Descargar todo - Ciencias de la Ingeniería UTE

Transcripción

Descargar todo - Ciencias de la Ingeniería UTE
Revista Enfoque UTE
Volumen 3 - Número 2
Diciembre – 2012
ISSN: 1390-6542
Copyright © 2012
Universidad Tecnológica Equinoccial
Facultad de Ciencias de Ingeniería
http://ingenieria.ute.edu.ec/enfoqueute/
Teléfono: +593-(2)-2990-800 ext.2232
Dirección: Av. Mariscal Sucre (Occidental) y Mariana de Jesús,
Quito-Ecuador.
Comité Editorial
Director Editorial
Jorge Viteri Moya
Coordinador Editorial
Diego Ordóñez Camacho
Comité Editorial
María José Andrade
Anita Argüello
Vladimir Bonilla
Juan Bravo
Analía Concellón
Manuel Coronel
Albert Ibarz
María Belén Jácome
Daniel Mideros
Carlota Moreno
Roger Peñaherrera
Galo Ramos
Neus Sanjuan
Gabriela Vernaza
Fabián Villavicencio
Prefacio
La cuarta edición de nuestra revista contiene cuatro artículos relativos a las áreas de las
ingenierías informática y ambiental. Introducimos en esta edición dos artículos en inglés, con lo
que abrimos las posibilidades de comunicación a un grupo más amplio de la comunidad
científica.
Este Comité Editorial, y a través de él, la Facultad de Ciencias de la Ingeniería de la Universidad
Tecnológica Equinoccial, agradece a todos quienes de una manera u otra hicieron posible,
gracias a su colaboración, esta publicación.
Comité Editorial
Quito, diciembre 2012
Contenido
Megastore: structured storage for Big Data ............................................................................................ 1
1. Introduction ............................................................................................................................................................... 1
2. Google Data Store Components ................................................................................................................................. 2
3. Megastore .................................................................................................................................................................. 6
4. Conclusions ............................................................................................................................................................... 10
Bibliography.................................................................................................................................................................. 11
Understanding the current state of the NFC payment ecosystem: A graph-based analysis of market
players and their relations .................................................................................................................... 13
1. Introduction .............................................................................................................................................................. 13
2. NFC basics and research method ............................................................................................................................. 15
3. Network analysis ...................................................................................................................................................... 18
4. Conclusion ................................................................................................................................................................ 25
Bibliography.................................................................................................................................................................. 27
Appendix....................................................................................................................................................................... 30
Identificación de macro invertebrados bentónicos en los ríos: Pindo Mirador, Alpayacu y Pindo Grande;
determinación de su calidad de agua .................................................................................................... 33
1. Introducción ............................................................................................................................................................. 33
2. Metodología ............................................................................................................................................................. 34
3. Área de estudio ........................................................................................................................................................ 35
4. Resultados y discusión .............................................................................................................................................. 36
Bibliografía.................................................................................................................................................................... 40
Monitoreo de la reforestación en las quebradas en el Norte de Quito ................................................... 42
1. Introducción ............................................................................................................................................................. 42
2. Materiales y métodos ............................................................................................................................................... 45
3. Resultados ................................................................................................................................................................ 46
4. Discusión................................................................................................................................................................... 60
5. Conclusiones ............................................................................................................................................................. 61
6. Recomendaciones .................................................................................................................................................... 62
Bibliografía.................................................................................................................................................................... 63
Enfoque UTE, V.3-N.2, Dic.2012: pp.1-12
Copyright © 2012 Universidad Tecnológica Equinoccial
ISSN: 1390‐6542
1
Megastore: structured storage for Big Data
Oswaldo Moscoso Zea1
Resumen
Megastore es uno de los componentes principales de la infraestructura de datos de Google, el
cual ha permitido el procesamiento y almacenamiento de grandes volúmenes de datos (Big
Data) con alta escalabilidad, confiabilidad y seguridad. Las compañías e individuos que usan
está tecnología se están beneficiando al mismo tiempo de un servicio estable y de alta
disponibilidad. En este artículo se realiza un análisis de la infraestructura de datos de Google,
comenzando por una revisión de los componentes principales que se han implementado en los
últimos años hasta la creación de Megastore. Se presenta también un análisis de los aspectos
técnicos más importantes que se han implementado en este sistema de almacenamiento y que
le han permitido cumplir con los objetivos para los que fue creado.
Palabras clave:
Base de Datos NoSql, Megastore, Bigtable, Almacenamiento de Datos.
Abstract
Megastore is one of the building blocks of Google’s data infrastructure. It has allowed storing
and processing operations of huge volumes of data (Big Data) with high scalability, reliability
and security. Companies and individuals using this technology benefit from a highly available
and stable service. In this paper an analysis of Google’s data infrastructure is made, starting
with a review of the core components that have been developed in recent years until the
implementation of Megastore. An analysis is also made of the most important technical aspects
that this storage system has implemented to achieve its objectives.
Keywords:
NoSql Database, Megastore, BigTable, Data Storage.
1. Introduction
Information plays a leading role for companies when it is managed properly and with the right
technologies.
It can be a highly differentiating factor for generating a competitive advantage
(Porter & Millar, 1985). Advances in science and the proliferation of online services bring an
exponential increase in the amount and size of information that companies have to store, process
and analyze. This quantity and size of data that companies manage today brought about the
trendy concept Big Data (Bryant, Katz, & Lazowska, 2008).
Traditional storage systems experience performance problems when handling disproportionately
large data volumes and scaling to millions of users (Baker et al., 2011). That is why information
based companies like Google, Yahoo and Facebook among others seek alternative storage
options to maintain service levels, scalability and high availability in the handling of information and
Big Data that meets the requirements and demands of users.
Google is constantly seeking innovation and excellence in all projects it undertakes (Google,
2012). This quest for continuous improvement has enabled the firm to become one of the pioneers
1
Universidad Tecnológica Equinoccial, Facultad de Ciencias de la Ingeniería, Quito – Ecuador ([email protected]).
2
in developing their own distributed data storage infrastructure. This infrastructure has evolved over
time. This evolution has led to Megastore a storage system based on a non-traditional architecture
and developed to meet the current requirements of interactive online services (Baker et al., 2011).
One of the motivations for writing this paper is Big Data. The term Big Data is not just a
technological buzzword anymore and has become a term that requires further attention due to the
information explosion. Nowadays the management of this universe of data is not only an issue that
should be of concern for Search Engine companies like Google or Yahoo but for all companies that
capture information of value to the business (AMD Inc., 2010).
It is clear then, that managing Big Data is no longer just for Google, but Google may provide their
data storage infrastructure with platforms as Google App Engine so that companies can save
important costs when developing web solutions that require a scalable and reliable data storage
(Severance, 2009).
It is also important to mention that besides being a pioneer in managing Big Data from the creation
of Google File System in 2003 and including High Replication Megastore in 2011. Megastore
provides a highly reliable service with the new ability to withstand datacenter outages. At January
2012 Megastore has more than 100,000 apps running and nearly 0% downtime(Ross, 2012). High
Replication Megastore and the most important components of Google’s infrastructure are
described in this paper.
2. Google Data Store Components
In order to better understand the present work, it is important to describe the technologies that
work as the foundation for Google's Data Storage and that allow it to achieve the objectives for
which it was created, these are: Google File System, Bigtable and Megastore. Figure 1 shows the
3 components.
2.1. Google File System
Google File System (GFS) is a distributed file system developed by Google for its own use. It was
implemented over Linux for managing distributed data applications in order to achieve scalability
and performance(Ghemawat, Gobioff, & Leung, 2003).
It was designed largely by observing
applications workloads and the technological environment inside the company. One of the key
points in the design of the system is that failures occur regularly and become a norm rather than an
exception (Ghemawat et al., 2003).
3
Megastore





Bigtable
ACID transactions
Indexes, queues
Log replication
(Paxos in use again)
Schemas
Entity groups


Google File System
200 MB tablets
 Uses Chubby (paxos based)
Chubby
(paxos based)
o to elect a master
o to allow the master to slaves
o to permit clients to find the master
(Source: based on Bahadir, 2011)
Figure 1. Google Data Infrastructure
GFS architecture is depicted in Figure 2. A typical GFS Cluster consists of one master, multiple
chunkservers that run in Linux commodity machines. This cluster is accessed by many clients and
files are divided in 64MB chunks which are identified by a 64bit chunk handle. These chunks are
replicated in at least three different replicas with the purpose of reliability. The Master continuously
communicates with chunkservers to obtain state and send instructions about chunk location and
replication. Clients do not read and write directly to the master instead they ask the master which
replica they should use. Then clients interact with the replica without further intervention of the
master for a defined time frame.
(Source: Ghemawat et al., 2003)
Figure 2. Google File System Architecture
2.2. Bigtable
Bigtable is a NoSql distributed storage system which was created in order to scale huge amounts
of data across thousands of servers while providing high availability and high performance. It uses
GFS to store data files and logs (Chang et al., 2006) and can use MapReduce (Dean &
Ghemawat, 2004) for processing intensive parallel computations.
The data model is based on a key-value multidimensional structure that contains rows, column and
timestamps. Columns can be grouped in sets called column families. These column families along
with timestamps can be added at any time. The latter allow managing multiple versions of the
4
same data more easily. In Bigtable each table is initially formed of one tablet which is a data
structure that can handle the range of a row that reaches a size of up to 200MB, as the table
grows, new tablets are created and divided.
Bigtable is in production since April 2005 (Chang et al., 2006), but one of its biggest drawbacks is
the little known interface which makes it difficult for developers to use. However the advantage is
that implements a simple model that allows it to achieve high scalability, availability and fault
tolerance.
In Figure 3 an example is shown of a Bigtable row, with column families and timestamps.
“contents
:”
“<html>
“<html>
“com.cnn.www”
“<html>
“anchor:cnnsi.com” “anchor:my.look.ca
”
t3
t5
t6
“CNN
t9
“CNN.co
m”
T8
(Source: Chang et al., 2006)
Figure 3. A part of an example table that stores Web pages.
2.3. Megastore
Megastore is the storage system built by Google on top of Bigtable that supports typed schemas,
multi-row transactions, secondary indices, and the most important which is consistent synchronous
replication across data centers (Baker et al., 2011).
In order to meet the requirements of online services currently Megastore allows a balance between
the benefits of a NoSql data storage such as scalability and the advantages of a relational data
base management system (RDBMS). A RDBMS is a program that lets users create and manage a
relational database with features such as friendly user interface (Baker et al., 2011). Megastore
architecture is based on Bigtable with management capabilities similar to those of a traditional
RDBMS; this along with the optimal use of synchronous replication algorithm has allowed Google
to offer a monthly uptime greater than 99.95% as a part of the service level agreement to Google
App Engine customers. Discussion of important technical details of Megastore will be made in
Section 3.
2.4. Google App Engine
Google App Engine (GAE) is a tool for building web applications using Python or JAVA and
Google’s Infrastructure (Google Inc., 2011a). Once the main elements of Google’s data storage
have been described, I believe important to give one concrete example of an application that uses
5
the infrastructure.
This may help readers to visualize the environment in which Megastore
operates and provide a better point of view to people or companies who want to use Google’s data
storage. For this reason, an introduction of cloud computing will be made.
2.4.1. Cloud Computing
Is the new Internet paradigm based on a series of other technologies such as cluster computing
and grid computing. Figure 4 shows an overview of different models.
SaaS
Sofware as a Service
PaaS
Platform as s Service
IaaS
Infrastructure as a Service
Virtualization IFR
Always managed transparently by the provider
Hardware IFR
(Source: Haselmann & Vossen, 2010)
Figure 4. Visual Overview of different models in cloud computing.
Its most important feature is that users can use a specified infrastructure as services provided in
different levels of abstraction, this infrastructure can scale as needed in minutes and users pay
only what they use (Vaquero, Rodero-merino, Caceres, & Lindner, 2009).
NIST definition will be used in order to describe Cloud Computing.
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction“ (Mell & Grance, 2011).
To establish the relationship between cloud computing and the data storage that is being analyzed
GAE is a good example of a cloud.
2.4.2. GAE as a Platform as a Service
A Platform as a service offers users the opportunity to develop their own applications in the cloud
by using the provider’s infrastructure. The infrastructure comprehends software tools, storage
systems and hardware. All the tasks for managing the infrastructure are performed by the service
6
provider.
The provider puts certain conditions, such as fixed programming languages and
interfaces (Haselmann & Vossen, 2010).
GAE comprises all of the features of a platform as a service in the cloud. It allows developers to
deploy their own web applications by providing an integrated development environment with
Python and JAVA as the programming languages. The interface allows developers the possibility
to use and interact with Google’s hardware infrastructure and data storage.
The data storage infrastructure as explained in Section 2 includes GFS, Bigtable and Megastore.
Infinite storage, unlimited resources and high availability are guaranteed through these data
storage systems. Applications developed with GAE can benefit from the most important features
of Megastore and use high replication across data centers as a default option for data storage.
Moreover Google is offering a migration tool for users that have applications running with the
Master Slave data storage option. With the use of GAE companies can benefit from cost savings
by implementing scalable Big Data projects without incurring huge infrastructure expenditures
(Severance, 2009).
2.4.3 Google’s Hardware Infrastructure.
GAE uses Google's Data Centers to perform its operations. These data centers are located in
different continents and are used as giant data processing centers with thousands of servers,
offering different levels of security to protect data, reducing sourcing of materials, reusing
components and recycling (Google Inc., 2011b).
GAE uses Linux machines with GFS as their file system. GFS has superior advantages over a
traditional file system and allows handling files that can reach hundreds of terabytes. The primary
objective of GFS is to achieve unlimited storage.
3. Megastore
Megastore is a storage infrastructure built by Google on top of Bigtable. It is used by over 100
productive applications. Megastore handles 3 billion writes and 20 billion read transactions daily.
Megastore combines the features of a traditional RDBMS that simplifies the development of
applications with the scalability of NoSql datastores to satisfy the requirements of today’s cloud
services. The analysis of Megastore in this chapter builds on Google’s Megastore Paper (Baker et
al., 2011).
3.1. Replication among distant Data Centers
Having a schema with replicas between servers in the same physical data center improves
availability. The reason for this is that the failures and shortcomings of hardware can be overcome
by moving the workload of one server to other server. Nevertheless, there are different kinds of
failures that can affect the whole data center such as network problems or failures caused by the
7
power and cooling infrastructure. This is the main reason why it is important to replicate data
across geographically distributed data centers.
Megastore uses a synchronous replication strategy that implements Paxos.
Paxos is a fault
tolerant algorithm that does not require a specific master as the log replicator.
The Paxos
algorithm consists in three steps. First a replica is selected as a coordinator, this coordinator then
sends a message to the others replicas, and these in turn acknowledge the message or reject it.
Finally, when the majority of replicas acknowledge the message a consensus is reached and the
coordinator sends a commit message to replicas (Chandra, 2007).
Megastore’s engineering team made adjustments to the original algorithm in order to provide ACID
transactions and to improve latency. One of these adjustments is the use of multiple replicated
logs. This also extends the possibility of local reads and single roundtrip writes.
3.2. Partitioning data and concurrency
In order to improve availability and at the same time maximize throughput it is not enough to have
replicas in geographically different locations. Partitioning data within a data store is the Google´s
answer to address this issue.
Partitions are done into so called entity groups which define
boundaries for grouping data in order to achieve fast operations. Each entity group has its own log
and it is replicated separately which helps to improve replication performance. Data is stored in a
NoSql datastore Bigtable and there is ACID semantics within entity groups as seen in Figure 5.
(Source: Baker et al., 2011)
Figure 5. Scalable Replication
Single ACID transactions are guaranteed within an entity group using Paxos algorithm for
replication of the commit record. Transactions spanning more than one entity group are done with
a two phase commit or asynchronous messaging communication using queues. This messaging is
between logically distant entity groups not between replicas in different data centers.Every change
within a transaction is written first into the entity group log then changes are applied to data. One
8
of the important features of Bigtable which was previously mentioned is Timestamp. Timestamp is
the core element for concurrency that allows users to perform read and write operations without
blocking each other. Values are written at the timestamp of the transaction and readers use the
data of the last committed timestamp, sometimes when latency requirements are important, there
is a possibility of inconsistent reads which allows users to read the values directly without taking
into account the log state.
3.3. Megastore and Bigtable
Megastore uses Bigtable for data and log storage operations within a unique data center.
Applications can control placement of data by selecting Big Table instances and specifying locality.
In order to maximize efficiency and minimize latency, data is placed in the same geographic
location of the user. On the other hand, replicas are placed in different data centers but in the
same geographic location from which data is accessed most. Furthermore entity groups within the
same data center are held in continuous ranges of Bigtable. A Bigtable column name is the
concatenation of megastore table name and property name as seen in Figure 6.
Row
key
User.
Name
Photo.
time
Photo.
Tag
Photo.
_url
101
John
101,500
12:30:01
Dinner, Paris
…
101,502
12:15:22
Betty, Paris
…
102
Mary
(Source: Baker et al., 2011)
Figure 6. Sample Data layout in Bigtable
3.4. Megastore Data Model Design
One of the most important goals of Megastore is to help developers rapidly build scalable
applications. Megastore provides some features that are similar to a traditional RDBMS. For
example the Data Model is thought to be a strongly typed Schema. This Schema can have a set of
tables each with a set of entities, which in turn have a set of strongly typed properties that can be
annotated as required, optional or repeated.
Tables in megastore can be labelled as entity group root tables or child tables. The child tables
have a foreign key (ENTITY GROUP KEY) to reference the root table, see Figure 7. Child entities
reference a root entity in the respective root table. An entity group consists of the root entity and
all of the child entities with the root references.
9
It is important to point out that Bigtable storage contains one single Bigtable row for each entity
group; in Figure 7 for example Photo and User are seen as different tables which share the user_id
property. The annotation IN TABLE tells Megastore that the data for these tables should be stored
in the same Bigtable. Megastore also supports two types of secondary indexes, local indexes
used to find data within an entity group and global indexes used to find entities across entity
groups.
CREATE SCHEMA PhotoApp;
CREATE TABLE User {
required int64 user_id;
required string name;
} PRIMARY KEY(user_id), ENTITY GROUP ROOT;
CREATE TABLE Photo {
required int64 user_id;
required int64 photo_id;
required int64 time;
required string full_url;
optional string thumbnail_url;
repeated string tag;
} PRIMARY KEY(user_id, photo_id),
IN TABLE USER
ENTITY GROUP KEY (user_id, time) REFERENCES User;
CREATE LOCAL INDEX PhotosByTime
On Photo (user_id, time);
CREATE GLOBAL INDEX PhotosByTag
On Photo (tag) STORING (thumbnail_url);
(Source: Baker et al., 2011)
Figure 7. Megastore Photo Schema Example
3.5. High Replication Data Store
At the heart of Megastore is the synchronous replication algorithm which allows reads and writes to
be performed from any replica while maintaining ACID transactions. Replication is done for each
entity group by replicating their transaction log to all replicas. One of the most important features
added by Megastore is that its design is not based on a Master Slave approach; this enhances
flexibility and fault recovery.
Using distant replicas over a wide geographic area without the need for a master allows faster
consistent reads because writes are synchronously replicated to all replicas. This keeps them up
to date all the time and allows local reads to minimize latency. A coordinator is introduced for each
data center to keep track of all local replicas and allows a replica with a complete commit state to
serve local reads. If a write fails in one replica it is not considered committed until the group’s key
is removed from the coordinator.
10
Another important feature added to Paxos algorithm in megastore are called leaders, which are
replicas that prepare the log position for the next write. Each successful write includes a prepare
message granting the leader the right to issue accept messages for the next log position. This
improves latency since a writer must communicate with the leader before submitting values to
other replicas.
There is another element called witness replica which is introduced with the purpose of improving
decision of consensus among entities. It is used when there are not enough replicas to form
quorum. A witness replica can acknowledge or reject a value without storing data. This decreases
storage costs while improving communication when failing to acknowledge a write. Figure 8 shows
Megastore architecture.
(Source: Baker et al., 2011)
Figure 8. Megastore Architecture
4. Conclusions
Google has succeeded with the implementation of Megastore in many aspects. This has allowed
the company to offer an efficient service with great performance and throughput. Furthermore
Megastore has achieved the goals for which it was created these are scalability, consistency and
availability; two major factors have contributed to this. The RDBMS like data model and API
offered by Google App Engine and the consistent synchronous replication across distant data
centers.
High replication algorithm based in Paxos used in the design of the system has performed
efficiently, this is one of the reasons that High Replication Data store Megastore is the default
option nowadays for GAE. Google is encouraging every GAE user to migrate from the traditional
master slave design into the successful HRD, and is providing tools for this purpose.
One of the shortcomings that critics argue is that the Data Storage is over engineered and that
entire infrastructure is obsolete since is based on old systems with more than 10 years of use
(Prasanna, 2011).
11
Since more and more companies nowadays need to have an infrastructure that can support
processing and storage of Big Data. GAE and Megastore are great alternatives for constructing
applications without having to be concerned of infrastructure’s technical problems. Google’s goal
at the same time is to maintain its competitive advantage in this field and to generate strategies to
enhance its data storage infrastructure and to attract potential customers to use GAE.
Bibliography
AMD Inc. (2010). Big Data — It ’ s not just for Google Any More. AMD. Retrieved from
http://sites.amd.com/us/Documents/Big_Data_Whitepaper.pdf
Bahadir. (2011). Megastore: Providing Scalable, Highly Available Storage for Interactive Services.
Retrieved from http://cse708.blogspot.de/2011/03/megastore-providing-scalable-highly.html
Baker, J., Bond, C., Corbett, J. C., Furman, J. J., Khorlin, A., Larson, J., Jean-michel, L., et al.
(2011). Megastore : Providing Scalable , Highly Available Storage for Interactive Services.
CIDR 2011, 223–234.
Bryant, R. E., Katz, R. H., & Lazowska, E. D. (2008). Big-Data Computing : Creating revolutionary
breakthroughs in commerce , science , and society Motivation : Our Data-Driven World.
Library.
Chandra, T. (2007). Paxos Made Live - An Engineering Perspective. PODC ’07 (pp. 1–16). New
York, NY, USA.
Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., et al.
(2006). Bigtable : A Distributed Storage System for Structured Data. OSDI 2006.
Dean, J., & Ghemawat, S. (2004). MapReduce : Simplified Data Processing on Large Clusters, 1–
13.
Ghemawat, S., Gobioff, H., & Leung, S. (2003). The Google File System. Architecture.
Google. (2012). Corporate Information- Our
http://www.google.com/corporate/tenthings.html
Philosophy.
Google.
Google
Inc.
(2011a).
What
is
Google
App
Engine.
https://developers.google.com/appengine/docs/whatisgoogleappengine
Google
Inc.
(2011b).
Google
http://www.google.com/about/datacenters/#
Data
Center.
Retrieved
Retrieved
Retrieved
from
from
from
Haselmann, T., & Vossen, G. (2010). Database-as-a-Service für kleine und mittlere Unternehmen.
Münster. Retrieved from http://dbis-group.uni-muenster.de/
Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing Recommendations of the
National Institute of Standards and Technology. Nist Special Publication.
Porter, M., & Millar, V. (1985). How information gives you competitive advantage. Harvard
business review, 149–160. Retrieved from http://www.mendeley.com/research/copyright2001-all-rights-reserved-8/
12
Prasanna, D. R. (2011). Waving Goodbye0. Retrieved from http://rethrick.com/#waving-goodbye
Ross, M. (2012). Happy Birthday High Replication Datastore. Retrieved
http://googleappengine.blogspot.de/2012/01/happy-birthday-high-replication.html
from
Severance, C. (2009). Using Google App Engine. O’Reilly Media Inc. 1005 Gravenstein Highway
North, Sebastopol, CA 95472: O’Reilly Media Inc. Retrieved from www.oreilly.com
Vaquero, L. M., Rodero-merino, L., Caceres, J., & Lindner, M. (2009). A Break in the Clouds :
Towards a Cloud Definition. Computer Communication Review, 39(1), 50–55.
Enfoque UTE, V.3-N.2, Dic.2012: pp.13-32
Copyright © 2012 Universidad Tecnológica Equinoccial
ISSN: 1390‐6542
13
Understanding the current state of the NFC payment ecosystem: A graphbased analysis of market players and their relations
Oswaldo Moscoso Zea1, Dominik Lekse2, Andrew Smith2, Lars Holstein2
Resumen
El reciente desarrollo de la tecnología Near Field Communication (NFC) ha permitido la
aparición de servicios de pago a través de teléfonos celulares. Además, esta innovación
tecnológica ha iniciado una evolución continua relativa a las operaciones de pago. Las
empresas y los investigadores proyectan que la función predominante de las tarjetas de crédito
serán progresivamente sustituidos por dispositivos móviles. En este trabajo se describe en
detalle NFC y se realiza un análisis de red basado en gráficos para determinar los participantes
y las industrias involucradas en la red, así como las relaciones, incluyendo los conflictos,
cooperaciones o alianzas entre los actores.
Palabras clave
NFC, Pagos móviles, Telecomunicaciones, Financiero.
Abstract
The recent development of Near Field Communication (NFC) technology has enabled the
emergence of payment services using mobile phones. Furthermore, this technological
innovation initiated an ongoing evolution concerning payment transactions. Companies and
researchers project that the prevalent function of credit cards will be progressively substituted
by mobile devices. In this paper NFC is described in detail and a graphed based network
analysis is performed to determine players and industries involved in the network as well as the
relations, including conflicts, cooperation, or alliances between these actors.
Keywords
NFC, Mobil Payments, Telecommunication, Financial.
1. Introduction
Traditionally, the mobile telecommunication and financial industries are completely separated,
each with their distinct, non-overlapping sectors and markets. The recent development of Near
Field Communication (NFC) technology has enabled the emergence of payment services using
mobile phones. Furthermore, this technological innovation initiated an ongoing evolution
concerning payment transactions. Both involved companies and researchers project that the
prevalent function of credit cards will be progressively substituted by mobile devices (Wilcox,
2011). Therefore, this progress creates an interface between these independent industries and
inevitably induces competition among industry players.
1.1. Motivation
The first specification of the NFC technology was unveiled to the public in 2006 by the NFC Forum
(Katzman, 2006). The technology itself is a set of protocols to enable short-range, contact-less and
bi-directional communication between two devices (NFC Forum, 2011a). This organization
1
UTE, Facultad de Ciencias de Ingeniería, Quito – Ecuador ([email protected])
WWU Münster, Facultad de Adm. de Empresas y Economía, Münster-Alemania
({a_smit01 , d_leks01 , l_hols01}@uni-muenster.de)
2
14
represents a non-profit consortium currently consisting of 150 members and is supported “by
leading mobile communications, semiconductor and consumer electronics companies” (NFC
Forum, 2011b). They predict NFC to be the next generation payment method and will invest a vast
amount of capital to actively support their prediction (Ondrus & Pigneur, 2008; Kharif, 2011).
Nevertheless, the technology still has not made its breakthrough within the payment market. This is
affirmed by the fact that there is currently only one mobile device, which can be used to accomplish
a payment transaction in the USA (Citigroup Inc., 2011).
1.2. Core problem and research questions
From a scientific point of view the usage of NFC as a payment method has only partly been
covered in literature. However, much effort has been conducted to analyze security aspects
(Haselsteiner & Breitfuss, 2006), (Madlmayr, Langer, Kantner, & Scharinger, 2008). Despite NFC
payment systems undoubtedly involving many competing companies and therefore requiring the
establishment of new inter-organizational systems, the NFC ecosystem has not been sufficiently
studied through an Interorganizational Systems(IOS)-lens.
At the interface between independent industries, the introduction of the NFC technology has
exposed a new ecosystem linking different players. In this context, an ecosystem is considered “an
economic community supported by a foundation of interacting organizations and individuals“
(Moore, 1993). We use this concept because it gives us a holistic view by including every
stakeholder involved in the NFC technology. The recency of the NFC ecosystem leads to the core
problem in that it currently consists of unstable, fast-changing relationships between its players.
Different competing systems strive to a leading position, while mutually impeding the massadoption of NFC as a payment method by customers (Ondrus, Lyytinen, & Pigneur, 2009). Within
the ecosystem, alliances were set up, conflicts arose and even competing players cooperate to
achieve strategic benefits contributing to a less transparent view.
Therefore the main purposes of this paper is to 1) identify players and industries of the NFC
ecosystem, 2) discover and describe relations between these players on various levels and 3)
analyze possible incentives of each player to engage in these relations.
1.3. Structure of the paper
After first introducing the topic of this paper, located above in Section 1, we will continue on to
briefly explain the basics of NFC as well as the method we will apply in our research, a graphed
based analysis, in Section 2. Following that, in Section 3, we will perform a network analysis to
determine players and industries involved in the network as well as the relations, including
conflicts, cooperations, or alliances between these actors. Finally, we draw conclusions from our
research, propose potential future goals of market players, described the limitations of the study,
and the market outlook in Section 4.
15
2. NFC basics and research method
In order to give the reader a common understanding of NFC payment systems, we use this chapter
to explain the basics of the NFC technology and to illustrate the payment procedure using NFC
during a checkout process. Additionally, we outline the graph-based network analysis method,
which is used as the primary instrument to answer out research questions.
2.1. Near Field Communication (NFC)
2.1.1. Technology
On its technological layer, NFC is a set of standardized protocols to enable short-range
communication between two devices. Basically, the wireless connection is established by an aircore transformer through the use of magnetic induction using two loop antennas located in the
initiator and target devices’ near field (NFC Forum, 2011c).
NFC is an extension to the Radio-Frequency Identification (RFID) technology and allows an
exchange of data and therefore a bi-directional communication instead of a uni-directional
communication. In fact, NFC integrates standards of the RFID technology, but while RFID devices
can rely on various incompatible communication protocols, they are strictly declared for NFC
devices (NFC Forum, 2011a). On a more precise level, NFC uses two ISO/IEC standards: ISO
14443 in passive mode and ISO/IEC 18092 in active mode.
In active mode, both devices generate an RF field to enable a transfer, for example when two
phones are tapped together to exchange contact information. In passive mode, only the initiator
generates the field, which activates and powers the target; case in point being the point-of-sale at a
retailer (Noor, 2006). By operating within a distance of 20 centimeters at a transfer rate of 106, 212
or 424 kbit/s per second, NFC fills a gap in the diagram provided by Figure 1 in comparison to
other wireless technologies (NFC Forum, 2011a).
Most security aspects in NFC depends entirely on the software developers who are responsible for
the encryption of transmitted data. An example being Google Wallet encrypting the credit card
information which is transferred to the retailer.
However, point-of-sale transactions are already secured by the ISO 14443, having already been
designed to do so for use with RFID which is used by “major credit card companies” (Nosowitz,
2011).
2.1.2. Payment procedure
In the following section, we illustrate an example of how a typical transaction looks like using
Google Wallet. With a NFC-enabled Android phone, such as the Galaxy Nexus S 4G, you proceed
to a merchant which accepts CitiBank MasterCard and utilizes PayPass. The payment process is
initiated by tapping the phone near the PayPass-terminal. This terminal is generating an RF field
which powers the NFC chip inside the phone and establishes a session. During this session,
16
Google Wallet transfers certain information, such as credit card information, from the phone to the
merchant’s terminal. This information is then utilized by the merchants system to make a request to
the customers MasterCard provider to inquire the availability of credit. The rest of the payment
portion remains the same as a regular credit card transaction. Shortly after a successful payment,
the customer receives information on his phone about the transaction, e.g. merchant information,
time of purchase, transaction value etc. (Google Inc., 2011a).
(Source: NFC Forum, 2011a)
Figure 1. Comparison of wireless technologies
Google Wallet ensures the security of transactions through a few measures. As a first barrier, the
phones NFC chip is not active if the screen is off, and thereby protects users from unauthorized
connections. Second, even when the phone and the NFC chip are active, there is an additional
secure, hardware-based storage, which is not activated by default and thus prevents transactions.
There encrypted credit card and other personal information is stored and only trusted programs are
given access to it. However, once the data leaves the phone it is up to the retailers to ensure that it
stays secure, which is the case with all transactions (Camp, 2011). Finally, in order to open the
Google Wallet app to make a payment, a pin code has to be entered by the user to unlock the app.
Figure 2 depicts the variety of secure channels, Google sends encrypted data through.
2.2. Graph-based network analysis
As a primary tool to elaborate players, industries and relations within the NFC ecosystem, we
utilized a graph-based approach. This is because graph theory provides a profound framework of
methods to visualize as well as to analyze complex networks (Newman, 2010). Although its ability
to represent complex networks, a plain graph only consists of two element types: nodes and
edges, whereas one edge connects two nodes. In the network analysis we conduct in this paper, a
17
node in the graph corresponds to a player and on a more aggregated level, multiple nodes form an
industry.
(Source: Camp, 2011)
Figure 2. Secure communication channels in a Google Wallet transaction
The first step of the analysis is to identify a set of relevant players. We include all NFC-enabled
payment systems as starting points, which currently exist in the US market: Google Wallet and
ISIS. The official websites of these systems serve as the primary source to collect nodes and
therefore have to contain a minimum level of information (at least 3 press releases). We search for
references to partner companies within the websites’ content, announcements or press releases
and intelligently transform relevant companies to nodes in our graph. Therein, we collected nodes
using a recursive search covering one level of depth. It is possible to extend the analysis by
increasing the level, but is refrained in this paper due to complexity reasons. Finally, the result of
this step is a set of unconnected nodes.
To connect these nodes in the second step, we have to identify relationships between the players.
Furthermore, this relationship has to be characterized either as a cooperative or conflicting one. As
the primary source in this step, we conduct and Internet-based search using Google. The approach
is to build search queries, each covering two players, based on the Cartesian product of the
players an industry and the players of every other industry. In a single search query, an ANDoperator combines the names of two players and a static keyword in order to relate the search to
the NFC ecosystem:
(nfc OR “near field communication”) [Player 1] [Player 2]
18
To collect further information, we focused on the first 10 results of each query. The result sets were
browsed for information indicating either a cooperative or conflicting relationship. We interpreted a
cooperative relationship as an edge within our graph, while leaving two nodes unconnected if a
possible conflict was identified (missing edges). The results were consolidated in one table each
for edges and missing edges.
3. Network analysis
3.1. Network players and industries
For this research, we focused on the mobile payment in U.S. market, where we identified eight
different industries that participate in the NFC payment market. Figure 3 visualizes these
industries, their members, and the relations between them in a graph.
Figure 3. Players in the NFC payment market
NFC Payment Services (Green)

Google Wallet (Google Inc., 2011a)

ISIS (ISIS, 2011a)
As a core industry, Payment Services is positioned at the center of NFC market. Due to our
research approach, the members of this industry connect to every other industry in the market as
seen in the graph in Figure 3. Their main objection is to operate the “mobile wallet” and therefore
they strive to establish a solid network structure.
Mobile Operators USA (Red)

Verizon Wireless

AT&T Mobility
19

T-Mobile USA

Sprint
Mobile Operators are the key industry in this market because they provide the basis for
communication and transaction layer.
Handset Manufacturers (Purple)

Samsung Mobile

Motorola Mobility

HTC

RIM

LG

Sony Ericsson
The industry consisting of Handset Manufacturers industry is starting to produce more devices
integrating NFC chips. As a part of our research, we analyzed statistics about NFC-enabled mobile
devices which are offered in December 2011 by all handset manufacturers collaborating with
Google Wallet and ISIS. The results are presented in Table 1, which describes the current state of
mobile devices in the market, mobile devices supporting NFC and new devices announced to be in
the market in the near future. A further step was to build a ratio of the total number of the NFC
mobile devices in comparison to the total number of mobile phones. By looking at a ratio of only 3
%, we conclude that the number of devices supporting the technology is still very low. Table 6 even
shows that there is only one mobile phone used for testing and is working at the moment with
Google Wallet, even though there are more devices with NFC chip in the U.S. market.
Issuing bank (Blue)

City
Credit Card Networks (Pink)

Visa

Master Card

American Express

Discover
20
In the Payment Industry, we identified Banks and Credit Card Networks participating in this market.
Furthermore, this industry connects Google Wallet and ISIS indirectly.
Merchant processing, point of sale, and Trusted Service Manager (Light green)

First Data
Semiconductor (Teal)

NXP
The two industries stated above are working with Google Wallet and provide the NFC chip and the
technology to connect credit cards into the virtual wallet.
Point of sale (Yellow)
This industry is the provider of the electronic payment solutions, software, systems and high
security electronic payments. They provide for example the terminal at the checkout counter of a
retailer.

VeriFone

ViVOtech

Hypercom

Ingenico
3.2. Network relations
When we analyzed the NFC payment market, we identified two key players: Google Wallet and
ISIS; which are specified in Figure 4 and Figure 5.
Figure 4. Network players in the NFC payment market (Google perspective)
21
Figure 5. Network players in the NFC payment market (ISIS perspective)
We researched the current NFC market in order to analyze the current state of Google Wallet and
ISIS shown in Table 1.
Table 1. Current standing of the NFC payment market. Potential customers were calculated from the
customer base of each of the Mobile Operators cooperating. Thus is Google Wallet (Sprint), ISIS (AT&T, TMobile, and Verizon).
Google
ISIS
Wallet
Potential customers
51*
223.3**
(in million)
Launch date of service
19.09.2011
2012
(actual/announced)
Involved point of sale
4
TBA
payment providers
Amount of NFC-enabled
1
TBA
devices
*(Sprint, 2011),
**(AT&T Inc., 2010), (T-Mobile USA, 2011), (Verizon Communications, 2010)
For this analysis, we searched for information at the company’s websites and their financial annual
reports with the intention of looking at the number of current customers of mobile operators who we
named “Potential Customers.” In these figures, we see that Google Wallet has only a few, but
diverse, types of relations with players of different industry Figure 4. Google Wallet has an
advantage at the moment which is being the pioneer in mobile payments by launching its
operations in September 2011 Table 1. Another interesting fact that we see in our Figure 5, is that
ISIS is creating a very strong structure in the market and has managed to establish agreements
with several of the most prominent players in different industries. This suggests that they could be
very successful in the future due to the solid network structure they are creating. The biggest threat
22
currently facing ISIS is that there is no set date for its launch. This can give an advantage to their
competitors, allowing them to establish a solid and unchallengeable customer base.
3.2.1. Alliances
The first relation we analyzed between two market players is the alliance. The word itself is used
often but the meaning varies from company to company. Therefore, we first tried to define the
meaning of alliance and then introduce five different types of alliances identified by Kuglin and
Hook. They state that an alliance is a close association of different groups and they identified five
types of alliances:
Sales alliance
Two companies agree to go to the market to sell complementary products and services.
Solution-Specific alliance
When two market players agree to develop a shared solution for the market.
Geographic-specific alliance
This alliance occurs when two companies work together in a geographic region to co-brand their
products and services.
Investment alliance
A company invests into another company and jointly market their products and services.
Joint venture alliance
Company's come together to found a new company to specific market a new product or service
(Kuglin, 2002).
Due to our focus on the payment market, especially ISIS and Google Wallet, there will only be in
depth explanations of the types of the alliance structures found in the payment market. The types
of the different alliances are listed in Table 2 and Table 3 The classification of the alliances is
based on our research of the network relations in Table 4 and Table 5 which can be found in the
appendix.
The mobile operators, T-Mobile USA, AT&T and Verizon Wireless, are working together in a Joint
Venture alliance. The motivation is to get into the payment market and provide their cellphone
customers with an easy payment method. ISIS itself formed sales alliances with different handset
providers who will sell their phones with the ISIS NFC technology. These alliances are motivated
by the need to provide customers with NFC enabled handsets to be able to use the ISIS payment
23
services. Additionally ISIS formed Sales alliances with Visa, MasterCard, American Express, and
Discover to provide payment processing with credit cards.
Table 2. Alliance types from ISIS to their partners
ISIS
AT&T
T-Mobile USA
Verizon
Samsung Mobile
Device Fidelity
Motorola Mobility
HTC
RIM
LG
Sony Ericsson
Discover
Visa
American Express
MasterCard
Sales
agreeme
nt
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Shared
Solution
development
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Co-brand
products in a
region
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Investment and
joint market
Joint
venture
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
Google Wallet is a Google run venture whose goal and motivation is to work together with their
partners in order to develop a shared solution to provide an open ecosystem for competition with
many different players. They have a sales alliance with Citi Bank to provide payment processing to
their customers. Additionally, they have a Solution-Specific alliance with MasterCard who provide
their PayPass technology and payment processing to Google Wallet. The Solution-Specific alliance
with First Data provides Point of Sale technology to the retailers. These three alliances were part of
the pilot for Google Wallet. With the intention of showcasing how their technology works for the
retailers (First Data), technology for contactless payment (PayPass) and payment processing (Citi,
MasterCard). After the pilot phase, they are now trying to populate their ecosystem with new
players. Therefore, they are working together with VeriFone, ViVotech, Hypercom and Ingenico
Point of Sale providers on a Solution-Specific alliance to integrate even more retailer payment
systems. Sprint is a Mobile Operator company who has a Sales alliance with Google in order to
provide their customers with the Google Wallet functions on their mobile phones. Additionally, they
are collaborating with NXP to provide NFC chips which work together with Google Wallet. This is a
Solution-Specific alliance and is motivated in increasing the number of NFC chips which are
compatible with Google Wallet.
24
Table 3. Alliance types from Google Wallet to their partners
Google Wallet
Sales
agreement
Citi bank
MasterCard
FirstData
VeriFone
ViVotech
Hypercom
Ingenico
Sprint
NXP
Y
N
N
N
N
N
N
Y
N
Shared
Solution
development
N
Y
Y
Y
Y
Y
Y
N
Y
Co-brand
products in a
region
N
N
N
N
N
N
N
N
N
Investment and
joint market
Joint
venture
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
3.2.2. Conflicts
In a situation where a new market is being created that is an “interface of two traditionally separate
markets,” there arises many different issues which could lead to the new market grinding to a halt
even when the technology is ready and there is “high customer interest.” This stems from the fact
that actors who are coming together in the new market come from positions of dominance in their
respective markets, thereby the managers bring the same cognitive frames to the new market
where “dominant players are impeded by the dominant position” from their market (Ozcan &
Santos, 2010). This could be a prime factor in why we have seen such a slow advance in
development of NFC as a form of payment: Players come together in the new market and bring
their dominant cognitive frames which stifles cooperation.
Each business manager then tries to “place [their business] in the center of [the] business model”
while at the same time stemming competition for this place of prominence from other players.
Some examples include mobile operators seeing a chance to “become payment providers by
creating financial accounts for their subscribers.” This is in direct competition with banks who see
NFC payment as an extension of banking service as opposed to a mobile operator service. These
are just two examples of the “misaligned interests of key players” who are jockeying with each
other to be at the center of the new market (Ozcan & Santos, 2010).
These out-of-sync interests are prominently showcased by one important issue: To whom belongs
the final customer? In their respective markets, the businesses involved are considered to be the
“point of contact” for all their customers which leads to the conflict of who will be facing the
customer in the new market (Ozcan & Santos, 2010). Mobile phone companies would like to place
the NFC chip on the SIM card itself, ensuring that all agreements go through them first while banks
would prefer the NFC chip to be located within the mobile phone, separate from the SIM card,
allowing banks to negotiate directly with cell phone manufacturers (Ozcan & Santos, 2010). This
conflict represents a large amount of influence, and therefore profits, within the new market which,
when coupled with the desires and cognitive frames of the managers involved from each industry,
leads to a massive misalignment of interest. To make this area even more complicated, most cell
25
phone manufacturers prefer the latter option, since it, for once, allows them a bit of leverage over
the mobile phone companies.
3.2.3. Coopetitions
The ISIS network consists of many players who are cooperating with each other within the ISIS
network but, at the same time, have conflicting relations and are in competition with each other. In
each of the three main industries taking part in the ISIS network: mobile operators, handset
manufacturers, and Credit Card networks; every business is in direct competition with each other in
their respective markets. E.g., Verizon, T-Mobile, and AT&T as mobile operators; Samsung, LG,
and Sony-Ericsson as handset manufacturers; Visa, MasterCard, and Discover Card as credit card
networks.
The answer to why these players cooperate with each other is quite simple: this new market gives
the opportunity for all players to expand and create new revenue streams where the value of
participating with competitors far outweighs the benefits of not cooperating. This is a major reason
why any number of businesses enters into coopetitions. Competition between businesses “often
takes place close to customers while competitors can cooperate in activities more distant from the
customer” (Bengtsson, 2000). In the case of ISIS and the NFC market, different organizations can
cooperate in developing the technology and infrastructure that is in the background while still
competing “close to customers” in the forefront, such as the quality of service, assortment and style
of phones offered, etc. Another reason why competing business will take part in coopetition is that,
within such a coopetition, “new products can be developed more cost efficiently, as each actor
contributes with its own core competence” (Bengtsson, 2000). This is due to the fact that costs are
spread out among each of the organizations. Therefore, coopetition allows each contributing actor
the ability to provide more solutions for their customers to choose from than any of the actors could
alone (Bengtsson, 2000).
4. Conclusion
4.1. Future goals
Based on our in depth research of the networks ISIS and Google Wallet, we identified different
approaches each take to establish their NFC technology. Both are trying to establish NFC payment
through network effects. Therefore, they are trying to cooperate with other companies to promote
their system. On the one hand, ISIS chooses to incorporate all major players from the handheld
industry, credit card networks and is backed by three mobile operators. This gives them access to
phones which are compatible with the ISIS NFC application, supply payment transactions through
all major credit cards networks and allow the usage of the ISIS NFC application to all customers of
the mobile operators. This shows that ISIS strategy is to develop a solution which works from the
start with all major players for a huge customer base.
On the other hand, Google Wallet implemented a working system which is already operating but
has many restrictions. They have the support of one credit card network, one payment provider,
26
one mobile operator and a handful of point-of-sale providers. Additionally, there are many retailers
who already support Google Wallet. These decisions show that Google developed small but
working solutions and is now trying to extend the solutions with new strategic alliances (e.g. Visa)
and add new retailers to their network to make it attractive to customers. Beside strategic alliances,
Google decided to enter the market of handset provider to be independent from the decisions of
the handset industry. Therefore they announced to acquire Motorola Mobility (Michael, 2011).
To draw a conclusion from the different strategies of Google Wallet and ISIS we chose to use the
paper from Caillaud and Jullien which claims that a divide and conquer strategy has to be used on
markets where a so called ‘chicken & egg’ problem occurs. The chicken, in our case, would be the
retailers who have to install the point of sale and the eggs would be the customers with their NFC
enabled handholds (Caillaud & Jullien, 2003). The latter is being pursued by ISIS. They are trying
to provide all their customers with NFC enabled handholds and therefore gain enough momentum
to drag retailers into their network and become in the dominant player in the NFC payment market.
This strategy is contrasted by the one employed by Google Wallet, where they try to cooperate
with retailers and provide a working system to the customers and try to gain enough momentum to
suck customers and other market players into their network.
4.2. Research limitations
There were a few, but major, limitations to our research and this study. First, there was a distinct
lack of high value literature on this topic. This is most likely attributable to the fact that NFC is a
relatively new technology that has not achieved wide adoption as of yet. Therefore, we were forced
to limit our research of different NFC implementations and chose to only focus on the NFC
payment market.
Secondly, we were unable to properly discerning the edges of the NFC markets since we do not
have access to the contracts. Thus, we could only review press releases and other similar sources
to discover what links, or lack thereof, were there in the market.
Finally, for complexity reasons, we limited the scope of the network analysis to a depth of one only
level, one of direct relations between actors only. This allowed us to analyze relations and missing
edges while still maintaining enough simplicity to fit within the limitations of space for this study.
4.3. Outlook
If we look into the future of the NFC ecosystem it is clear that it will grow drastically. There are two
competitors for the payment market with strategies to acquire a dominant position over the market
and therefore establishing NFC as a technology in our daily lives. If this will happen depends on
the execution of the strategies. Both players have the potential to achieve their goal to be the
dominant player in the NFC payment market. Besides the usage of NFC as a payment service,
there are many other business ideas who integrate the NFC technology. During our research there
27
were several new NFC services announced which shows that NFC is just starting to be integrated
into our daily lives.
NFC technology has a nearly infinite potential in becoming integral to our daily lives. Some ideas
are that an NFC phone could unlock our home or car, a hotel could transfer a virtual hotel key to
our phone, used as an airline ticket, or businesses could use an NFC phone to clock an employee
in or out automatically as well as allow them in and out of the building. These are just a few
examples of ideas of what an NFC phone could be used for. In summary, an NFC phone could
replace nearly everything that would be located in our purses or wallets and make them irrelevant.
All can be replaced except for handkerchiefs of course.
Bibliography
AT&T
Inc.
(2010).
AT&T
Annual
Report.
Retrieved
https://www.att.com/Common/about_us/annual_report/pdfs/ATT2010_Full.pdf
from
Bengtsson, M. (2000). Coopetition in Business Networks - to Cooperate and Compete
Simultaneously. Industrial Marketing Management, 426, 411–426.
Caillaud, B., & Jullien, B. (2003). Chicken & Egg: Competing Matchmakers. Rand Journal of
Economics, 309–328.
Camp, J. van. (2011). How Google Wallet works. Retrieved December 22, 2011, from
http://www.digitaltrends.com/mobile/how-google-wallet-works/
Citigroup Inc. (2011). Citi MasterCard with Google Wallet FAQ. Retrieved December 22, 2011,
from https://googlewallet.citi.com/usc/googlewallet/faq.html
Google Inc. (2011a). Google Wallet - current partners. Retrieved November 28, 2011, from
https://www.google.com/wallet/current-partners.html
Google Inc. (2011b). Official Google Blog: Launching Google Wallet on Sprint and working with
Visa, American Express and Discover. Retrieved November 28, 2011, from
http://googleblog.blogspot.com/2011/09/launching-google-wallet-on-sprint-and.html
HTC. (2011). HTC Mobile Phone Finder. Retrieved
http://www.htc.com/us/products#/?view=1-0&sort=0
December
22,
2011,
from
Haselsteiner, E., & Breitfuss, K. (2006). Security in Near Field Communication (NFC) - Strength
and Weaknesses. Workshop on RFID Security, RFIDSec. Graz.
ISIS. (2011a). Isis Forms Relationships with Visa, MasterCard, Discover and American Express.
Retrieved December 22, 2011, from http://news.paywithisis.com/2011/07/19/isis-formsrelationships-with-visa-mastercard-discover-and-american-express/
ISIS. (2011b). Save the Date – Isis Mobile Innovation Forum: Capitalize on the Contactless Future,
Feb.
21-22
|
Isis
News.
Retrieved
November
28,
2011,
from
http://news.paywithisis.com/2011/11/23/save-the-date-isis-mobile-innovation-forum-capitalizeon-the-contactless-future-feb-21-22/
Katzman, J. (2006). NFC Forum Unveils Technology Architecture and Announces Initial
Specifications and Mandatory Tag Format Support. Retrieved December 14, 2011, from
28
http://www.nfcforum.org/news/pr/view?item_key=0b210bbd23e9c1a07cb3d975e6317d1d650ed51f
Kharif, O. (2011). AT&T-Verizon-T Mobile Sets $100 Million for Google Fight. Retrieved December
14, 2011, from http://www.bloomberg.com/news/2011-08-29/at-t-verizon-t-mobile-sets-100million-for-google-fight-tech.html
Kuglin, F. A. (2002). Building, Leading, and Managing Strategic Alliances: How to Work Effectively
and Profitably with Partner Companies. New York. American Management Association.
LG
Electronics.
(2011).
LG
Mobile.
Retrieved
December
22,
http://www.lg.com/us/mobile-phones/view-all-phones/view-all-phones.jsp
2011,
from
Madlmayr, G., Langer, J., Kantner, C., & Scharinger, J. (2008). NFC Devices: Security and
Privacy. Third International Conference on Availability, Reliability and Security (pp. 642–647).
IEEE. doi:10.1109/ARES.2008.105
Michael, D. (2011). Patentkrieg: Google kauft Motorolas Handy-Sparte - WinFuture.de. Retrieved
December 21, 2011, from http://winfuture.de/news,64939.html
Moore, J. F. (1993). Predators and Prey: A New Ecology of Competition. Harvard Business
Review.
Motorola Mobility Inc. (2011). Mobile Phones. Retrieved December 22, 2012,
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/MobilePhones/
from
NFC Forum. (2011a). NFC Forum Technical Specifications. Retrieved December 22, 2011, from
http://www.nfc-forum.org/specs/spec_list/
NFC Forum. (2011b). The NFC Forum. Retrieved December 20, 2011, from http://www.nfcforum.org/aboutus
NFC Forum. (2011c). Frequently Asked Questions. Retrieved December 20, 2011, from
http://www.nfc-forum.org/resources/faqs/
Newman, M. (2010). Networks: An Introduction (p. 720). Oxford University Press.
Nokia. (2011). Product Catalogue. Retrieved December 22, 2012, from http://www.nokia.com/usen/products/
Noor, R. (2006). Near Field Communication in the real world (p. 5). Gloucestershire, UK. Retrieved
from http://www.nfc-forum.org/resources/white_papers/Innovision_whitePaper1.pdf
Nosowitz, D. (2011). Everything You Need to Know About Near Field Communication. Retrieved
December 20, 2012, from http://www.popsci.com/gadgets/article/2011-02/near-fieldcommunication-helping-your-smartphone-replace-your-wallet-2010/
Ondrus, J., Lyytinen, K., & Pigneur, Y. (2009). Why Mobile Payments Fail? Towards a Dynamic
and Multi-Perspective Explanation. 42nd Hawaii International Conference on System
Sciences (pp. 1–10). IEEE. doi:10.1109/HICSS.2009.510
Ondrus, J., & Pigneur, Y. (2008). Near field communication: an assessment for future payment
systems. Information Systems and e-Business Management, 7(3), 347–361.
doi:10.1007/s10257-008-0093-1
29
Ozcan, P., & Santos, F. M. (2010). The market that never was: Clashing frames and failed
coalitions in mobile payments. IESE Research Papers.
Pogue, D. (2011). Visions of a Future Where Phones Replace Wallets - NYTimes.com. Retrieved
November
28,
2011,
from
https://www.nytimes.com/2011/09/22/technology/personaltech/googles-virtual-credit-card-canreplace-plastic.html?pagewanted=all
Research In Motion Limited. (2011a). Blackberry Wireless Providers. Retrieved December 22,
2011, from http://us.blackberry.com/where-to-buy/smartphones.jsp
Research In Motion Limited. (2011b). BlackBerry Bold 9900 and BlackBerry Curve 9360 Are
World’s First SIM-Based Smartphones to Receive MasterCard PayPass Handset Certification.
Retrieved
December
22,
2011,
from
http://us.blackberry.com/newsroom/news/press/release.jsp?id=5263
SJB
Research. (2011). List of NFC Phones.
http://www.nfcworld.com/nfc-phones-list/
Retrieved
December
22,
2012,
from
Samsung. (2011a). Smartphones & Cell Phones. Retrieved December 22, 2011, from
http://www.samsung.com/us/mobile/cell-phones/all-products
Samsung. (2011b). Near Field Communication: A Simple Exchange of Information. Retrieved
December 22, 2011, from http://www.samsung.com/us/article/near-field-communication-asimple-exchange-of-information
Sony Ericsson Mobile Communications. (2011). Mobile Phones. Retrieved December 22, 2011,
from http://www.sonyericsson.com/cws/products/mobilephones?cc=us&lc=en
Sprint. (2011). Sprint nextel reports first quarter 2011 results. Retrieved from http://phx.corporateir.net/External.File?item=UGFyZW50SUQ9Mzk1MDg5M3xDaGlsZElEPTQyNDA2OHxUeXBl
PTI=&t=1
T-Mobile USA. (2011). T-Mobile USA reports third quarter 2011 results. Retrieved from
https://www.t-mobile.com/Company/pdf/English/TMUS_Q3_2011_Press_Release.pdf
Verizon Communications. (2010). Verizon Communications 2010 Annual Report. Retrieved
November
28,
2011,
from
https://www22.verizon.com/idc/groups/public/documents/adacct/annual_2010.pdf
Wilcox, H. (2011). NFC Mobile Payments to Drive Contactless Transactions to Reach Nearly $50
billion Worldwide by 2014: New Juniper Research Report. Retrieved December 20, 2011,
from http://juniperresearch.com/viewpressrelease.php?pr=246
30
Appendix
Table 4. Missing relations between players in the NFC payment market
Company A
Company B
Description of possible conflict
Samsung
Google Wallet
Samsung joins with Google Wallet rival: ISIS
Motorola
Mobility
HTC
Google Wallet
Google buys Motorola to add them into the fold. Acquisition is
not finished but the edge will change
HTC joins with Google Wallet rival: ISIS
RIM
Google Wallet
LG
Google Wallet
RIM runs its own NFC pilot in Spain with partner Telefónica.
Joins ISIS with other major mobile manufacturers
LG joins with Google Wallet rival: ISIS
Sony Ericsson
Google Wallet
Sony Ericsson joins with Google Wallet rival: ISIS
T-Mobile
Google Wallet
No information found
AT&T
Google Wallet
No information found
Verizon
Google Wallet
Verizon blocks Google Wallet on its Galaxy Nexus phone
MasterCard
Google Wallet
Visa
Google Wallet
MasterCard with mFoundry allows banks to create their own
NFC wallet
Currently does not support Google Wallet but will join in 2012
Discover
Google Wallet
American
Express
NXP
Google Wallet
First Data
ISIS
Citi
ISIS
Hypercom
ISIS
Citi Bank claims that ISIS is "hampering the development of
NFC"
No information found
ViVOtech
ISIS
No information found
VeriFone
ISIS
No official connection with ISIS
Ingenico
ISIS
No information found
Google Wallet
ISIS
Currently does not support Google Wallet but has plans to do
so
Currently does not support Google Wallet but has plans to do
so
No information but ISIS need to only have handset
manufacturers on board who have agreements with NXP
No information found
31
Table 5. Existing relations between players in the NFC payment market
Company A
Company B
Description of existing relation
Citi
Google
Wallet
Google
Wallet
Google
Wallet
Google
Wallet
Google
Wallet
Google
Wallet
Google
Wallet
Google
Wallet
Google
Wallet
ISIS
Backing Google Wallet with payment processing
American
Express
Discover
ISIS
Provides payment processing
ISIS
Provides payment processing
Visa
ISIS
Provides payment processing
Sony Ericsson
ISIS
Integrates ISIS technology into Handsets
LG
ISIS
Integrates ISIS technology into Handsets
RIM
ISIS
Integrates ISIS technology into Handsets
HTC
ISIS
Integrates ISIS technology into Handsets
Motorola Mobility
ISIS
Integrates ISIS technology into Handsets
Samsung Mobile
ISIS
Integrates ISIS technology into Handsets
T-Mobile USA
ISIS
Founded ISIS as a Joint Venture
AT&T Mobility
ISIS
Founded ISIS as a Joint Venture
Verizon Wireless
ISIS
Founded ISIS as a Joint Venture
Hypercom
ViVotech
VeriFone
Ingenico
First Data
NXP
MasterCard
Sprint
MasterCard
Provides Point of Sale with PayPass for Google Wallet
Provides Point of Sale with PayPass for Google Wallet
Provides Point of Sale with PayPass for Google Wallet
Provides Point of Sale with PayPass for Google Wallet
Provides secure payment processing at the retailer
Provides NFC chips to manufacturers for Google Wallet
Integrate PayPass into Google Wallet; payment
processing
Provides their customers with the Google Wallet app
Provides payment processing
32
Table 6. Current State of Mobile Devices, NFC Devices and announced NFC Devices in the US Market
Handset
Current # mobile
# of NFC# of announced
NFC
manufacturer
devices
enabled mobile
NFC-enabled
device
1
available in the
devices
mobile devices
adoption
market
rate
2
3
Samsung Mobile
142
4
2
3%
Motorola Mobility
25
4
3
HTC
50
6
1
21
8
RIM
LG
23
12
Nokia
10
14
TOTAL
400
Sony Ericsson
1
129
10
(SJB Research, 2011)
(Samsung, 2011a)
3
(Samsung, 2011b)
4
(Motorola Mobility Inc., 2011)
5
(Motorola Mobility Inc., 2011)
6
(HTC, 2011)
7
(HTC, 2011)
8
(Research In Motion Limited, 2011a)
9
(Research In Motion Limited, 2011b)
10
(LG Electronics, 2011)
11
(LG Electronics, 2011)
12
(Sony Ericsson Mobile Communications, 2011)
13
(Sony Ericsson Mobile Communications, 2011)
14
(Nokia, 2011)
15
(Nokia, 2011)
2
5
2
12%
7
0
2%
9
3
10%
11
2
0%
13
15
0%
15
2
10
20%
12
34
3%
2
0
0
Enfoque UTE, V.3-N.2, Dic.2012: pp.33-41
Copyright © 2012 Universidad Tecnológica Equinoccial
ISSN: 1390‐6542
33
Identificación de macro invertebrados bentónicos en los ríos: Pindo
Mirador, Alpayacu y Pindo Grande; determinación de su calidad de agua
Alexandra Endara1
Resumen
En un estudio realizado en el mes de mayo del 2012, utilizando una red Surber de 30 x 30 cm
de área de superficie y 0,5 mm de abertura de malla, en los ríos: Pindo Mirador, Pindo Grande
y Alpayacu, ubicados en el sector de Mera, provincia de Pastaza de la Amazonía ecuatoriana,
se analizó la diversidad y la abundancia de los macro invertebrados bentónicos utilizando los
índices BMWP/Col y EPT. Se logró determinar que la calidad del agua de los ríos Pindo
Mirador y Pindo Grande es buena mientras la del río Alpayacu es mala. Este estudio da una
idea general de la situación ambiental de los ecosistemas lóticos cercanos a la Estación
Biológica Pindo Mirador. Los resultados de ésta investigación permiten determinar la
importancia de las micro-cuencas de los ríos Pindo Mirador y Pindo Grande como fuente de
agua para las poblaciones que se encuentran río abajo, así como el modo en el cual la
presencia o ausencia de organismos bioindicadores (macroinvertebrados) indica la calidad del
agua y de los bosques de la micro-cuenca.
Palabras clave:
Macro-invertebrados, Índices BMWP/Col y EPT, Microcuenca y Calidad del agua.
Abstract
In May 2012, using a 30x30 cm surface and 0.5 mm aperture Surber net in the rivers: Pindo
Mirador, Pindo Grande and Alpayacu, located in Mera, Pastaza, Ecuadorian Amazonia, the
diversity and abundance of macro invertebrates was analyzed applying the BMWP/Col and the
EPT indexes. It was determined the good Pindo Mirador, Pindo Grande and Alpayacu rivers’
water quality, as well as the bad Alpayacu river’s water quality. This work provides an overview
of the environmental situation of aquatic ecosystems near Pindo Mirador Biological Station, it
highlights the importance of the rivers’ micro-watersheds near Pindo Mirador Biological Station,
used as water source by the populations living downstream, and shows how macro
invertebrates can be used as bioindicators for the water and forests quality.
Keywords:
Macro-invertebrates, BMWP/Col and EPT index, Water Quality.
1. Introducción
Los macroinvertebrados acuáticos se definen como aquellos organismos que al menos durante
algún estadio de su ciclo de vida, vivan exclusivamente en el ambiente acuático y que se puedan
ver a simple vista, es decir, que tengan un tamaño superior a 0.5 mm de longitud (Roldán, 1988).
Estos organismos (70 – 90% insectos) son usados con éxito como bioindicadores porque se
desenvuelven durante una gran parte de su vida en los medios acuáticos. Generalmente son
abundantes, relativamente sedentarios, son consumidores primarios y secundarios en el proceso
de la materia orgánica, su colecta es simple y barata, son fáciles de ver y ofrecen información de
largos períodos de tiempo.
1
Universidad Tecnológica Equinoccial, Facultad de Ciencias de la Ingeniería, Quito – Ecuador ([email protected]).
34
La presencia de una comunidad de macro invertebrados en un cuerpo de agua determinado, es
un índice inequívoco de las condiciones que allí están dominando y de que las fluctuaciones de
contaminación que puedan presentarse, no son lo suficientemente fuertes como para provocar un
cambio significativo en la misma. Además de eso, se deben considerar otros factores importantes
relacionados con la distribución de la composición taxonómica, como son las características
propias de profundidad, ancho, turbidez, luz, detritos, turbulencia e inconstancia del substrato del
cuerpo de agua y vegetación de las orillas (Roldán, 2003).
En las últimas décadas los ecosistemas acuáticos han tenido una fuerte presión humana, debido a
las actividades agrícolas, deforestación, fragmentación del hábitat, cambios del sustrato por la
remoción y extracción de materiales, ingreso de aguas servidas, actividad petrolera, etc., todo esto
afectando la calidad del agua (Dominguez y Fernández, 2009).
Los índices más ampliamente usados para sistemas lóticos (ríos y riachuelos) y lénticos (lagos,
lagunas) son el Índice BMWP/Col (BiologicalMonitoringWaterParty/Colombia) (Roldán, 2003) y el
Índice EPT (Ephemeróptera, Plecóptera y Trichoptera) (Carrera y Fierro, 2001), los cuales son
útiles en el análisis de la calidad del agua, debido a que necesitan bajo nivel taxonómico (Familia),
bajo costo en términos de tiempo (identificación de insectos) y dinero, convirtiéndose en
metodologías rápidas y útiles para ser utilizadas en la fiscalización por parte de algún organismo
público que requiera en poco tiempo y de una forma acertada evaluar la calidad del agua de una
cuenca hidrográfica determinada (Roldán, 2003).
Tomando en consideración lo antes expuesto se procedió a examinar los macro invertebrados
bentónicos de los ríos cercanos a la Estación Biológica Pindo Mirador (Pindo Grande, Pindo
Mirador y Alpayacu) para analizar su calidad de agua.
2. Metodología
Fase de campo
En la fase de campo, a las 10:00 am, se realizó un muestreo de 10 puntos elegidos al azar a lo
largo de 50 metros a las orillas de los ríos Pindo Mirador, Pindo Grande y Alpayacu.
El muestreo se realizó utilizando una red Surber de 30 x 30 cm de área de superficie y 0,5 mm de
abertura de malla. Las muestras colectadas fueron colocadas en bandejas de loza, donde fueron
separados los macro invertebrados del sedimento y de otras partículas. Éstos fueron fijados en
alcohol al 70% y posteriormente se llevaron a la Estación Biológica Pindo Mirador para su
identificación.
35
Fase de Laboratorio
En el laboratorio, las muestras fueron separadas y los macro invertebrados fueron separados del
sustrato con la ayuda de una pinza tipo relojero y posteriormente fueron colocados en un estero
microscopio para su identificación; se procuró tomar a los insectos de su abdomen, debido a que
así, estos sufren menos daño en su cuerpo y especialmente en alas y cabeza, por tanto, su
posterior identificación en el laboratorio es menos dificultosa.
Los macro invertebrados colectados se guardaron en tubos de ensayo vacutainer con alcohol al
70%. La identificación de los ejemplares se la realizó a través de claves dicotómicas, usadas para
la entomofauna acuática neotropical (Domínguez y Fernández, 2009; Fernández. y Domínguez,
2001; Manzo, 2005; Merritt y Cummins, 1988; Roldán, 1988; Salles, 2006).
Se evaluaron los siguientes parámetros de las comunidades de macro invertebrados acuáticos
estudiados:

Riqueza (S).- Número total de morfoespecies en cada punto de muestreo.

Abundancia (N).- Número total de individuos registrados en cada punto de muestreo.

Abundancia relativa (%).- Número de individuos de cada especie multiplicado por cien y
dividido por la abundancia total registrada en cada cuerpo de agua. Además se utilizó la
siguiente escala: Raro (1 a 3 individuos), Común (4 – 9 individuos), Abundante (10 - 49
individuos) y Dominantes (50 o más individuos) (EPA, 1989)

Morfoespecies indicadoras.- Se uso la clasificación de Roldán (2003), que considera a las
morfoespecies con puntajes BMWP/Col de 8 -10 como de Clase I = Indicadores de Buena
calidad; las morfoespecies con puntajes BMWP/Col de 4 -7 como de Clase II = Indicadores
de Mediana Calidad y las morfoespecies con puntajes BMWP/Col de 1 – 3 como de Clase
III = Indicadores de Mala Calidad.

Para determinar la calidad del agua se utilizó el Índice BMWP/Col (Biological Monitoring
Working Party para Colombia), el cual da valores de 1 a 10 a los macro-invertebrados
identificados a nivel de familia. Las familias que no toleran la pérdida de la calidad de agua
tienen puntajes altos, mientras que familias que toleran la pérdida de calidad tienen
puntajes bajos. La suma total de los puntajes de todas las familias encontradas en un sitio
proporcionan el valor de la calidad del agua (Roldán, 2003).
3. Área de estudio
Las muestras se colectaron el 5 de mayo del 2012, en las cuencas de los ríos: Pindo - Mirador,
Pindo Grande y Alpayacu
ubicados en el Cantón Mera de la Provincia de Pastaza. La
temperatura promedio en la zona es de 20 y 25°C, su clima es mesotérmico, perhúmedo y de
permanente lluvia, las precipitaciones anuales tienen un promedio de
humedad constante en el tiempo.
4500 mm3 siendo la
36
El río Pindo Mirador en el sector de la colecta tuvo una anchura promedio de 10,5 m. y una
profundidad aproximada de 45 cm. El sustrato del río es rocoso pedregoso con presencia de
necróforos (materia vegetativa en descomposición), la formación vegetal que presenta es bosque
siempre verde pie montano, en sus riveras se observa vegetación típica de este tipo de bosque,
dando sombra. Las coordenadas en el sitio del muestreo fueron de 1º 27’ 47.2” S 78º 5’ 14.3” O a
los 1153 msnm.
En el río Pindo – Grande se tomaron las muestras en las siguientes coordenadas geográficas:
Latitud, 17M08253, Longitud: UTM 9838684 a una altura de 1040 msnm. El río en el sitio del
muestreo tuvo 8,8 m. de ancho y 40 cm. de profundidad, con agua turbia, no presentó olor, tuvo
un sustrato pedregoso arenoso con gran cantidad de piedras. La vegetación a la orilla es
secundaria (Cecropias), bosque que fue talado y luego se regeneró. Alrededor del río también se
pudieron observar pastizales, la vegetación no es variada por la presencia de viveros.
El río Alpayacu es un afluente del río Pastaza que se ubica en Mera en la provincia de Pastaza a
18 km. del Puyo, en la vía a Baños. El Río Alpayacu en el sitio del muestreo es un río de segundo
orden con una superficie de 11 hectáreas con vegetación natural, plantas pioneras y epifitas. Se
pudo observar la presencia de
Guarumos (Cecropias) y Caña Brava (Bombacáceas), los
muestreos se realizaron en las siguientes coordenadas: Longitud 17m0822384, Latitud UTM
9837088, a una altitud 1053 msnm. El momento del muestreo el tiempo fue nubloso con una
cobertura de 4/4 y la presencia de lluvia ligera. El río fue de fácil acceso con un ancho aproximado
de 4-5 m. y una profundidad variable según la localización del río. En el sitio del muestreo el río
tenía gran cantidad de materia orgánica debido a desagües y aguas servidas que desembocan en
el río, presencia de volquetas para extracción pétrea, suelo pedregoso y arenoso. Además de la
presencia de gallinazos debido a la presencia de carroña.
4. Resultados y discusión
La composición taxonómica del río Pindo - Mirador fue de 15 Familias, repartidas en 9 órdenes, de
los cuales 7 corresponden a la clase Insecta según se muestra en la Tabla 1.
El análisis de EPT se realizó mediante la utilización de macroinvertebrados considerados
indicadores de la calidad de agua, debido a que son más sensibles a la contaminación. En primer
lugar se coloca en una columna la clasificación de organismos, en una segunda columna la
abundancia y una última columna con los EPT presentes como se muestra en la Tabla 2.
Posteriormente los EPT presentes se dividen por la abundancia total, obteniendo un valor, el cual
se lleva a una tabla de calificaciones de calidad de agua que va de muy buena a mala calidad
según la Tabla 3 y la Tabla 4.
37
Tabla 1. Riqueza y Abundancia de Macroinvertebrados del Punto de muestreo del Río Pindo - Mirador
(Pastaza - Mera).
RIQUEZA
ABUNDANCIA
CLASE
ORDEN
FAMILIA
NÚMERO DE
INDIVIDUOS
Turbelaria
Tricladia
Planarlidae
5
Insecta
Ephemeroptera
Baetidae
18
Leptophlebiidae
2
Odonata
Polythoridae
2
Libellulidae
3
Lepidoptera
Pyralidae
2
Hemiptera
Naucoridae
3
Coleoptera
Psephenidae
2
Ptilodactylidae
1
Elmidae
2
Hidrophilidae
1
Trichoptera
Hydropsychidae
8
Diptera
Tipulidae
3
Chironomidae
4
Crustacea
Decapodo
Palaemonidae
1
TOTAL
57
CLASE
Turbelaria
Insecta
Crustacea
TOTAL
CLASE
I
II
III
IV
V
Tabla 2. Índices biológicos: EPT (Ephemeroptera, Plecoptera, Trichoptera)
ORDEN
FAMILIA
CALIFICACIÓN
INDICE EPT
INDICE
BMWP/Col
Tricladia
Planarlidae
7
Ephemeroptera
Baetidae
7
18
Leptophlebiidae
9
2
Odonata
Polythoridae
10
Libellulidae
6
Lepidoptera
Pyralidae
5
Hemiptera
Naucoridae
7
Coleoptera
Psephenidae
10
Ptilodactylidae
10
Elmidae
6
Hidrophilidae
7
Trichoptera
Hydropsychidae
7
8
Diptera
Tipulidae
3
Chironomidae
2
Decapodo
Palaemonidae
8
104
28
Tabla. 3. Índice EPT Y BMWP/COL.
CALIDAD
BMWP/Col
SIGNIFICADO
Buena
≥ 150, 101-120
Aguas muy limpias
a limpias
Aceptable
61 – 100
Aguas ligeramente
contaminadas
Dudosa
36 – 60
Aguas
moderadamente
contaminadas
Crítica
16 – 35
Aguas muy
contaminadas
Muy crítica
≤15
Aguas fuertemente
contaminadas
AGUA
REGULAR
COLOR
38
Tabla 4. Cálculo de los Índices EPT yBMWP/COL.
CALIDAD DE AGUA
75% - 100%
MUY BUENA
50% - 74%
BUENA
25% - 49%
REGULAR
0% - 24%
MALA
28/57=0,49
0,49*100=49%
De lo observado en las tablas 1, 2, 3 y 4 se puede determinar que en el río Pindo Mirador existe
una gran biodiversidad y una buena calidad de agua; por lo tanto se debe controlar el impacto
ambiental en éste para prevenir la reducción del ecosistema y contaminación del agua. Por
ejemplo si se va a trabajar cerca del río, no botar materia orgánica, utilizar para la reforestación
plantas endémicas, no introducir especies alóctonas de flora y fauna y establecer medidas de
restricción por medio de ordenanzas públicas a constructoras y empresas, para evitar la ubicación
de las mismas cerca del cuerpo de agua, ya que destruyen el ecosistema. De esta manera se
garantizaría que la micro cuenca del río Pindo Mirador se mantenga en buenas condiciones como
hasta el momento arrojan los resultados del análisis realizado.
La composición taxonómica del río Pindo Grande fue de 18 Familias, repartidas en 9 órdenes, de
los cuales 6 corresponden a la clase Insecta, según la Tabla 5.
Tabla 5. Riqueza y Abundancia de Macroinvertebrados del Punto de muestreo del Río Pindo Grande
(Pastaza - Mera).
CLASE
ORDEN
FAMILIA
ABUNDANCIA BMWP/
EPT
COL
Tubellaria
Tricladida
Planariidae
1
7
Oligochaeta
Haplotaxida
Tubificidae
2
1
Insecta
Ephemeroptera
Baetidae
11
7
7
Leptohyphidae
18
7
7
Leptophlebiidae
24
9
9
Plecopetera
Perlidae
2
10
10
Hemiptera
Naucoridae
1
7
Veliidae
1
8
Coleoptera
Elmidae
11
6
Ptilodactylidae
8
10
Trichoptera
Glossosomatidae
3
7
7
Hidropsychidae
9
7
7
Elicopsychidae
6
8
8
Leptoceridae
9
8
8
Diptera
Tipulidae
1
3
Chironomidaae
1
2
Simuliidae
4
8
Crustacea
Decapoda
Pseudothelpusidae
3
8
TOTAL
115
123
82 71%
Mediante los índices BMWP/Col se determino que las aguas del río Pindo Grande son aguas
limpias. Con el método EPT se observó que las aguas son de buena calidad, lo cual quiere decir
39
que son aptas como fuente para el consumo humano. Las especies abundantes en este río fueron
las del orden Ephemeróptera y Trichóptera como se muestra en la Figura 1 y la Figura 2.
Figura 1. Ephemeróptero
Figura 2. Trichóptero
En las muestras analizadas se obtuvieron: 4 clases, 10 órdenes, 16 familias, 53 individuos según
la Tabla 6.
Tabla 6. Riqueza y Abundancia de Macroinvertebrados del Punto de muestreo del Río Alpayacu
Clase
Orden
Familia
# de
Calificación índice
Índice
individuos
BMWP
EPT
Arácnida
Acari
Lymnessiidae
3
10
Insecta
Coleoptera
Elmidae
1
6
Ptilodactylidae
4
10
Ephemeroptera
Baetidae
10
7
10
Leptophlebiidae
3
9
3
Leptohyphidae
1
7
1
Hemiptera
Naucoridae
12
7
Veliidae
4
8
Neuroptera
Corydalidae
1
6
Clase
Odonata
Aeshnidae
1
6
Orden
Familia
# de individuos
Calificación índice BMWP
Libelluidae
2
6
Diptera
Chironomidae
7
2
Tricoptera
Hidropsychidae
1
7
1
Leptoceridae
1
8
1
Oligochaeta
Haplotaxida
Tubificidae
1
1
Turbelaria
Tricladida
Planariidae
1
7
TOTAL
53
Índice
EPT
16
30%
Mediante el análisis de los índices BMWP/Col y EPT que se realizaron en el río Alpayacu, se pudo
determinar que la aptitud del agua se encuentra según Roldan (2003), en una calidad Dudosa
cuyo significado es de moderadamente contaminada. La contaminación apreciable se puede
evidenciar debido a efectos antropogénicos como la actividad minera y desechos de aguas
servidas observados en los sitios de muestreo.
De los resultados observados se puede concluir que los ríos Pindo Mirador y Pindo Grande son
los que tienen mayor diversidad y mayor abundancia de los órdenes Plecóptera, Efemeróptera y
40
Trichóptera; por lo tanto su calidad de agua es muy buena según el índice BMWP/Col para esta
época; sin embargo se puede determinar que los datos no son concluyentes pues estamos
hablando de un muestreo en una sola época del año y según Margalef (1983) las comunidades
bentónicas varían mucho en las diferentes épocas del año debido a la influencia del clima.
Por otro lado el río Alpayacu en el cual se observa mucha actividad antropogénica la diversidad y
la abundancia de los órdenes Plecóptera, Efemeróptera y Tricóptera fue menor, lo cual concluyó
según el índice BMWP/Col un estado de calidad ambiental de moderadamente contaminado. Se
necesitan más estudios en diversas épocas del año para poder llegar a concluir que el río está
contaminado.
Los resultados de ésta investigación permiten determinar la importancia de las micro-cuencas de
los ríos Pindo Mirador y Pindo Grande como fuente de agua para las poblaciones que se
encuentran río abajo; además de qué modo la presencia o ausencia de organismos bio
indicadores (macro invertebrados) muestran la calidad del agua y de los bosques de la micro
cuenca.
Agradecimientos
A los biólogos William Chamorro y Sandra Enríquez por su colaboración en la identificación de los
macro invertebrados colectados y a los estudiantes del cuarto semestre de la Carrera de
Ingeniería Ambiental, quienes trabajaron en la asignatura de Limnología para que éste documento
pueda llevarse a cabo.
Bibliografía
AOCS Monograph Committee. (1990). Edible Fats and Oils Processing: Basic Principles and
Modern Practices. Maastricht: American Oil Chemists Society.
Asociación Mexicana del Amaranto. (2003). Amarantum. Recuperado el 7 de 10 de 2011, de
Asociación
Mexicana
del
Amaranto:
http://www.amaranto.com.mx/salud/beneficios/beneficios.htm
Astiasarán, I., & Martínez, A. (2003). Alimentos. Composición y Propiedades. Mexico: McGrawHill.
Bailey, A. (1984). Aceites y grasas industriales. Nueva York: Reverté S.A.
Brennan, J. (2008). Manual del Procesado de los Alimentos. Zaragoza: Acribia S.A.
Carrera, C. y Fierro, K. . (2001). Manual de monitoreo: los macroinvertebrados acuáticos como
indicadores de la calidad del agua. Quito: EcoCiencia.
Casp, A., & Abril, J. (2003). Procesos de Conservación de Alimentos. Madrid: Mundi-Prensa.
Dominguez, E. y Fernández H. (2009). Macroinvertebrados bentónicos sudamericanos.
Sistemática y Biología. Tucumán: Fundación Miguel Lillo.
41
EPA. (1989). Rapid Bioassessment Protocolos for Use in Stream and Rivers, Benthic
Macroinvertebrates and Fish. USA: EPA.
Fernández, H. y Dominguez, E. (2001). Guía para la Determinación de los Artrópodos Bentónicos
Sudamericanos. Tucumán: Editorial Universitaria de Tucumán.
Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP). (2008). Informe Nacional
sobre los Recursos Fitogenéticos para la Agricultura y la Alimentación. Quito: INIAP.
Madrid, A., Cenzano, I., & Vicente, J. (1997). Manual de Aceites y Grasas Comestibles. Madrid:
Mundi - Prensa.
Manzo, V. (2005). Key to the South America genera of Elmidae (Insecta: Coleoptera) with
distributional data. Studies of Neotropical Fauna and enviroment, 201-208.
Margalef, R. (1983). Limnología. Barcelona: Editorial Omega.
Merritt, R., Cummins, K. (1988). An Introduction to the Aquatic Insects of North America. USA:
Kendall/Huntpublishingcompany.
Moreno, R. (2002). Soporte Nutricional Especial. Bogotá: Panamericana.
NESTLÉ. (2008). Nestlé Sentite Bien. Recuperado el 7 de 3
http://ww1.nestle.com.ar/productos/nestle-maggi-caldos-verduras.html
de
2012,
de
Roldán, G. (1988). Guía para el estudio de los Macroinvertebrados Acuáticos del Departamento de
Antioquia. Bogotá: Editorial Presencia.
Roldán, G. (2003). Bioindicación de la Calidad de Agua en Colombia. Uso del método BMWP/Col.
Antioquia: Universidad de Antioquia.
Salles, F. (2006). As Ninfas de Ephemeroptera (Insecta) ocurrentes no Brasil Tese. Vicosa:
Universidad Federal de Vicosa.
Ucodep. (24 de 06 de 2011). Quinua, Amaranto, Melloco y Chocho. Un regalo Andino para el
mundo. Recuperado el 29 de 09 de 2011, de INIAP: http://www.iniap.gob.ec/
UNIFEM. (1998). Técnicas de Envasado y Empaque. Lima: Asociación Gráfica Educativa.
Velásquez, G. (2006). Fundamentos de Alimentación Saludable. Antioquia: Universidad de
Antioquia.
Enfoque UTE, V.3-N.2, Dic.2012: pp.42-63
Copyright © 2012 Universidad Tecnológica Equinoccial
ISSN: 1390‐6542
42
Monitoreo de la reforestación en las quebradas en el Norte de Quito
1
2
2
2
Anita Argüello , Daniel Arboleda , Jonathan Menoscal , Dennis Maldonado , Santiago Urresta
2
Resumen
El Distrito Metropolitano de Quito (DMQ) comprende 61.563 has., las cuales albergan diversas
especies de flora y fauna. Los procesos de acelerada urbanización han dado lugar al
establecimiento de viviendas e invasiones que han presionado a los bosques que existían
especialmente en las laderas del Pichincha y en las quebradas de la parte norte del distrito. El
Municipio del Distrito Metropolitano de Quito (MDMQ) en sus Políticas de Patrimonio Natural,
contempla la integración, conectividad, mantenimiento, recuperación, y rehabilitación de
espacios naturales priorizados para seguridad ambiental del Distrito, cuya aplicación tiene
como objetivo específico el disminuir la afectación antrópica progresiva a ecosistemas y
espacios naturales de conservación del Distrito. Con estos antecedentes se realiza una
contratación para la reforestación de once quebradas en la Administración Zonal La Delicia, la
misma que se realiza en los meses de abril – junio del presente año (2012) en un total de 43
has. con el compromiso de siembra de 37.152 plantas. Para realizar el seguimiento a este
proceso se plantea un monitoreo inicial para conocer el estado de la reforestación y el impacto
causado en las quebradas seleccionadas. Mediante recorridos y mapeo de sitio, se contabilizan
las plantas sembradas y supervivientes en cada una de las quebradas y se constata el
cumplimiento de solo el 5,05% de la reforestación planteada.
Palabras clave
Municipio de Quito, reforestación, quebradas, La Delicia, cobertura vegetal.
Abstract
The Metropolitan District of Quito covers 61.563 has., containing many species of flora and
fauna. Accelerated urbanization processes have led to illegal housing and human invasions,
putting pressure on existing forests, especially on the slopes of Pichincha and the ravines of the
northern part of the District. The Metropolitan District of Quito, in its Natural Heritage Policy,
prioritizes the integration, connectivity, maintenance, recovery and rehabilitation of natural
areas, to support the District environmental security. Focus is put on reducing the anthropic
effects on the affected ecosystems and natural areas. To reinforce this policy, the Municipality
signed a contract for the reforestation of eleven ravines in La Delicia. The reforestation was
done from April to June 2012, on a total of 43 has., with the commitment of planting 37.152
plants. To track this process the Municipality planned an initial monitoring to determine the
status of the reforestation and its impact on the selected ravines. Planted and surviving plants
were counted on each of the eleven ravines, and a compliance of only 5.05% of the planned
reforestation was verified.
Keywords
Municipality of Quito, reforestation, ravines, La Delicia, vegetal coverage.
1. Introducción
El Municipio del Distrito Metropolitano de Quito (MDMQ) en sus Políticas de Patrimonio Natural,
contempla el “Promover la integración, conectividad, mantenimiento, recuperación, y rehabilitación
de espacios naturales priorizados por seguridad ambiental del Distrito”, cuya aplicación tiene como
objetivo específico el disminuir la afectación antrópica progresiva a ecosistemas y espacios
naturales de conservación del Distrito.
1
2
Universidad Tecnológica Equinoccial, Facultad de Ciencias de la Ingeniería, Quito – Ecuador ([email protected])
Universidad Tecnológica Equinoccial, Facultad de Ciencias de la Ingeniería, Quito – Ecuador (estudiante)
43
La Administración Zonal La Delicia, cuenta con un área de 61563,146 ha. Por lo que es una de
las Administraciones Zonales más extensas del DMQ como se puede observar en la Figura 1.
Debido a su ubicación está conformada por una gran variedad de ecosistemas que albergan a
diversas especies de flora y fauna, con elevaciones que van desde los 1200 m.s.n.m. hasta los
4600 m.s.n.m. con pendientes mayores a los 80° en los taludes de las quebradas, que varía a
pendientes aproximadas de 0° como se puede observar en la Figura 2, en zonas conformadas
mayormente por asentamientos humanos.
Figura 1. Mapa de las administraciones zonales
que conforman la Administración La Delicia
Figura 2. Modelo de pendientes conformadas por la
Administración La Delicia
En este contexto, y con la creciente conciencia ambiental que se está generando a nivel mundial,
la Administración Zonal La Delicia, la Secretaria de Ambiente y Fondo Ambiental suscribieron el
convenio de cooperación para el financiamiento del “Plan de recuperación de áreas afectadas por
los incendios forestales”, por tal motivo la Administración Zonal La Delicia del MDMQ contrató los
“Servicios de siembra y mantenimiento de plantas de especies forestales” a la empresa Servicios
44
Forestales Serviforest S.A., ganadora del Proceso de Subasta Inversa Electrónica con Código No.
SIE-AZLD-014-2011 del INCOP el 12 de octubre de 2011.
Se seleccionaron como áreas prioritarias de recuperación de la cobertura vegetal a través de la
reforestación con especies forestales nativas los siguientes sitios: bordes de las Quebradas San
Antonio, Chita Huaico, Grande, Rancho, Laime, Almeida, Río Villorita, Santa Rosa de Singuna,
Rumihurco, El Tejar y Alugullá. La empresa Servicios Forestales Serviforest S.A. se comprometió
a la siembra de 37152 plantas en 43 hectáreas distribuidas según la Tabla 1.
Tabla 1. Datos de las plantas propuestas para la siembra por quebrada
Superficie
Número
Distancia
Detalle de plantas
plantada
plantas
siembra
Especie
Tamaño planta (m)
Quebrada
3 ha
2592
3x3 m Guanto
0.35
San Antonio
Higuero
0.40
Romerillo
0.34
Tilo
0.20
Quebrada
3 ha
2592
3x3 m Romerillo
0.34
Chita
Ashpa coco
0.55
Huaico
Aliso
0.21
Malva
0.60
Nogal
0.20
Acacia mimosa
0.18
Quebrada
2 ha
1728
3x3 m Yalomán
1.22
Grande:
Sauce
0.27
Borde y
Romerillo
0.34
talud norte
Ashpacoco
0.55
Quebrada
9 ha
7776
3x3 m Aliso
0.70
Rancho:
Acacia
0.84
Borde y
Arrayán
0.44
talud norte
Calistemo blanco
1.75
Calistemo rojo
1.75
Sauce
0.59
Fitósfero
0.99
Ashpacoco
0.55
Romerillo
0.34
Higuerón
0.25
Cedro
0.15
Níspero
0.15
Polylepis
0.20
Quebrada
2 ha
1728
3x3 m Acacia
0.18
Laime
Nogal
0.20
Quebrada
4 ha
3456
3x3 m Acacia
0.70
Rumihurco
Aliso
0.05 a 0.21
Calistemo blanco
1.73
Calistemo rojo
1.43
Sauce
0.50
Níspero
0.65
Yalomán
1.46 a 2.50
Lupino
0.45
Arrayán
0.27
Romerillo
0.25
Quebrada
3 ha
2592
3x3 m Piquil
0.23
Singuna
Romerillo
0.20
Quebrada
2 ha
1728
3x3 m Piquil
0.25
Almeida
Sauce
0.27
Río Villorita
5 ha
4320
3x3 m Níspero
0.93
Guabo
0.29
Arrayán
0.27
Sector
1.
2.
3.
4.
5.
6.
7.
8.
9.
45
Sector
Superficie
plantada
Número
plantas
Distancia
siembra
10. Quebrada
Alugullá
6 ha
5184
3x3 m
11. Quebrada
el Tejar
4 ha
3456
3x3 m
43 ha
37152
TOTAL
Detalle de plantas
Especie
Tamaño planta (m)
Lupino
0.62
Tilo
0.32
Álamo blanco
0.60
Aliso
0.21
Sauce
0.50
Higuerón
0.45
Nogal
0.40
Higuerón
0.15
Piquil
0.18
Nogal
0.20
Acacia minosa
0.20
Yalomán
1.25
Higuerón
0.45
Aliso
0.21
Tilo
0.27
Molle
0.20
El proceso de reforestación se realizó durante los meses de abril – junio del presente año (2012)
en un total de 43 has., y 37.152 plantas. Las especies seleccionadas son especies propias de la
zona y que han desaparecido en muchos lugares de las laderas del Pichincha. Para realizar el
seguimiento a este proceso se plantea un monitoreo inicial para conocer el estado de la
reforestación y el impacto causado en las quebradas seleccionadas.
2. Materiales y métodos
El estudio inicial se realizó mediante un sondeo de las 11 quebradas seleccionadas previamente
para la reforestación, con el propósito de identificar los sitios de localización de las quebradas y el
reconocimiento de las 11 quebradas para el conteo de plantas. Se realizaron recorridos por cada
una de las quebradas con ayuda del equipo técnico de la Administración Zonal de La Delicia.
Debido a que en los meses de agosto y septiembre se produjeron incendios en diferentes sitios
de la ciudad se realiza en primer lugar un reconocimiento de las áreas afectadas por los incendios
con el propósito de tomar en cuenta esta amenaza en la evaluación planteada.
La ubicación de los puntos de reforestación se ubica mediante la toma de datos de altura y
coordenadas mediante el G.P.S. para luego tener los datos exactos de reforestación realizada en
las distintas quebradas y los puntos críticos de las mismas.
La recolección de datos se realizó en campo ubicando las plantas y los tutores1 colocados para el
conteo y reconocimiento del estado de las plantas. Los datos recopilados se tabularon y se
graficaron para realizar la respectiva evaluación de los resultados obtenidos con la reforestación
realizada en las 11 quebradas.
1
Pequeñas maderas pintadas de rojo para localizar las plantas sembradas
46
En un segundo recorrido se realizó la actualización de datos y elaboración de mapas de las zonas
en estudio.
3. Resultados
Quebrada Rumihurco: En la Tabla 2 se encuentran detalladas las características de la quebrada
Rumihurco. En la Figura 3 se pueden observar las zonas reforestadas en la parte baja de la
Quebrada.
Tabla 2. Características de la quebrada Rumihurco
Coordenadas (Zona alta)
17775229E 9985746N
Altura
3203 m.s.n.m.
Referencia
Barrio La Cordillera
Pendientes de Taludes máximas
90° - 80°
Descargas o Escorrentía
Si
Presencia de Ganado
Edificaciones
Escombros y Basura
Áreas afectadas por incendio
Evidencia de refugios de delincuentes
Evidencia de sembríos
Si
Filo de Talud
Si
No
Si (Sector alto, junto a Presa de Aluviones)
No
Figura 3. Zona reforestada en la parte baja de la Quebrada Rumihurco
Coordenadas: 17M0776421 UTM 9986090 Altitud: 3043 m.s.n.m.
En la quebrada se encontraron 578 plantas sembradas, de las 3.456 ofrecidas (16,72%). En un
segundo monitoreo se evidenció un total de 538 plantas sobrevivientes (15,57%). Esto se debe
principalmente a la erosión existente en el suelo como se puede apreciar en la Figura 4. Además
se evidencia la presencia de escombros, basura y ganado. Existen construcciones en los bordes
del talud de la quebrada y varios puntos que pueden ser usados como refugio de delincuencia.
47
Figura 4. Zona reforestada en la parte media de la Quebrada Rumihurco (Zonas de difícil acceso,
pendientes > 60°, con evidentes grados de erosión)
Quebrada Singuna: En la Tabla 3 se encuentran detalladas las características de la quebrada
Singuna. En la Figura 5 se pueden observar las zonas reforestadas en la Quebrada.
Tabla 3. Características de la Quebrada Singuna
Coordenadas(Zona alta)
17776148E 9986620N
Altura
3086 m.s.n.m.
Referencia
Barrio Santa María
Pendientes de Taludes máximas
90° - 100°
Descargas o Escorrentía
Si
Presencia de Ganado
Si
Edificaciones
Filo de Talud
Escombros y Basura
Si
Áreas afectadas por incendio
No
Evidencia de refugios de delincuentes
Si (Sector alto, junto a área de control del
escurrimiento de laderas del Pichincha)
Evidencia de sembríos
No
Figura 5. Zonas Reforestadas en la Quebrada Singuna Coordenadas: 17M0776166 9986707N Altitud: 3058
m.s.n.m.
48
De las 2.592 plantas ofrecidas se encontraron 275 sembradas (10,61%), de las cuales se
evidenció un total de 173 plantas sobrevivientes (6,67%) únicamente en la parte alta de la
quebrada, por la existencia de condiciones climáticas adversas (temporada seca). De acuerdo a la
Figura 6 existen construcciones en los bordes del talud de la quebrada, descargas de agua,
basura y escombros lo que pone en riesgo la reforestación.
Figura 6. Zona reforestada en la parte alta de la Quebrada Singuna (única zona donde se identifico indicios
de reforestación)
Quebrada San Antonio: En la Tabla 4 se encuentran detalladas las características de la
quebrada San Antonio. En la Figura 7 se pueden observar las zonas reforestadas en la Quebrada.
Tabla 4. Características de la Quebrada San Antonio
Coordenadas (Zona alta)
17784831E 9998602N
Altura
3013 m.s.n.m.
Referencia
Barrio Rancho alto
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
Si
Presencia de Ganado
No
Edificaciones
Filo de Talud
Escombros y Basura
Si
Áreas afectadas por incendio
Si
Evidencia de refugios de delincuentes
Si (Preservativos y ropa encontrados en
las zonas con sendero)
Evidencia de sembríos
Si
49
Figura 7. Zonas Reforestadas en la Quebrada Singuna Coordenadas: 17M0774499E 9986937S Altitud:
2778 m.s.n.m.
En la quebrada se evidencia que, de las 2.592 plantas ofrecidas, 170 fueron sembradas (6,56%), y
un total de 95 plantas sobrevivieron (3,67%). Esta disminución se debe a las condiciones
climáticas adversas, amplias zonas han sido incendiadas, usadas en agricultura o han sido
destruidas por la mala disposición de basura y escombros. Existen construcciones en los bordes
del talud de la quebrada, descargas de agua, basura y escombros. Sin embargo se observa en la
Figura 8 que las plantas sobrevivientes se encuentran en buen estado
Figura 8. Estado de las especies sembradas en la zona media de la Quebrada San Antonio
50
Quebrada Grande: En la Tabla 5 se encuentran detalladas las características de la quebrada
Grande. En la Figura 9 se pueden observar las zonas reforestadas en la Quebrada.
Tabla 5. Características de la Quebrada Grande
Coordenadas (Zona alta)
17777031E 9988027N
Altura
2877 m.s.n.m.
Referencia
Urbanización El Condado
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
No
Presencia de Ganado
No
Edificaciones
Filo de Talud
Escombros y Basura
No
Áreas afectadas por incendio
No
Evidencia de refugios de
No
delincuentes
Evidencia de sembríos
No
Figura 9. Zonas reforestadas en la Quebrada Grande Coordenadas: 17M0777449 E 9988937N Altura:
2778m.s.n.m.
Debido a las condiciones climáticas de la estación seca como se puede observar en la Figura 10,
en la quebrada se evidencia que, de 1.728 plantas ofrecidas, se sembraron 456 (26,39%), y
sobrevivieron 336 (19,44%). Existen construcciones en los bordes del talud de la quebrada
especialmente de la Urbanización El Condado. La Quebrada Grande en su zona alta se encuentra
prácticamente inalterada, se debería planificar su protección.
51
Figura 10. Área reforestada en la zona media de la Quebrada Grande
Quebrada El Rancho: En la Tabla 6 se encuentran detalladas las características de la quebrada
El Rancho. En la Figura 11 se pueden observar las zonas reforestadas en la Quebrada.
Tabla 6. Características de la Quebrada El Rancho
Coordenadas (Zona alta)
17774966E 9988165N
Altura
3214 m.s.n.m.
Referencia
Vía a Nono
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
Si
Presencia de Ganado
Si
Edificaciones
Filo de Talud
Escombros y Basura
Si
Áreas afectadas por incendio
Si
Evidencia de refugios de delincuentes
Si (En la Roldos y Pisulí)
Evidencia de sembríos
Si
Figura 11. Zonas reforestadas en la Quebrada El Rancho Coordenadas: 17M0777650 E 9990275N Altura:
2804m.s.n.m
52
En la quebrada se evidencia que, de las 7.776 plantas ofrecidas, 184 fueron sembradas (2.37%) y
un total de 58 plantas sobrevivieron (0,75%). Como se puede observar en la Figura 12, amplias
zonas reforestadas han sido incendiadas, usadas en agricultura o han sido destruidas por la mala
disposición de basura y escombros. Existen construcciones en los bordes del talud de la
quebrada, descargas de agua, basura, escombros.
Figura 12. Zonas reforestadas incendiadas en la quebrada El Rancho
Quebrada Laime: En la Tabla 7 se encuentran detalladas las características de la quebrada
Laime. En la Figura 13 se pueden observar las zonas reforestadas en la quebrada.
Tabla 7. Características de la Quebrada Laime
Coordenadas (Zona alta)
0°6’40,3’’ S 78°31’30,1’’ O
Altura
3036 m.s.n.m.
Referencia
Vía a Moncayo
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
No
Presencia de Ganado
No
Edificaciones
Filo de Talud
Escombros y Basura
Si
Áreas afectadas por incendio
No
Evidencia de refugios de delincuentes Si (Zona alta en la vía a Moncayo)
Evidencia de sembríos
Si
Figura 13. Zonas reforestadas en la Quebrada Laime Coordenadas: 17M0777302 E 9991139S Altura: 2822
m.s.n.m
53
En la quebrada se evidencia que, de las 1.728 plantas ofrecidas, 253 fueron sembradas (14.64%),
y 180 plantas sobrevivieron (10,42%). Debido a las condiciones climáticas adversas, la utilización
de zonas reforestadas en agricultura o la mala disposición de basura y escombros muchas
plantas han sido destruidas como se observa en la Figura 14. Existen construcciones en los
bordes del talud de la quebrada, descargas de agua, basura, residuos hospitalarios y escombros.
Se encontraron tutores y plantas que nunca fueron sembradas, muestra del incumplimiento de
contrato en dicha quebrada.
Figura 14. Estado de las especies sembradas en la Quebrada Laime
Quebrada Chita Huaico: En la Tabla 8 se encuentran detalladas las características de la
quebrada Chita Huaico. En la Figura 15 se pueden observar las zonas que debieron ser
reforestadas en la Quebrada.
Tabla 8. Características de la Quebrada Chita Huaico
Coordenadas (Zona alta)
17M779302E 9991842N
Altura
2649 m.s.n.m.
Referencia
Conjunto San Gregorio 2
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
No
Presencia de Ganado
Si
Edificaciones
No
Escombros y Basura
Si
Áreas afectadas por incendio
No
Evidencia de refugios de
Si
delincuentes
Evidencia de sembríos
Si
En la quebrada, la empresa Serviforest se comprometió en sembrar 2.592 plantas. Sin embargo
no se pudo encontrar evidencia de siembras. Únicamente se evidencia especies de eucalipto
sembradas por los habitantes del sector como se puede apreciar en la Figura 16.
54
Figura 15. Zonas inspeccionadas en la Quebrada Chita Huaico. (No se encontró indicios de reforestación
por parte de Serviforest) Coordenadas: 17M0779614 E 9991612S Altura: 22603m.s.n.m
Figura 16. Zona reforestada por la comunidad del sector en la Quebrada Chita Huaico
Quebrada Tejar: En la Tabla 9 se encuentran detalladas las características de la quebrada Tejar.
En la Figura 17 se pueden observar las zonas que debieron ser reforestadas en la Quebrada.
55
Tabla 9. Características de la Quebrada Tejar
Coordenadas (Zona alta)
17M778204,21E 9991433,17S
Altura
2717 m.s.n.m.
Referencia
Vía Uyachul
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
No
Presencia de Ganado
No
Edificaciones
No
Escombros y Basura
No
Áreas afectadas por incendio
No
Evidencia de refugios de
No
delincuentes
Evidencia de sembríos
Figura 17. Zonas reforestadas previamente por habitantes del sector en la Quebrada Tejar
Coordenadas: 17M778752E 9991398S Altura 2602m.s.n.m.
En la quebrada no se evidenció áreas reforestadas por la empresa Serviforest, quienes habían
ofrecido sembrar 3.456 plantas. Únicamente se evidencia especies de eucalipto sembradas
previamente a la contratación para la reforestación como se puede observar en la Figura 18.
56
Figura 18. Zona reforestada por los pobladores, previo al contrato con Serviforest en la Quebrada Tejar,
zona alta.
Quebrada Alugullá: En la Tabla 10 se encuentran detalladas las características de la quebrada
Alugullá. En la Figura 19 se pueden observar las zonas que fueron reforestadas en la Quebrada.
Tabla 10. Características de la Quebrada Alugullá
Coordenadas (Zona alta)
17M780497E 9992387N
Altura
2750 m.s.n.m.
Referencia
Colegio de Arquitectos
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
No
Presencia de Ganado
No
Edificaciones
Si
Escombros y Basura
Si
Áreas afectadas por incendio
Si
Evidencia de refugios de delincuentes
No
Evidencia de sembríos
Si
Figura 19. Zonas reforestadas en la Quebrada Alugullá Coordenadas: 17M781506E 9992832S Altura: 2593
m.s.n.m
57
En la quebrada se ofreció plantar 5.184 plantas, pudiéndose evidenciar la siembra de 198 (3,82%)
de las cuales sobrevivieron solamente 7 (0,14%). Debido a las condiciones climáticas de la
estación seca, amplias zonas reforestadas han sido destruidas por incendios forestales como se
puede apreciar en la Figura 20. Existen construcciones en los bordes del talud de la quebrada,
basura y escombros.
Figura 20. Áreas quemadas, previamente reforestadas en la zona media y alta de la Quebrada Alugullá
Quebrada Río Villorita: En la Tabla 11 se encuentran detalladas las características de la
quebrada Río Villorita. En la Figura 21 se pueden observar las zonas que fueron reforestadas en
la Quebrada.
Tabla 11. Características de la Quebrada Río Villorita
Coordenadas (Zona alta)
17M779637,99E 9988751,71N
Altura
2696 m.s.n.m.
Referencia
Río Villorita
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
Si
Presencia de Ganado
Si
Edificaciones
Si
Escombros y Basura
Si
Áreas afectadas por incendio
Si
Evidencia de refugios de
No
delincuentes
Evidencia de sembríos
Si
En la quebrada, donde se ofreció sembrar 4.320 plantas, se evidencia un total de 1.733 plantas
sembradas(40.12%), de las cuales sobrevivieron 459 (10.53%). Debido a las condiciones
climáticas adversas por la estación seca, amplias zonas reforestadas han sido destruidas por
incendios forestales provocados, como se observa en la Figura 22. Así mismo algunos árboles
fueron removidos para usar las tierras en agricultura. Existen construcciones en los bordes del
talud de la quebrada, basura y escombros.
58
Figura 21. Zonas reforestadas en la Quebrada Río Villorita Coordenadas: 17M781909E 9991956S Altura:
2546 m.s.n.m.
Figura 22. Laderas reforestadas en la cara Este de la quebrada, en zonas usadas por agricultura, en el
segundo reconocimiento estas áreas fueron quemadas
59
Quebrada Almeida: En la Tabla 12 se encuentran detalladas las características de la quebrada
Almeida. En la Figura 23 se pueden observar las zonas que fueron reforestadas en la Quebrada.
Tabla 12. Características de la Quebrada Almeida
Coordenadas (Zona alta)
17M782802,37E 9991477,63N
Altura
2586 m.s.n.m.
Referencia
Carcelén Bajo
Pendientes de Taludes máximas
> 30°
Descargas o Escorrentía
Si
Presencia de Ganado
No
Edificaciones
Si
Escombros y Basura
Si
Áreas afectadas por incendio
Si
Evidencia de refugios de
Si
delincuentes
Evidencia de sembríos
Si
Figura 23. Zonas reforestadas en la Quebrada Almeida Coordenadas: 17M783219E 9991528 N Altitud:
2552m.s.n.m.
En la quebrada, donde fue ofrecido sembrar 1.728 plantas, 319 fueron sembradas (18,46%),
evidenciándose un total de 30 plantas sobrevivientes (1,74%). Debido a las condiciones climáticas
adversas, amplias zonas reforestadas han sido destruidas por incendios forestales provocados
como se observa en la Figura 24. Existe gran cantidad basura y escombros.
60
Figura 24. Incendios han afectado gran parte de la cara Este de la Quebrada Almeida en su zona media y
acabado con las especies reforestadas
4. Discusión
Según el estudio ECCO DMQ
(PNUMA, 2011), el 75% de la superficie del DMQ ha sido
intervenida, dando como resultado el continuo detrimento y simplificación de las comunidades
bióticas. La reducción de la superficie de los ecosistemas y la pérdida de especies debido a la
fragmentación constante de los paisajes en el DMQ.
La composición geomorfológica del DMQ y las presiones del crecimiento poblacional
tiene
consecuencias directas sobre la ampliación de la mancha urbana con una recurrencia significativa
de los asentamientos informales que en primera instancia provocan la pérdida de la cobertura
vegetal. Por otro lado, uno de los impactos más graves se da en las quebradas las cuales han
sido usadas como vertederos de desechos y rellenos sanitarios. Sin embargo, muchas de ellas,
por su difícil accesibilidad cuentan muchas veces con los últimos vestigios de la vegetación natural
de las montañas del DMQ.
El proyecto Laderas del Pichincha del Programa de Saneamiento Ambiental (PSA) para el DMQ,
determinó 7000 ha para protección entre la Av. Occidental y la cumbre del volcán Pichincha,
incluyéndose quebradas como El Rancho, San Antonio, Rumihurco, Atucucho, entre otras,
obteniéndose impactos positivos en el área del proyecto. Sin embargo, el mal uso de quebradas
ha sido recurrente por la contaminación que se genera sobre ellas y la presión para cambio de uso
de suelo por las constantes invasiones (PNUMA, 2011).
“A pesar de que existe la declaratoria de bosque protector, por parte del Distrito Metropolitano de
Quito-DMQ, las laderas siguen siendo ocupadas legalmente o invadidas de manera ilegal. Hasta
la fecha el DMQ tiene inventariado 22 barrios, de éstos 8 son poblamientos tradicionales con más
de 20-30 años y el resto con alrededor de 10 años. De ellos, 6 son barrios populares, 3 son
residenciales medios y 5 altos” (Fernández, 1996).
61
En el Diagnóstico y Plan de Intervención a las Quebradas (Leiva, 2010), ya se establecía una
problemática similar en cuanto se refiere a la acumulación de residuos en las mismas.
Últimamente, hay que considerar los incendios que afectaron cerca de 4.000 ha en la ciudad.
En la protección de quebradas, la Administración Zonal La Delicia, en el último año se han
reforestado distintas zonas. En este caso se realiza una contratación de una empresa que no ha
cumplido con las metas establecidas y las especies reforestadas hasta el momento no han sido
suficientemente protegidas u adecuadamente ubicadas para lograr un mayor éxito de
reforestación. Encontrando también zonas de incendios como parte de la última estación seca.
La supervivencia de las especies estuvo condicionada por factores adversos del clima, la
acumulación de basura y escombros en las quebradas, los incendios por la estación seca, el
desplazamiento de las plantas sembradas para la utilización de los terrenos para la agricultura y
falta de cuidado de la población respecto a la siembra de plantas realizada.
“Un número de 85 quebradas bajan desde las laderas del volcán a la ciudad. Las diferencias de
elevación desde la cumbre del denominado "Rucu Pichincha" (4.627 msnm) hasta la parte baja de
la ciudad a 2.700 msnm, se presentan en distancias muy cortas comprendidas entre 1.0hasta 10.0
Km. Por ello resultan pendientes muy pronunciadas, entre el 30 y 60%. Las lluvias intensas
producen flujos torrenciales que debido a la alta erosionabilidad de las laderas, han provocado
cauces profundos de 10 a 30 o más metros” (Fernández, 1996).
El desecho de basuras y escombros en las quebradas no es nuevo, a más de un problema
sanitario Las basuras y escombros que se arrojan a las quebradas, a más del problema sanitario,
implica el 31.5%, aproximadamente 3.200 Ton/año, se depositan en las quebradas, taponando la
entrada de los colectores e incrementando las inundaciones y el riesgo de posibles deslaves
(Fernández, 1996).
Plan de desarrollo del MDMQ 2012-2022 (MDMQ, 2011), uno de los objetivos contempla la
recuperación de quebradas mediante la reforestación. Luego de los incendios registrados en el
DMQ, se han planteado la reforestación con 500.000 plantas en las zonas afectadas. Parte de
estos procesos son los de la protección y recuperación de quebradas del DMQ.
5. Conclusiones
El estado actual de las quebradas estudiadas en líneas generales es similar: asentamientos en los
bordes de los taludes, invasiones con viviendas construidas de forma anti técnica, descargas de
aguas residuales, depósitos de basura y escombros en todas las zonas con acceso a las mismas,
62
presencia de ganado, refugios de delincuentes, desplazamiento de las plantas sembradas para
uso de terrenos en la agricultura y extensas áreas afectadas por incendios forestales
presuntamente provocados.
Los resultados de la inspección del contrato del “Servicio de Siembra y Mantenimiento de Plantas
de Especies Forestales en bordes de quebradas” arrojo cifras alarmantes en cuanto al posible
incumplimiento del contrato por parte de la empresa Serviforest S.A.
En las zonas inspeccionadas el porcentaje de cumplimiento en el número de especies plantadas
fue de 11,21% del total ofrecido, y el porcentaje de especies sobrevivientes con respecto al total
de especies ofrecidas es de 5,05%, como se puede apreciar en la Tabla 13.
Tabla 13. Resumen de los Resultados del Monitoreo
Resultados del Monitoreo
Especies
Especies
Especies
Quebrada
Ofrecidas
Encontradas
Sobrevivientes
Rumihurco
3456
578
538
Singuna
2592
275
173
San Antonio
2592
170
95
Grande
1728
456
336
El Rancho
7776
184
58
Laime
1728
253
180
Chita Huaico
2592
0
0
Tejar
3456
0
0
Alugullá
5184
198
7
Río Villorita
4320
1733
459
Almeida
1728
319
30
37152
4166
1876
11,21%
5,05%
TOTAL
PORCENTAJE DE
CUMPLIMIENTO
6. Recomendaciones
Se debe controlar e impedir el asentamiento de personas y actividades productivas, tomando en
cuenta los retiros establecidos en las Ordenanzas con respecto al uso del suelo, en los bordes de
talud de las quebradas, así como evitar que la cobertura vegetal natural sea removida para usar
las tierras en agricultura.
Se debería limpiar las quebradas y realizar planes de capacitación a los moradores que habitan en
las zonas cercanas a las quebradas para que no arrojen basura o escombros en las mismas y se
conecten sus viviendas a la red de alcantarillado público. De ser posible se debería cercar los
puntos de las quebradas donde existan mayores conflictos.
63
Se recomienda que la policía junto con la Comisaría de Aseo, Salud y Ambiente, según la
Ordenanza 332, realice patrullaje en las zonas conflictivas de las quebradas y se apliquen
sanciones para las personas que invadan las zonas protegidas, arrojen basura, provoquen
incendios, entre otras.
Para futuros planes de reforestación se recomienda realizar estudios de suelo para elegir las
especies más aptas en determinado lugar, y que estas puedan sobrevivir o adaptarse de mejor
manera al ambiente.
Se debería fiscalizar en el momento que la empresa encargada de la reforestación realiza sus
actividades y comprobar el cumplimiento de lo ofrecido.
La reforestación debe realizarse en temporadas invernales, o cercanas al invierno.
Se deberían emplear especies forestales para realizar la siembra, con mayor tiempo de vida y
crecimiento a las especies empleadas en la última reforestación, que garantice la supervivencia de
las mismas frente a climas extremos.
La reforestación se debe realizar en zonas con pendientes poco inclinadas, o en los bordes de las
quebradas.
Previa a la realización de una nueva reforestación, se debe concientizar a los moradores de la
zona de influencia, para que adquieran interés y pertenecía con las Quebradas y se comprometan
al cuidado de las mismas. La participación es de suma importancia para la sustentabilidad de la
reforestación
Se sugiere el seguimiento continuo de los proyectos emprendidos para su verificación y
sostenibilidad en el tiempo.
Bibliografía
Fernández, M. A. (1996). Ciudades en Riesgo. Quito: USAID.
Leiva, E. (2010). Diagnostico y Plan de Intervención a las Quebradas Rumihurco, Chiriacu –
(Singuna), Grande, San Antonio, El Rancho, Parcayacu y El Colegio. Quito: MDMQ.
MDMQ. (2011). Plan de Desarrollo 2012-2022. Quito: MDMQ.
PNUMA. (2011). ECCO Distrito Metropolitano de Quito. Quito: Programa de Naciones Unidas para
el Medio Ambiente.
Shaperfiles tomados de la base de datos de la Administración Zona Equinoccio “La Delicia”
Jefatura Zonal Ambiental.

Documentos relacionados