1960
1950
1940
1930
1920
1910
1900
1890
1880
1870
1860
1850
1840
1830
1820
1810
1800
1790
0
Year
Sources: Instituto Nacional de Estadística, Geografía e Informática (2000) and XII Censo General
de Población y Vivienda 2000 and II Conteo de Población y Vivienda 2005.
This acceleration in its population growth rate over the past century is
unprecedented relative to previous periods. As Figure 4 shows, Mexico’s
population growth rate increased from 1921 up until 1970, then peaked sometime
around the 1970s and has been declining since then, reaching a growth rate in
2005 similar to the one in 1900.
Figure 4
Annual Growth Rate in the Total Population in Mexico: 1895-2005
4.0%
3.5%
3.2% 3.3%
3.0%
3.0%
2.7%
2.5%
2.3%
2.0%
Percent
2.0%
1.5%
1.6%
1.5%
1.7%
1.3%
1.2%
1.1%
1.0%
0.5%
0.0%
-0.5%
-0.5%
-1.0%
1895- 1900- 1910- 1921- 1930- 1940- 1950- 1960- 1970- 1980- 1990- 1995- 20001900 1910 1921 1930 1940 1950 1960 1970 1980 1990 1995 2000 2005
Period
Sources: Instituto Nacional de Estadística, Geografía e Informática (2000), XII Censo General de
Población y Vivienda 2000, and II Conteo de Población y Vivienda 2005.
5
The observed increase in Mexico’s total population and the change in its age
structure is known as the demographic transition, a process through which most
Latin American and the Caribbean countries are still undergoing, albeit at
different stages. As will be discussed below, the implications for economic growth
of this demographic transition are that very favorable conditions for the
acceleration of real GDP per capita growth over the past three decades.
Alas, higher growth rates did not materialize in Mexico or in most other countries
in Latin America and the Caribbean.3 This poor economic performance sharply
contrasts with the experience of the fast growing economies in South-East Asia
(e.g. Hong Kong, South Korea, Singapore, and Taiwan) and Western Europe
(e.g. Greece, Ireland, Portugal and Spain) during the 1960s and 1970s.4
3. Economic Growth in Mexico over the period 1950-2005
3.1 Growth Episodes
The growth accounting or ‘sources of growth’ methodology allows decomposing
the observed growth rate of real GDP into a part that is attributable to the
observed growth rate of measured inputs (e.g. capital and labor) and a part
attributable to improvements in the way inputs are combined to produced output.
This last term is alternatively referred to as total factor productivity, technological
change, or the Solow residual.5
The results of these growth accounting or ‘sources of growth’ exercises are
typically presented for different sub-periods and are compared across them. In
this regard, the recurrent balance of payments and financial crises that afflicted
Mexico and other Latin America and Caribbean countries in the past implies that
there is high volatility in GDP growth rates, so the choice of which particular
years to include in each sub-periods will likely affect the results. Thus, it is useful
to begin with a characterization of the different growth episodes Mexico has
undergone over the period 1950-2005 based on some macroeconomic indicators
(other than the growth rate of GDP per capita or per worker).
Another reason why such a division of the 1950-2005 period into different
episodes is useful is that it is necessary for interpreting and comparing economic
growth performances across periods. In particular, a high growth episode that is
accompanied by high and volatile inflation and large and increasing fiscal and
3
Chile was one of the few exceptions. See Bergoeing, Kehoe, Kehoe, and Soto (2002a, 2002b)
for a model that explains the observed differences in growth performance between Chile and
Mexico after 1982.
4
For the case of South East Asia, see Young (1995, 1994 and 1992). For the case of Ireland, see
Bloom and Canning (2003a).
5
See Barro (1999) for a detailed exposition of the growth accounting methodology. For a
historical account of the development of the concept of TFP, see Griliches (2000).
6
current account deficits (e.g. 1971-1982), may be assessed to be inferior to
another similarly high growth episode accompanied by low and stable inflation
and moderate fiscal and current account deficits (e.g. 1950-1970).
Furthermore, a high growth episode that is accompanied by high and volatile
inflation and large and increasing fiscal and current account deficits (e.g. 19711982) may in fact be considered inferior to another episode of lower but positive
growth accompanied by low and stable inflation and moderate fiscal and current
account deficits (e.g. 1995-2005). On the basis of this simple comparison it
seems that the economic growth registered during the 1970s was not
sustainable, so it may be an inappropriate benchmark with which to compare the
growth performance of the Mexican economy after the 1981.
This section divides the 1950-2005 period into five distinctive episodes These
five episodes correspond to 1950-1970, 1971-1982, 1983-1987, 1988-1994,
1995-2005, which roughly coincide with the terms of one or more presidential
administrations. This division is based on the behavior of five key
macroeconomic variables: (i) growth rate of real GDP per worker; (ii) volatility of
real GDP; (iii) inflation; (iv) fiscal balances; and (v), and current account
balances.
These five episodes and their defining characteristics can be summarized as
follows (see Table 1 below):
(i)
The period 1950-1970, which roughly coincides with the period known
as Desarrollo Estabilizador or import substitution model. This period
was characterized by high growth of real GDP per worker, low real
GDP volatility, low and stable inflation under a fixed exchange rate
regime, moderate current account deficits, and moderate government
deficits;
(ii)
The period 1971-1982, which coincides with the presidential terms of
Echeverría and López Portillo and the so called Desarrollo Compartido
and Alianza para la Producción models. This period was characterized
by high growth of real GDP per worker (albeit lower than in the 19501970 period), low real GDP volatility, high and increasing inflation
under a fixed exchange rate regime, moderate but increasing current
account deficits, and high and increasing government deficits;
(iii)
The period 1983-1987, which coincides with the presidential terms of
De la Madrid and the first structural adjustment programs, including the
Programa Inmediato de Reordenación Económica (PIRE) and the
Programa de Aliento y Crecimiento (PAC). This period was
characterized by negative real GDP per worker growth, high real GDP
volatility (relative to the previous episode), soaring and volatile inflation
under a managed exchange rate regime, moderate and volatile current
7
account surpluses (achieved largely through abrupt exchange rate
depreciations), and high but decreasing government deficits;
(iv)
The period 1988-1994, which coincides with the presidential terms of
Salinas and the structural adjustment program known as the Pacto de
Solidaridad Económica. This period was characterized by low growth
of real GDP per worker, moderate real GDP volatility, high but rapidly
declining inflation under a fixed exchanged rate regime, high and
increasing current account deficits, and moderate government deficits;
(v)
The period 1995-2005, which coincides with the presidential terms of
Zedillo and Fox. This period was characterized by moderate growth
rate of real GDP per worker, moderate and declining real GDP
volatility, moderate and declining inflation under a flexible exchange
rate regime, moderate current account deficits, and moderate
government deficits.
Table 1
Performance of the Main Macroeconomic Indicators in Mexico:
1950-2005
Period
1950-1970
1971-1982
1983-1988
1989-1994
1995-2005
Annual growth rate of Coefficient of Variation
of the real GDP growth
real GDP per worker
rate
3.99%
0.377
1.07%
0.477
-3.05%
18.175
0.75%
0.355
0.63%
1.263
Annual Consumer
Price Index Inflation
5.06%
25.44%
86.71%
15.90%
13.49%
Current Account
Balance (as a percent
of GDP)
N.A.
N.A.
1.17%
-4.93%
-1.78%
Fiscal Balance (as a
percent of GDP)
-1.65%
-6.89%
-10.61%
-0.95%
-0.58%
Sources: World Development Indicators (2007), World Bank, International Financial Statistics
(IFS), International Monetary Fund (IMF), Banco de México, and GGCD.
According to this characterization, the two most similar episodes during the
period 1950-2005 are the two ends: 1950-1970 and 1995-2005. In a way, the
Mexican economy seems to have come full circle after fifty years except for two
facts: (i) the growth rate of real GDP per worker was significantly higher in the
period 1950-1970 than in the period 1995-2005; and (ii) similar inflations have
been achieved under two opposite exchange rate regimes, fixed for the period
1950-1970 and floating under the period 1995-2005.
Evidently, another major change the Mexican economy has undergone between
these two episodes has been the trade liberalization process, which significantly
increased the openness of the Mexican economy (as measured, for example, by
the ratio of exports plus imports to GDP). At any rate, it should be clear from the
table above that the Mexican economy experience five distinctive growth
episodes, which will be analyzed next in the growth accounting exercises.
3.2 Economic Growth and Demographics
8
Most of the economics literature on economic growth in Mexico has focused on
the hypothesis of convergence (both absolute and relative) across states and
regions within Mexico to a common real GDP per capita level. This convergence
literature includes, among others, Caraza (1993), Juan Ramón and Rivera Bátiz
(1996), Esquivel (1999), Navarrete (1995), Messmacher (2000), García-Verdú,
(2005b), Chiquiar (2005), and de la Peza (2006). 6
By contrast, less attention has been given to another important branch of the
literature on economic growth, which is the one on the growth accounting of
sources of growth methodology. In the case of Mexico this growth accounting
literature includes, among others, Santaella (1998a, 1988b), Bosworth (1998),
Faal (2005), García-Verdú (2005b), and World Bank (2007).
In turn, most of the growth accounting exercises that have been done for the
case of Mexico have focused on GDP per capita rather than real GDP per
worker. The reason for this is twofold. First, despite its shortcomings as a
measure of development, GDP per capita is by far the most widely used indicator
of economic wellbeing in comparisons across countries and over time. Second,
the time series on employment necessary to perform the growth accounting
exercises with real GDP per worker rather than with real GDP per capita are not
readily available for most countries.
This paper improves upon existing growth accounting exercises in Mexico in
three dimensions: (i) it focuses on real GDP per worker rather than on real GDP
per capita; (ii) it specifically decomposes the growth rate of GDP per worker that
is attributable to the accumulation of human capital by into constructing series for
the growth rates of workers of different schooling levels (no schooling, primary
completed, secondary completed, and tertiary completed); and (iii) it combines
these new time series with improved measurements of factor shares from
household survey data for Mexico obtained by García-Verdú (2005a).
The result of these three improvements is a more accurate measure of TFP, as
well as a different interpretation of the sources of growth in Mexico over the
period 1950-2005.
3.2.1. Demographics
Most theoretical models of aggregate economic growth are constructed so as to
explain the behavior of output per worker or average worker productivity.
Nevertheless, most of the empirical literature on growth has analyzed the
behavior of GDP per capita rather than GDP per worker. This is a major
shortcoming of the empirical analyses, particularly if the behaviors of the
employed population and the total population are different. This is typically the
6
One of the most common findings among these papers is that convergence stopped or at least
slowed down significantly after 1985. For a detailed survey of the data, methods and results, see
de la Peza (2006).
9
case in countries that experience a change in the age structure of their
population.
As mentioned before, over the course of the twentieth century Mexico
experienced major demographic changes, including an increase in the total
population by more than sevenfold over the period 1900-2005. Furthermore,
there was an important change in the age structure of the Mexican population
over the period 1920-2005 (the period for which population data by age groups
are available), resulting in the gradual aging of the population.
These changes in the age structure of the population are the result of the so
called Demographic Transition. This transition consists of the successive
changes from: (i) high birth and high death rates; (ii) high birth rates and low
death rates; to, finally, (iii) low birth rates and low death rates.
Due to the fact that death rates fall before birth rates adjust downwards,
countries that undergo the Demographic Transition typically experiment a
population bulge. This implies that they will also experience a period of declining
dependency ratio, defined as the ratio of the population ages 0 to 14 and 65 and
over the population ages 15 to 64.
This is a situation favorable to economic growth, since it implies that during a
period there will be a large generation or cohort of entrants to the labor force
while the generations of younger cohorts that need to be fed but do not yet
contribute to production will be smaller. This situation has been denominated the
‘demographic dividend’. This ‘demographic dividend’ is a window of opportunity
that eventually vanishes as the share of the population 65 years of age and older
begins to rise rapidly.
As can be seen in the following figures, Mexico has indeed experienced a falling
dependency ratio from 1970 until 2000 (Figure 5). Moreover, according to
population projections this dependency ration is expected to continue decreasing
until around 2020 due largely to the continuing fall in the fall in the youth
dependency ratio (Figure 6). Nevertheless, the rapid aging of the population after
2010 (Figure 7) implies that this window will eventually close (Figure 5).
Figure 5
Dependency Ratio in Mexico:
1920-2000 (observed) and 2010-2050 (projected)
(Population ages 0-14 and 65+ over population ages 15-64)
10
1.0
1.00
0.92
0.9
0.88
0.82
Ratio
0.8
0.79
0.75
0.73
0.7
0.71
0.64
0.6
0.61
0.54
0.56
0.50
0.5
0.51
2050p
2040p
2030p
2020p
2010p
2000
1990
1980
1970
1960
1950
1940
1930
1920
0.4
Year
Source:, Instituto Nacional de Estadística Geografía e Informática (2000), Estadísticas Históricas
de México, , XII Censo General de Población y Vivienda 2000, II Conteo de Población y Vivienda
2005, and International Data Base, U.S. Census Bureau. N.B. Data for the years marked with a
‘p’ are projections from the U.S. Census Bureau International Data Base.
Figure 6
Children and Youth Dependency Ratio in Mexico:
1920-2000 (observed) and 2010-2050 (projected)
(Population ages 0-14 over population ages 15-64)
0.923
0.90
0.738 0.761
0.70
Ratio
0.60
0.812
0.851
0.80
0.674
0.662 0.678
0.561
0.50
0.442
0.375
0.40
0.340 0.317
0.30
0.305
0.20
0.10
2050p
2040p
2030p
2020p
2010p
2000
1990
1980
1970
1960
1950
1940
1930
1920
0.00
Year
Source:, Instituto Nacional de Estadística Geografía e Informática (2000), Estadísticas Históricas
de México, , XII Censo General de Población y Vivienda 2000, II Conteo de Población y Vivienda
11
2005, and International Data Base, U.S. Census Bureau. N.B. Data for the years marked with a
‘p’ are projections from the U.S. Census Bureau International Data Base.
Figure 7
Old-Age Dependency Ratio in Mexico:
1920-2000 (observed) and 2010-2050 (projected)
(Population ages 65+ over population ages 15-64)
0.35
0.30
0.306
0.25
Ratio
0.242
0.20
0.175
0.15
0.124
0.10
0.05
0.099
0.082
0.066 0.074 0.073 0.073
0.053 0.061
0.045 0.051
2050p
2040p
2030p
2020p
2010p
2000
1990
1980
1970
1960
1950
1940
1930
1920
0.00
Year
Source: Instituto Nacional de Estadística Geografía e Informática (2000), Estadísticas Históricas
de México, XII Censo General de Población y Vivienda 2000, II Conteo de Población y Vivienda
2005, and International Data Base, U.S. Census Bureau. N.B. Data for the years marked with a
‘p’ are projections from the U.S. Census Bureau International Data Base.
What are implications of the change in the age structure of the population for
economic growth and the results of the growth accounting exercises? In order to
analyze the importance of changes in the demographic structure, one can begin
with the following identity:
Y Y
L
WAP
 *
*
P L WAP
P
where Y is real GDP, P is total population, L is the employed population,
and WAP is the working-age population. Thus, real GDP per capita can be
expressed as the product of real GDP per worker, a pseudo labor force
participation rate7 and the share of the working-age population to the total
population.
7
It is a pseudo labor force participation rate since typically employment is divided by the
workforce instead of the working-age population.
12
Given that no consistent series are available for the employed population, L, and
for the working-age population, WAP, the decomposition done here is simplified
as follows:
Y Y L
 *
P L P
According to this last identity, real GDP per capita can be expressed as the
product of real GDP per worker and ratio of the employed population to the total
population. As can be seen from the next graph, the behavior of the ratio of the
employed population to the total population is far from constant over the period
1950-2005. In fact, it is very similar to the inverse of the dependency ration in
Mexico during the same period.
Figure 8
Ratio of Employed to Total Populations and Dependency Ratio in Mexico:
1950-2006
Ratio of Employed Population to Total Population (LHS)
Dependency Ratio (RHS)
0.40
0.9
0.35
0.30
0.7
Dependency Ratio
Ratio of Employed Population
to Total Population
0.45
0.25
0.5
1950
1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
0.20
Year
Sources: Instituto Nacional de Estadística Geografía e Informática (2000), Estadísticas Históricas
de México, XII Censo General de Población y Vivienda 2000, II Conteo de Población y Vivienda
2005, and Groningen Growth and Development Centre (GGDC) and the Conference Board
(2007), Total Economy Database.
That the ratio of the employed to the total population is not constant implies that
the behavior of the real GDP per capita and the real GDP per worker will differ. In
effect, as shown in the following figure, the behavior of the two series is
significantly different. Given that the data are in logs, the slopes in the graphs
show the growth rates. Thus, one can see that real GDP per worker: (i) grew at a
faster rate than GDP per capita from 1950 up until 1973; (ii) declined more
sharply than GDP per capita than from 1981 to 1995; and (iii) grew at a lower
rate than GDP per capita from 1995 up until 2006.
13
Thus, the usual story of the growth rate of real GDP per capita in Mexico falling
after the 1982 crisis changes when analyzing real GDP per worker: (i) the growth
performance of the 1950-1970 period is all the more impressive considering it
coincided with the period of peak population growth (1960-1970), which explains
why real GDP per capita grew at a slower rate than real GDP per worker; (ii) in
contrast to the growth rate of real GDP per capita, the growth rate of real GDP
per worker began to slow down around the year 1973, not after 1981 as
commonly noted; (iii) the or period of renewed growth after the 1982 crisis is
absent when one analyzes real GDP per worker; as a result, the level of real
GDP per worker never again reached its pre-1981 level; and (iv) the observed
growth rates of real GDP per worker after 1981 never matched those observed
between 1950 and 1970.
Figure 9
Real GDP per Capita and Real GDP per Worker in Mexico: 1950-2006
Real GDP per Worker (LHS axis)
Real GDP per Capita (RHS axis)
9.4
9.2
10.2
9.0
10.0
8.8
9.8
8.6
9.6
8.4
9.4
Real GDP per Worker (2006 EKS$)
Real GDP per Capita (2006 EKS$)
10.4
8.2
8.0
1950
1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
9.2
Year
Source: Groningen Growth and Development Centre (GGDC) and the Conference Board (2007),
Total Economy Database, and Penn World Table Version 6.2.
These arguments can be formalized through a simple decomposition of the
growth rate of real GDP per worker. Recall the previous formula:
14
Y Y L
 *
P L P
Once can the take logs and differentiate with respect to time to find an
expression in terms of growth rates:
Y 
Y 
L
ln   ln  * ln 
P
L
P
g y  g yL  gL  gP
In effect, the favorable demographic conditions characterized by a falling
dependency ratio have contributed to the renewed growth in real GDP per capita,
despite the fact that real GDP per worker has not grown significantly.
Table 2
Growth Decomposition of Growth of real GDP in Mexico: 1950-2006
Period
Annual growth
Annual growth
rate of real GDP
rate of real GDP
Annual growth
Annual growth
rate of the
rate of the total
employed
1950-1970
1971-1982
1983-1987
1988-1994
1995-2005
per capita
3.01%
3.42%
-2.26%
1.62%
1.52%
per worker
3.99%
1.07%
-3.22%
0.32%
0.63%
population
3.08%
2.55%
2.24%
1.85%
1.31%
population
2.10%
4.90%
3.20%
3.14%
2.20%
Annual growth
rate of the ratio
of the employed
over total
population
-4.06%
-0.20%
-1.28%
-0.56%
-0.43%
Source: Groningen Growth and Development Centre (GGDC) and the Conference Board (2007),
Total Economy Database.
Table 3
Growth Decomposition of Growth of real GDP in Mexico: 1950-2006
(Percent Contributions)
Period
Percent
Percent
contribution to
contribution of
the growth rate of the growth rate of
real GDP per
real GDP per
capita
worker
1950-1970
100.00%
132.52%
1971-1982
100.00%
31.35%
1983-1987
100.00%
-142.37%
1988-1994
100.00%
20.07%
1995-2005
100.00%
41.63%
Percent
Percent
contribution to
contribution to
the employed
the the total
population
102.37%
74.41%
99.05%
114.42%
86.49%
population
69.85%
143.05%
141.42%
194.35%
144.85%
Percent
contribution to
the ratio of the
employed over
total population
134.89%
5.76%
56.68%
34.49%
28.12%
Source: Groningen Growth and Development Centre (GGDC) and the Conference Board (2007),
Total Economy Database.
3.2.2. Human Capital Accumulation and Total Factor Productivity
15
This section improves upon the standard growth accounting exercises which
decompose the growth rate of real GDP per worker into the contributions of
physical capital, labor and total factor productivity in two ways: (i) it focuses on
real GDP per worker rather than on real GDP per capita; (ii) it accounts for the
contribution of human capital to the growth of real GDP per worker through the
incorporation of different types of labor according to their educational attainment
(no schooling, primary completed, secondary completed, and tertiary completed);
and (iii) it combines these new time series with improved measurement of factor
shares from household survey data for Mexico obtained by García-Verdú
(2005a).
As a result, the measure of TFP obtained from this growth accounting exercise is
much more accurate than previous time series for this variable. Also, the
interpretation of the sources of growth in Mexico over the period 1950-2005 is
different from that obtained if: (i) real GDP per capita is used instead of real GDP
per worker; (ii) only capital and labor are used as inputs, and (iii) if factor shares
from National Income and Product Accounts are used instead of factor shares
from household survey data.
The measures of human capital are based on the data set by Barro and Lee
(2001) on educational attainment in a cross section of countries. Their measures
of educational attainments are based on decennial census data as well as data
from UNESCO. Their measures present the shares of the population 25 years of
age and older by schooling level for four different types: (i) no schooling; (ii)
completed primary; (iii) completed secondary; and (iv) completed tertiary. These
data set was complemented with data from the latest population censuses (XII
Censo General de Población y Vivienda 2000, II Conteo de Población y Vivienda
2005) since they haven’t been updated since 1995.
The following figure shows the shares of the population 25 years of age and
older by schooling level in Mexico over the period 1950-2005:
Figure 10
Schooling Attainment in Mexico: 1950-2005
(Percentage of the population 25 years of age and older with given
schooling level completed)
16
No schooling
Primary
Secondary
Tertiary
100%
90%
80%
70%
Percent
60%
50%
40%
30%
20%
10%
1950
1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
0%
Year
Sources: XII Censo General de Población y Vivienda 2000, II Conteo de Población y Vivienda
2005, Instituto Nacional de Estadística Geografía e Informática, and Barro and Lee (2001).
For expositional purposes, the growth accounting or decomposition exercise can
be derived from a Cobb-Douglas production function of the form:

Yt  At K t * HC1, t1 * HCs, ts * HC3,ts * HC4,4t
ln Yt  ln  At    ln K t   1 ln( HC1,t ) 
 2 ln( HC2, t )   3 ln( HC3,t )   4 ln( HC4,t )
g y  g A  g K  g HC1  g HC 2  g HC 3  g HC 4
where, as before, Yt is real GDP, At is total factor productivity, K t is a measure
of the capital stock,  is the share of GDP paid to capital, HCi is the human
capital stock corresponding to educational attainment level i, and  i is the share
of GDP paid to human capital of educational attainment level i, where the
educational attainment level i can be: (i) no schooling; (ii) completed primary; (iii)
completed secondary; or (iv) completed tertiary. The stocks of human capital are
such that:
Lt  HC1,t  HC2,t  HC3,t  HC4,t
In order to obtain a measure of the capital stock the time series on gross
investment is combined using the perpetual inventory method, assuming a 5%
annual depreciation rate and a steady state level of capital in 1950. In particular,
the measure of the capital stock is obtained according to the following law of
motion for capital and initial condition:
17
K t 1  I t  K t (1   )
I1950

  0.05
K0 
In order to obtain the factor shares, we use the results of García-Verdú (2005a)
and Gollin (2003), which showed that factor shares obtained from National
Income and Product Accounts are biased so that the share of labor is
systematically underestimated while that of capital is overestimated. Instead, we
use the factor shares for capital and labor obtained by García-Verdú (2005a) for
Mexico from household survey data, which correspond to roughly   0.4 and

4
i 1
i  0.6 .
In the case of the factor shares of the different types of human capital,  i , we
use the fact that the returns to education tend to be relatively constant over time
and assume that the average real wage in the economy is equal to 60% of real
GDP per worker (observed).
Furthermore, in order to obtain factor shares for each type of human capital we
assume that: (i) workers with completed secondary education earn the average
wage in the economy; (ii) workers with no schooling earn 20% of the average
wage in the economy; (iii) workers with completed primary education earn 50% of
the average wage in the economy; and (iv) workers with completed tertiary
education earn 200% of the average wage in the economy.
These assumptions are then combined with the observed number of workers by
each education level as a share of total employment in order to obtain their share
in the total wage bill. The average shares over the period 1950-2006
are 1  7.8% ,  2  27.8% ,  3  13.7% , and  4  10.6% . Nevertheless, these
shares fluctuate significantly over the period as a result of the changes in the
composition of the stock of human capital by education level, as can be seen in
the following figure:
Figure 11
Income Shares among Workers by Schooling level in Mexico: 1950-2005
(Percentage of GDP paid to workers in each schooling level)
18
No schooling
Primary
Secondary
Tertiary
100%
90%
80%
70%
Percent
60%
50%
40%
30%
20%
10%
1950
1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
0%
Year
Sources: XII Censo General de Población y Vivienda 2000, II Conteo de Población y Vivienda
2005, Instituto Nacional de Estadística Geografía e Informática, and Barro and Lee (2001).
The result of this growth accounting exercise or sources of growth decomposition
is presented in the table below.
Table 4
Sources of Growth of real GDP in Mexico: 1950-2006
Period
Annual growth
Annual growth
Annual growth
rate of the
rate of the capital
employed
population with
1950-1970
1971-1982
1983-1987
1988-1994
1995-2006
1950-2006
rate of real GDP
6.10%
5.97%
-0.02%
3.46%
2.83%
4.49%
stock
1.67%
2.54%
0.78%
1.27%
1.37%
1.66%
no schooling
-4.02%
-2.14%
-6.93%
-5.06%
-1.36%
-3.44%
Annual growth
rate of the
employed
population with
primary
completed
-1.23%
-9.73%
-8.98%
-8.34%
-8.88%
-6.27%
Annual growth
rate of the
employed
population with
secondary
completed
2.34%
5.15%
10.90%
12.48%
6.32%
5.83%
Annual growth rate Annual growth rate
of the employed
of total factor
population with
tertiary completed
3.54%
8.66%
7.11%
3.50%
5.68%
5.41%
productivity
3.80%
1.49%
-2.90%
-0.39%
-0.30%
1.30%
Sources: Groningen Growth and Development Centre (GGDC) and the Conference Board (2007),
Total Economy Database, Penn World Table Mark 6.1, XII Censo General de Población y
Vivienda 2000, II Conteo de Población y Vivienda 2005, Instituto Nacional de Estadística
Geografía e Informática, and Barro and Lee (2001).
Table 5
Sources of Growth of real GDP in Mexico: 1950-2006
(Percent contributions)
Period
Annual growth
Annual growth
Annual growth
rate of the
rate of the capital
employed
population with
1950-1970
1971-1982
1983-1987
1988-1994
1995-2006
1950-2006
rate of real GDP
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
stock
27.40%
42.60%
N.A.
36.74%
48.54%
37.04%
no schooling
-65.93%
-35.89%
N.A.
-146.04%
-48.06%
-76.49%
Annual growth
rate of the
employed
population with
primary
completed
-20.24%
-162.92%
N.A.
-240.72%
-314.13%
-139.59%
19
Annual growth
rate of the
employed
population with
secondary
completed
38.44%
86.25%
N.A.
360.43%
223.37%
129.69%
Annual growth rate Annual growth rate
of the employed
of total factor
population with
tertiary completed
58.02%
145.04%
N.A.
100.94%
200.86%
120.35%
productivity
62.30%
24.92%
N.A.
-11.35%
-10.59%
29.00%
Sources: Groningen Growth and Development Centre (GGDC) and the Conference Board (2007),
Total Economy Database, Penn World Table Mark 6.1, XII Censo General de Población y
Vivienda 2000, II Conteo de Población y Vivienda 2005, Instituto Nacional de Estadística
Geografía e Informática, and Barro and Lee (2001).
Tables 4 and 5 above suggest that physical capital, human capital and TFP
growth accounted for about a third each of the observed growth in real GDP.
Within human capital, the no schooling and primary completed stocks actually
contributed negatively to the growth of real GDP, although the increases in the
secondary and tertiary completed schooling levels more than offset the negative
contributions of no schooling and primary.
This growth accounting exercise shows that the contribution of physical capital to
real GDP growth is much smaller than suggested by previous analyses (cf. Elías,
1992). Even after accounting for the contributions of four types of human capital
to the growth of real GDP growth, total factor productivity continues having an
important share. This finding contrasts with the results by Young (1992, 1994,
and 1995), who find that for several South East Asian economies factor
accumulation accounted for most of the observed growth in real GDP.
Figure 12
Total Factor Productivity in Mexico with and without accounting for
Human Capital Accumulation: 1950-2006
TFP with Human Capital
TFP without Human Capital
5.6
Ln of TFP Index (1950=100)
5.4
5.2
5.0
4.8
1950
1952
1954
1956
1958
1960
1962
1964
1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
4.6
Year
Sources: Groningen Growth and Development Centre (GGDC) and the Conference Board (2007),
Total Economy Database, Penn World Table Mark 6.1, XII Censo General de Población y
Vivienda 2000, II Conteo de Población y Vivienda 2005, Instituto Nacional de Estadística
Geografía e Informática, and Barro and Lee (2001).
3.3 Valuing the Contributions of Health Improvements to Economic Growth
20
En fechas recientes, Becker, Philipson y Soares (2005), Murphy y Topel (2003),
y Norhaus (2003) han extendido el principio de los diferenciales compensatorios
al estudio de la salud. En particular, estos autores han desarrollando una
metodología para valuar en términos monetarios los aumentos en la esperanza
de vida.
Estos trabajos coinciden en encontrar que las ganancias debidas al aumento en
la esperanza de vida en las últimas décadas son responsables de cerca de la
mitad o más del aumento en su medida de ingreso ampliado (full income), la cual
incluye tanto al ingreso monetario como a la valuación en términos monetarios
de los aumentos en la esperanza de vida. La evidencia empírica de estas
ganancias se obtiene a partir tanto de una muestra amplia de países como de
regiones y estados al interior de algunos de ellos.
A continuación se reproduce el modelo propuesto originalmente por Becker,
Philipson y Soares (2005). Ello con el fin de ilustrar lo que se considera una
medida de desarrollo que incorpora las ganancias en la esperanza de vida de
una forma adecuada desde un punto de vista teórico. Además, se realiza un
ejercicio empírico a partir de este modelo para valuar las ganancias observadas
en esperanza de vida durante el periodo 1970-1995 para el caso de las
entidades federativas en México.
El modelo parte de suponer que las preferencias de las personas por consumo y
salud, representada esta última por la esperanza de vida, se pueden representar
a través de una función de utilidad indirecta V (Y , T ) , definida como:
T
V (Y , T )  max  e   t u[c(t )]dt
{c ( t )}
0
donde Y es una medida del ingreso total a través del ciclo de vida (lifetime
income), T es la esperanza de vida al nacer, y(t) es el ingreso en el periodo t, c(t)
es el consumo en el periodo t,  es la tasa subjetiva de descuento, con 0<y
u[c(t)] es la función de utilidad instantánea. Las personas buscan maximizar la
función de utilidad intertemporal (esto es, la suma descontada de utilidades
instantáneas) sujeto a la siguiente restricción presupuestal:
T
T
0
0
Y   e  r t y (t )dt   e  r t c(t )dt
donde r es la tasa de interés. Esta restricción supone la existencia de mercados
financieros perfectos, que le permiten a los individuos prestar o pedir prestado a
una tasa fija de interés r. Un resultado bien conocido es que bajo este supuesto,
y dadas las preferencias del consumidor por suavizar su perfil de consumo a
través del tiempo, reflejadas en una tasa subjetiva de descuento igual a la tasa
de interés (r, el consumo será constante. Estos supuestos permiten simplificar
21
la función de utilidad indirecta, ya que si el consumo es constante (c(t)=c) la
utilidad instantánea también será constante (u[c(t)]=u(c)), de manera que:
T
V (Y , T )  u (c) max  e  t dt
0
V (Y , T )  u (c) A(T )
donde A(T )  [1  e  rT ] / r . Ahora considérese a un mismo individuo en dos momentos
del tiempo, con ingreso total a través del ciclo de vida y esperanza de vida
denotados por Y y T, y Y’ y T’, respectivamente. El objetivo de este modelo es
determinar el nivel de ingreso inframarginal W(T,T’) que le daría a este individuo
el mismo nivel de utilidad en el segundo momento del tiempo, pero con la
esperanza de vida experimentada en el primer momento, esto es:
V (Y 'W (T ,T ' ),T )  V (Y ' ,T ' ).
Dados los supuestos anteriores que simplifican la expresión de la función de
utilidad indirecta, se puede definir análogamente a w(T,T’) como el nivel de
ingreso inframarginal en un momento del tiempo tal que le daría a este individuo
el mismo nivel de utilidad en el segundo momento del tiempo, pero con la
esperanza de vida experimentada en el primer momento. Esto es:
u ( y ' w(T ,T ' )) A(T )  u ( y ' ) A(T ' ).
Una vez introducida esta definición, se puede encontrar el valor monetario de las
ganancias en bienestar totales observadas en un periodo (esto es, ingreso
ampliado o full income), expresadas en términos del ingreso anual, como:
y ' y  w(T ,T ' ).
De manera análoga, el valor monetario de las ganancias en esperanza de vida
puede expresarse en términos de su contribución a la medida de ingreso
ampliado como:
w(T , T ' )
.
y ' y  w(T , T ' )
Para encontrar w(T ,T ' ) es posible despejar la ecuación que relaciona a la utilidad
instantánea en dos momentos del tiempo para obtener:
  u ( y ' ) A(T ' ) 
  y '.
w(T ,T ' )  u 1 
  A(T ) 
22
Para obtener valuaciones monetarias de las ganancias en la de esperanza de
vida a partir de los datos observados, es necesario parametrizar la función de
utilidad y calibrar los parámetros del modelo.
Para el ejercicio empírico utilizando los datos observados durante el periodo
1970–2000 para las entidades federativas en México, se sigue la
parametrización sugerida por Becker, Philipson y Soares (2005). En particular,
se supone que la función de utilidad instantánea toma la siguiente forma:
1
u (c ) 
c
1
1

1


donde  es la elasticidad intertemporal de sustitución y el parámetro  determina
el nivel de consumo anual en el cual los individuos estarían indiferentes entre
estar vivos o estar muertos, y surge de normalizar la función de utilidad a cero
en el caso de que los individuos mueran.
De esta función de utilidad se puede encontrar una expresión para como
función de el nivel de consumo c, la elasticidad intertemporal de sustitución , y
la elasticidad instantánea de la función de utilidad , como:
1
 c
donde

1



1 
1
   1 1 

 


u ' ( c )c .
u (c )
Dado que no existen estimaciones de los parámetros o  para el caso de
México, se utilizan los mismos parámetros que en el estudio de Becker,
Philipson y Soares (2005), los cuales a su vez provienen de la literatura
económica y son estimados utilizando datos de los Estados Unidos por Murphy y
Topel (2003) y Browning, Hansen y Heckman (1999). En particular, se toman
y c=$26,365, lo cual implica que . Al igual que los
autores anteriores, se supone que la tasa de interés r es igual a 0.03.
Para obtener el valor monetario de los aumentos observados en la esperanza de
vida se utilizaron los datos de esperanza de vida al nacer por entidad federativa
publicados por el CONAPO. Para el caso del PIB per capita se utilizó la serie de
Esquivel [1999], la cual a su vez proviene de los datos quinquenales del PIB y
los datos censales de población por entidad federativa del INEGI.
Es importante subrayar que el nivel de consumo c utilizado para obtener el
parámetro está expresado en dólares, y corresponde al valor del ingreso per
capita en Estados Unidos en 1990 según la World Penn Table Versión 6.1.
23
Becker, Philipson y Soares (2005) decidieron utilizar este año ya que es el
mismo año para el cual Murphy y Topel (2003) estiman el parámetro .
Para hacer compatible la calibración de los parámetros del modelo con los datos
del PIB per capita de las entidades federativas en México, se transformaron los
datos del PIB per capita real de Esquivel (1999) de manera que el promedio
nacional del PIB per capita en 1995 coincidiera con el dato para el PIB real per
capita (expresado en dólares constantes de 1996) para ese mismo año según la
World Penn Table Versión 6.1. Los datos para 1970 se obtuvieron aplicando la
tasa de crecimiento del PIB per capita real entre 1970 y 1995 obtenida a partir
de los datos de Esquivel (1999) a los datos de 1995 expresados en dólares.
Los datos anteriores se presentan en la Gráfica 3, además de que se muestran
los resultados de ajustar sendas funciones logarítmicas a los datos de 1970 y
1995. Como puede apreciarse, se ha registrado un aumento significativo en la
esperanza de vida al nacer, particularmente para las entidades con el PIB per
capita más bajo.
Los resultados de este ejercicio para el caso de las entidades federativas en
México durante el periodo 1970–1995 se encuentran en el Cuadro 2. En las
primeras tres columnas se muestra la esperanza de vida al nacer en 1970, en
1995 y el cambio (en número de años) entre estos dos periodos. Las siguientes
tres columnas muestran el PIB per capita, expresado en pesos constantes de
1995 en 1970, en 1995 y el cambio (todos convertidos a dólares) entre estos dos
periodos. Las últimas dos columnas muestran el valor monetario del aumento en
la esperanza de vida al nacer expresado en dólares constantes de 1996, así
como la contribución porcentual del valor monetario del aumento en la
esperanza de vida al nacer a la medida de ingreso aumentado (full income).
Como puede apreciarse, el aumento promedio en la esperanza de vida al nacer
entre 1970 y 1995 fue de más de once años. De acuerdo al modelo propuesto,
este aumento equivale en términos de dólares constantes de 1996 a un aumento
de cerca de $1000 dólares, lo que a su vez contribuyó más del 50 por ciento al
aumento en el registrado por la medida de ingreso ampliado durante este
periodo (último renglón).
Más aún, existe una gran variación entre entidades en términos de la
contribución que tuvo el aumento en términos monetarios de la esperanza de
vida al nacer a la medida de ingreso ampliado. Así, por ejemplo, todo el aumento
en la medida de ingreso ampliado para el Estado de México entre 1970 y 1995
provino de la contribución del aumento en la esperanza de vida, ya que el PIB
per capita disminuyó. Algo similar ocurrió con los estados de Baja California,
Baja California Sur, Nayarit y Veracruz.
Todos estos casos ejemplifican como el bienestar, medido a través del ingreso
ampliado, continuó aumentando inclusive durante el periodo de bajo crecimiento
24
del PIB per capita registrada durante la década de los ochenta y noventa. Ello
fue posible gracias a que la esperanza de vida al nacer aumentó
significativamente durante todo el periodo entre 1970 y 1995.
Este ejercicio muestra la importancia de las ganancias en la esperanza de vida
en términos monetarios, además de que ilustra una manera de incorporar estas
ganancias a una medida de ingreso ampliado de una manera
microfundamentada.
4. Conclusions
The results of the paper show that over the period 1950-2005: (i) the
demographic changes registered in Mexico are key in explaining its economic
growth performance, and the discrepancy between the growth rates of GDP per
capita and GDP per worker; (ii) the growth rate in the capital stock accounts for
about one third of the observed growth in real GDP per worker, the observed
increases in educational attainment account for nearly one third, while the growth
in total factor productivity accounts for the remaining third; and (iii) the observed
increases in life expectancy at birth have been a major contributor to
improvements in welfare, accounting for nearly half of the increase in a measure
of augmented or full income.
5. References
Data References
Barro, Robert J., and Jong-Wha Lee (2001), “International Data on Educational
Attainment: Updates and Implications,” Oxford Economic Papers, Vol. 53, No. 4,
July 2001, pp. 541-563.
Data are available at: http://www.cid.harvard.edu/ciddata/ciddata.html
Groningen Growth and Development Centre (GGDC) and the Conference Board
(2007), Total Economy Database, University of Groningen, January 2007. Data
are available at: http://www.ggdc.net
Heston, Alan, Robert Summers, and Bettina Aten (2006), Penn World Table
Version 6.2, Center for International Comparisons of Production, Income and
Prices at the University of Pennsylvania, September 2006. Data are available at:
http://pwt.econ.upenn.edu
Instituto Nacional de Estadística, Geografía e Informática (2006), II Conteo de
Población y Vivienda 2005, Instituto Nacional de Estadística, Geografía e
Informática, Aguascalientes, Aguascalientes, Mexico. Data are available at:
http://www.inegi.gob.mx/est/default.aspx?c=6789
25
Instituto Nacional de Estadística, Geografía e Informática (2001), XII Censo
General de Población y Vivienda 2000, Instituto Nacional de Estadística,
Geografía e Informática, Aguascalientes, Aguascalientes, Mexico. Data are
available at: http://www.inegi.gob.mx/est/default.aspx?c=4888
Instituto Nacional de Estadística, Geografía e Informática (2000), Estadísticas
Históricas de México, Instituto Nacional de Estadística, Geografía e Informática,
Aguascalientes,
Aguascalientes,
Mexico.
Data
are
available
at:
http://biblioteca.itam.mx/recursos/ehm.html
Maddison, Angus (2003), The World Economy: A Millennial Perspective,
Organisation for Economic Co-Operation and Development, OECD Development
Centre, Paris, France.
Maddison, Angus (2001), The World Economy: Historical Statistics, Organisation
for Economic Co-Operation and Development, OECD Development Centre,
Paris, France.
World Bank (2007), World Development Indicators 2007, World Bank,
Washington DC. Data are available at: http://devdata.worldbank.org/dataonline/
General References on Economic Growth
Barro, Robert J. (1999), “Notes on Growth Accounting,” Journal of Economic
Growth, Vol. 4, No. 2, June 1999, pp. 119-137.
Barro, Robert J. (1997), Determinants of Economic Growth: A Cross-Country
Empirical Study, Cambridge, MA: MIT Press.
Barro, Robert J., and Xavier Sala-i-Martin (2004), Economic Growth, 2nd edition,
Cambridge, MA: The MIT Press.
Helpman, Elhanan (2004), The Mystery of Economic Growth, Cambridge, MA:
Belknap Press of Harvard University Press.
Gollin, Douglas (2002), “Getting Income Shares Right,” Journal of Political
Economy, Vol. 110, No. 2, April 2002, pp. 458-474.
Griliches, Zvi (2000), R&D, Education and Productivity:
Retrospective, Cambridge, MA: Harvard University Press.
A
Personal
Hall, Robert E. and Charles I. Jones (1999), “Why Do Some Countries Produce
So Much More Output Per Worker Than Others?” Quarterly Journal of
Economics, Vol. 114, Issue 1, February 1999, pp. 83-116.
26
Mankiw, N. Gregory, David Romer and David N. Weil (1992), “A Contribution to
the Empirics of Economic Growth,” Quarterly Journal of Economics, Vol. 107,
Issue 2, May 1992, pp. 407-37.
Santos, Manuel S. (2002), “On some criteria for the formulation and testing of
economic growth models,” Spanish Economic Review, Vol. 4, Issue 1, March
2002, pp. 1-18.
Young, Alwyn (1995), “The Tyranny of Numbers: Confronting the Statistical
Realities of the East Asian Growth Experience,” Quarterly Journal of Economics,
Vol. 110, No. 3, August 1995, pp. 641-680.
Young, Alwyn (1994), “Lessons from the East Asian NICs: A Contrarian View,”
European Economic Review, Vol. 38 (1994), pp. 964-973.
Young, Alwyn (1992), “A Tale of Two Cities: Factor Accumulation and Technical
Change in Hong Kong and Singapore,” NBER Macroeconomics Annual 1992,
MIT Press, Cambridge, MA.
References on Economic Growth and Demography
Bloom, David E. and David Canning (2006), “Demographic Challenges, Fiscal
Sustainability and Economic Growth,” in Economic Growth, Proceedings from a
G-20 Seminar held in Pretoria, South Africa, on August 4-5, 2005, South African
Reserve Bank, Banco de México and The People’s Bank of China.
Bloom, David E. and David Canning (2003a), “Contraception and the Celtic
Tiger,” Economic and Social Review, Vol. 34, pp. 229-247.
Bloom, David E. and David Canning (2003b), “How Demographic Change can
Bolster Economic Performance in Developing Countries,” World Economics, Vol.
4, No. 4, pp. 1-14.
Bloom, David E., David Canning and Jaypee Sevilla (2003c), “The Demographic
Dividend: A New Perspective on the Economic Consequences of population
Change,” Population Matters Monograph MR-1274, RAND, Santa Monica, CA.
Weil, David N. (1993), “The economics of population aging,” in Mark R.
Rosenzweig and Oded Star, (eds.), Handbook of Population and Family
Economics, edition 1, Vol. 1, Ch. 17, pp. 967-1014, Amsterdam: North-HollandElsevier
References on Economic Growth and Health
27
Acemoglu, Daron and Simon Johnson (2006), “Disease and Development: The
Effects of Life Expectancy on Economic Growth,” NBER Working Paper No.
12269, National Bureau of Economic Research, Cambridge, MA.
Becker, Gary S., Tomas J. Philipson, and Rodrigo R. Soares (2005), “The
quantity and quality of life and the evolution of world inequality,” American
Economic Review, Vol. 95, No. 1, March 2005, pp. 277-291.
Bloom, David E., David Canning, and Jaypee Sevilla (2004), “The Effect of
Health on Economic Growth: A Production Function Approach,” World
Development, Vol. 32, pp. 1-13.
Bloom, David E. and David Canning (2003d), “The Health and Poverty of
Nations: From Theory to Practice,” Journal of Human Development, Vol. 7, pp.
47-71.
Bloom, David E. and David Canning (2003e), “Health as Human Capital and its
Impact on Economic Performance,” Geneva Papers on Risk and Insurance, Vol.
28, pp. 304-315.
Cutler, David M. and Elizabeth Richardson (1997), “Measuring the health of the
U.S. population,” Brookings Paper on Economic Activity: Special Issue on
Microeconomics, pp. 217-271.
Shastry, Gauri Kartini and David N. Weil (2003), “How Much of Cross-Country
Income Variation is Explained By Health?,” Journal of the European Economic
Association, Vol. 1, No. 2-3, April-May 2005, pages 387-396.
Soares, Rodrigo R. (2005), “Health and inequality in Latin America and the
Caribbean,” mimeo, University of Maryland, April 2005.
Murphy, Kevin M. and Robert H. Topel (2003), “The economic value of medical
research,” in Kevin M. Murphy and Robert H. Topel (eds.) Measuring the gains
from medical research: An economic approach, The University of Chicago Press,
Chicago, IL.
Nordhaus, William D. (2003), “The health of nations: The contribution of
improved health to living standards,” in Kevin M. Murphy and Robert H. Topel
(eds.) Measuring the gains from medical research: An economic approach, The
University of Chicago Press, Chicago, IL.
Philipson, Tomas J. and Rodrigo R. Soares (2002), “World inequality and the rise
in longevity,” en Boris Pleskovic and Nicholas Stern (eds.) Annual World Bank
conference on development economics 2001/2002, The World Bank and Oxford
University Press, Washington, DC.
28
Pritchett, Lant and Lawrence H. Summers (1986), “Wealthier is Healthier,”
Journal of Human Resources, Vol. 31, No. 4, pp. 841-68.
Soares, Rodrigo R. (2007), “Health and the Evolution of Welfare across Brazilian
Municipalities,” Journal of Development Economics, forthcoming.
Weil, David N. (2005), “Accounting for the Effect of Health on Economic Growth,”
NBER Working Papers 11455, National Bureau of Economic Research,
Cambridge, MA. Forthcoming, Quarterly Journal of Economics.
References on Economic Growth in Latin America and the Caribbean
Carpena, Luciane, and Manuel S. Santos (2000), “Economic Growth in Some
Latin American and OECD Countries, 1960–1990,” Unpublished manuscript,
Department of Economics, University of Minnesota, September 2000.
Cole, Harold L., Lee E. Ohanian, Alvaro Riascos, and James A. Schmitz, Jr.
(2005), “Latin America in the rearview mirror,” Journal of Monetary Economics,
Vol. 52, No. 1, January 2005, pp. 69-107.
De Gregorio, José (2006) “Economic Growth in Latin America: From the
Disappointment of the Twentieth Century to the Challenges of the Twenty-First,”
Working Papers Central Bank of Chile 377, Santiago, Chile: Central Bank of
Chile.
De Gregorio, José (1992) “Economic Growth in Latin America,” Journal of
Development Economics, Vol. 39, Issue 1, July 1992, pp. 59-84.
Easterly, William, Norman Loayza, and Peter Montiel (1997), “Has Latin
America’s Growth Been Disappointing,” Journal of International Economics, Vol.
43, No. 3-4, December 1997, pp. 287-311.
Elías, Víctor J. (1992), Sources of Growth: A Study of Seven Latin American
Economies, San Francisco, CA: ICS Press.
Fernández-Arias, Eduardo, Rodolfo Manuelli, and Juan S. Blyde (2006), Sources
of Growth in Latin America. What is Missing? Washington, DC: Inter-American
Development Bank.
Hopenhayn, Hugo, and Pablo Andrés Neumeyer (2004), “Latin America in the
Twentieth Century: Stagnation, then Collapse,” Working Paper 28, Department of
Economics, Universidad Torcuato Di Tella.
Loayza, Norman, Pablo Fajnzylber, and César Calderón (2005), Economic
Growth in Latin America and the Caribbean: Stylized Facts, Explanations, and
Forecasts, Washington, DC, The World Bank.
29
Solimano, Andrés and Raimundo Soto (2005), “Economic Growth in Latin
America in the Late 20th Century: Evidence and Interpretation,” Series
Macroeconomía del Desarrollo, No. 33, Economic Development Division,
Economic Commission for Latin America and the Caribbean (ECLAC), Santiago,
Chile, February 2005.
References on Economic Growth in Mexico
Alzati, Fausto (1998), “The Political Economy of Growth in Mexico.” Unpublished
Ph.D. Dissertation, Harvard University, Cambridge, MA.
Bergoeing, Raphael, Patrick J. Kehoe, Timothy J. Kehoe, and Raimundo Soto
(2002a), “A Decade Lost and Found: Mexico and Chile in the 1980s,” Review of
Economic Dynamics, Vol. 5, No. 1, pp. 166-205.
Bergoeing, Raphael, Patrick J. Kehoe, Timothy J. Kehoe, and Raimundo Soto
(2002b), “Policy-Driven Productivity in Chile and Mexico in the 1980s and 1990s,”
American Economic Review, Papers and Proceedings, Vol. 92, No. 2, pp. 16-21.
Bosworth, Barry (1998), “Productivity Growth in Mexico,” Background Paper
prepared for a World Bank Project on Productivity Growth in Mexico: Mexico:
Enhancing Factor Productivity Growth, Report No. 17392-ME, Country Economic
Memorandum, July 1998.
Caraza, María Inés (1993), “Convergencia del Ingreso en la República
Mexicana,” Tesis de Licenciatura, Departamento de Economía, Instituto
Tecnológico Autónomo de México, Mexico, July 1993.
Cermeño, Rodolfo (2001), “Decrecimiento y Convergencia en los Estados
Mexicanos: Un Análisis de Panel”, El Trimestre Económico, Vol. LXVIII (4), No.
272, October-December 2001, pp. 603-629.
Chiquiar, Daniel (2005), “Why Mexico’s Regional Income Convergence Broke
Down?” Journal of Development Economics, Vol. 77, Issue 1, June 2005, pp.
257-275.
de la Peza Gándara, Meney (2006), “Evolución de la Distribución del Ingreso
entre Entidades Federativas y entre Individuos en México,” Tesis de
Departamento de Economía, ITAM, Mayo 2006
Esquivel, Gerardo (1999), “Convergencia Regional en México, 1940-1995”,
Documento de Trabajo Núm. IX-1999, El Colegio de México, April 1999.
30
Faal, Ebrima (2005), “GDP Growth, Potential Output, and Output Gaps in
Mexico,” IMF Working Papers 05/93, Washington, DC, International Monetary
Fund.
García-Verdú, Rodrigo (2006), “El Índice de Desarrollo Humano y su aplicación a
las entidades federativas en México,” en Medición del Desarrollo Humano en
México, Luis Felipe López-Calva y Miguel Székely (eds.), Fondo de Cultura
Económica, México, 2006, pp. 136-186.
García-Verdú, Rodrigo (2005b), “Income, Mortality, and Literacy Distribution
Dynamics Across States in Mexico: 1940-2000”, Cuadernos de Economía, Vol.
42, Mayo de 2005, pp. 165-192.
García-Verdú, Rodrigo (2005a), “Factor Shares from Household Survey Data,”
Documento de Investigación, No. 2005-05, Dirección General de Investigación
Económica, Banco de México, October 2005.
Juan Ramón, Victor Hugo, and Luis Rivera Bátiz (1996), “Regional Growth in
Mexico: 1970-1993”, Working Paper 96/92, International Monetary Fund, January
1996.
Messmacher, Miguel (2000), “Desigualdad Regional en México. El Efecto del
TLCAN y Otras Reformas Estructurales”, Documento de Investigación No. 20004, Banco de México, December 2000.
Navarrete, J. (1995), “Convergencia: un Estudio para los Estados de la
República Mexicana”, Documento de Trabajo del CIDE No. 42, División de
Economía, Centro de Investigación y Docencia Económicas, Mexico, 1995.
Santaella, Julio A. (1998b), “Economic Growth in Mexico: Searching for Clues of
its Slowdown,” mimeo, Inter-American Development Bank, Washington, DC,
November 1998.
Santaella, Julio A. (1998a), “El crecimiento económico de México: explorando
causas de su caída secular,” Gaceta de Economía, Año 3, Número 6, Primavera
1998.
World Bank (2007), “Growth and Employment in Mexico,” Poverty Reduction and
Economic Management Unit, Latin America and the Caribbean Region, The
World Bank, Washington DC, May 2007.
31

Documentos relacionados