Cálculo Diferencial - Aprende Matemáticas

Transcripción

Cálculo Diferencial - Aprende Matemáticas
Profr. Efraín Soto Apolinar.
Derivadas de orden superior
Ya habrás observado que al derivar una función obtenemos otra nueva función.
Por ejemplo, la derivada de la función y = x2 es y0 = 2 x.
Observa que y0 es otra función, generalmente diferente a y.
Si volvemos a derivar la función, obtenemos la segunda derivada de la función:
Si y = f ( x )
⇒ y0 = f 0 ( x ) es la primera derivada de la función,
d f 0 (x)
00
⇒ y =
= f 00 ( x ) es la segunda derivada,
dx d f 00 ( x )
⇒ y000 =
= f 000 ( x ) es la tercera derivada,
dx
d f 000 ( x )
(4)
= f (4) ( x ) es la cuarta derivada, etc.
⇒ y =
dx
Profesor:
Puntualice que:
f (4) ( x ) 6= [ f ( x )]4
Derivada de orden superior
Sea y = f ( x ) una función derivable. La derivada de orden k es la función que se obtiene al derivar
(respecto de x) la función k veces consecutivas, y se denota como:
dk y
= f (k) ( x )
dx k
Definición
1
El número k se conoce como el orden de la derivada.
Calcula la derivada de orden 5 de la siguiente función:
Ejemplo 1
y = cos x
• Tenemos que derivar cinco veces para obtener la derivada de orden 5.
• Aquí está la primera derivada:
dy
= − sin x
dx
• La segunda derivada es:
d2 y
= − cos x
dx2
• La tercera derivada de la función es:
d3 y
= sin x
dx3
• La derivada de orden cuatro es:
d4 y
= cos x
dx4
• Y Finalmente, la derivada de orden cinco es:
d5 y
= − sin x
dx5
www.aprendematematicas.org.mx
1/8
Profr. Efraín Soto Apolinar.
Calcula la derivada de orden 3 de la función:
Ejemplo 2
y = e− x
2
• Para calcular la primera derivada usamos las reglas de derivación de la función exponencial
y de la cadena:
2
dy
= −2 xe− x
dx
• Para calcular la segunda derivada tenemos que aplicar, además, la regla del producto.
2
• Definimos u = −2 x, y v = e− x . Entonces,
du
= −2
dx
2
dv
= −2 xe− x
dx
y
• Ahora sustituimos en la regla para derivar el producto de dos funciones:
2
2
d2 y
= 4 x2 e− x − 2 e− x
2
dx
• La derivada de tercer orden se obtiene derivando de nuevo.
2
• Para eso, definimos: u = 4 x2 , y v = e− x , por lo que ahora:
du
= −8 x
dx
2
dv
= −2 xe− x
dx
y
• Ahora sustituimos para terminar:
d3 y
dx3
=
2
2
2
4 x2 · −2 xe− x + e− x · (−8 x ) + 4 xe− x
2
2
= −8 x3 e− x − 8 xe− x + 4 xe− x
2
=
−8 x 3 − 8 x + 4 x e − x
2
• Con lo que terminamos.
Ahora haremos un paréntesis para entender qué representa la segunda derivada. Esto, a su vez,
nos permitirá entender qué representan las derivadas de orden 3, 4, etc.
Primero debemos recordar que la derivada es una razón de cambio instantánea, es decir, la
primera derivada nos dice si la función está creciendo o decreciendo en un punto.
Por ejemplo, en la página ??, estudiamos la parábola y = 2 − x2 . Ahí encontramos que la derivada
de la función es positiva para valores de x negativos y negativa para valores de x positivos. En
otras palabras, la función es creciente a la derecha y decreciente a la izquierda.
www.aprendematematicas.org.mx
2/8
Profr. Efraín Soto Apolinar.
y
3
2
1
−4
−3
−2
x
−1
1
2
3
4
−1
−2
−3
−4
Pero observa que la pendiente de las rectas tangentes (es decir, el valor de la derivada de la función
evaluada en el punto de tangencia) va disminuyendo cada vez más, porque la primer tangente
que se dibujó tiene mayor pendiente que la segunda, y ésta a su vez tiene una pendiente mayor a
la siguiente y así sucesivamente, hasta que llegamos a x = 0, donde la pendiente es cero y la recta
tangente a la parábola es horizontal.
A partir de ahí la pendiente se hace negativa y sigue decreciendo, o en otras palabras, crece con
signo negativo.
La primera derivada de esta función es: y0 = −2 x. La segunda derivada es: y00 = −2. Esto nos
dice que la primera derivada tiene una razón de cambio instantánea constante e igual a −2.
Esto nos indica que la pendiente de la recta tangente (el valor de la primera derivada) cambia en
−2 unidades cada vez que x aumenta 1 unidad.
Observa la recta tangente a la función en x = −1. ¿Puedes decir cuánto vale la pendiente de esa
recta?
Ahora compara ese valor con la pendiente de la recta tangente en x = 0. Y después compara este
valor con la pendiente de la recta tangente a la función en x = 1.
El valor de la pendiente del siguiente punto de tangencia lo obtienes sumando −2 al anterior, y
esto es así porque la segunda derivada nos dice cómo cambia la primera derivada.
A su vez, la tercera derivada nos dice cómo cambia la segunda derivada, y así sucesivamente.
Discute el significado de la segunda derivada de la función:
y = −4.905 t2 + 24.535 t
que describe la tryectoria de una piedra lanzada al aire, donde y es la altura (medida en metros)
de la piedra medida desde el suelo y t es el tiempo (medido en segundos) que la piedra lleva
en el aire.
• La primera derivada de esta función representa la razón de cambio de la posición de la
piedra respecto al tiempo.
www.aprendematematicas.org.mx
3/8
Ejemplo 3
Profr. Efraín Soto Apolinar.
• Es decir, la primera derivada es la velocidad instantánea de la piedra:
dy
= −9.81 t + 24.535
dx
[m/s]
• La primera derivada nos dice cómo cambia la posición de la piedra conforme avanza el
tiempo.
• En otras palabras, indica cuánto cambia la posición de la piedra en un segundo para un
valor de t específico.
• Observa que derivar causa que las unidades de y se dividan por el tiempo t.
• La segunda derivada representa la razón de cambio instantánea de la velocidad (instantánea)
de la piedra.
• Es decir, nos dice cómo cambia la velocidad de la piedra conforme avanza el tiempo.
• Esto es, en un segundo, cuánto cambia la velocidad de la piedra, para un valor de t dado.
• Esta magnitud física se conoce como la aceleración instantánea de la piedra:
d2 y
= −9.81
dx2
h
m/s2
i
• El signo negativo nos indica que la aceleración está dirigida hacia abajo.
Calcula la velocidad y la aceleración de un cuerpo que se mueve sobre el eje y con posición:
1
1 2
y = − t3 +
t +6t+2
3
16
donde t es el tiempo medido en segundos, para t = 1, 2, 3 y 4
• Empezamos graficando la función para tener una idea de su comportamiento:
1 Al
nivel del mar.
www.aprendematematicas.org.mx
Corrija
a
los
estudiantes
si
dicen: «aceleración
de la gravedad»,
deben
decir:
«aceleración debida
a la gravedad».
• La aceleración que sufren los cuerpos debido a la atracción gravitacional1 de la tierra es de
g = 9.81 m/s2 , que es el resulado que obtuvimos.
Ejemplo 4
Profesor:
4/8
Profr. Efraín Soto Apolinar.
y
12
10
8
1
1 2
y = − t3 +
t +6t+2
3
16
6
4
2
2
1
3
4
x
5
−2
−4
• De la gráfica vemos que la función es creciente en t = 1, 2, y decreciente en t = 3, y en
adelante.
• Así que esperamos que la derivada de la función sea positiva en t = 1, 2 y negativa para los
demás valores.
• Enseguida se muestran las dos primeras derivadas:
dy
1
= − t2 + t + 6
dt
8
y
d2 y
1
= −2 t +
8
dt2
• Ahora vamos a evaluarlas en t = 1, 2, 3 y 4
t
1.0
2.0
3.0
4.0
tiempo
f (t)
f 0 (t)
f 00 (t)
7.729
5.125
−2.0
11.583
2.25
−4.0
11.563
−2.625
−6.0
5.667
−9.5
−8.0
posición
velocidad
aceleración
Calcula todas las derivadas de la función polinomial de tercer grado:
Ejemplo 5
y = a3 x 3 + a2 x 2 + a1 x + a0
• La primera derivada de esta función es:
dy
= 3 a3 x 2 + 2 a2 x + a1
dx
• La segunda derivada es:
d2 y
= 6 a3 x + 2 a2
dx2
porque a1 es una constante real.
www.aprendematematicas.org.mx
5/8
Profr. Efraín Soto Apolinar.
• La tercera derivada es:
d3 y
= 6 a3
dx3
porque ahora la constante es 2 a2 .
• La cuarta derivada y todas las derivadas sucesivas son cero, porque en cada caso estamos
calculando la derivada de una constante.
• Es decir,
dk y
=0
dx k
k ≥ 4, k ∈ N
Calcula todas las derivadas de la función:
Ejemplo 6
y = ex
• Dado que la derivada de la función y = e x es igual a la función misma, todas sus derivadas
son iguales a e x :
d2 y
= ex
dx2
d4 y
= ex
dx4
..
.
dk y
= ex
dx k
dy
= ex
dx
d3 y
= ex
dx3
..
.
k∈N
Calcula todas las derivadas de la función:
Ejemplo 7
y = sin x
• Primera derivada:
dy
= cos x
dx
• Segunda derivada:
d2 y
= − sin x
dx2
• Tercera derivada:
• Cuarta derivada:
d3 y
= − cos x
dx3
d4 y
= sin x
dx4
• Observa que la cuarta derivada es igual a la función inicial.
www.aprendematematicas.org.mx
6/8
Profr. Efraín Soto Apolinar.
• Entonces, la derivada de orden cinco es igual a la primera derivada:
dy
d5 y
= cos x =
5
dx
dx
• Y la derivada de orden seis es igual a la segunda derivada:
d2 y
d6 y
= − sin x = 2
6
dx
dx
• Y así sucesivamente.
• Entonces, las derivadas de la función son:
d(4k) y
= sin x
dx (4k)
d(4k+2) y
= − sin x
dx (4k+2)
d(4k+1) y
= cos x
dx (4k+1)
d(4k+3) y
= − cos x
dx (4k+3)
donde k es un número natural.
Créditos
Todo debe hacerse tan simple como sea posible, pero no más.
Albert
Einstein
Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más
que el autor.
Autor: Efraín Soto Apolinar.
Edición: Efraín Soto Apolinar.
Composición tipográfica: Efraín Soto Apolinar.
Diseño de figuras: Efraín Soto Apolinar.
Productor general: Efraín Soto Apolinar.
Año de edición: 2010
Año de publicación: Pendiente.
Última revisión: 01 de agosto de 2010.
Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México. 2010.
www.aprendematematicas.org.mx
7/8
Profr. Efraín Soto Apolinar.
Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean
divulgados entre otros profesores y sus alumnos.
Este material es de distribución gratuita.
Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico:
[email protected]
www.aprendematematicas.org.mx
8/8

Documentos relacionados