Elements Handbook

Transcripción

Elements Handbook
For students and parents/guardians
In the Elements Handbook, you’ll find useful information about the properties of the
main group elements from the periodic table.
You’ll also learn about real-world applications
for many of the elements.
The Math Handbook helps you review and
sharpen your math skills so you get the most
out of understanding how to solve math problems involving chemistry. Reviewing the rules
for mathematical operations such as scientific
notation, fractions, and logarithms can also
help you boost your test scores.
The reference tables are another tool that
will assist you. The practice problems and
solutions are resources that will help increase
your comprehension.
Table of Contents
Elements Handbook . . . . . . . . . 901
Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . 904
Group 1: Alkali Metals. . . . . . . . . . . . . . . 906
Group 2: Alkaline Earth Metals . . . . . . . 910
Groups 3–12: Transition Elements . . . . 916
Group 13: Boron Group . . . . . . . . . . . . . 922
Group 14: Carbon Group . . . . . . . . . . . . 926
Group 15: Nitrogen Group . . . . . . . . . . . 932
Group 16: Oxygen Group . . . . . . . . . . . . 936
Group 17: Halogen Group . . . . . . . . . . . 940
Group 18: Noble Gases . . . . . . . . . . . . . . 944
Math Handbook . . . . . . . . . . . . 946
Scientific Notation . . . . . . . . . . . . . . . . . . 946
Operations with Scientific Notation . . . 948
Square and Cube Roots . . . . . . . . . . . . . . 949
Significant Figures . . . . . . . . . . . . . . . . . . 949
Solving Algebraic Equations . . . . . . . . . . 954
Dimensional Analysis . . . . . . . . . . . . . . . 956
Unit Conversion . . . . . . . . . . . . . . . . . . . . 957
Drawing Line Graphs. . . . . . . . . . . . . . . . 959
Using Line Graphs . . . . . . . . . . . . . . . . . . 961
Ratios, Fractions, and Percents. . . . . . . . 964
Operations Involving Fractions . . . . . . . 965
Logarithms and Antilogarithms. . . . . . . 966
Reference Tables. . . . . . . . . . . . 968
R-1
R-2
R-3
R-4
R-5
R-6
R-7
R-8
R-9
R-10
R-11
Color Key. . . . . . . . . . . . . . . . . . . . . 968
Symbols and Abbreviations. . . . . . 968
Solubility Product Constants . . . . 969
Physical Constants . . . . . . . . . . . . . 969
Names and Charges of
Polyatomic Ions . . . . . . . . . . . . . . . 970
Ionization Constants . . . . . . . . . . . 970
Properties of Elements. . . . . . . . . . 971
Solubility Guidelines . . . . . . . . . . . 974
Specific Heat Values . . . . . . . . . . . . 975
Molal Freezing Point Depression
and Boiling Point Elevation
Constants . . . . . . . . . . . . . . . . . . . . . 975
Heat of Formation Values . . . . . . . 975
Supplemental Practice Problems . . . . . . .976
Solutions to Selected Practice
Problems. . . . . . . . . . . . . . . . . . . . . . . . . .992
Glossary/Glosario . . . . . . . . . . . . . . . . . . .1005
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1031
Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . .1051
900
Student Resources
Elements Handbook
Elements in Earth’s Atmosphere
Argon
0.93%
Other
0.04%
Oxygen
20.95%
Nitrogen
78.08%
Elements in Earth’s Crust
Iron
5.63%
Calcium
4.15%
Other
7.69%
Aluminum
8.23%
Silicon
28.20%
Oxygen
46.10%
Elements Dissolved in
Earth’s Oceans
Sulfur
2.70%
Magnesium
3.90%
Sodium
32.40%
Other
1.50%
Calcium
1.20%
Chlorine
58.30%
Elements Handbook 901
CORBIS
Elements Handbook
Table of Contents
How This Handbook Is Organized The Elements Handbook is divided into
10 sections: hydrogen and groups 1, 2, 3–12, 13, 14, 15, 16, 17, and 18. You will discover
physical and atomic properties, common reactions, analytical tests, and real-world
applications of the elements in each section. Questions at the end of each section will
assess your understanding of the elements.
Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .904
Group 1: Alkali Metals . . . . . . . . . . . . . . . . . . . . . .906
Group 2: Alkaline Earth Metals . . . . . . . . . . . . . . .910
Groups 3–12: Transition Elements . . . . . . . . . . . .916
Group 13: Boron Group . . . . . . . . . . . . . . . . . . . . .922
Group 14: Carbon Group . . . . . . . . . . . . . . . . . . . .926
Group 15: Nitrogen Group . . . . . . . . . . . . . . . . . . .932
Group 16: Oxygen Group . . . . . . . . . . . . . . . . . . . .936
Group 17: Halogen Group . . . . . . . . . . . . . . . . . . .940
Group 18: Noble Gases . . . . . . . . . . . . . . . . . . . . . .944
How to Use Element Boxes
Each element box on the periodic table contains useful information. In the Elements
Handbook, each element box has an element name, symbol, atomic number, and electron
configuration. At the beginning of each section, each element box also identifies the state
of matter at 25°C and 1 atm. A typical box from the handbook is shown below.
Strontium
38
Atomic number
Sr
Symbol
[Kr]5s2
Color Key
Metal
Element
State of matter
Electron configuration
States of Matter Key
Gas
Liquid
Metalloid
Solid
Nonmetal
Interactive Figure To see animations
of the elements, visit glencoe.com.
902 Elements Handbook
Synthetic
To find links to information on the elements, visit glencoe.com.
How to Use the Elements Handbook
When you read the Elements Handbook, you need to read for information. Here
are some tools that the Elements Handbook has to help you find that information.
See how a group fits in
the Periodic Table.
Group 2: Alkaline Earth Metals
Beryllium
4
Be
[He]2s2
Magnesium
12
Mg
[Ne]3s2
Discover the Physical
Properties and Atomic
Properties of the
elements in a group.
Calcium
20
Element Facts
Physical Properties
Atomic Properties
• Most of the alkaline earth metals have a silvery-white, metallic
appearance. When exposed to oxygen, a thin oxide coating forms
on the surface.
• The alkaline earth metals are harder, denser, and stronger than many
of the group 1 elements, but are still relatively soft compared to other
metals.
• Most alkaline earth metals have higher melting points and boiling
points than alkali metals.
Be
112
Be2+
31
• Atomic radii and ionic radii increase moving down the group but are
smaller than the corresponding alkali metal.
Mg
160
Mg2+
72
• Ionization energies and electronegativities generally decrease moving
down the group but are larger than the corresponding alkali metal.
Ca
197
Ca2+
100
• Moving down the group, densities generally increase.
Ca
Melting Points and Boiling Points
[Ar]4s2
Strontium
38
Sr
[Kr]5s2
650
Mg
1090
MP
Barium
56
Sr
Ba
Ba
727
Ra
700
Ra
1737
0
1000
Ra
2000
1
2
3
4
200
400
600
1.31
1.00
Ba2+
135
Ra
220
0.90
0
800
Sr2+
118
Ba
222
0.89
0.5
1.0
1.5
2.0
Pauling units
kJ/mol
g/mL
Sr
215
0.95
Ra
509
0
5
Mg
Ba
503
Ra
5.000
0
3000
Temperature (ºC)
1.57
Sr
550
Ba
3.510
Be
Ca
590
Sr
2.630
Ba
1870
[Xe]6s2
738
Ca
1.550
Sr
1382
900
Mg
1.738
Ca
1484
Be
1.848
Mg
BP
842
Ca
777
Radium
88
Be
2469
Electronegativities
First Ionization Energies
Densities
1287
Be
Ionic
radius
(pm)
Atomic
radius
(pm)
• Each element in group 2 has two valence electrons and an electron
configuration ending with ns 2.
• Alkaline earth metals often lose their two valence electrons to form
ions with a 2+ charge.
[Rn]7s2
Common Reactions
Summarize Common
Reactions for the
elements within a group.
• Mg, Ca, Sr, and Ba react with oxygen to
form oxides, such as magnesium oxide.
• Mg, Ca, Sr, and Ba react with
halogens to form salts, such as
magnesium chloride, and
hydrogen gas.
Example: 2Mg(s) + O 2(g) → 2MgO(s)
• Sr and Ba react with oxygen to form
peroxides, such as strontium peroxide.
Example: Mg(s) + 2HCl (g) →
MgCl 2(s) + H 2(g)
Example: Sr(s) + O 2(g) → SrO 2(s)
• Mg, Ca, Sr, and Ba react with water to form
bases, such as barium hydroxide, and
hydrogen gas.
• Mg, Ca, Sr, and Ba react with
hydrogen to form hydrides,
such as barium hydride.
Analytical Tests
Three of the alkaline earth metals can be
identified by flame tests. Calcium produces a
scarlet color, while strontium produces a crimson
color. Barium, which if present in a sample can
mask the colors of both calcium and strontium,
produces a yellow-green color.
Example: Ba(s) + 2H 2O(l) →
Ba(OH) 2(aq) + H 2(g)
Example: Ba(s) + H 2(g) →
BaH 2(s)
• Be, Mg, Sr, and Ca react with
nitrogen to form nitrides, such
as magnesium nitride.
Example: 3Mg(s) + N 2(g) →
Mg 3N 2(s)
Identify elements by
Analytical Tests.
910
Barium reacts with water to
form Ba 2+ ions, OH - ions,
and hydrogen gas.
A ribbon of magnesium reacts with HCl in an
aqueous solution to produce Mg 2+ ions, Cl ions, and hydrogen gas.
Elements Handbook
Calcium
Strontium
Barium
Elements Handbook 911
Source: Elements Handbook, p. 910–911
Group 2: Alkaline Earth Metals
Ca
[Ar]4s2
Strontium
38
Real-World Applications
Gypsum
Calcium
20
A layer of plaster of paris protects
fossils during shipment.
Drywall is made from gypsum, which is a soft
mineral composed of calcium sulfate dihydrate
(CaSO 4·2H 2O). Drywall boards are used in building construction because the gypsum provides fire
protection. Gypsum contains large amounts of
water in its crystal form, which vaporizes when
heated. The boards remain at 100°C until all of the
water evaporates, protecting the wood frame of the
building. Gypsum that has had most of its water
removed is known as plaster of paris. Most
minerals form pastes when mixed with water.
When plaster of paris is mixed with water, it forms
a rigid crystal structure, so it is often used for casts
to set broken bones and for molds.
Crystals formed from strontium chloride
and saliva fill in pores in the root of a
tooth and block access to the nerve.
Sr
Nerve
[Kr]5s2
Radium
88
Ra
[Rn]7s2
The Discovery of Radioactivity
Marie Curie’s discovery of the atomic property she called
radioactivity paved the way for present-day advancements
in science and medicine. Curie and her husband, Pierre,
unveiled the characteristics and capabilities of radiation,
revolutionizing scientific thinking and laying the groundwork for present-day cancer treatments, genetics, and
nuclear energy. Today, many cancers are treated with
radiation therapy.
Toothpaste containing
strontium chloride
Vent pipe
Pore to root canal
and nerves
Barium
56
Ba
Root canal
Decay of radium-226 in soil and rock produces radon gas.
The radioactive radon gas can seep through cracks in a home’s
foundation or can be dissolved in water pumped into the house
from a well. High concentrations of radon can increase the risk
of cancer. In many homes, installing a radon-reduction system
reduces the concentration of radon gas by using a fan to draw
the gas through pipes that vent to the outside of the home.
Root
nerve through openings called pores. Toothpastes
that contain strontium chloride (SrCl 2) help
reduce the sensitivity. The compound reacts with
a person’s saliva to create crystals that fill in the
pores so stimuli cannot reach the nerves.
After being coated with
barium liquid, the large
intestine shows up
clearly on an X ray.
[Xe]6s2
Medical X Rays
Barium is used by medical professionals to examine a person’s gastrointestinal tract. Patients drink
barium liquid, which coats the tract, and are then
X-rayed. Barium is almost completely insoluble in
water and acids and appears as a bright white
color in X rays. This allows doctors and radiologists to locate tumors, ulcers, areas of reflux, and
other abnormalities in the digestive tract.
914
Radon Gas
Dentine
Almost 40 million people in the United States
have teeth that are hypersensitive to touch and
temperature. Sensitivity occurs when the dentine
and roots of teeth are exposed due to receding
gums or thinning of the tooth enamel. This is the
result of poor oral hygiene or, in many instances,
from brushing too hard. Exposing the root enables
stimuli, such as cold temperatures, to reach the
Elements Handbook
Marie Curie died at the age of 67 from aplastic anemia,
probably caused by her exposure to massive amounts
of radiation. Today, the effects of radiation on health
are well known, and suitable safety precautions are
taken when using radioactive materials.
Fan
Crystals
Sensitive Teeth
Learn how elements are
used every day in RealWorld Applications.
A radon-reduction system lowers the concentration of radon in homes by
venting the radon gas from the home to the outside environment.
Assessment
13. Describe the general trend in first ionization energies
in group 2, and explain why this trend occurs.
14. Explain What is the charge on alkaline earth metal
ions? Explain your answer.
15. Compare and contrast the physical properties
of the alkaline earth metals and the alkali metals.
16. Evaluate why magnesium is used in emergency flares
instead of other alkaline earth metals.
17. Analyze Use the atomic properties of the alkali
metals and alkaline earth metals to explain why
calcium is less reactive than potassium.
18. Infer The alkaline earth metals are usually found
combined with oxygen and other nonmetals in Earth’s
crust. Based on the atomic properties of this group,
explain why alkaline earth metals are so reactive.
Test your knowledge
of the elements by
answering Assessment
questions.
19. Calculate Calcium makes up about 1.5% of a
human’s body mass. Calculate the amount of calcium
found in a person who weighs 68 kg.
20. Calculate Radium-226 has a half-life of 1600 years.
After 8000 years, how much of a 500.0-g sample of
radium-226 would be left?
Elements Handbook
915
Source: Elements Handbook, p. 914–915
Elements Handbook 903
Hydrogen: Element Facts
Physical and Atomic Properties
• At constant temperature and pressure, hydrogen gas (H 2) has the
lowest density of any gas.
Hydrogen
1
H
1s1
• At very high pressures, such as the interior of planet Jupiter, hydrogen
might exist as a solid metal.
• Hydrogen is placed in group 1 because it has one valence electron.
• Hydrogen shares some properties with the group 1 metals. It can lose
an electron to form a hydrogen ion (H +).
• Hydrogen also shares some properties with the group 17 nonmetals.
It can gain an electron to form a hydride ion (H −).
• There are three common
hydrogen isotopes. Protium,
the most common isotope,
has one proton, one electron,
and no neutrons. Deuterium,
also called heavy hydrogen,
has one proton, one neutron,
and one electron. Tritium,
which is radioactive, has one
proton, two neutrons, and
one electron.
Physical and Atomic Properties
of Hydrogen
Melting point
-259°C
Boiling point
-253°C
Density
8.98 × 10 -5 g/mL
Atomic radius
78 pm
First ionization
energy
1312 kJ/mol
Electronegativity
2.2 Pauling units
Common Reactions
Analytical Tests
• When ignited, hydrogen reacts with oxygen
to form water.
pH is a measure of the hydrogen ion (H +)
concentration of aqueous solutions. When the
hydrogen ion concentration is expressed in
moles per liter, pH is the negative logarithm of
the hydrogen ion concentration, −log[H +]. For
example, if the hydrogen ion concentration is
1 × 10 -2 mol/L, the pH is 2.
Example: H 2(g) + O 2(g) → 2H 2O(l)
• Hydrogen reacts with sulfur to form hydrogen sulfide.
Example: 2H 2(g) + S(g) → H 2S(g)
• Hydrogen reacts with nitrogen at high temperatures and pressures to form ammonia.
Example: 3H 2(g) + N 2(g) → 2NH 3(g)
Hydrogen gas in the red
tube and nitrogen gas in
the blue tube are mixed,
then compressed under
high pressure and temperature to form liquid
ammonia in the orange
tube at bottom right.
904
Elements Handbook
(l)©SPL/Photo Researchers, Inc., (r)Matt Meadows
Common household items are bases or acids, depending on
their H + concentrations: the greater the H + concentration, the
lower the pH.
Real-World Applications
Hydrogen
1
H
1s1
Identifying Hydrogen in Stars
Spectroscopy is the study of the spectral lines present
in an electromagnetic spectrum. The colored lines in
an emission spectrum represent the emission of energy.
How do scientists know that more than 90% of the atoms
in the universe are hydrogen atoms? By recording the
emission spectra of light from stars or galaxies, astronomers can identify hydrogen. The spectrum of hydrogen
consists of four distinct color lines at different wavelengths. They are produced when electrons in a gas move
to different energy levels in an atom by absorbing and
then emitting energy. Each element can be identified by
characteristic patterns of spectral lines.
The colorful cloud that makes up this nebula is
composed of hydrogen gas.
Hydrogen Fuel Cells
Hydrogen fuel cells produce electricity by combining
hydrogen (H 2) and oxygen (O 2) without burning. Water
and heat are the only by-products of this process. Current
demonstration projects that use hydrogen fuel cells as
their energy sources include laptop computers, cars, buses,
classrooms, and musical instruments. In the future, it
might be possible to use a pen-sized container filled with
hydrogen gas to power a laptop computer. Or, you might
drive a fuel cell car to a filling station and fill a high-pressure gas cylinder with hydrogen gas.
Hydrogen fuel cells provide the energy to power this
electric guitar.
Assessment
1. Compare and contrast hydrogen isotopes.
2. Write the balanced equation for the reaction between
hydrogen gas and oxygen gas in a fuel cell.
3. Explain what happens when hydrogen reacts with a
nonmetal element.
4. Evaluate at least one advantage and one possible
disadvantage of hydrogen fuel cells compared to conventional petroleum engines.
5. Infer Hydrogen can gain one electron to reach a
stable electron configuration. Why isn’t hydrogen
placed with the group 17 elements that share this
behavior?
6. Apply A solution’s hydrogen ion concentration is
3.2 × 10 -4 mol/L. Refer to Chapter 19 to determine if
this solution is an acid or a base. What is the pH of this
solution?
Elements Handbook 905
(t)©European Southern Observatory/Photo Researchers, Inc., (b)©Melanie Stetson Freeman/The Christian Science Monitor via Getty Images
Group 1: Alkali Metals
Lithium
3
Li
[He]2s1
Sodium
11
Na
[Ne]3s1
Physical Properties
• Pure alkali metals have a silvery, metallic appearance.
• Solid alkali metals are soft enough to cut with a knife.
• Most of the alkali metals have low densities compared to the solid
form of elements from other groups. Lithium, sodium, and potassium
metals are less dense than water.
• Compared to other metals, such as silver or gold, alkali metals have
low melting points.
Potassium
19
K
[Ar]4s1
181
Li
98
K
63
[Kr]5s1
Rb
39
Cesium
55
Cs
28
Rb
Cs
[Xe]6s1
Li
1342
Na
Rubidium
37
Densities
Melting Points and Boiling Points
MP
883
BP
759
0.856
K
1.532
Cs
671
500
0.968
Na
Rb
668
0
0.535
1000
1500
1.879
0
Temperature (°C)
0.5
1.0
1.5
2.0
g/mL
Francium
87
Fr
[Rn]7s1
Common Reactions
• Li, Na, K, Rb, and Cs react vigorously with halogens to form salts,
such as lithium chloride.
Example: 2Li(s) + Cl 2(g) → 2LiCl(s)
• Li, Na, K, Rb, and Cs react with oxygen to form oxides, such as
sodium oxide.
Example: 4Na(s) + O 2(g) → 2Na 2O(s)
• Li, Na, K, Rb, and Cs react
vigorously with water to form
metal hydroxides, such as
potassium hydroxide, and
hydrogen gas.
Example: 2K(s) + 2H 2O(l) →
2KOH(aq) + H 2(g)
Potassium reacts violently with water,
producing enough heat to ignite the
hydrogen gas produced.
906
Elements Handbook
©Richard Megna/Fundamental Photographs, NYC
Element Facts
Atomic Properties
• Each element in group 1 has one valence electron and an electron
configuration ending with ns 1.
• Group 1 elements lose their valence electrons to form ions with a
1+ charge.
• Going down the elements in group 1, the atomic radii and ionic radii
increase.
• Electronegativity decreases going down the elements in group 1.
• The alkali metals are so reactive that they are not found in nature
as free metals.
• All the alkali metals have at least one radioactive isotope.
• Because francium is rare and decays rapidly, its properties are not
well known.
First Ionization Energies
520
496
Na
419
403
Rb
Li
0.98
Na
0.93
K
0.82
Rb
0.82
0.79
Cs
376
Cs
Fr
380
Fr
0
100
200
300
400
Ionic
radius
(pm)
Li
152
Li1
76
Na
186
Na1
102
K
227
K1
138
Rb
248
Rb1
152
Cs
265
Cs1
167
+
+
+
+
+
Electronegativities
Li
K
Atomic
radius
(pm)
500
Fr
270
0.70
0
0.5
kJ/mol
1.0
1.5
2.0
Pauling units
Analytical Tests
Alkali metals can be qualitatively identified by flame tests. Lithium
produces a red flame. Sodium produces an orange flame. Potassium,
rubidium, and cesium produce violet flames.
Rubidium
Sodium
Lithium
Potassium
Cesium
Elements Handbook 907
(l)©DAVID TAYLOR/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (c cl)©JERRY MASON/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC.; (cr r)©Tom Pantages
Group 1: Alkali Metals
Lithium
3
[He]2s1
The Mars rovers, Spirit and Opportunity, use
solar energy to recharge lithium-ion batteries.
Environmentally Friendly Batteries
Someday, electric cars might be powered by lightweight
lithium-ion batteries. Lithium batteries have several
advantages compared to lead-acid batteries. Unlike leadacid batteries, lithium batteries do not contain toxic
metals or corrosive acids, making them safer for the
environment. Lithium’s light weight is also an advantage
for electric vehicles. However, lithium batteries do have
some disadvantages. Researchers are trying to find ways
to make lithium batteries that recharge more rapidly.
Cost is also a drawback. Lithium batteries are currently
used for small applications such as laptop computers, but
they will need to be less expensive before they can be
routinely used in larger, more energy-demanding applications such as electric or hybrid vehicles.
Sodium
11
Sodium Content of Some Common Foods
Food
Na
[Ne]3s1
High
sodium
Dietary Salt
In 2006, the American Medical Association
recommended that the amount of sodium in
processed and restaurant foods be reduced by
one-half over the next decade. Sodium is essential for humans, but too much might contribute
to high blood pressure and heart failure. Current
guidelines advise consuming less than 2400 mg
of sodium per day, which is less than one teaspoon. However, Americans typically consume
4000 to 6000 mg of sodium per day. Foods that
contain more than 480 mg of sodium per serving
are considered high-sodium foods. To be labeled
as low sodium, foods must contain 140 mg or
less per serving. The table lists some common
foods that are either high or low in sodium.
908
Elements Handbook
(t)©NASA/epa/Corbis, (b)©1995 Michael Dalton, Fundamental Photographs, NYC
Low
sodium
Sodium Content
(mg) per Serving
fast-food submarine
sandwich with cold cuts
1310
canned chicken noodle
soup
1106
fast-food biscuit with egg
and sausage
1080
cottage cheese
851
dill pickle
833
fast-food cheeseburger
740
canned corn
571
beef hotdog
513
fried fish fillet
484
wheat bread
133
low-fat fruit yogurt
132
fast-food salad with
cheese and egg,
no dressing
119
pound cake
111
oatmeal cookie
96
raw carrots
76
canned peaches
16
frozen corn
2
Real-World Applications
Sodium
11
Na+
Outside cell
[Ne]3s1
Na+
K+
Na+
K+
Na+
Potassium
19
K
Sodium-potassium
pumps
Na+
Na
[Ar]4s1
K+
Na+
K+
Inside cell
The sodium-potassium pump brings two K + ions into a cell for every three Na + ions it
moves out of a cell.
The Sodium-Potassium Pump
Humans and other vertebrates need to maintain
a negative potential charge inside their cells in
order to survive. This process requires sodium
ions, potassium ions, and a membrane-bound
enzyme called sodium/potassium ATPase. Sodium/
potassium ATPase uses energy from the hydrolysis
of ATP to pump sodium ions out of cells and pump
potassium ions into cells. Because of the action of
this pump, the sodium ion concentration is low
Cesium
55
inside cells and high outside cells. The potassium
ion concentration is high inside cells and low outside cells. In fact, potassium ions are the most common ions inside living cells. For every three
sodium ions pumped out of a cell, sodium/potassium ATPase pumps two potassium ions into the
cell. The net result is a negative charge inside the
cell and concentration gradients across the cell
membrane for both potassium and sodium ions.
The cesium fountain atomic clock at NIST is
accurate to about 1 second over a period of
70 million years.
Cs
[Xe]6s1
Cesium Atomic Clocks
One of the most accurate clocks in the world is located
at the United States National Institute of Standards and
Technology (NIST) in Boulder, Colorado. This cesium
fountain atomic clock provides the official time for
the United States. The clock is based on the natural
resonance frequency of the cesium atom
(9,192,631,770 Hz.), which defines the second.
Assessment
7. Describe the trend in density of the alkali metals as
atomic number increases.
8. Compare lithium-ion batteries and lead-acid batteries.
9. Write a balanced equation for the reaction between
lithium and water.
10. Predict the reactivity of lithium metal with water.
11. Analyze Lithium’s properties are more like
magnesium in group 2 than sodium. Use what you
learned about atomic sizes to explain this behavior.
12. Organize Make a table to summarize the data for
physical and atomic properties of the group 1 elements
according to their trends with increasing atomic
number.
Elements Handbook 909
©Geoffrey Wheeler
Group 2: Alkaline Earth Metals
Beryllium
4
Be
[He]2s2
Magnesium
12
Mg
[Ne]3s2
Calcium
20
Physical Properties
• Most of the alkaline earth metals have a silvery-white, metallic
appearance. When exposed to oxygen, a thin oxide coating forms
on the surface.
• The alkaline earth metals are harder, denser, and stronger than many
of the group 1 elements, but are still relatively soft compared to other
metals.
• Most alkaline earth metals have higher melting points and boiling
points than alkali metals.
• Moving down the group, densities generally increase.
Ca
Strontium
38
Sr
[Kr]5s2
1287
Be
Mg
Ca
650
1090
777
Ba
Ba
727
Ra
700
Ra
0
BP
1484
Sr
[Xe]6s2
MP
842
1.738
Mg
1.550
Ca
2.630
Sr
1382
5.000
Ra
1737
2000
3.510
Ba
1870
1000
1.848
Be
2469
Barium
56
Radium
88
Densities
Melting Points and Boiling Points
[Ar]4s2
3000
Temperature (ºC)
0
1
2
3
4
5
g/mL
[Rn]7s2
Common Reactions
• Mg, Ca, Sr, and Ba react with
halogens to form salts, such as
magnesium chloride, and
hydrogen gas.
Example: Mg(s) + 2HCl (g) →
MgCl 2(s) + H 2(g)
• Mg, Ca, Sr, and Ba react with
hydrogen to form hydrides,
such as barium hydride.
Example: Ba(s) + H 2(g) →
BaH 2(s)
• Be, Mg, Sr, and Ca react with
nitrogen to form nitrides, such
as magnesium nitride.
Example: 3Mg(s) + N 2(g) →
Mg 3N 2(s)
910 Elements Handbook
Charles D. Winters/Photo Researchers, Inc.
A ribbon of magnesium reacts with HCl in an
aqueous solution to produce Mg 2+ ions, Cl ions, and hydrogen gas.
Element Facts
Atomic Properties
Atomic
radius
(pm)
Ionic
radius
(pm)
• Alkaline earth metals often lose their two valence electrons to form
ions with a 2+ charge.
Be
112
Be2
31
• Atomic radii and ionic radii increase moving down the group but are
smaller than the corresponding alkali metal.
Mg
160
Mg2+
72
• Ionization energies and electronegativities generally decrease moving
down the group but are larger than the corresponding alkali metal.
Ca
197
Ca2+
100
Sr
215
Sr2
118
Ba
222
Ba2
135
• Each element in group 2 has two valence electrons and an electron
configuration ending with ns 2.
Electronegativities
First Ionization Energies
Be
900
Mg
738
Ca
1.57
Mg
1.31
Ca
590
Sr
Be
1.00
Sr
550
503
Ba
0.89
Ra
509
Ra
0.90
200
400
600
800
+
+
Ra
220
0.95
Ba
0
+
0
kJ/mol
• Mg, Ca, Sr, and Ba react with oxygen to
form oxides, such as magnesium oxide.
Example: 2Mg(s) + O 2(g) → 2MgO(s)
• Sr and Ba react with oxygen to form
peroxides, such as strontium peroxide.
Example: Sr(s) + O 2(g) → SrO 2(s)
• Mg, Ca, Sr, and Ba react with water to form
bases, such as barium hydroxide, and
hydrogen gas.
0.5
1.0
1.5
2.0
Pauling units
Analytical Tests
Three of the alkaline earth metals can be
identified by flame tests. Calcium produces a
scarlet color, while strontium produces a crimson
color. Barium, which if present in a sample can
mask the colors of both calcium and strontium,
produces a yellow-green color.
Example: Ba(s) + 2H 2O(l) →
Ba(OH) 2(aq) + H 2(g)
Barium reacts with water to
form Ba 2+ ions, OH - ions,
and hydrogen gas.
Calcium
Strontium
Barium
Elements Handbook 911
(l)Andrew Lambert/Photo Researchers, Inc., (others)Fundamental Photographs
Group 2: Alkaline Earth Metals
Beryllium plates
Beryllium
4
Be
[He]2s2
Space Telescopes
Beryllium and beryllium alloys have properties
that make them useful for applications in space:
they are hard, they are lighter than aluminum, and
they are stable over a wide temperature range. The
Hubble Space Telescope’s reaction plate is made of
lightweight beryllium. The reaction plate carries
heaters that keep the main mirror at a constant
temperature. Beryllium is also being used in the
Hubble’s replacement—the James Webb Space
Telescope (JWST).
The JWST’s large mirror is composed of 18 hexagonal
beryllium plates.
▲
Emerald beryl
Precious Gems
Emerald (Be 3Al 2Si 6O 18), one of the world’s most
valuable gemstones, belongs to a family of gemstones known as beryls. Pure beryls are clear,
colorless crystals. Beryls tinted with other elements
form gems such as aquamarine, morganite, and
emerald. Trace amounts of chromium or vanadium
give emeralds their unique green color.
Chlorophyll and Crop Yields
Mg
[Ne]3s2
Amount of Magnesium Removed
by Crops from One Hectare of Soil
Crop
Magnesium Removed
from Soil (kg)
Alfalfa
44
Corn
58
Cotton
25
Oranges
25
Peanuts
27
Rice
15
Soybeans
27
Tomatoes
40
Wheat
20
In the early 1900s, German chemist Richard Willstätter discovered
that a molecule of chlorophyll has a magnesium ion at its center.
Chlorophyll, the green pigment in plants, is responsible for photosynthetic processes, which convert sunlight to chemical energy. It is
this chemical energy that supports life on Earth. Notice in the table
that an average yield of common crops removes large amounts of
magnesium from just one hectare of soil. Once the importance of
magnesium was revealed, soils deficient in magnesium were fertilized, greatly increasing crop yields. Willstätter’s work won him the
Nobel Prize in Chemistry in 1915.
CH2 CH3
H3C
H2C — CH
912 Elements Handbook
(l)Mark A. Schneider/Photo Researchers, (r)Courtesy of Northrop Grumman Space Technology
CH3
O
N
N
Mg
N
Chlorophyll
molecule
▲
Magnesium
12
CO2 CH3
H H
N
CH2 CH2 CO2 CH2 CH — C (CH2 CH2 CH2 CH)3 CH3
CH3
H
CH3
CH3
CH3
Real-World Applications
Magnesium
12
Calcium
20
Strontium
38
Mg
Ca
Sr
[Ne]3s2
[Ar]4s2
[Kr]5s2
Barium
56
Ba
[Xe]6s2
Fireworks
Metals Used in Fireworks
The four main components of fireworks are a
container, a fuse, a bursting charge, and stars.
Stars contain the chemical compounds needed
to produce light of brilliant colors. Many of these
compounds contain alkaline earth metals, such
as barium chloride (BaCl 2), strontium carbonate
(SrCO 3), and calcium chloride (CaCl 2). The table
identifies which metals are needed to make the
colors seen during a fireworks display.
Color
Metal
Red
strontium, lithium
Orange
calcium
Gold
iron (with carbon)
Yellow
sodium
White
white-hot magnesium or
aluminum, barium
Green
barium
Blue
copper
Purple
mixture of strontium (red) and
copper (blue)
Silver
aluminum, titanium, or magnesium
powder or flakes
New Engineering Alloys
Magnesium alloys are used when
strong, but lightweight, materials are
needed, such as in backpack frames
and aircraft. These alloys also enable
automotive engineers to design
lighter, more fuel-efficient cars. A
new magnesium alloy, introduced in
the engine cradle of some 2006 automotive models, replaces traditional
aluminum. This alloy reduces the
engine cradle’s mass by approximately one-third, creating a vehicle
that is both agile and controllable.
Considered a breakthrough in
engineering technology, the new
alloy is currently being evaluated
for use in other applications.
The magnesium-alloy engine cradle is lighter than the
aluminum model, yet it can still withstand the high
temperatures produced by the car’s engine.
Engine cradle
Elements Handbook 913
(t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/CORBIS
Group 2: Alkaline Earth Metals
Gypsum
Calcium
20
Ca
[Ar]4s2
A layer of plaster of paris protects
fossils during shipment.
Strontium
38
Drywall is made from gypsum, which is a soft
mineral composed of calcium sulfate dihydrate
(CaSO 4·2H 2O). Drywall boards are used in building construction because the gypsum provides fire
protection. Gypsum contains large amounts of
water in its crystal form, which vaporizes when
heated. The boards remain at 100°C until all of the
water evaporates, protecting the wood frame of the
building. Gypsum that has had most of its water
removed is known as plaster of paris. Most
minerals form pastes when mixed with water.
When plaster of paris is mixed with water, it forms
a rigid crystal structure, so it is often used for casts
to set broken bones and for molds.
Crystals formed from strontium chloride
and saliva fill in pores in the root of a
tooth and block access to the nerve.
Sr
Nerve
[Kr]5s2
Toothpaste containing
strontium chloride
Crystals
Pore to root canal
and nerves
Sensitive Teeth
Dentine
Almost 40 million people in the United States
have teeth that are hypersensitive to touch and
temperature. Sensitivity occurs when the dentine
and roots of teeth are exposed due to receding
gums or thinning of the tooth enamel. This is the
result of poor oral hygiene or, in many instances,
from brushing too hard. Exposing the root enables
stimuli, such as cold temperatures, to reach the
Barium
56
Ba
After being coated with
barium liquid, the large
intestine shows up
clearly on an X ray.
[Xe]6s2
Medical X Rays
Barium is used by medical professionals to examine a person’s gastrointestinal tract. Patients drink
barium liquid, which coats the tract, and are then
X-rayed. Barium is almost completely insoluble in
water and acids and appears as a bright white
color in X rays. This allows doctors and radiologists to locate tumors, ulcers, areas of reflux, and
other abnormalities in the digestive tract.
914 Elements Handbook
(t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers
Root canal
Root
nerve through openings called pores. Toothpastes
that contain strontium chloride (SrCl 2) help
reduce the sensitivity. The compound reacts with
a person’s saliva to create crystals that fill in the
pores so stimuli cannot reach the nerves.
Real-World Applications
Radium
88
Ra
[Rn]7s2
The Discovery of Radioactivity
Marie Curie’s discovery of the atomic property she called
radioactivity paved the way for present-day advancements
in science and medicine. Curie and her husband, Pierre,
unveiled the characteristics and capabilities of radiation,
revolutionizing scientific thinking and laying the groundwork for present-day cancer treatments, genetics, and
nuclear energy. Today, many cancers are treated with
radiation therapy.
Vent pipe
Marie Curie died at the age of 67 from aplastic anemia,
probably caused by her exposure to massive amounts
of radiation. Today, the effects of radiation on health
are well known, and suitable safety precautions are
taken when using radioactive materials.
Fan
Radon Gas
Decay of radium-226 in soil and rock produces radon gas.
The radioactive radon gas can seep through cracks in a home’s
foundation or can be dissolved in water pumped into the house
from a well. High concentrations of radon can increase the risk
of cancer. In many homes, installing a radon-reduction system
reduces the concentration of radon gas by using a fan to draw
the gas through pipes that vent to the outside of the home.
A radon-reduction system lowers the concentration of radon in homes by
venting the radon gas from the home to the outside environment.
Assessment
13. Describe the general trend in first ionization energies
in group 2, and explain why this trend occurs.
14. Explain What is the charge on alkaline earth metal
ions? Explain your answer.
15. Compare and contrast the physical properties
of the alkaline earth metals and the alkali metals.
16. Evaluate why magnesium is used in emergency flares
instead of other alkaline earth metals.
17. Analyze Use the atomic properties of the alkali
metals and alkaline earth metals to explain why
calcium is less reactive than potassium.
18. Infer The alkaline earth metals are usually found
combined with oxygen and other nonmetals in Earth’s
crust. Based on the atomic properties of this group,
explain why alkaline earth metals are so reactive.
19. Calculate Calcium makes up about 1.5% of a
human’s body mass. Calculate the amount of calcium
found in a person who weighs 68 kg.
20. Calculate Radium-226 has a half-life of 1600 years.
After 8000 years, how much of a 500.0-g sample of
radium-226 would be left?
Elements Handbook 915
(l)Fred Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS
Groups 3–12: Transition Elements
Physical Properties
• The main transition elements include four series of d-block elements
with atomic numbers between 21–30, 39–48, 72–80, and 104–109. The
inner transition elements include the f-block (rare earth) elements in
the lanthanide series (atomic numbers 57–71) and actinide series
(atomic numbers 89–103.) All are metals.
• As metals, transition elements are generally good conductors of
electricity and heat. They are ductile, which means they can be pulled
into wires. Transition metals are also malleable, which means they
can be hammered into thin sheets. For example, 1 g of gold can be
hammered into a 1 m 2-sheet that is 0.1 µ thick .
• In general, the transition elements have high densities, high melting
points, and low vapor pressure. Except for mercury, which is a liquid,
all are solids at room temperature.
• High density and resistance to corrosion make transition elements,
such as iron, good structural materials.
• Most transition elements can form colored compounds.
• Transition elements are often paramagnetic, which means they are
attracted to an applied magnetic field. Three transition elements—iron,
cobalt, and nickel—are ferromagnetic. That means these elements can
form their own magnetic fields.
When exposed to a magnet, iron
filings become magnetic and are
attracted to the magnet and to
each other.
Common Reactions
• Most transition elements can form stable
complex ions and coordinate covalent compounds. A complex ion is an ion in which
a central metal ion is surrounded by weakly
bound molecules or ions called ligands.
Example: Prussian blue, an intense blue pigment
used in paints, is a coordinate compound made
of iron(III) and an iron(II) cyanide complex:
Fe 4[Fe(CN) 6] 3.
• Transition elements and their compounds are
often useful as catalysts.
Example: Nickel is used as a catalyst in
converting unsaturated fats to saturated fats.
• Transition elements can react with oxygen to
form oxides.
Example: In the presence of water, iron reacts
with oxygen to form rust. The overall reaction is:
4Fe + 3O 2 → 2Fe 2O 3.
• Transition elements can often combine to form
• Some transition elements are important in
alloys.
biochemical reactions.
Examples:
Example: In the protein hemoglobin, iron binds
• Brass is a mixture of copper and zinc.
to O 2 to transport oxygen from the lungs to the
• Bronze is a mixture of copper and tin.
rest of the body.
916 Elements Handbook
©CORDELIA MOLLOY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.
Element Facts
Atomic Properties
• The main transition elements have incomplete d sublevels.
• Inner transition elements include the lanthanide series and actinide series. Elements in these
series have incomplete f sublevels.
• The electronic structures of the transition elements give rise to their physical properties.
The more unpaired electrons in the d sublevel, the greater the hardness and the higher the
melting and boiling points.
• Unpaired d and f electrons produce paramagnetism in the transition elements.
• The tendency of transition elements to form colored compounds also derives from their
electron configurations. Compounds with unpaired d electrons can absorb visible light.
• For transition elements, there is little variation in atomic size, electronegativity, and ionization energy across a period.
• Transition metals can typically form ions in more than one oxidation state.
Oxidation Numbers of the First Row of Transition Elements
Sc
+3
Ti
+1
+2
+3
+4
V
+1
+2
+3
+4
+5
Cr
0
+1
+2
+3
+4
+5
+6
Mn
0
+1
+2
+3
+4
+5
+6
Fe
0
+1
+2
+3
+4
+5
+6
Co
0
+1
+2
+3
+4
+5
Ni
+1
+2
+3
+4
Cu
+1
+2
+3
Zn
+7
+2
Analytical Tests
Notice in the photo the colorful compounds
of transition metals. When placed in solutions,
these compounds absorb different wavelengths
of light. Visible spectroscopy uses light absorption at specific wavelengths to measure the concentration of colored compounds in solution.
This method of analysis uses the interaction
of valence electrons of transition elements and
visible light. Because many transition element
compounds are colored, this technique can be
used in transition element analysis.
The compounds of transition metals have color because of the partially filled d sublevels. The electrons in these sublevels can absorb
visible light of specific wavelengths. Compounds with empty or
filled d sublevels do not produce brilliant colors.
Elements Handbook 917
©Martyn F. Chillmaid/Photo Researchers, Inc.
Groups 3–12: Transition Elements
Titanium
22
[Ar]3d24s2
Lighter but Stronger than Steel
The curved surfaces of the Guggenheim Museum in Bilbao,
Spain, are covered with 32,000 m 2 of 0.4 mm-thick titanium panels. Titanium’s reflective properties give the building
a warm look that is ever changing. Titanium is also three
times stronger than steel, more resistant to weathering, and
weighs less than steel.
Chromium
24
Manganese
25
Cobalt
27
The titanium panels that cover the outside of the
Guggenheim Museum in Bilbao, Spain, were chosen
for the metal’s physical properties.
Tungsten
74
Platinum
78
Cr
Mn
Co
W
Pt
[Ar]3d54s1
[Ar]3d54s2
[Ar]3d74s2
[Xe]4f145d46s2
[Xe]4f145d96s1
Strategic and Critical Materials
Transition metals, such as chromium, manganese, cobalt, tungsten, and platinum, play a
vital role in the economy of many countries because they have a wide variety of uses. As the
uses of transition metals increase, so does the demand for these valuable materials. Ores
that contain transition metals are located throughout the world.
Locations of Some Strategic Metals
Norway
Nickel
Cobalt
Turkey
Chromium
France
Manganese
Gallium
Canada
Nickel
Copper
Gallium
Tantalum
Zinc
Cesium
Cobalt
Platinum
Vanadium
Indonesia
Tin
Brazil
Manganese Gold
Aluminum Tin
South Africa
Chromium
Manganese
Vanadium
Platinum
Antimony
Gold
The United States now imports more than 60 materials that are classified as “strategic
and critical” because industry and the military are dependent on these materials.
918 Elements Handbook
Copper
Gallium
China
Antimony
Cadmium
Copper
Tin
Manganese
Tantalum
Vanadium
India
Cadmium
Chromium
Manganese
Gabon
Manganese
Mexico
Zinc
Copper
Cadmium Manganese
Strontium
Russia
Chromium
Platinum
Japan
Cadmium
Jamaica
Aluminum
Bolivia
Antimony
Tin
©Colin Walton/Alamy
Antimony
Cobalt
Nickel
Australia
Copper Aluminum Platinum Tin
Nickel Manganese Tantalum Zinc
Real-World Applications
Iron
26
Crust
Nickel
28
Outer mantle
Inner mantle
Fe
6
2
8
[Ar]3d 4s
2
[Ar]3d 4s
Outer core
(iron and nickel)
Inner core (iron)
Earth’s Iron Core
Earth’s core is a solid iron sphere about the size of the
Moon. Surrounding the inner core, there is an outer
liquid core that contains a nickel-iron alloy. Scientists
think the iron core formed when multiple collisions
during Earth’s early history resulted in enough heat to
melt metals. In the molten state, the densest materials,
including iron and nickel, settled to the center and
became Earth’s core. The less-dense materials
remained at the surface. As Earth cooled, the outer
layers solidified, creating Earth’s mantle and crust.
Earth’s crust and mantle insulate the hot iron core.
Copper Microchips
Copper
29
For many years, aluminum was used to make computer
microchips. Although copper is a better electrical conductor
than aluminum, it was not until the late 1990s that the technology existed to use copper in microchips. Combined with
the extremely small size of copper wires, this allows copper
microchips to be smaller and to operate 25 to 30 times faster
than other kinds of microchips. To make wires this small, the
copper must be between 99.999 and 99.9999% pure.
Cu
[Ar]3d104s1
To create a copper microchip, first a layer of tantalum coats a silicon substrate.
Then, copper is deposited using a vacuum process. Copper chips like this one
are used in handheld games, computers, and other electronic devices.
Titanium
22
Chromium
24
Iron
26
Cobalt
27
Copper
29
Cr
Fe
Co
Cu
[Ar]3d24s2
[Ar]3d54s1
[Ar]3d64s2
[Ar]3d74s2
[Ar]3d104s1
Paint Pigments
Paints are a mixture of particles of pigment in a liquid
base. Once the liquid evaporates, the pigment particles
coat a painted surface. Transition elements and their
compounds are often used as paint pigments. Iron oxides
are used as red, yellow, and brown pigments. Chromium,
copper, and cobalt compounds produce green and blue
Artists can create their own paints by mixing dry pigments
pigments. Titanium dioxide is often used for white paint. in a liquid base such as oil, latex, or even egg yolk.
Elements Handbook 919
(t)©Roger Harris/Photo Researchers, Inc., (c)©Tom Pantages, (b)©Kalicoba/Alamy
Groups 3–12: Transition Elements
Gilding
Gold
79
Covering an ordinary object with gold foil or gold leaf can
make the object look like it is made of solid gold. The process,
which is called gilding, has been used for more than 5000
years. To create gold foil, gold is hammered until it is very
thin. The thinnest sheets are called gold leaf. They can be as
thin as 0.1 mm thick. It takes skill and a special gilder’s brush
to handle sheets this thin, but the results can be spectacular.
Au
[Xe]4f145d106s1
Egyptian King Tutankhamun’s coffin was made of wood
covered with gold foil. It has lasted more than 3000 years.
Cadmium
48
Gold
79
Cd
Au
[Kr]4d105s2
[Xe]4f145d106s1
Plastic sheet
Au
Au (10 nm)
Touch Sensors for Robot Fingers
Imagine a surgeon using a robot for microsurgery. In the
future, it might be possible for the surgeon to feel what is
happening as the robot makes a microsuture. Future robots
might use thin, film sensors to mimic the human sense of
touch. These sensors are built on a glass base from alternating
layers of nanoparticles of gold and cadmium sulfide separated
by layers of plastic. The entire sensor is only 100 nm thick and
works by transmitting an electro-luminescent signal and
electric current when regions of the sensor are touched.
Manganese
25
Iron
26
Copper
29
Zinc
30
CdS
(3 nm)
Glass
This touch sensor is made from nanoparticles
of gold and cadmium sulfide.
Silver
47
Cadmium
48
Mn
Fe
Cu
Zn
Ag
Cd
[Ar]3d54s2
[Ar]3d64s2
[Ar]3d104s1
[Ar]3d104s2
[Kr]4d105s1
[Kr]4d105s2
Biotreatment of Acid Mine Wastes
Mining operations can generate acidic wastewater
that contain harmful levels of dissolved transition
metals, including manganese, iron, copper, zinc,
silver, and cadmium. One treatment method uses
naturally occurring anaerobic bacteria to remove
all of the oxygen. Then sulfate-reducing bacteria
convert sulfuric acid in the mine waste to sulfide.
Sulfide reacts with metals in the wastewater to
form metal sulfide precipitates, which can be
recovered and processed for commercial use.
920 Elements Handbook
(t)©The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)©Theodore Clutter/Photo Researchers, Inc.
Untreated acid mine drainage can contaminate streams with
harmful concentrations of transition metals. The red-orange
color of the water comes from iron compounds.
Real-World Applications
Gadolinium
64
Gd
[Xe]4f75d16s2
Magnetic Resonance Imaging
Gadolinium contrast agents are compounds that enhance
differences between normal tissue and abnormal tissue, such
as tumors, in magnetic resonance imaging (MRI) scans. The
gadolinium compounds are injected directly into the bloodstream prior to an MRI scan. Tumors accumulate more of the
gadolinium compounds than normal tissue. Gadolinium
enhances MRI images because it is paramagnetic. Magnetic
resonance imaging uses a strong magnetic field and radio
waves to stimulate water molecules to an excited state. The
MRI image is formed as water molecules relax back to their
normal state. Gadolinium speeds up the relaxation rate, which
improves the contrast between normal and abnormal tissue.
Thorium
90
Lawrencium
103
Th
Lr
[Rn]6d27s2
[Rn]5f146d17s2
This gadolinium-enhanced MRI scan from
a patient with multiple sclerosis shows
several areas of scar tissue (white patches).
Reorganizing the Periodic Table
The actinides are a row of radioactive elements from thorium to
lawrencium. They were not always separated into their own row in
the periodic table. Originally, the actinides were located within the
d-block following actinium. In 1944, Glenn Seaborg proposed a
reorganization of the periodic chart to reflect what he knew about
the chemistry of the actinide elements. He placed the actinide
series elements in their own row directly below the lanthanide
series. Seaborg had played a major role in the discovery of
plutonium in 1941. His reorganization of the periodic table made
it possible for him and his coworkers to predict the properties of
possible new elements and facilitated the synthesis of nine additional transuranium elements.
Seaborg won the Nobel Prize in Chemistry in 1951 for his
work. Element 106, seaborgium, was named in his honor.
Assessment
21. Compare the electron configurations of the main
transition elements and the inner transition elements.
22. Explain how some transition metals can form ions
with more than one charge.
23. Identify countries that export only one “strategic and
critical” transition metal to the United States.
24. Predict Which elements would you expect to have
properties most closely related to gold?
25. Calculate A particular copper-chip manufacturing
process specifies that the copper must be 99.999 to
99.9999% pure. Calculate the maximum limit for
impurities in the copper in parts per million (ppm).
26. Hypothesize Silver is the best conductor of
electricity. Hypothesize why silver is not used for
electric wires if it is such a good conductor of
electricity.
Elements Handbook 921
(t)©ISM/Phototake, (b)©Fritz Goro/Time & Life Pictures/Getty Images
Group 13: Boron Group
Boron
5
B
[He]2s22p1
Aluminum
13
Al
[Ne]3s23p1
Gallium
31
Ga
[Ar]4s23d104p1
Indium
49
Physical Properties
• Most of the elements in group 13 are metals that have a silvery-white
appearance. The exception is boron, which is pure black. Thallium is
initially silvery, but oxidizes quickly.
• Boron is a metalloid. The remaining group 13 elements are metals.
• Elements in this group are relatively lightweight and soft, except for
boron. Boron is extremely hard—almost as hard as diamond.
• The group 13 elements are solids at room temperature. Gallium melts
slightly above room temperature.
• They have higher boiling points than the alkaline earth metals and
lower boiling and melting points than the carbon group elements.
Melting Points and Boiling Points
2076
B
Al
Thallium
81
Ga
Tl
B
2.460
Al
2.700
3927
In
[Kr]5s24d105p1
Densities
660
2519
30
MP
BP
2204
Ga
157
In
In
2072
[Xe]6s24f145d106p1
304
Tl
1000
2000
7.310
Tl
1473
0
5.904
3000
4000
11.850
0
3
6
Temperature (°C)
9
12
g/mL
Common Reactions
• B, Al, Ga, In, and Tl react with oxygen to form metal(III) oxides,
such as aluminum(III) oxide.
Example: 4Al(s) + 3O 2(g) → 2Al 2O 3(s)
• B and Al react with nitrogen to form nitrides, such as boron nitride.
Example: 2B(s) + N 2(g) → 2BN(s)
• Al, Ga, In, and Tl react with halogens to form metal(III) halides,
such as gallium(III) fluoride.
Example: 2Ga(s) + 3F 2(g) → 2GaF 3(g)
• Tl reacts with halogens to form metal(I) halides, such as thallium(I)
fluoride.
Example: 2Tl(s) + F 2(g) → 2TlF(s)
• B reacts with halogens to form covalent compounds, such as boron
trichloride.
Example: 2B(s) + 3Cl 2(g) → 2BCl 3(g)
• Tl reacts with water to form thallium hydroxide and hydrogen gas.
Example: 2Tl(s) + 2H 2O(l) → 2TlOH(aq) + H 2(g)
922 Elements Handbook
Element Facts
Atomic Properties
• Each element in group 13 has three valence electrons and an electron
configuration ending with ns 2np 1.
• Except for boron, the group 13 elements lose their three valence electrons
to form ions with a 3+ charge. Some of the elements (Ga, In, and Tl) also
have the ability to lose just one of their valence electrons to form ions with
a 1+ charge.
• Boron participates only in covalent bonding.
• Atomic radii and ionic radii generally increase going down the group and
are similar in size to the group 14 elements.
• First ionization energies for the group 13 elements generally decrease
going down the group.
First Ionization Energies
Electronegativities
801
B
B
578
Al
Ga
579
Ga
1.81
In
1.78
558
589
Tl
0
200
400
600
B
85
B3
20
Al
143
Al3+
50
Ga
135
Ga3+
62
In
167
In3
81
Tl
170
Tl3
95
+
+
+
1.61
Tl
800
Ionic
radius
(pm)
2.04
Al
In
Atomic
radius
(pm)
1.62
0
0.5
kJ/mol
Analytical Tests
With the exception of aluminum, which is one of
the most abundant elements in Earth’s crust, most
of the boron group elements are rare. None of the
elements are found free in nature. Three can be
identified by flame tests, as shown in the table.
Boron produces a bright green color, while indium
produces an indigo blue color. Thallium produces
a green color. More precise identification methods
involve advanced spectral and imaging techniques.
1.0
1.5
2.0
Pauling units
Flame Test Results
Element
Color of Flame
Boron
initial bright green flash
Indium
indigo blue
Thallium
green
indium
Indium was named after
its distinct indigo blue
spectral line.
Elements Handbook 923
Group 13: Boron Group
Boron
5
B
[He]2s22p1
Detergent
Sodium perborate (NaBO 3·H 2O or NaBO 3·4H 2O) is one of the
key ingredients in powdered laundry detergent. The hydrate,
formed by combining borax pentahydrate (Na 2B 4O 7·5H 2O)
with hydrogen peroxide and sodium hydroxide, releases
oxygen during the laundering process to help make clothes
whiter and brighter. Sodium perborate is the chemical of
choice because it remains stable over long periods of time,
helps maintain wash water pH, and increases the solubility
of detergent ingredients.
Many powder laundry detergents contain boron
compounds that help make clothes cleaner.
Aluminum
13
Al
A thin aluminum film coats the depressions embedding information in a compact disc and makes the
surface of a CD shiny.
[Ne]3s23p1
CDs and DVDs
Have you ever wondered what your CDs and DVDs are
made of? The inside is made of plastic, about 1 mm thick. A
machine embeds digital information, such as sound recordings, into the plastic as a series of bumps and then coats the
plastic with aluminum. That is what makes CDs and DVDs so
shiny. A thin layer of acrylic protects the aluminum. The
shiny surface allows the laser from the CD or DVD player to
read the information reflected off the disc’s surface.
Gallium
31
Ga
[Ar]4s23d104p1
HD DVDs
Videos in high-definition (HD) have higher quality sound
and pictures than regular DVDs. However, HD technology
requires more information than can be stored on regular
DVDs. A red laser is used to read and write data on a regular
DVD. Blue lasers made from gallium nitride (GaN) are used
to read and write data on HD DVDs. Blue light has a shorter
wavelength than red light, so a blue laser can read more
densely packed information, allowing more information to be
stored in the same amount of space.
HD DVDs store up to 50 gigabytes (GB) of information, compared to 4.7 GB on a regular DVD.
924 Elements Handbook
(t)©Tom Pantages, (tc)©Greg Stott/Masterfile, (b)©Toshiba Corporation images, (bc)©Eye of Science/Photo Researchers, Inc.
Real-World Applications
Flat-Screen Televisions
Indium
49
Known as ITO in the electronics industry,
indium-tin oxide has proven to be the cornerstone
of liquid crystal display (LCD) technology. During
production, a thin layer of indium-tin oxide
(a mixture of In 2O 3 and SnO 2) is used to coat the
glass contained within an LCD flat-screen panel.
This allows the glass to be both conductive and
transparent. About half of the world’s indium is
used to make LCDs.
In
[Kr]5s24d105p1
Indium-tin oxide is one of the main components in
LCD flat-panel televisions.
Thallium
81
Tl
[Xe]6s24f145d106p1
Cardiac Scans
Thallium-201 is a radioisotope used by medical professionals to determine the health of a person’s heart.
During a thallium-201 scan, also called a heart stress
test, a patient performs physical activity and is injected
with thallium-201 one to two minutes before stopping
the activity. The isotope emits gamma rays that are
recorded by a detector to display a two-dimensional
image of the heart and its blood supply. If gamma rays
are not detected in certain areas in and around the
heart, the areas are considered “cold.” This means that
the blood supply has been impeded or blocked, a condition that often leads to heart attack or stroke.
The dark blue areas in this thallium-201 scan
are areas with low blood supply.
Assessment
27. Describe how the properties of boron are different
from the other group 13 elements.
30. Explain why HD DVDs can store more information
than regular DVDs.
28. Identify what an unknown element would be if it
produced a green flash of color at the beginning of
a flame test.
31. Summarize how “cold” areas in thallium-201 scans
could correspond to artery blockages.
29. Describe any trends in the first ionization energies of
the group 13 elements.
32. Calculate It is estimated that 123,000 aluminum
cans are recycled each minute. Assume that each can
has a mass of 14 g. Determine how much aluminum
(kg) is recycled during the month of September.
Elements Handbook 925
(t)©Judith Collins/Alamy, (b)©Collection CNRI/Phototake
Group 14: Carbon Group
Carbon
6
C
[He]2s22p2
Silicon
14
Si
[Ne]3s23p2
Germanium
32
Ge
[Ar]4s23d104p2
Tin
50
Physical Properties
• Elements in the carbon group increase in metallic character going
down the group. Carbon is a nonmetal. Silicon and germanium are
metalloids. Tin and lead are metals.
• Carbon can be a black powder; a soft, slippery gray solid; a hard,
transparent solid; or an orange-red solid.
• Silicon can be a brown powder or a shiny-gray solid.
• Germanium is a shiny, gray-white solid that breaks easily.
• Tin also occurs in two forms. One form is a silvery-white solid, while
the other is a shiny-gray solid. Both forms are ductile and malleable.
• Lead is a shiny-gray solid. It is soft, malleable, and ductile.
• Moving down the group, melting and boiling points decrease and
densities increase.
Sn
3527
C
Lead
82
Pb
[Xe]6s24f145d106p2
Densities
Melting Points and Boiling Points
[Kr]5s24d105p2
4027
1414
Si
2900
938
Ge
MP
BP
2820
232
Sn
327
1000
2000
Si
2.330
Ge
5.323
7.310
Pb
1749
0
2.267
Sn
2602
Pb
C
3000
4000
11.340
0
Temperature (°C)
3
6
9
12
g/mL
Common Reactions
At room temperature, carbon group elements are generally unreactive. Reactions
do occur under elevated temperature
conditions.
• C, Si, Ge, and Sn react with oxygen to
form oxides, such as carbon dioxide.
Example: C(s) + O 2(g) → CO 2(g)
• C, Si, Ge, and Sn react with halogens to
form halides, such as silicon chloride.
Example: Si(s) + 2Cl 2(l) → SiCl 4(g)
• Sn and Pb react with bases to form
hydroxo ions and hydrogen gas.
Example:
Sn(s) + KOH(aq) + 2H 2O(l) →
K +(aq) + Sn(OH) 3 -(aq) + H 2(g)
926 Elements Handbook
©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC.
Silicon chloride (SiCl4) reacts with
water to form silicon dioxide and
hydrochloric acid, which turns litmus paper pink.
Element Facts
Atomic Properties
Atomic
radius
(pm)
Ionic
radius
(pm)
C
77
C4
15
Si
118
Si4
41
• Atomic and ionic radii increase moving down the group and are similar to
their corresponding group 13 elements.
Ge
122
Ge4+
53
• Except for carbon, the group 14 elements have similar ionization energies
and no distinct pattern of electronegativities.
Sn
140
Sn4
71
Pb
146
Pb4
84
• Each element in group 14 has four valence electrons and an electron
configuration ending with ns 2np 2.
• Carbon group elements participate in covalent bonding with an oxidation
number of 4+. Tin and lead can also have an oxidation number of 2+.
Carbon and silicon have an oxidation number of 4- in some compounds.
• Carbon, silicon, and tin occur as allotropes.
1087
Si
762
709
Sn
Pb
716
Pb
200
400
600
800
+
1.90
2.01
Ge
Sn
0
+
2.55
C
Si
787
Ge
+
Electronegativities
First Ionization Energies
C
+
1000
kJ/mol
• C reacts with water to form carbon
monoxide and hydrogen gas.
Example: C(s) + H 2O(g) →
CO(g) + H 2(g)
• Si reacts with water to form silicon
dioxide and hydrogen gas.
Example: Si(s) + 2H 2O(l) →
SiO 2(s) + 2H 2(g)
• Sn and Pb react with acids to form
hydrogen gas.
Example:
Pb(s) + 2HBr(aq) →
Pb Br 2(aq) + H 2(g)
• C reacts with hydrogen to form
hydrocarbons, such as propane.
Example: 3C(s) + 4H 2(g) → C 3H 8(g)
1.96
2.33
0
0.5
1.0
1.5
2.0
2.5
Pauling units
Analytical Tests
Because the group 14 elements bond covalently, they
do not lend themselves to
identification through flame
tests. The exception is lead,
which produces a light-blue
color. The carbon group
elements can be identified
through analysis of their
physical properties (melting
point, boiling point, density), emission spectra, or
reactions with other chemicals. For example, tin and
lead form precipitates when
added to specific solutions.
If lead nitrate is added to
potassium iodide, a yellow
precipitate of lead iodide forms.
Elements Handbook 927
©David Taylor/Photo Researchers, Inc.
Group 14: Carbon Group
Carbon
6
C
[He]2s22p2
Graphite Golf Shafts
Some golf shafts are created by fusing
sheets of graphite together with a binding
material. The use of graphite instead of traditional steel allows
greater versatility in club design and construction. Graphite
sheets can be layered to vary the weight and stiffness of the
club, which for many golfers translates into greater shot distance and overall performance. Graphite also offers greater
durability than steel for golfers with powerful swings.
Graphite can be easily formed into
sheets due to its atomic structure.
Diamond Cutting
Too deep
Ideal
Too shallow
The way a diamond is cut determines how well light is
reflected and refracted within the gemstone.
The way a diamond is cut is one of the “4 Cs” that
gemologists use to determine a diamond’s value. If
diamond is the hardest mineral on Earth, then how
is it possible to cut a diamond? Diamond cutters use
other diamonds and lasers to create facets that reflect
and refract light. The more precisely the cuts are
made, the greater the gem’s brilliance. If a diamond
cut is too shallow or too deep, light escapes from the
diamond without traveling back to the eye, resulting
in a lackluster appearance.
Nanotubes
Fullernes form a group of carbon allotropes. There are
spherical fullerenes nicknamed buckyballs and cylindrical
fullerenes known as buckytubes or nanotubes. Fullerenes
have yet to display all of their capabilities to scientists. One
of the most promising areas of fullerene research involves the
creation of nanotubes. Nanotubes are sheets of carbon that
are rolled up into cylinders. These cylinders are strong—due
to the hexagonal structure of the carbon atoms—and have
unique conducting properties. Fullerene nano-technology on
the horizon includes the development of faster computer
chips, smaller electronic components, and more advanced
space-exploration vehicles.
The hexagonal structure of carbon atoms gives
extraordinary strength to carbon nanotubes.
928 Elements Handbook
(tr)©CHEMICAL DESIGN/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (tr)©Johner Images/Getty Images, (b)©DR TIM EVANS/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.
Real-World Applications
Step 1 Thin wafers
are cut from a bar
of silicon.
Silicon
14
Si
[Ne]3s23p2
Computer Chips
Computer chips are everywhere. From pet-identification
systems to laptop computers—any device that can be
programmed contains a computer chip. Silicon’s abundance
and ability as a semiconductor make it an ideal material for
the production of computer chips. The first step in making a
computer chip involves cutting pure silicon into wafer-like
pieces. Silicon dioxide (SiO 2) is then cultivated on each wafer.
Layers upon layers of silicon dioxide and other chemicals are
used to create chips for specific functions.
Step 2 A layer of
silicon dioxide is
added to each
wafer.
More than 250 steps are needed to create
one computer chip.
Glass
Almost 40% of the sand produced in the United States is used for glass production. Glass is created by first melting silicon dioxide (SiO 2) obtained from sand with sodium carbonate and then
supercooling the mixture. This results in a solid whose structure resembles a liquid and whose
physical properties make it ideal for glassmaking. For manufacturing purposes, sand that yields at
least 95% SiO 2 with no impurities is required for making glass products, such as exterior panels
on buildings, automotive windshields, and commercial beverage containers. Manufacturers of
high precision optical instruments, such as telescopes and microscopes, require sand that contains more than 99.5% SiO 2.
Sand dunes in Michigan
provide millions of metric
tons of sand each year.
Sand produced (metric tons)
Sand Production in Michigan
2,500,000
2,000,000
1,500,000
1,000,000
500,000
0
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05
Year
Elements Handbook 929
©Phil Schermeister/CORBIS
Group 14: Carbon Group
Germanium
32
Ge
[Ar]4s23d104p2
Night Vision
Lenses that contain germanium are found in an array of night vision
equipment including goggles, binoculars, and cameras. Unlike ordinary glass lenses, germanium-containing lenses are transparent to
infrared radiation. Infrared radiation is emitted by objects that radiate
heat. Infrared radiation is part of the electromagnetic spectrum, a
region distinct from the visible spectrum, so special equipment is
needed to detect it. Night vision is used for military and security applications, to monitor wildlife, to navigate roads, and to locate objects
that have been hidden by criminals.
The germanium lens in night vision
goggles focuses infrared radiation emitted from living things.
Fiber Optic Cables
Fiber optic cables are responsible for the transmission of
information both across the street and across the globe.
These cables are made of extremely pure glass that allows
light signals to travel the span of the cable without losing a
significant amount of energy. Each fiber optic cable consists
of three main parts: a core, cladding, and a buffer coating.
The core is made by exposing gaseous germanium tetrachloride (GeCl 4) to oxygen, resulting in germanium dioxide
(GeO 2). The germanium dioxide helps the light signal move
effectively along the cable.
Germanium is added to the core of a fiber optic cable
to improve the efficiency of the light signal.
Tin
50
Sn
[Kr]5s24d105p2
Food Packaging
A quick trip to the grocery store reveals that many different foods are stored in cans. Soft drinks, fruits, vegetables, and even meats can be stored in cans. Cans are
made from sheets of steel that are coated on both sides
with pure tin. Known as tinplate, the metal is both
durable and resistant to rusting and corrosion. These
properties allow foods to stay fresh on the shelf for
long periods of time, and to be transported long distances. More than 200 million cans are used per day in
More than 2500 different products are packaged in cans.
the United States alone.
930 Elements Handbook
(t)©Martin Dohrn/naturepl.com, (c)©GOODSHOOT - JUPITERIMAGES FRANCE/Alamy, (b)©Allan H Shoemake/Taxi/Getty Images
Real-World Applications
Lead
82
Pb
[Xe]6s24f145d106p2
Leaded or Unleaded?
In the early 1900s, the automotive industry needed to solve a
problem that people complained about when they drove their
cars—knocking in the engine. At the time, little was known about
the chemistry of fuels and fuel additives. Researchers spent seven
years searching for a gasoline additive that effectively reduced
knocking before discovering tetraethyl lead (Pb(C 2H 5) 4). Further
research revealed the health and environmental risks posed by
lead, leading to the development of unleaded fuels that reduce
knocking.
Unleaded fuels reduce knocking in car
engines and do not have the health and environmental concerns posed by leaded fuels.
Batteries
Anode (+)
Cathode (-)
Lead
Lead
dioxide
Electrolytic
solution
Eighty-five percent of the lead used in the United
States goes into making lead-acid batteries.
A car battery is composed of three main parts: one electrode made of lead, one electrode made of lead dioxide
(PbO 2), and an electrolytic solution made with sulfuric acid
(H 2SO 4). That is why car batteries are also called lead-acid
batteries. The battery’s energy comes from the chemical
reactions occurring between the electrodes and the
electrolyte. During the chemical reaction, electrons are produced that accumulate on the lead electrode. When a wire
connects the electrodes, electrons flow freely from the lead
electrode to the lead-dioxide electrode, and the battery
discharges. Applying a current reverses the reaction,
recharging the battery.
Assessment
33. Write the electron configuration of tin.
34. Summarize the physical properties of the elements in
group 14.
35. Compare and contrast the atomic properties of the
group 13 and group 14 elements.
36. Predict what product or products will be formed if
bromine gas reacts with solid carbon under elevated
temperature conditions.
37. Consider why graphite is the most suitable carbon
allotrope for golf clubs.
38. Calculate Pure diamond has a density of 3.52 g/cm 3,
while graphite has a density of 2.20 g/cm 3. Recall that
density = mass/volume. Samples of diamond and
graphite each displace 4.60 mL of water. What is the
mass of each sample?
Elements Handbook 931
©Chinch Gryniewicz; Ecoscene/CORBIS
Group 15: Nitrogen Group
Physical Properties
Nitrogen
7
• Like the elements in group 14, the group 15 elements increase in
metallic character going down the group. Nitrogen and phosphorus are
nonmetals. Arsenic and antimony are metalloids. Bismuth is a metal.
N
[He]2s22p3
• Also like group 14, the nitrogen group elements vary in appearance.
Phosphorus
15
• Nitrogen is a colorless, odorless gas (N 2).
P
• Phosphorus exists in three allotropic forms, which are all solids. The
forms are white, red, and black in color.
[Ne]3s23p3
Arsenic
33
• Arsenic is a shiny, gray solid that is brittle. Under certain conditions, it
can become a dull, yellow solid. Arsenic sublimates when heated.
As
[Ar]4s23d104p3
• Bismuth is a shiny, gray solid that has a pink cast to it. It is one of the
least conductive metals on the periodic table and is also brittle.
Antimony
51
Sb
2
10
• Antimony is a shiny, silver-gray solid that is very brittle.
3
[Kr]5s 4d 5p
Bismuth
83
Bi
[Xe]6s24f145d106p3
• Boiling points and densities of the group 15 elements generally
increase going down the group.
Melting Points and Boiling Points
Densities
-210
-196
N
44
P
P
277
As
817
614
Sb
631
MP
BP
1587
271
Bi
1564
-500
0
500
1000
1.823
As
5.727
Sb
6.697
Bi
1500
9.780
0
Temperature (°C)
2
4
6
8
10
g/mL
Common Reactions
• At high temperatures are increased, nitrogen reacts with oxygen to
form nitric oxide.
Example: N 2(g) + O 2(g) → 2NO(g)
• At high temperature and pressure, nitrogen reacts with hydrogen to
form ammonia.
Example: N 2(g) + 3H 2(g) → 2NH 3(g)
• P reacts with an excess of oxygen to form phosphorus(V) oxide.
Example: P 4(s) + 5O 2(g) → P 4O 10(s)
• P, As, Sb, and Bi react with oxygen to form element(III) oxides.
Example: P 4(s) + 3O 2(g) → P 4O 6(s)
• P, As, Sb, and Bi react with halogens to form trihalides.
Example: 2Sb(s) + 3Cl 2(g) → 2SbCl 3(s)
932 Elements Handbook
Element Facts
Atomic Properties
Atomic
radius
(pm)
Ionic
radius
(pm)
• Nitrogen is diamagnetic, meaning it is repelled by magnetic fields. This
indicates that all of nitrogen’s electrons are paired.
N
75
N3
146
• Nitrogen can have oxidation numbers ranging from −3 to +5.
P
110
P3212
As
120
As3222
Sb
140
Sb5+
62
Bi
150
Bi5
74
• Each element in group 15 has five valence electrons and an electron
configuration ending with ns 2p 3.
• Phosphorus, arsenic, and antimony can have oxidation numbers of −3,
+3, and +5.
• Bismuth can have oxidation numbers of +3 and +5.
• Going down the group, first ionization energies and electronegativities
decrease and atomic radii increase.
Electronegativities
First Ionization Energies
N
1402
P
1012
947
As
Sb
834
Bi
703
0
500
1000
1500
kJ/mol
N
3.04
P
2.19
As
2.18
Sb
2.05
Bi
2.02
0
1.0
2.0
-
+
3.0
Pauling units
Analytical Tests
Because group 15 elements bond covalently and most
are nonmetallic in nature, they do not lend themselves
to identification through flame tests. The exceptions
are antimony and bismuth. Antimony produces a faint
green or blue color when placed in a flame, while
bismuth produces a light purple-blue color.
The nitrogen group elements can be identified
through analysis of their physical properties (melting
point, boiling point, density), emission spectra, or
reactions with other chemicals. For example, bismuth
ions precipitate when added to tin(II) hydroxide and
sodium hydroxide. Another example is the test for
ammonium compounds. These compounds, which
contain nitrogen, can be identified by their distinct
smell when added to sodium hydroxide and by the
color change observed when red litmus paper is
placed at the opening of the test tube.
The ammonia vapor produced by mixing
ammonium compounds (NH 4 +) with sodium
hydroxide changes red litmus paper to blue.
Elements Handbook 933
©Tom Pantages
Group 15: Nitrogen Group
Nitrogen
7
N
[He]2s22p3
Nitrogen-Fixing Bacteria
Although nitrogen makes up about 78% of Earth’s atmosphere,
it occurs in a form that plants cannot use. Some bacteria in the
soil convert nitrogen gas (N 2) from the air into a usable form
by breaking the molecule’s triple bond. This creates a form of
nitrogen that plants uptake into their root systems. Plants need
nitrogen to build cellular components, to participate in photosynthesis, and to transfer energy effectively. Commercial
fertilizers mimic the action of nitrogen-fixing bacteria by
providing nitrogen and other nutrients in forms that are easily
incorporated into the plant system.
Nitrogen-fixing bacteria are found in
protective nodules along plant roots.
Liquid Nitrogen Cryotherapy
Cryotherapy, also called cryosurgery, is a medical procedure
used to remove a variety of skin lesions, including
carcinomas, warts, and other tissue abnormalities. The procedure involves dabbing liquid nitrogen onto the affected
area to freeze and kill the cells. This is then repeated over
time until all of the affected tissue is gone. Research has
shown that patients who undergo cryotherapy treatment for
certain types of lesions experience a lower recurrence rate
than patients who receive radiation or surgical removal.
Doctors use liquid nitrogen as one of the treatment options to
remove certain types of skin cancer. More than 1.3 million new
cases of skin cancer are recorded each year in the United States.
Phosphorus
15
P
[Ne]3s23p3
Safety Matches
Safety matches consist of two main parts: the tip and the
textured strip on the side of the box. The tip contains potassium
chlorate, and the textured strip contains red phosphorus.
When these two chemicals come in contact, a chemical
reaction occurs, and fire is produced. In safety matches, the
chemicals needed for reaction are separate from each other. In
strike-anywhere matches, both chemicals are contained in the The strike of a match initiates a chemical
matchstick so that ignition can occur using almost any surface. reaction that produces a flame.
934 Elements Handbook
(t)©Wally Eberhart/Visuals Unlimited, (c)©Dr P. Marazzi/Photo Researchers, Inc., (b)©Al Francekevich/CORBIS
Real-World Applications
Antimony
51
Sb
[Kr]5s24d105p3
Flame Retardants
Antimony trioxide (Sb 2O 3) is used along with
brominated or chlorinated compounds in the making
of flame retardants that protect plastics, paints, and
some textile products. Antimony trioxide increases the
effectiveness of the halogen compounds in preventing
the spread of a fire. Research shows that approximately
5000 deaths in the United States are caused by fire
each year. The use of flame retardants improves escape
time, releases less toxic gases and heat, and decreases
fire damage.
Antimony trioxide fire retardants coat electrical wires and
components found in a variety of everyday appliances.
Bismuth
83
Bi
[Xe]6s24f145d106p3
Soothing Upset Stomachs
Originally named Mixture Cholera Infantum, the popular
pink medicine now used for upset stomachs was created to
combat cholera. This mixture, whose active ingredient was
bismuth subsalicylate (C 7H 5BiO 4), proved effective in treating
the nausea and vomiting associated with infant cholera.
However, it could not cure the disease itself. Nonetheless, the
product became a wide success. As science advanced and doctors realized that cholera was contracted from bacteria (which
could be treated with antibiotics), bismuth subsalicylate found
its way into medical treatments for a variety of other stomach
problems, including heartburn, indigestion, and ulcers.
Bismuth subsalicylate
(C 7H 5BiO 4) is the active ingredient in some medicines used
to treat stomach problems.
Assessment
39. Identify which elements in the nitrogen group are
metals, nonmetals, or metalloids.
40. Explain why nitrogen does not react with other
elements under normal temperature conditions.
43. Write a balanced chemical equation for the reaction
between potassium chlorate (KClO 3) and red phosphorus (P 4). The reaction produces potassium chloride
(KCl) and phosphorus pentoxide (P 4O 10).
41. Explain why a compound of antimony is used in
flame retardants that protect plastic products.
44. Predict what product will be formed when bismuth is
combined with chlorine.
42. Describe how fertilizers mimic the action of nitrogenfixing bacteria.
45. Calculate A 35-kg bag of fertilizer contains 5.25 kg of
nitrogen. What percentage of the fertilizer is nitrogen?
Elements Handbook 935
(t)©Michael Newman/Photo Edit, (bl)©Michael Newman/photoedit, (br)©Janet Horton
Group 16: Oxygen Group
Oxygen
8
O
[He]2s22p4
Sulfur
16
S
[Ne]3s23p4
Selenium
34
Se
[Ar]4s23d104p4
Tellurium
52
Physical Properties
• At room temperature, oxygen is a clear, odorless gas, while the other
group 16 elements are solids.
• Some of the group 16 elements have several common allotropic
forms. Oxygen can exist as either O 2 or O 3 (ozone). Sulfur has many
allotropes. Selenium has three common allotropes: amorphous gray,
red crystalline, and red/black powder.
• Oxygen, sulfur, and selenium are nonmetals. Tellurium and pollonium
are metalloids.
• O 2 is paramagnetic, which means that a strong magnet will attract
oxygen molecules.
• Except for polonium, boiling points and melting points of the group 16
elements increase with increasing atomic number. Density increases
with increasing atomic number for all group 16 elements.
Te
Polonium
84
Po
[Xe]6s24f145d106p4
Densities
Melting Points and Boiling Points
[Kr]5s24d105p4
O
-218
-183
115
S
221
Se
1.960
Se
685
4.819
Te
450
Te
S
MP
BP
445
6.240
988
254
Po
962
-400 -200
0
200 400
600
800
Po
1000
9.196
0
2
4
6
8
10
g/mL
Temperature (°C)
Common Reactions
• S, Se, Te, and Po react with oxygen
to form oxides, such as selenium
oxide.
Oxides of Main Group Elements
H
H 2O,H 2O 2
Example: Se(s) + O 2(g) → SeO 2(s)
1
Li 2O, Na 2O, K 2O, Rb 2O,
Cs 2O, Fr 2O
• Oxygen also reacts with hydrogen
and most of the elements in
groups 1, 2, 13, 14, 15, and 17 to
form oxides, such as silicon oxide
and magnesium oxide.
2
BeO, MgO, CaO, SrO, BaO, RaO
13
B 2O 3, Al 2O 3, Ga 2O 3, In 2O 3,
In 2O, Ti 2O
14
CO 2, SiO 2, GeO 2, SnO 2, SnO,
PbO 2, PbO
15
N 2O 5, N 2O 3, N 2O, NO, NO 2,
P 4O 10, P 4O 6, As 2O 5, As 4O 6,
Sb 2O 5, Sb 4O 6, Bi 2O 3
17
Cl 2O 7, Cl 2O, Br 2O, I 2O 5
Examples: Si + O 2 → SiO 2
2Mg + O 2 → 2MgO
• O, S, Se, Te, and Po react with
halogens to form halides, such
as sulfur(VI) fluoride.
Example: S(s) + 3F 2(g) → SF 6(l)
936 Elements Handbook
Element Facts
Atomic Properties
• Each element in group 16 has six valence electrons and an electron
configuration ending with ns 2np 4.
• Group 16 elements can have many different oxidation numbers.
For example, oxygen can have oxidation numbers of 2- and 1-, and
sulfur can have oxidation numbers of 6+, 4+, and 2-.
• Going down the elements in group 16, the atomic radii and ionic radii
increase.
• Electronegativity and first ionization energy decrease going down the
elements in group 16.
• Polonium has 27 known isotopes. All are radioactive.
Atomic
radius
(pm)
Ionic
radius
(pm)
O
73
O2
140
S
103
S2184
Se
119
Se2198
Te
142
Te2221
-
Po
168
First Ionization Energies
1314
O
1000
S
Se
500
1000
2.58
2.55
Te
812
0
3.44
Se
869
Po
O
S
941
Te
Electronegativities
2.10
Po
1500
kJ/mol
• Group 16 elements are involved
in many important industrial
reactions, such as the formation
of sulfuric acid.
Example: Sulfuric-acid production
is a three-step process.
1) S(s) + O 2(g) → SO 2(g)
2) 2SO 2(g) + O 2(g) → 2SO 3(g)
2.00
0
1.0
2.0
3.0
4.0
Pauling units
Analytical Tests
Oxygen can be measured in many different ways and in many
different environments. For example, dissolved-oxygen meters
measure oxygen in water samples. Dissolved-oxygen meters
use an electrochemical reaction that reduces oxygen molecules to hydroxide ions. The meter measures the electric
current produced during this reaction. The higher the oxygen
concentration, the larger the current.
3) SO 3(g) + H 2O(l) → H 2S O 4(l)
Dissolved-oxygen tests are part of
routine water quality monitoring.
Elements Handbook 937
©Chuck Place Photography
Group 16: Oxygen Group
Oxygen
8
O
[He]2s22p4
Photosynthesis Produces O 2 from H 2O
Earth’s atmosphere is 21% oxygen by volume. Most of the oxygen in
the atmosphere comes from photosynthesis. Photosynthetic organisms,
including plants and cyanobacteria, use energy from sunlight to oxidize water. The result is hydrogen ions (H +) and oxygen (O 2). The
reactions involved in this part of photosynthesis are called light
reactions because they depend on light energy to proceed. During the
dark reactions of photosynthesis, the hydrogen ions derived during the
light reactions are combined with carbon dioxide (CO 2) to form
Photosynthesis captures energy from
glucose (C 6H 12O 6). The overall reaction for photosynthesis follows:
sunlight and provides hydrogen ions to
6H 2O + 6CO 2 → C 6H 12O 6 + 6O 2
The Dual Nature of Ozone
Air Quality Index for Ozone
Index
Values
Levels of
Health
Concern
Cautionary Statements
0–50
good
none
51–100
moderate
Unusually sensitive people should
consider reducing prolonged or
heavy exertion outdoors.
101–150 unhealthy
for sensitive
groups
Active children and adults, and
people with lung disease, such as
asthma, should reduce prolonged
or heavy exertion outdoors.
151–200 unhealthy
Active children and adults, and
people with lung disease should
avoid prolonged or heavy
exertion outdoors. Everyone else
should reduce prolonged or
heavy exertion outdoors.
201–300 very
unhealthy
Active children and adults, and
people with lung disease, such as
asthma, should avoid all outdoor
exertion. Everyone else should
avoid prolonged or heavy
exertion outdoors.
301–500 hazardous
Everyone should avoid all
physical activity outdoors.
Data obtained from: Patient Exposure and the Air Quality Index. U.S. E.P.A. March 2006
938 Elements Handbook
(t)©Scientifica/Visuals Unlimited, (b)©Glow Images/Alamy
synthesize glucose from carbon dioxide.
Ozone (O 3), an allotrope of oxygen, has three
oxygen atoms per molecule instead of two. Like
diatomic oxygen (O 2), ozone is a gas at room
temperature. However, unlike O 2, ozone gas has
a slight blue color and a distinctive odor that
can be detected during a thunderstorm or near
a high-voltage electric motor. Ozone is also
more reactive than diatomic oxygen. At ground
level, ozone can be a serious potential health
hazard, irritating eyes and lungs. High groundlevel ozone concentrations are a particular
threat on hot sunny days. The table illustrates
how ozone affects air quality and health. On the
other hand, stratospheric ozone protects Earth
from harmful UV radiation by absorbing UV
rays from sunlight.
Many cities issue air-quality alerts when groundlevel ozone levels are high.
Real-World Applications
[Ne]3s23p4
An Economic Indicator
Sulfuric acid is one of the world’s most important industrial raw materials. In the United
States, more sulfuric acid is produced than any
other industrial chemical. Most sulfuric acid is
used in the production of phosphate fertilizers.
Sulfuric acid is also important in extracting
metals from ore, oil refining, waste treatment,
chemical synthesis, and as a component in
lead-acid batteries. Sulfuric acid is so important that economists use its production as a
measure of a nation’s industrial development.
Selenium
34
Se
[Ar]4s23d104p4
Sulfuric acid
40
30
Chemical sales
20
Ammonia
500
400
300
10
0
200
100
Chlorine
1994
1996
1998
2000
$ Billions
S
Millions of metric tons
U.S. Chemical Production
Sulfur
16
2002
2004
0
Year
Data obtained from: Chemical & Engineering News 83 (2005) and 84 (2006).
Sulfuric acid production in the United States is
used to track chemical economic trends.
Photocopies
Gray selenium is a photoconductor, which means it conducts
electricity more efficiently in the presence of light than in the
dark. Some photocopiers use this property to copy images.
In a photocopier, a bright light shines on the original. Mirrors
reflect the dark and light areas onto a drum coated with a
thin layer of selenium. Because selenium is a photoconductor,
the light areas conduct electricity, while the dark areas do not.
As current flows through the drum, the light areas develop
a negative charge and the dark areas develop a positive
charge. Negatively charged toner particles are attracted to the
positively charged dark areas to create a copy of the original
image. Some of this same technology has been applied in
developing new high-resolution digital detectors that use
selenium as a photoconductor.
Gray selenium is a key component in many
photocopiers.
Assessment
46. Identify the molecule that is the source of oxygen
atoms for O 2 production during photosynthesis.
47. Explain why high ozone concentrations are harmful at
ground level but beneficial in the upper atmosphere.
48. Calculate Approximately 90% of the sulfur used in
the United States is used to make sulfuric acid. In 2004,
38.0 million metric tons of sulfuric acid were produced.
How much sulfur did the United States use in 2004?
49. Apply Coal and petroleum products are sometimes
contaminated with sulfur. When coal or petroleum containing sulfur is burned, sulfur dioxide (SO 2) can be
released into the atmosphere. Use the information
about the reactions involved in industrial sulfuric-acid
production to infer how atmospheric sulfur dioxide
contributes to acid precipitation.
Elements Handbook 939
©Leslie Garland Picture Library/Alamy
Group 17: Halogen Group
Physical Properties
Fluorine
9
• Fluorine and chlorine are gases at room temperature. Along with
mercury, bromine is one of only two elements that are liquid at room
temperature. Iodine is a solid that easily sublimes at room temperature.
F
[He]2s22p5
• Fluorine gas is pale yellow. Chlorine gas is yellow-green. Bromine is a
red-brown liquid. Iodine is a blue-black solid.
Chlorine
17
Cl
• Both boiling points and melting points of the group 17 elements
increase with increasing atomic number.
[Ne]3s23p5
Bromine
35
Melting Points and Boiling Points
Br
2
10
5
F
[Ar]4s 3d 4p
-220
-188
-102
-34
Cl
Iodine
53
Br
59
I
[Kr]5s24d105p5
Astatine
85
At
[Xe]6s24f145d106p5
MP
BP
-7
114
184
I
At
-400
302
-200
0
200
400
Temperature (°C)
Iodine crystals are a blue-black color.
They produce a violet vapor when
they sublime at room temperature.
Common Reactions
• The halogens react with alkali metals and alkaline earth metals to
form salts, such as potassium bromide and calcium chloride.
Examples: 2K(s) + Br 2(g) → 2KBr(s) and Ca(s) + Cl 2(g) → CaCl 2(s)
• The halogens can form acids, such as hydrochloric acid, by hydrolysis in water.
Example: Cl 2(g) + H 2O(l) → HClO(aq) + HCl(aq)
• Several important plastic polymers, including nonstick coatings and
polyvinyl chloride, contain group 17 elements.
Example: Polyvinyl chloride (vinyl) is made by a three-step process.
1) Ethene reacts with chlorine to form dichloroethane.
C 2H 4(g) + Cl 2(g) → C 2H 4Cl 2(l)
2) At high temperature and pressure, dichloroethane is converted to
vinyl chloride and HCl gas.
C 2H 4Cl 2(l) → C 2H 3Cl(l) + HCl(g)
3) Vinyl chloride polymerizes to form polyvinyl chloride.
2n(C 2H 3Cl)(l) → (—CH 2–CHCl–CH 2–CHCl—) n(l)
• Fluorine is the most active of all the elements and reacts with every
element except helium, neon, and argon.
Example: 2Al(s) + 3F 2(g) → 2AlF 3(s)
940
Elements Handbook
©Larry Stepanowicz/Visuals Unlimited
Element Facts
Atomic Properties
Atomic
radius
(pm)
Ionic
radius
(pm)
• Electronegativities and first ionization energies decrease going down
the elements in group 17.
F
72
F1
133
• Fluorine is the most electronegative element on the periodic table.
Therefore, it has the greatest tendency to attract electrons.
Cl
100
Cl1181
• Astatine is a radioactive element with no known uses.
Br
114
Br1
195
I
133
I1
220
• Each element in group 17 has seven valence electrons and an electron
configuration ending with ns 2np 5.
• The atomic radii and ionic radii of the group 17 elements increase
going down the group.
First Ionization Energies
F
500
1000
2.96
2.66
At
920
0
3.16
I
1008
At
1500
-
3.98
Br
1140
I
F
Cl
1251
Br
-
Electronegativities
1681
Cl
-
2000
2.20
0
1.0
kJ/mol
2.0
3.0
4.0
Pauling units
Analytical Tests
Three of the halogens can be identified through
precipitation reactions. Chlorine, bromine, and
iodine react with silver nitrate, forming distinctive precipitates. Silver chloride is a white
precipitate, silver bromide is a cream-colored
precipitate, and silver iodide is a yellow
precipitate.
Chlorine, bromine, and iodine can also be
identified when they dissolve in cyclohexane.
As shown in the photo, when these halogens
are dissolved in cyclohexane, the solution turns
yellow for chlorine, orange for bromine, and
violet for iodine.
The halogens are only slightly soluble in water (bottom layer).
However, in cyclohexane (top layer), chlorine (yellow), bromine
(orange), and iodine (violet) readily dissolve.
Elements Handbook 941
©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.
Group 17: Halogen Group
Fluorine
9
F
[He]2s22p5
Fluoridation
Fluorine compounds added to toothpaste and public
drinking-water supplies have greatly reduced the incidence
of cavities. Fluoride protects teeth in two ways. As teeth
form, fluoride from food and drink is incorporated into
the enamel layer. The fluoride makes the enamel stronger
and more resistant to decay. Once teeth are present in the
mouth, fluoride in saliva bonds to teeth and strengthens
the surface enamel. This surface fluoride attracts calcium,
which helps to fill in areas where decay has begun.
Many brands of toothpaste contain either
stannous fluoride or sodium fluoride, which,
like fluoridated water, strengthen teeth and
provide protection from cavities.
How Chlorine Bleach Is Made
Chlorine
17
Chlorine compounds are widely used as bleaching agents by the textile
and paper industries. Some chlorine compounds can bleach materials by
oxidizing colored molecules. Chlorine compounds are also used as disinfectants. Household bleach is a 5.25% solution of sodium hypochlorite (NaOCl)
in water. Chlorine bleach is prepared commercially by passing an electric
current through a solution of sodium chloride in water. As the sodium chloride breaks down, sodium hydroxide collects at the cathode and chlorine
gas is generated at the anode. Sodium hydroxide and chlorine can then
be combined to form sodium hypochlorite.
Cl
[Ne]3s23p5
Household chlorine bleach is made by reacting
chlorine gas or liquid chlorine with sodium
hydroxide to form sodium hypochlorite.
Bromine
35
Iodine
53
Br
I
[Ar]4s23d104p5
[Kr]5s24d105p5
Halogen lamps use bromine or other halogen molecules to capture tungsten vapor
and return tungsten atoms to the filament.
Halogen Lightbulbs
Halogen lightbulbs include a halogen gas, such as iodine or bromine.
Compared to standard lightbulbs, halogen bulbs are brighter and last
longer and can be more energy efficient. During the operation of a
normal lightbulb, some of the tungsten in the filament evaporates and
is deposited on the inside surface of the bulb. In a halogen lamp, the
evaporated tungsten reacts with the halogen gas and is redeposited
back on the filament. This extends the life of the filament.
942 Elements Handbook
©Michael Newman / PhotoEdit
Tungstenbromide
particle
Bromine
Tungsten
Tungsten
filament
Real-World Applications
Iodine
53
I
[Kr]5s24d105p5
Combating Iodine Deficiency with Salt
The thyroid gland is the only part of the body that absorbs iodine. Thyroid cells use
iodine to produce thyroid hormones, which regulate metabolism. Low levels of iodine
in the diet can lead to thyroid-hormone deficiencies and goiters, which are enlarged
thyroid glands. In serious cases, low levels of thyroid hormones can cause birth defects
and brain damage. In the United States, potassium iodide is added to most table salt
to protect against dietary iodine deficiency. Even small amounts of added iodine can
prevent iodine-deficiency disorders. However, there are parts of the world in which
iodine deficiency is still prevalent.
Iodine Deficiency Around the World
Severe deficiency (<20 µg/L)
Moderate deficiency (20–49 µg/L)
Mild deficiency (50–99 µg/L)
Optimal (100–199 µg/L)
Risk of iodine-induced hyperthyroidism (200–299 µg/L)
Risk of adverse health consequences (>300 µg/L)
No data
A significant percentage of the world’s population was at risk for iodine deficiency in 2004. In 2005,
the World Health Organization launched a program to eliminate iodine deficiency worldwide.
Assessment
50. Compare the risks for iodine deficiency in Europe,
Africa, and the United States.
51. Explain why fluorine is the most reactive of all the
elements.
52. Evaluate Why does a tungsten filament last longer in
a halogen lightbulb than in a normal lightbulb?
53. Calculate Household bleach is typically a 5.25%
solution of sodium hypochlorite in water. How many
grams of sodium hypochlorite would there be in
300 mL of bleach?
54. Hypothesize In 1962, Neil Bartlett synthesized the
first noble gas compound using PtF 6. Hypothesize why
Bartlett used a fluorine compound for this synthesis.
Elements Handbook 943
Group 18: Noble Gases
Helium
2
Physical
Properties
He
1s2
Argon
18
Ar
[Ne]3s23p6
-157
-153
Kr
-112
-108
Xe
-71
-62
Rn
-300
-200
0
-100
Temperature (ºC)
Krypton
36
Kr
10
MP
BP
-189
-186
Ar
• Their melting points and
boiling points increase going
down the group, but are much
lower than those of the other
groups in the periodic table.
[He]2s22p6
-249
-246
Ne
• They are all nonmetals.
Ne
-270
-269
He
• The group 18 elements are
colorless, odorless gases.
Neon
10
2
Melting Points and Boiling Points
6
[Ar]4s 3d 4p
Xenon
54
Xe
[Kr]5s24d105p6
Radon
86
Rn
[Xe]6s24f145d106p6
Atomic Properties
First Ionization Energies
• Each element in group 18
has eight valence electrons,
producing an octet with an
electron configuration ending
with ns 2np 6, except for helium,
which has two electrons.
• Noble gases are monatomic—
they exist as single atoms.
• Compared to the other groups
in the periodic table, the noble
gases have the highest first
ionization energies.
He
2372
Ne
2081
1521
Ar
Kr
1351
Xe
1170
1037
Rn
0
500
1000
1500
2000
kJ/mol
Analytical Tests
Common
Reactions
Because the noble gases are odorless, colorless and generally unreactive,
many of the common analytical tests used for identifying elements
are not useful. However, the noble gases do emit light of certain colors
when exposed to an electric current and have characteristic emission
line spectra.
Although the noble
gases are also known
as inert gases, a few
compounds can be
formed if conditions
are favorable. Generally,
however, noble gases
are nonreactive.
When an electric current passes through
xenon, it exhibits a characteristic color
(blue) and line spectrum.
944
Elements Handbook
(l)©Charles D. Winters/Photo Researchers, Inc., (r)©TED KINSMAN/SCIENCE PHOTO LIBRAR/Photo Researchers Inc.Y
Real-World Applications
Helium
2
He
1s2
The Sun
Only 150 million km away (considered close in astronomical terms), the Sun provides the energy needed to support
life on Earth. The Sun makes its energy through the fusion
of hydrogen to make helium. Scientists have determined
that the core of the Sun is composed of approximately
50% helium, leaving enough hydrogen for the Sun to burn
for another 5 billion years.
Neon
10
Argon
18
Krypton
36
The Sun’s energy comes from a nuclear reaction that
produces helium.
Xenon
54
Ne
Ar
Kr
[Ne]3s23p6
Xe
[He]2s22p6
[Ar]4s23d104p6
[Kr]5s24d105p6
Lighting
The noble gases are found in many different light sources.
Neon, argon, krypton, and xenon are all
used in different lighting applications. Neon
signs are found in many businesses to
advertise products or display the name of
the business. Although true neon signs glow
with a red-orange color, the term neon sign
has also come to represent the collection of
gas tubes that contain gases that display
other colors. Argon is found in everyday
lightbulbs such as those in lamps. Because
argon is inert, it provides an ideal atmosphere for the filament. Krypton and xenon
bulbs produce whiter, sharper light and last
longer than traditional argon bulbs. These
bulbs are commonly found in chandeliers,
flashlights, and luxury car headlights.
Assessment
55. Describe three physical properties of the noble gases.
56. Write the reaction for the production of xenon
tetroxide.
58. Hypothesize why argon is used in everyday lighting
even though krypton and xenon produce whiter light
and last longer.
57. Analyze why the noble gases have the highest
first ionization energies compared to the rest of
the elements on the periodic table.
59. Calculate If the Sun is 150 million km away and light
travels at 3.00 x 105 m/s, how long does it take for
sunlight to reach Earth?
Elements Handbook 945
(t)©epa/Corbis, (bl)©PHOTOTAKE Inc./Alamy, (br)©Wolfgang Kaehler/CORBIS
Mathematics is a language used in science to express and solve problems.
Calculations you perform during your study of chemistry require arithmetic operations, such as addition, subtraction, multiplication, and division.
Use this handbook to review basic math skills and to reinforce some math
skills presented in more depth in the chapters.
Scientific Notation
Scientists must use extremely small and extremely large numbers to
describe the objects in Figure 1. The mass of the proton at the center of
a hydrogen atom is 0.000000000000000000000000001673 kg. HIV, the
virus that causes AIDS, is about 0.00000011 m. The temperature at the
center of the Sun reaches 15,000,000 K. Such small and large numbers
are difficult to read and hard to work with in calculations. Scientists
have adopted a method of writing exponential numbers called scientific
notation. It is easier than writing numerous zeros when numbers are
very large or very small. It is also easier to compare the relative size of
numbers when they are written in scientific notation.
A number written in scientific notation has two parts.
N × 10 n
The first part (N) is a number in which only one digit is placed to the
left of the decimal point and all remaining digits are placed to the right
of the decimal point. The second part is an exponent of ten (10 n) by
which the decimal portion is multiplied. For example, the number
2.53 × 10 6 is written in scientific notation.
2.53 × 10 6
Number between
one and ten
Exponent
of ten
The decimal portion is 2.53 and the exponent is 10 6.
Positive exponents are used to express large numbers, and negative
exponents are used to express small numbers.
Figure 1 Scientific notation provides a convenient way to express data with
extremely large or small numbers. Scientists can express the mass of a proton, the
length of HIV, and the temperature of the Sun in scientific notation.
■
Proton
Hydrogen atom
Proton mass = 1.673 × 10 -27 kg
946
Math Handbook
(l)©Chris Bjornberg/Photo Researchers, Inc, (r)©Daniele Pellegrini/Photo Researchers, Inc.
HIV attacking a white blood cell
HIV length = 1.1 × 10 -7 m
The Sun
Sun temperature = 1.5 × 10 7 K
Math Handbook
Positive exponents
When scientists discuss the physical properties of the Moon, shown in
Figure 2, the numbers are enormously large. A positive exponent of
10 (n) tells how many times a number must be multiplied by 10 to give
the long form of the number.
2.53 × 10 6
= 2.53 × 10 ×10 × 10 × 10 × 10 × 10
= 2,530,000
You can also think of the positive exponent of 10 as the number of
places you move the decimal to the left until only one nonzero digit
is to the left of the decimal point.
2,530,000.
The decimal point moves six places
to the left.
Figure 2 The mass of the
Moon is 7.349 × 10 22 kg.
■
To convert the number 567.98 to scientific notation, first write the
number as an exponential number by multiplying by 10 0.
567.98 × 10 0
(Remember that multiplying any number by 10 0 is the same as multiplying the number by 1.) Move the decimal point to the left until there
is only one digit to the left of the decimal. At the same time, increase
the exponent by the same number as the number of places the decimal
is moved.
567.98 × 10 0 + 2
The decimal point moves two places
to the left.
Figure 3 Because of their short
wavelengths (10 -8 m to 10 -13 m),
X rays can pass through some
objects.
■
Thus, 567.98 written in scientific notation is 5.6798 × 10 2.
Negative exponents
Measurements can also have negative exponents, such as shown by the
X rays in Figure 3. Negative exponents are used for numbers that are
very small. A negative exponent of 10 tells how many times a number
must be divided by 10 to give the long form of the number.
6.43
= 0.000643
6.43 × 10 −4 = __
10 × 10 × 10 × 10
A negative exponent of 10 is the number of places you move the decimal to the right until it is just past the first nonzero digit.
When converting a number that requires the decimal to be moved
to the right, the exponent is decreased by the appropriate number. For
example, the expression of 0.0098 in scientific notation is as follows:
0.0098 × 10 0
0 0098 × 10 0 − 3
9.8 × 10 -3
The decimal point moves three places
to the right.
Thus, 0.0098 written in scientific notation is 9.8 × 10 -3.
Math Handbook 947
(t)©JULIAN BAUM/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (b)©Royalty-Free/CORBIS
Math Handbook
Operations with Scientific Notation
The arithmetic operations performed with ordinary numbers can be
done with numbers written in scientific notation. However, the exponential portion of the numbers must also be considered.
1. Addition and subtraction
Before numbers in scientific notation can be added or subtracted, the
exponents must be equal. Remember that the decimal is moved to the
left to increase the exponent and to the right to decrease the exponent.
(3.4 × 10 2) + (4.57 × 10 3) = (0.34 × 10 3) + (4.57 × 10 3)
= (0.34 + 4.57) × 10 3
= 4.91 × 10 3
(7.52 × 10 -4) − (9.7 × 10 -5) = (7.52 × 10 -4) − (0.97 × 10 -4)
= (7.52 − 0.97) × 10 -4
= 6.55 × 10 -4
2. Multiplication
When numbers in scientific notation are multiplied, only the decimal
portion is multiplied. The exponents are added.
(2.00 × 10 3)(4.00 × 10 4) = (2.00)(4.00) × 10 3 + 4
= 8.00 × 10 7
3. Division
When numbers in scientific notation are divided, only the decimal
portion is divided, while the exponents are subtracted as follows:
9.60 × 10 7 _
_
= 9.60 × 10 7 − 4
1.60
1.60 × 10 4
= 6.00 × 10 3
PRACTICE Problems
1. Express the following numbers in scientific notation.
a. 5800
c. 0.0005877
b. 453,000
d. 0.0036
2. Perform the following operations.
a. (5.0 × 10 6 ) + (3.0 × 10 7 )
c. (3.89 × 10 12 ) − (1.9 × 10 11)
9
8
b. (1.8 × 10 ) + (2.0 × 10 )
d. (6.0 × 10 -8 ) − (4.0 × 10 −9 )
3. Perform the following operations.
9.6 × 10 8
a. (6.0 × 10 -4 ) × (4.0 × 10 -6 ) d. _
-6
1.6 × 10
b. (4.5 ×
10 9 )
4.5 × 10 -8
c. _
-4
1.5 × 10
948
Math Handbook
× (6.0 ×
10 -10 )
(2.5 ×10 6 )(7.2 × 10 4 )
e. __
-5
1.8 × 10
(6.2
× 10 12 )(6.0 × 10 -7 )
__
f.
1.2 × 10 6
Math Handbook
2
×
2
=
4
2
=
4
3
×
3
3
a
=
9
=
9
4
×
4
4
=
16
=
16
c
b
Figure 4 a. The number 4 can be
expressed as two groups of 2. The identical factors are 2. b. The number 9 can be
expressed as three groups of 3. Thus, 3 is
the square root of 9. c. 4 is the square
root of 16.
Determine the cube root of 16
using your calculator.
■
Square and Cube Roots
A square root is one of two identical factors of a number. As shown in
Figure 4a, the number 4 is the product of two identical factors—2.
Thus, the square root of 4 is 2. The symbol √, called a radical sign, is
used to indicate a square root. Most scientific calculators have a square
root key labeled √.
√
4 = √
2×2=2
This equation is read “the square root of 4 equals 2.” What is the square
root of 9, shown in Figure 4b?
There can be more than two identical factors of a number. You know
that 2 × 4 = 8. Are there any other factors of the number 8? It is the
product of 2 × 2 × 2. A cube root is one of three identical factors of
a number. Thus, what is the cube root of 8? It is 2. A cube root is also
indicated by a radical.
3
3
√
8 = √
2×2×2=2
Check your calculator handbook for more information on finding roots.
Significant Figures
Accuracy reflects how close the measurements you make in the laboratory come to the real value. Precision describes the degree of exactness
of your measurements. Which ruler in Figure 5 would give you the
most precise length? The top ruler, with the millimeter markings, would
allow your measurements to come closer to the actual length of the
pencil. The measurement would be more precise.
Figure 5 The estimated digit must
be read between the millimeter markings
on the top ruler.
Evaluate Why is the bottom ruler
less precise?
■
19
20
21
22
23
24
25
26
27
28
29
cm
19
20
21
22
23
24
25
26
27
28
29
cm
Math Handbook 949
Math Handbook
24
25
26
27
28
Figure 6 If you determine
that the length of this pencil is
27.65 cm, that measurement has
four significant figures.
■
Measuring tools are never perfect, nor are the people doing the
measuring. Therefore, whenever you measure a physical quantity, there
will always be some amount of uncertainty in the measurement. The
number of significant figures in the measurement indicates the uncertainty of the measuring tool.
The number of significant figures in a measured quantity is all of the
certain digits plus the first uncertain digit. For example, the pencil in
Figure 6 has a length that is between 27.6 and 27.7 cm. You can read
the ruler to the nearest millimeter (27.6 cm), but after that you must
estimate the next digit in the measurement. If you estimate that the
next digit is 5, you would report the measured length of the pencil as
27.65 cm. Your measurement has four significant figures. The first
three are certain, and the last is uncertain. The ruler used to measure
the pencil has precision to the nearest tenth of a millimeter.
How many significant figures?
When a measurement is provided, the following series of rules will
help you to determine how many significant figures there are in that
measurement.
1. All nonzero figures are significant.
2. When a zero falls between nonzero digits, the zero is also significant.
3. When a zero falls after the decimal point and after a significant figure,
that zero is significant.
4. When a zero is used merely to indicate the position of the decimal,
it is not significant.
5. All counting numbers and exact numbers are treated as if they have
an infinite number of significant figures.
Examine each of the following measurements. Use the rules above to
check that all of them have three significant figures.
245 K
18.0 L
308 km
0.00623 g
186,000 m
Rule 1
Rule 3
Rule 2
Rule 4
Rule 4
Suppose you must do a calculation using the measurement 200 L.
You cannot be certain which zero was estimated. To indicate the significance of digits, especially zeros, write measurements in scientific notation. In scientific notation, all digits in the decimal portion are
significant. Which measurement is most precise?
200 L has unknown significant figures.
2 × 10 2 L has one significant figure.
2.0 × 10 2 L has two significant figures.
2.00 × 10 2 L has three significant figures.
The greater the number of digits in a measurement expressed in scientific notation, the more precise the measurement is. In this example,
2.00 × 10 2 L is the most precise data.
950
Math Handbook
Math Handbook
EXAMPLE Problem 1
Significant Figures How many significant figures are in the
measurement 0.00302 g? 60 min? 5.620 m? 9.80 × 10 2 m/s 2?
1
Analyze the Problem
To determine the number of significant digits in a series
of numbers, review the rules for significant figures.
2
Solve for the Unknown
0.00302 g
Not significant
(Rule 4)
Significant
(Rules 1 and 2)
The measurement 0.00302 g has three significant figures.
60 min
Unlimited significant figures
(Rule 5)
5.620 m
Significant
(Rules 1 and 3)
The measurement 5.620 m has four significant figures.
9.80 × 10 2 m/s 2
Significant
(Rules 1 and 3)
3
Evaluate the Answer
The measurements 0.00302 g and 9.80 × 10 2 m/s 2 have
three significant figures. The measurement 60 min has
unlimited significant figures. The measurement 5.620 m
has four significant figures.
PRACTICE Problems
4. Determine the number of significant figures in each measurement:
a. 35 g
m. 0.157 kg
b. 3.57 m
n. 28.0 mL
c. 3.507 km
o. 2500 m
d. 0.035 kg
p. 0.070 mol
e. 0.246 L
q. 30.07 nm
3
f. 0.004 m
r. 0.106 cm
g. 24.068 kPa
s. 0.0076 g
h. 268 K
t. 0.0230 cm 3
i. 20.04080 g
u. 26.509 cm
j. 20 dozen
v. 54.52 cm 3
k. 730,000 kg
w. 2.40 × 10 6 kg
l. 6.751 g
x. 4.07 × 10 16 m
Math Handbook 951
Math Handbook
Rounding
Arithmetic operations that involve measurements are done the same
way as operations involving any other numbers. However, the results
must correctly indicate the uncertainty in the calculated quantities.
Perform all of the calculations, and then round the result to the least
number of significant figures in any of the measurements used in the
calculations. To round a number, use the following rules.
1. When the leftmost digit to be dropped is less than 5, that digit and any
digits that follow are dropped. Then, the last digit in the rounded number remains unchanged. For example, when rounding the number
8.7645 to three significant figures, the leftmost digit to be dropped
is 4. Therefore, the rounded number is 8.76.
2. When the leftmost digit to be dropped is greater than 5, that digit and
any digits that follow are dropped, and the last digit in the rounded
number is increased by one. For example, when rounding the number 8.7676 to three significant figures, the leftmost digit to be
dropped is 7. Therefore, the rounded number is 8.77.
3. When the leftmost digit to be dropped is 5 followed by a nonzero
number, that digit and any digits that follow are dropped. The last
digit in the rounded number increases by one. For example, 8.7519
rounded to two significant figures equals 8.8.
4. If the digit to the right of the last significant figure is equal to 5 and is
not followed by a nonzero digit, look at the last significant figure. If
it is odd, increase it by one; if even, do not round up. For example,
92.350 rounded to three significant figures equals 92.4, and 92.25
equals 92.2.
Figure 7 Compare the
markings on the graduated cylinder
at the top with the markings on the
beaker at the bottom.
Analyze Which piece of
glassware will yield more
precise measurements?
■
952
Math Handbook
Matt Meadows
Calculations with significant figures
Look at the glassware in Figure 7. Would you expect to measure a more
precise volume with the beaker or the graduated cylinder? When you
perform any calculation using measured quantities such as volume or
mass, it is important to remember that the result can never be more
precise than the least-precise measurement. That is, your answer cannot
have more significant figures than the least precise measurement. Note
that it is important to perform all calculations before dropping any
insignificant digits.
The following rules determine how to use significant figures in
calculations that involve measurements.
1. To add or subtract measurements, first perform the mathematical
operation, then round off the result to the least-precise value. There
should be the same number of digits to the right of the decimal as
the measurement with the least number of decimal digits.
2. To multiply or divide measurements, first perform the calculation,
then round the answer to the same number of significant figures as
the measurement with the least number of significant figures. The
answer should contain no more significant figures than the fewest
number of significant figures in any of the measurements in the
calculation.
Math Handbook
EXAMPLE Problem 2
Calculating with Significant Figures Air contains oxygen (O 2),
nitrogen (N 2), carbon dioxide (CO 2), and trace amounts of other
gases. Use the known pressures in Table 1 to calculate the partial
pressure of oxygen.
1
Analyze the Problem
The data in Table 1 contains the gas pressure for nitrogen
gas, carbon dioxide gas, and trace gases. To add or subtract
measurements, first perform the operation, then round off
the result to correspond to the least-precise value involved.
2
Solve for the Unknown
P O 2 = P total - (P N 2 + P CO 2 + P trace)
P O 2 = 101.3 kPa - (79.10 kPa + 0.040 kPa + 0.94 kPa)
P O 2 = 101.3 kPa - 80.080 kPa
P O 2 = 21.220 kPa
The total pressure (P total) was measured to the tenths place. It is
the least precise measurement. Therefore, the result should be
rounded to the nearest tenth of a kilopascal. The pressure of
oxygen is P O 2 = 21.2 kPa.
3
Pressures of
Table 1 Gases in Air
Pressure (kPa)
Nitrogen
gas
79.10
Carbon
dioxide gas
0.040
Trace gases
0.94
Total gases
101.3
Evaluate the Answer
By adding the gas pressure of all the gases, including oxygen,
the total gas pressure is 101.3 kPa.
PRACTICE Problems
5. Round off the following measurements to the number of significant
figures indicated in parentheses.
a. 2.7518 g (3)
b. 8.6439 m (2)
c. 13.841 g (2)
d. 186.499 m (5)
e. 634,892.34 (4)
f. 355,500 g (2)
6. Perform the following operations.
a. (2.475 m) + (3.5 m) + (4.65 m)
b. (3.45 m) + (3.658 m) + (47 m)
c. (5.36 × 10 −4 g) − (6.381 × 10 −5 g)
d. (6.46 × 10 12 m) − (6.32 × 10 11 m)
e. (6.6 × 10 12 m) × (5.34 × 10 18 m)
5.634 × 10 11 m
f. __
12
3.0 × 10
g.
m
(___
4.765 × 10 11 m)(5.3 × 10 -4 m)
7.0 × 10 -5 m
Math Handbook 953
Math Handbook
Solving Algebraic Equations
When you are given a problem to solve, it often can be written as an
algebraic equation. You can use letters to represent measurements or
unspecified numbers in the problem. The laws of chemistry are often
written in the form of algebraic equations. For example, the ideal gas
law relates pressure, volume, moles, and temperature of the gases. The
ideal gas law is written as follows.
PV = nRT
The variables are pressure (P), volume (V), number of moles (n), and
temperature (T). R is a constant. This is a typical algebraic equation that
can be manipulated to solve for any of the individual variables.
When you solve algebraic equations, any operation that you perform
on one side of the equal sign must be performed on the other side of the
equation. Suppose you are asked to use the ideal gas law to find the
pressure of a gas (P). To solve for, or isolate, P requires you to divide the
left-hand side of the equation by V. This operation must be performed
on the right-hand side of the equation as well, as shown in the second
equation below.
PV = nRT
PV _
_
= nRT
V
Figure 8 When faced with an
equation that contains more than
one operation, use this flowchart
to determine the order in which
to perform your calculations.
■
Order of Operations
Examine all
arithmetic operations.
Do all operations inside
parentheses or brackets.
Do all multiplication and
division from left to right.
V
The Vs on the left-hand side of the equation cancel each other out.
PV _
_
= nRT
V
V
nRT
V
P×_=_
V
V
nRT
P=_
V
The ideal gas law equation is now written in terms of pressure. That is,
P has been isolated.
Order of operations
When isolating a variable in an equation, it is important to remember
that arithmetic operations have an order of operations, as shown in
Figure 8, that must be followed. Operations in parentheses (or brackets)
take precedence over multiplication and division, which in turn take
precedence over addition and subtraction. For example, in the following
equation
a+b×c
variable b must be multiplied first by variable c. Then, the resulting
product is added to variable a. If the equation is written
(a + b) × c
Perform addition and
subtraction from left to right.
954
Math Handbook
the operation in parentheses or brackets must be done first. In the equation above, variable a is added to variable b before the sum is multiplied
by variable c.
Math Handbook
To see the difference order of operations makes, try replacing a with
2, b with 3, and c with 4.
a + (b × c) = 2 + (3 × 4) = 14
(a + b) × c = (2 + 3) × 4 = 20
To solve algebraic equations, you also must remember the distributive
property. To remove parentheses to solve a problem, any number outside the parentheses is distributed across the parentheses as follows.
6(x + 2y) = 6(x) + 6(2y) = 6x + 12y
EXAMPLE Problem 3
Order of Operations The temperature on a cold day was 25°F.
What was the temperature on the Celsius scale?
1
Analyze the Problem
The temperature in Celsius can be calculated by using the equation
for converting from the Celsius temperature to Fahrenheit temperature.
The Celsius temperature is the unknown variable. The known variable
is 25°C.
2
Solve for the Unknown
Determine the equation for calculating the temperature in Celsius.
°F = _°C + 32
9
5
°F − 32 = _°C + 32 − 32
9
5
Rearrange the equation to isolate °C.
Begin by subtracting 32 from both sides.
°F − 32 = _°C
9
5
5 × ( °F − 32) = 5 × _°C
9
5
Then, multiply both sides by 5.
5 × ( °F − 32) = 9°C
5__
× ( °F − 32)
9°C
=_
9
9
Finally, divide both sides by 9.
°C = _( °F − 32)
5
9
5
_
= (25 − 32)
9
Substitute the known Fahrenheit
temperature.
= −3.9°C
The Celsius temperature is −3.9°C.
3
Evaluate the Answer
To determine if the answer is correct, place the answer, −3.9°C,
into the original equation. If the Fahrenheit temperature is 25°, the
calculation was done correctly.
Math Handbook 955
Math Handbook
PRACTICE Problems
Isolate the indicated variable in each equation.
7. PV = nRT for R
8. 3 = 4(x + y) for y
9. z = x(4 + 2y) for y
2
10. _
x = 3 + y for x
2x + 1
11. _ = 6 for x
3
Dimensional Analysis
The dimensions of a measurement refer to the type of units attached
to a quantity. For example, length is a dimensional quantity that can be
measured in meters, centimeters, and kilometers. Dimensional analysis
is the process of solving algebraic equations for units as well as numbers. It is a way of checking to ensure that you have used the correct
equation, and that you have correctly applied the rules of algebra when
solving the equation. It can also help you to choose and set up the correct equation, as shown on the next page, when you learn how to do
unit conversions. It is good practice to make dimensional analysis a
habit by always stating the units as well as the numerical values whenever
substituting values into an equation.
EXAMPLE Problem 4
■ Figure 9 Aluminum is a metal
that is useful from the kitchen to
the sculpture garden.
Dimensional Analysis The sculpture in Figure 9 is made from
aluminum. The density (D) of aluminum is 2700 kg/m 3. Determine
the mass (m) of a piece of aluminum of volume (V ) 0.20 m 3.
1
Analyze the Problem
The facts of the problem are density (2700 kg/m 3 ), volume (0.20 m 3 ),
and the density equation, D = m/V.
2
Solve for the Unknown
Determine the equation for mass by rearranging the density equation.
The equation for density is
m
D=_
V
mV
DV = _
V
V
_
DV = × m
V
Multiply both sides of the
equation by V, and isolate m.
m = DV
m = (2700 kg/m 3 )(0.20 m 3 ) = 540 kg
3
Substitute the known values
for D and V.
Evaluate the Answer
Notice that the unit m 3 cancels out, leaving mass in kg, a unit of mass.
956
Math Handbook
©ABN Stock Images/Alamy
Math Handbook
PRACTICE Problems
Determine whether the following equations are dimensionally correct.
Explain.
12. v = s × t where v = 24 m/s, s = 12 m, and t = 2 s.
nT
13. R = _
where R is in L·atm/mol·K, n is in mol, T is in K, P is in atm,
PV
and V is in L.
14. t = _vs where t is in seconds, v is in m/s, and s is in m.
at 2
2
15. s = _ where s is in m, a is in m/s 2, and t is in s.
Unit Conversion
Recall from Chapter 2 that the universal unit system used by scientists
is called Le Système Internationale d’Unités, or SI. It is a metric system
based on seven base units—meter, second, kilogram, kelvin, mole,
ampere, and candela—from which all other units are derived. The size
of a unit in the metric system is indicated by a prefix related to the difference between that unit and the base unit. For example, the base unit
for length in the metric system is the meter. One-tenth of a meter is a
decimeter, where the prefix deci- means one-tenth. One thousand
meters is a kilometer, where the prefix kilo- means one thousand.
You can use the information in Table 2 to express a measured quantity
in different units. For example, how is 65 m expressed in centimeters?
Table 2 indicates one centimeter and one-hundredth meter are equivalent,
that is, 1 cm = 10 −2 m. This information can be used to form a conversion
factor. A conversion factor is a ratio equal to one that relates two units. You
can make the following conversion factors from the relationship between
meters and centimeters. Be sure when you set up a conversion factor that
the measurement in the numerator (the top of the ratio) is equivalent to
the measurement in the denominator (the bottom of the ratio).
−2
1 cm
10 m
and 1 = _
1=_
−2
10
Table 2
1 cm
m
Common SI Prefixes
Symbol
Exponential
Notation
Symbol
Exponential
Notation
Peta
P
10 15
Deci
d
10 −1
Tera
T
10 12
Centi
c
10 −2
Giga
G
10 9
Milli
m
10 −3
Mega
M
10 6
Micro
μ
10 −6
Kilo
k
10 3
Nano
n
10 −9
Hecto
h
10 2
Pico
p
10 −12
Deka
da
10 1
Femto
f
10 −15
Prefix
Prefix
Math Handbook 957
Math Handbook
Recall that the value of a quantity does not change when it is multiplied
by 1. To convert 65 m to centimeters, multiply 65 m by the conversion
factor for centimeters.
1 cm
65 m × _
−2
10
m
10 2
cm
= 65 ×
= 6.5 × 10 3 cm
Note the conversion factor is set up so that the unit meters cancels
and the answer is in centimeters as required. When setting up a unit
conversion, use dimensional analysis to check that the units cancel to
give an answer in the desired units. Always check your answer to be
certain the units make sense.
You make unit conversions every day when you determine how
many quarters are needed to make a dollar or how many feet are in a
yard. One unit that is often used in calculations in chemistry is the
mole. Chapter 10 shows you equivalent relationships among moles,
grams, and the number of representative particles (atoms, molecules,
formula units, or ions). For example, 1 mol of a substance contains
6.02 × 10 23 representative particles. Try the next Example Problem to
see how this information can be used in a conversion factor to determine the number of atoms in a sample of manganese.
EXAMPLE Problem 5
Unit Conversions One mole of manganese (Mn), shown in
Figure 10, has a mass of 54.94 g. How many atoms are in 2.0 mol
of manganese?
1
Analyze the Problem
You are given the mass of 1 mol of manganese. In order to convert to
the number of atoms, you must set up a conversion factor relating the
number of moles and the number of atoms.
2
Solve for the Unknown
The conversion factors for moles and atoms are shown below.
■
6.02 × 10 23 atoms
1 mol
__
and __
23
1 mol
Figure 10 The mass of one
6.02 × 10
mole of manganese equals 54.94 g.
Determine How many
significant figures are in this
measurement?
atoms
Choose the conversion factor that cancels units of moles and gives an
answer in number of atoms.
6.02 × 10 23 atoms
2.0 mol × __ = 12.04 × 10 23 atoms
1 mol
= 1.2 × 10 24 atoms
3
Evaluate the Answer
The answer is expressed in the desired units (number of atoms). It is
expressed in two significant figures because the number of moles (2.0)
has two significant figures.
958
Math Handbook
Matt Meadows
Math Handbook
PRACTICE Problems
16. Convert the following measurements as indicated.
a. 4 m = ____cm
i. 2.7 × 10 2 L = ____mL
b. 50.0 cm = ____m
j. 7.3 × 10 5 mL = ____L
c. 15 cm = ____mm
k. 8.4 × 10 10 m = ____km
d. 567 mg = ____g
l. 3.8 × 10 4 m 2 = ____mm 2
e. 324 mL = ____L
m. 6.9 × 10 12 cm 2 = ____m 2
f. 28 L = ____mL
n. 6.3 × 10 21 mm 3 = ____cm 3
3
g. 4.6 × 10 m = ____mm
o. 9.4 × 10 12 cm 3 = ____m 3
h. 8.3 × 10 4 g = ____kg
p. 5.7 × 10 20 cm 3 = ____km 3
Drawing Line Graphs
Scientists, such as the one shown in Figure 11, as well as you and your
classmates, use graphing to analyze data gathered in experiments.
Graphs provide a way to visualize data in order to determine the mathematical relationship between the variables in your experiment. Line
graphs are used most often.
Figure 11 also shows a line graph. Line graphs are drawn by plotting
variables along two axes. Plot the independent variable on the x-axis
(horizontal axis), also called the abscissa. The independent variable is
the quantity controlled by the person doing the experiment. Plot the
dependent variable on the y-axis (vertical axis), also called the ordinate.
The dependent variable is the variable that depends on the independent
variable. Label the axes with the variables being plotted and the units
attached to those variables.
Figure 11 Once experimental data have been collected, they must
be analyzed to determine the relationships between the measured variables.
■
Graph of Line with Point A
Dependent variable
y-axis
(x, y)
x-axis
0
Origin 0
This research scientist might use graphs to analyze the
data she collects on ultrapure water.
Independent variable
Any graph of your data should include labeled
x- and y-axes, a suitable scale, and a title.
Math Handbook 959
©Bill Aron/Photo Edit
Math Handbook
Figure 12 To plot a point on a
graph, place a dot at the location for each
ordered pair (x,y) determined by your
data. In the Density of Water graph, the
dot marks the ordered pair (40 mL, 40 g).
Generally, the line or curve that you draw
will not include all of your experimental
data points, as shown in the Experimental
Data graph.
■
Experimental Data
70
70
60
60
50
A (x, y)
40
30
Mass (g)
Mass (g)
Density of Water
50
40
30
20
20
10
10
0
0
10 20 30 40 50 60 70
Volume (mL)
0
0
10 20 30 40 50 60 70
Volume (mL)
Determining a scale
An important part of graphing is the selection of a scale. Scales should
be easy to plot and easy to read. First, examine the data to determine the
highest and lowest values. Assign each division on the axis (the square
on the graph paper) with an equal value so that all data can be plotted
along the axis. Scales divided into multiples of 1, 2, 5, or 10, or decimal
values, are often the most convenient. It is not necessary to start at zero,
nor is it necessary to plot both variables to the same scale. Scales must,
however, be labeled clearly with the appropriate numbers and units.
Plotting data
The values of the independent and dependent variables form ordered
pairs of numbers, called the x-coordinate and the y-coordinate (x,y),
that correspond to points on the graph. The first number in an ordered
pair always corresponds to the x-axis; the second number always
corresponds to the y-axis. The ordered pair (0,0) is always the origin.
Sometimes, the points are named by using a letter. In Figure 12,
Point A on the Density of Water graph corresponds to Point (x,y).
After the scales are chosen, plot the data. To graph or plot an ordered
pair means to place a dot at the point that corresponds to the values in
the ordered pair. The x-coordinate indicates how many units to move
right (if the number is positive) or left (if the number is negative). The
y-coordinate indicates how many units to move up or down. Which
direction is positive on the y-axis? Negative? Locate each pair of x- and
y-coordinates by placing a dot, as shown in Figure 12 in the Density of
Water graph. Sometimes, a pair of rulers, one extending from the x-axis
and the other from the y-axis, can ensure that data are plotted correctly.
Drawing a curve
Once the data is plotted, a straight line or a curve is drawn. It is not
necessary to make it go through every point plotted, or even any of
the points, as shown in the Experimental Data graph in Figure 12.
Graphing data is an averaging process. If the points do not fall along a
line, the best-fit line or most-probable smooth curve through the points
is drawn. Note that curves do not always go through the origin (0,0).
960
Math Handbook
Math Handbook
Naming a graph
Last but not least, give each graph a title that describes what is being
graphed. The title should be placed at the top of the page, or in a box
on a clear area of the graph. It should not cross the data curve.
Using Line Graphs
Once the data from an experiment has been collected and plotted, the
graph must be interpreted. Much can be learned about the relationship
between the independent and dependent variables by examining the
shape and slope of the curve. Four common types of curves are shown
in Figure 13. Each type of curve corresponds to a mathematical relationship between the independent and dependent variables.
Direct and inverse relationships
In your study of chemistry, the most common curves are the linear,
representing the direct relationship (y ∞ x), and the inverse, representing
the inverse relationship (y ∞ 1/x), where x represents the independent
variable and y represents the dependent variable. In a direct relationship,
y increases in value as x increases in value, or y decreases when x
decreases. In an inverse relationship, y decreases in value as x increases.
An example of a typical direct relationship is the increase in volume
of a gas with increasing temperature. When the gases inside a hot-air
balloon are heated, the balloon gets larger. As the balloon cools, its size
decreases. However, a plot of the decrease in pressure as the volume of a
gas increases yields a typical inverse curve.
You might also encounter exponential and root curves in your study
of chemistry. See Figure 13. An exponential curve describes a relationship in which one variable is expressed by an exponent. A root curve
describes a relationship in which one variable is expressed by a root.
Figure 13 The shape of the curve
formed by a plot of experimental data
indicates how the variables are related.
■
a
Linear curve
y∝x
c
Exponential curve
y ∝ xn
(n > 1)
b
d
Inverse curve
1
y∝x
Root curve
n
y ∝ x
(n > 1)
Math Handbook 961
Math Handbook
Figure 14 A steep slope indicates
that the dependent variable changes
rapidly with a change in the independent variable.
Infer What would an almost flat
line indicate?
■
Density of Water
70
Mass (g)
60
(x2, y2)
50
40
Rise
30
20
(x1, y1)
10
Run
0
0
10 20 30 40 50 60 70
Volume (mL)
The linear graph
The linear graph is useful in analyzing data because a linear relationship
can be translated easily into equation form using the equation for a
straight line.
y = mx + b
In the equation, y stands for the dependent variable, m is the slope of
the line, x stands for the independent variable, and b is the y-intercept,
the point where the curve crosses the y-axis.
The slope of a linear graph is the steepness of the line. Slope is
defined as the ratio of the vertical change (the rise) to the horizontal
change (the run) as you move from one point to the next along the line.
Use the graph in Figure 14 to calculate slope. Choose any two points
on the line, (x 1,y 1) and (x 2,y 2). The two points need not be actual data
points, but both must fall somewhere on the straight line. After
selecting two points, calculate slope, m, using the following equation.
∆y
∆x
y −y
2
1
rise
_=_
m=_
x 2 − x 1 , where x 1 ≠ x 2
run =
The symbol ∆ stands for change, x 1 and y 1 are the coordinates or values
of the first point, and x 2 and y 2 are the coordinates of the second point.
Choose any two points along the graph of mass v. volume in
Figure 15, and calculate its slope.
135 g − 54 g
50.0 cm − 20.0 cm
m = __
= 2.7 g/cm 3
3
3
Note that the units for the slope are the units for density. Plotting a
graph of mass versus volume is one way of determining the density
of a substance.
Apply the general equation for a straight line to the graph in
Figure 15.
y = mx + b
mass = (2.7 g/cm 3)(volume) + 0
mass = (2.7 g/cm 3)(volume)
962
Math Handbook
Math Handbook
Figure 15 Interpolation and extrapolation will help you determine the values
of points you did not plot.
■
Density of Aluminum
160.0
140.0
Volume (mL)
Mass (g)
100.0
20.0
54.0
80.0
30.0
81.0
50.0
135.0
120.0
Mass (g)
Data
60.0
40.0
20.0
0
0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Volume (mL)
Once the data from the graph in Figure 15 has been placed in the
general equation for a straight line, this equation verifies the direct relationship between mass and volume. For any increase in volume, the
mass also increases.
Interpolation and extrapolation
Graphs also serve functions other than determining the relationship
between variables. They permit interpolation, the prediction of values of
the independent and dependent variables. For example, you can see in
the table in Figure 15 that the mass of 40.0 cm 3 of aluminum was not
measured. However, you can interpolate from the graph that the mass
would be 108 g.
Graphs also permit extrapolation, which is the determination of
points beyond the measured points. To extrapolate, draw a broken
line to extend the curve to the desired point. In Figure 15, you can
determine that the mass at 10.0 cm 3 equals 27 g. One caution regarding
extrapolation—some straight-line curves do not remain straight indefinitely. So, extrapolation should only be done where there is a reasonable
likelihood that the curve does not change.
PRACTICE Problems
17. Plot the data in each table. Explain whether the graphs represent direct
or inverse relationships.
Table 3 Effect of Pressure on Gas
Table 4 Effect of Pressure on Gas
Pressure
(mm Hg)
Volume
(mL)
Pressure
(mm Hg)
Temperature
(K)
3040
5.0
3040
1092
1520
10.0
1520
546
1013
15.0
1013
410
760
20.0
760
273
Math Handbook 963
Math Handbook
Ratios, Fractions, and Percents
When you analyze data, you may be asked to compare measured quantities. Or, you may be asked to determine the relative amounts of elements in a compound. Suppose, for example, you are asked to compare
the molar masses of the diatomic gases, hydrogen (H 2) and oxygen (O 2).
The molar mass of hydrogen gas equals 2.00 g/mol; the molar mass of
oxygen equals 32.00 g/mol. The relationship between molar masses can
be expressed in three ways: a ratio, a fraction, or a percent.
Figure 16 The mass of one
lime would be one-twelfth the mass
of one dozen limes.
■
Ratios
You make comparisons by using ratios in your daily life. For example, if
the mass of a dozen limes is shown in Figure 16, how does it compare
to the mass of one lime? The mass of one dozen limes is 12 times larger
than the mass of one lime. In chemistry, the chemical formula for a
compound compares the elements that make up that compound, as
shown in Figure 17. A ratio is a comparison of two numbers by division.
One way it can be expressed is with a colon (:). The comparison between
the molar masses of oxygen and hydrogen can be expressed as follows.
molar mass (H 2):molar mass (O 2)
2.00 g/mol:32.00 g/mol
2.00:32.00
1:16
Figure 17 In a crystal of table
salt (sodium chloride), each sodium
ion is surrounded by chloride ions,
yet the ratio of sodium ions to
chloride ions is 1:1. The formula
for sodium chloride is NaCl.
■
Notice that the ratio 1:16 is the smallest integer (whole number) ratio.
It is obtained by dividing both numbers in the ratio by the smaller number, and then rounding the larger number to remove the digits after the
decimal. The ratio of the molar masses is 1 to 16. In other words, the
ratio indicates that the molar mass of diatomic hydrogen gas is 16 times
smaller than the molar mass of diatomic oxygen gas.
Fractions
Ratios are often expressed as fractions in simplest form. A fraction is a
quotient of two numbers. To express the comparison of the molar masses
as a fraction, place the molar mass of hydrogen over the molar mass of
oxygen as follows.
molar mass H 2
__
molar mass O 2
2.0 g/mol
=_
32.00 g/mol
2.00
=_
32.00
1
=_
16
In this case, the simplified fraction is calculated by dividing both the
numerator (top of the fraction) and the denominator (bottom of the
fraction) by 2.00. This fraction yields the same information as the ratio.
That is, diatomic hydrogen gas has one-sixteenth the mass of diatomic
oxygen gas.
964
Math Handbook
Matt Meadows
Math Handbook
Percents
A percent is a ratio that compares a number to 100. The symbol for
percent is %. You also are used to working with percents in your daily
life. The number of correct answers on an exam can be expressed as a
percent. If you answered 90 out of 100 questions correctly, you would
receive a grade of 90%. Signs like the one in Figure 18 indicate a reduction in price. If the item’s regular price is $100, how many dollars would
you save? Sixty percent means 60 of every 100, so you would save $60.
How much would you save if the sign said 75% off?
The comparison between molar mass of hydrogen gas and the
molar mass of oxygen gas described on the previous page can also be
expressed as a percent by taking the fraction, converting it to decimal
form, and multiplying by 100 as follows.
2.00 g/mol
molar mass H 2
__
× 100 = _ × 100 = 0.0625 × 100 = 6.25%
molar mass O 2
32.00 g/mol
Diatomic hydrogen gas has 6.25% of the mass of diatomic oxygen gas.
Operations Involving Fractions
Figure 18 Stores often use
percentages when advertising sales.
Analyze Would the savings be
large at this sale? How would
you determine the sale price?
■
Fractions are subject to the same type of operations as other numbers.
Remember that the number on the top of a fraction is the numerator
and the number on the bottom is the denominator. Figure 19 shows an
example of a fraction.
1. Addition and subtraction
Before two fractions can be added or subtracted, they must have a
common denominator. Common denominators are found by finding
the least common multiple of the two denominators. Finding the least
common multiple is often as easy as multiplying the two denominators
together. For example, the least common multiple of the denominators
1
1
and _
is 2 × 3 or 6.
of the fractions _
2
3
_1 + _1 = _3 × _1 + _2 × _1 = _3 + _2 = _5
2
3
3
2
2
3
6
6
6
) (
(
)
Sometimes, one of the denominators will divide into the other, which
makes the larger of the two denominators the least common multiple.
1
1
For example, the fractions _
and _
have 6 as the least common multiple
2
6
denominator.
_1 + _1 = _3 × _1 + _1 = _3 + _1 = _4
2
3
2
6
6
6
6
6
(
)
In other situations, both denominators will divide into a number that is
1
1
not the product of the two. For example, the fractions _
and _
have the
4
6
number 12 as their least common multiple denominator, rather than 24,
the product of the two denominators.
The least common denominator can be deduced as follows:
Figure 19 When two numbers
are divided, the one on top is the
numerator and the one on the
bottom is the denominator. The
result is called the quotient. When
you perform calculations with
fractions, the quotient can be
expressed as a fraction or a decimal.
■
Dividend
(numerator)
8
Quotient = 9 × 10-4
3 × 10
Divisor
(denominator)
6
3
5
4
2
_1 + _1 = _4 × _1 + _6 × _1 = _
+_
=_
+_
=_
4
4
4
24
24
12
12
12
6
6
6
(
) (
)
Because both fractions can be simplified by dividing numerator and
denominator by 2, the least common multiple must be 12.
Math Handbook 965
©Elena Rooraid/Photo Edit
Math Handbook
2. Multiplication and division
When multiplying fractions, the numerators and denominators are
multiplied together as follows:
1×2 _
1
_1 × _2 = _
= 2 =_
2
3
2×3
6
3
Note the final answer is simplified by dividing the numerator and
denominator by 2.
When dividing fractions, the divisor is inverted and multiplied by
the dividend as follows:
2×2 _
_2 ÷ _1 = _2 × _2 = _
=4
3
2
3
1
3×1
3
PRACTICE Problems
18. Perform the indicated operation:
3
2
a. _ + _
4
3
3
4
_
_
b. +
5
10
1
1
c. _ − _
4
6
5
7
d. _ − _
8
6
3
1
e. _ × _
3
4
3
2
f. _ × _
5
7
5
_
_
g. ÷ 1
8
4
3
4
h. _ ÷ _
9
8
Logarithms and Antilogarithms
Table 5
Exponent
Comparison
Between
Exponents
and Logs
Logarithm
When you perform calculations, such as the pH of the products in
Figure 20, you might need to use the log or antilog function on your
calculator. A logarithm (log) is the power or exponent to which a number, called a base, must be raised in order to obtain a given positive
number.
This textbook uses common logarithms based on a base of 10.
Therefore, the common log of any number is the power to which 10
is raised to equal that number. Examine Table 5 to compare logs and
exponents. Note the log of each number is the power of 10 for the
exponent of that number. For example, the common log of 100 is 2,
and the common log of 0.01 is −2.
log 10 2 = 2
log 10 −2 = −2
10 0 = 1
log 1 = 0
10 1 = 10
log 10 = 1
10 2 = 100
log 100 = 2
If 10 n = y, then log y = n.
10 -1 = 0.1
log 0.1 = -1
10 -2
log 0.01 = -2
In each example in Table 5, the log can be determined by inspection.
How do you express the common log of 5.34 × 10 5? Because logarithms
are exponents, they have the same properties as exponents, as shown in
Table 6 on the next page.
= 0.01
A common log can be written in the following general form.
log 5.34 × 10 5 = log 5.34 + log 10 5
966
Math Handbook
Math Handbook
Table 6
Properties of Exponents
Exponential Notation
Logarithm
10 A × 10 B = 10 A + B
log (A × B) = log A + log B
10 A ÷ 10 B = 10 A − B
log (A ÷ B) = log A − log B
AB
(log A) × B
Significant figures and logarithms
Most scientific calculators have a button labeled log and, in most cases,
you enter the number and push the log button to display the log of the
number. Note that there is the same number of digits after the decimal
in the log as there are significant figures in the original number entered.
log 5.34 × 10 5 = log 5.34 + log 10 5 = 0.728 + 5 = 5.728
Antilogarithms
Suppose the pH of the aqueous ammonia in Figure 20 is 9.54 and you
are asked to find the concentration of the hydrogen ions in that solution. By definition, pH = −log [H +]. Compare this to the general equation for the common log.
Equation for pH:
General equation:
pH = −log [H +]
y = log 10 n
To solve the equation for [H +], you must follow the reverse process and
calculate the antilogarithm (antilog) of −9.54 to find [H +].
Antilogs are the reverse of logs. To find the antilog, use a scientific
calculator to input the value of the log. Then, use the inverse function
and press the log button. The number of digits after the decimal in the
log equals the number of significant figures in the antilog. An antilog
can be written in the following general form.
Thus,
[H +]
Figure 20 Ammonia is a base.
That means its hydrogen ion
concentration is less than 10 −7M.
■
If n = antilog y, then y = 10 n.
= antilog(−9.54) = 10 −9.54 = 10 (0.46 − 10)
= 10 0.46 × 10 −10
= 2.9 × 10 −10M
Check the instruction manual for your calculator. The exact procedure
to calculate logs and antilogs might vary.
PRACTICE Problems
19. Find the log of each of the following numbers.
a. 367
b. 4078
c. X n
20. Find the antilog of each of the following logs.
a. 4.663
b. 2.367
c. 0.371
d. −1.588
Math Handbook 967
Geoff Butler
Table R-1 Color Key
Carbon
Bromine
Sodium/
Other metals
Hydrogen
Iodine
Gold
Oxygen
Sulfur
Copper
Nitrogen
Phosphorus
Electron
Chlorine
Silicon
Proton
Fluorine
Helium
Neutron
Table R-2 Symbols and Abbreviations
= rays from radioactive
materials, helium nuclei
β
= rays from radioactive
materials, electrons
γ
= rays from radioactive
materials, high-energy
quanta
∆
= change in
λ
= wavelength
ν
= frequency
A
= ampere (electric current)
amu = atomic mass unit
Bq
= becquerel (nuclear
disintegration)
°C
= Celsius degree (temperature)
C
= coulomb (quantity of
electricity)
c
= speed of light
cd
= candela (luminous intensity)
c
= specific heat
D
= density
α
968
Reference Tables
E
F
G
g
Gy
H
Hz
h
h
J
K
Ka
Kb
K eq
K sp
kg
M
m
m
mol
min
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
energy, electromotive force
force
free energy
gram (mass)
gray (radiation)
enthalpy
hertz (frequency)
Planck’s constant
hour (time)
joule (energy)
kelvin (temperature)
ionization constant (acid)
ionization constant (base)
equilibrium constant
solubility product constant
kilogram (mass)
molarity
mass, molality
meter (length)
mole (amount)
minute (time)
N
NA
n
P
Pa
q
Q sp
R
S
s
Sv
T
V
V
v
W
w
X
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
newton (force)
Avogadro’s number
number of moles
pressure, power
pascal (pressure)
heat
ion product
ideal gas constant
entropy
second (time)
sievert (absorbed radiation)
temperature
volume
volt (electric potential)
velocity
watt (power)
work
mole fraction
Reference Tables
Table R-3 Solubility Product Constants at 298 K
Compound
K sp
Carbonates
Compound
K sp
Halides
Compound
K sp
Hydroxides
BaCO 3
2.6 × 10 -9
CaF 2
3.5 × 10 -11
Al(OH) 3
4.6 × 10 -33
CaCO 3
3.4 × 10 -9
PbBr 2
6.6 × 10 -6
Ca(OH) 2
5.0 × 10 -6
CuCO 3
2.5 × 10 -10
PbCl 2
1.7 × 10 -5
Cu(OH) 2
2.2 × 10 -20
PbCO 3
7.4 × 10 -14
PbF 2
3.3 × 10 -8
Fe(OH) 2
4.9 × 10 -17
MgCO 3
6.8 × 10 -6
PbI 2
9.8 × 10 -9
Fe(OH) 3
2.8 × 10 -39
Ag 2CO 3
8.5 × 10 -12
AgCl
1.8 × 10 -10
Mg(OH) 2
5.6 × 10 -12
ZnCO 3
1.5 × 10 -10
AgBr
5.4 × 10 -13
Zn(OH) 2
3 × 10 -17
Hg 2CO 3
3.6 × 10 -17
AgI
8.5 × 10 -17
Sulfates
Chromates
Phosphates
BaSO 4
1.1 × 10 -10
BaCrO 4
1.2 × 10 -10
AlPO 4
9.8 × 10 -21
CaSO 4
4.9 × 10 -5
PbCrO 4
2.3 × 10 -13
Ca 3(PO 4) 2
2.1 × 10 -33
PbSO 4
2.5 × 10 -8
Ag 2CrO 4
1.1 × 10 -12
Mg 3(PO 4) 2
1.0 × 10 -24
Ag 2SO 4
1.2 × 10 -5
Fe(PO 4) 2
1.0 × 10 -22
Arsenates
10 -32
Pb 3(AsO 4) 2
Iodates
Cd(IO 3) 2
2.3 ×
10 -8
Ni 3(PO 4) 2
4.7 ×
4.0 × 10 -36
Table R-4 Physical Constants
Quantity
Symbol
Value
amu
1.6605 × 10 -27
Avogadro’s number
N
6.022 × 10 23 particles/mole
Ideal gas constant
R
8.31 L·kPa/mol·K
0.0821 L·atm/mol·K
62.4 mm Hg·L/mol·K
62.4 torr·L/mol·K
Mass of an electron
me
9.109 × 10 -31 kg
5.485799 × 10 -4 amu
Mass of a neutron
mn
1.67492 × 10 -27 kg
1.008665 amu
Mass of a proton
mp
1.6726 × 10 -27 kg
1.007276 amu
Molar volume of ideal gas at STP
V
22.414 L/mol
Normal boiling point of water
Tb
373.15 K
100.0°C
Normal freezing point of water
Tf
273.15 K
0.00°C
Planck’s constant
h
6.6260693 × 10 -34 J·s
Speed of light in a vacuum
c
2.997925 × 10 8 m/s
Atomic mass unit
Reference Tables 969
Reference Tables
Table R-5 Names and Charges of Polyatomic Ions
1Acetate, CH 3COO Amide, NH 2 Astatate, AtO 3 Azide, N 3 Benzoate, C 6H 5COO Bismuthate, BiO 3 Bromate, BrO 3 Chlorate, ClO 3 Chlorite, ClO 2 Cyanide, CN Formate, HCOO Hydroxide, OH Hypobromite, BrO Hypochlorite, ClO Hypophosphite, H 2PO 2 Iodate, IO 3 Nitrate, NO 3 Nitrite, NO 2 Perbromate, BrO 4 Perchlorate, ClO 4 Periodate, IO 4 Permanganate, MnO 4 Perrhenate, ReO 4 Thiocyanate, SCN Vanadate, VO 3 -
2Carbonate, CO 3 2Chromate, CrO 4 2Dichromate, Cr 2O 7 2Hexachloroplatinate,
PtCl 6 2Hexafluorosilicate, Sif 6 2Molybdate, MoO 4 2Oxalate, C 2O 4 2Peroxide, O 2 2Peroxydisulfate, S 2O 8 2Ruthenate, RuO 4 2Selenate, SeO 4 2Selenite, SeO 3 2Silicate, SiO 3 2Sulfate, SO 4 2Sulfite, SO 3 2Tartrate, C 4H 4O 6 2Tellurate, TeO 4 2Tellurite, TeO 3 2Tetraborate, B 4O 7 2Thiosulfate, S 2O 3 2Tungstate, WO 4 2-
3Arsenate, AsO 4 3Arsenite, AsO 3 3Borate, BO 3 3Citrate, C 6H 5O 7 3Hexacyanoferrate (III),
Fe(CN) 6 3Phosphate, PO 4 3Phosphite, PO 3 3-
4Hexacyanoferrate (II),
Fe(CN) 6 4Orthosilicate, SiO 4 4Diphosphate, P 2O 7 4-
1+
Ammonium, NH 4 +
Neptunyl(V), NpO 2 +
Plutonyl(V), PuO 2 +
Uranyl(V), UO 2 +
Vanadyl(V), VO 2 +
2+
Mercury(I), Hg 2 2+
Neptunyl(VI), NpO 2 2+
Plutonyl(VI), PuO 2 2+
Uranyl(VI), UO 2 2+
Vanadyl(IV), VO 2+
Table R-6 Ionization Constants
970
Substance
Ionization
Constant
Substance
Ionization
Constant
Substance
Ionization
Constant
HCOOH
CH 3COOH
CH 2ClCOOH
CHCl 2COOH
CCl 3COOH
HOOCCOOH
HOOCCOO CH 3CH 2COOH
C 6H 5COOH
H 3AsO 4
H 2AsO 4 H 3BO 3
H 2BO 3 -
1.77 × 10 -4
1.75 × 10 -5
1.36 × 10 -3
4.47 × 10 -2
3.02 × 10 -1
5.36 × 10 -2
1.55 × 10 -4
1.34 × 10 -5
6.25 × 10 -5
6.03 × 10 -3
1.05 × 10 -7
5.75 × 10 -10
1.82 × 10 -13
HBO 3 -2
H 2CO 3
HCO 3 HCN
HF
HNO 2
H 3PO 4
H 2PO 4 HPO 4 2H 3PO 3
H 2PO 2 H 3PO 2
H 2S
1.58 × 10 -14
4.5 × 10 -7
4.68 × 10 -11
6.17 × 10 -10
6.3 × 10 -4
5.62 × 10 -4
7.08 × 10 -3
6.31 × 10 -8
4.17 × 10 -13
5.01 × 10 -2
2.00 × 10 -7
5.89 × 10 -2
9.1 × 10 -8
HS HSO 4 H 2SO 3
HSO 3 HSeO 4 H 2SeO 3
HSeO 3 HBrO
HClO
HIO
NH 3
H 2NNH 2
H 2NOH
1.00 × 10 -19
1.02 × 10 -2
1.29 × 10 -2
6.17 × 10 -8
2.19 × 10 -2
2.29 × 10 -3
4.79 × 10 -9
2.51 × 10 -9
2.9 × 10 -8
3.16 × 10 -11
5.62 × 10 -10
7.94 × 10 -9
1.15 × 10 -6
Reference Tables
ent
Elem
Ac
Al
Am
Sb
Ar
As
At
Ba
Bk
Be
Bi
Bh
B
Br
Cd
Ca
Cf
C
Ce
Cs
Cl
Cr
Co
Cu
Cm
Ds
Db
Dy
Es
Er
Eu
Fm
F
Fr
Gd
Ga
Ge
Au
Sym
bol
r
89
13
95
51
18
33
85
56
97
4
83
107
5
35
48
20
98
6
58
55
17
24
27
29
96
110
105
66
99
68
63
100
9
87
64
31
32
79
Ato
m
i
c
M
(amu ass*
)
[227]
26.981539
[243]
121.760
39.948
74.92160
[210]
137.327
[247]
9.012182
208.98040
[264]
10.811
79.904
112.411
40.078
[251]
12.0107
140.116
132.905451
35.453
51.9961
58.9332
63.546
[247]
[281]
[262]
162.5
[252]
167.259
151.964
[257]
18.9984032
[223]
157.25
69.723
72.64
196.966569
mbe
ic Nu
Atom
*[ ] indicates mass of longest-lived isotope
Actinium
Aluminum
Americium
Antimony
Argon
Arsenic
Astatine
Barium
Berkelium
Beryllium
Bismuth
Bohrium
Boron
Bromine
Cadmium
Calcium
Californium
Carbon
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Curium
Darmstadtium
Dubnium
Dysprosium
Einsteinium
Erbium
Europium
Fermium
Fluorine
Francium
Gadolinium
Gallium
Germanium
Gold
Melt
in
g Po
(°C) int
1050
660.32
1176
630.6
-189.3
817
302
727
986
1287
271.3
--2076
–7.3
321.07
842
900
3527
795
28.4
-101.5
1907
1495
1084.62
1340
----1407
860
1497
826
1527
-219.62
--1312
29.76
938.3
1064
Bo
i
l
i
ng P
o
(°C) int
3300
2519
2607
1587
-185.8
614
--1870
--2469
1564
--3927
59
767
1484
--4027
3360
671
-34
2671
2927
2927
3110
----2567
--2868
1527
---188.12
--3250
2204
2820
2856
Dens
(gas ity (g/cm 3
e
s
)
m
ea
at ST sured
P)
10.07
2.7
13.67
6.697
0.001784
5.727
--3.51
14.78
1.848
9.78
--2.46
3.119
8.65
1.55
15.1
2.267
6.689
1.879
0.003
7.14
8.9
8.92
13.51
----8.551
--9.066
5.244
--0.001696
--7.901
5.904
5.323
19.3
--143
--140
98
120
140
222
--112
150
--85
114
151
197
--77
--265
100
128
125
128
----------------71
270
--135
122
144
(3+)-2.13
(3+)-1.68
(3+)-2.07
(3+)+0.15
--(3+)+0.24
(1-)+0.2
(2+)-2.92
(3+)-2.01
(2+)-1.97
(3+)+0.317
--(3+)-0.89
(1-)+1.065
(2+)-0.4025
(2+)-2.84
(3+)-1.93
(4-)+0.132
(3+)-2.34
(1+)-2.923
(1-)+1.358
(3+)-0.74
(2+)-0.28
(2+)+0.34
(3+)-2.06
----(3+)-2.29
(3+)-2
(3+)-2.32
(3+)-1.99
(3+)-1.96
(1-)+2.87
(1+)-2.92
(3+)-2.28
(3+)-0.53
(4+)+0.124
(3+)+1.52
0.120
0.897
0.110
0.207
0.520
0.329
--0.204
--1.825
0.122
--1.026
0.474
0.232
0.647
--0.709
0.192
0.242
0.479
0.449
0.421
0.385
------0.173
--0.168
0.182
--0.824
--0.236
0.373
0.320
0.129
En
t
h
a
of Fu lpy
sion
14
10.789
14.39
19.79
1.18
24.44
6
7.12
--7.895
11.145
--50.2
10.57
6.21
8.54
--117
5.46
2.09
6.40
21.0
16.06
12.93
------11.06
--19.9
9.21
--0.51
2
10.0
5.576
36.94
12.72
First
Ioniz
En
a
t
e
r
g
y (kJ ion
/mol
)
Stan
d
a
r
d
R
e
duct
Po
ion
(for tential
(
V
e
l
)
e
or to ments fr
om
oxid
s
a
t
a
t
e
indic tion
ated
)
Atom
ic Ra
(pm) dius
499
577.5
578
834
1521
947
920
502.9
601
899.5
703
--800.6
1139.9
867.8
589.8
608
1086.5
534.4
375.7
1251.2
652.9
760.4
745.5
581
----573
619
589.3
547.1
627
1681
380
593.4
578.8
762
890.1
ific H
eat
Spec
Table R-7 Properties of Elements
Enth
a
Vapo lpy of
rizat
ion
400
294
--68
6.43
32.4
40
140
--297
151
--480
29.96
99.87
155
--715
350
65
20.41
339
375
300
------280
--285
175
--6.62
65
305
254
334
324
Abun
d
Eart ance in
h’s C
rust
--8.2
--2 × 10 -5
1.5 × 10 -4
2.1 × 10 -4
--0.034
--2 × 10 -4
3 × 10 -7
--9 × 10 -4
3 × 10 -4
1.5 × 10 -5
5.00
--0.018
0.006
1.9 × 10 -4
0.017
0.014
0.003
0.0068
------6 × 10 -4
--3 × 10 -4
1.8 × 10 -4
--0.054
--5.2 × 10 -4
0.0019
1.4 × 10 -4
3 × 10 -7
ajor
O
x
id
Stat ation
es
M
3+
3+
2+, 3+, 4+
3+, 5+
--3+, 5+
1-, 5+
2+
3+, 4+
2+
3+, 5+
--3+
1-, 1+, 3+, 5+
2+
2+
3+, 4+
4-, 2+, 4+
3+, 4+
1+
1-, 1+, 3+, 5+
2+, 3+, 6+
2+, 3+
1+, 2+
3+, 4+
----2+, 3+
3+
3+
2+, 3+
2+, 3+
11+
3+
1+, 3+
2+, 4+
1+, 3+
Reference Tables
Reference Tables 971
Reference Tables
67
I
49
53
77
26
36
57
103
82
3
71
12
25
109
101
80
42
60
10
93
28
41
7
N
No
Os
0
Pd
P
Pt
Pu
Po
Nitrogen
Nobelium
Osmium
Oxygen
Palladium
Phosphorus
Platinum
Plutonium
Polonium
r
*[ ] indicates mass of longest-lived isotope
102
76
8
46
15
78
94
84
2
72
108
Ho
H
In
I
Ir
Fe
Kr
La
Lr
Pb
Li
Lu
Mg
Mn
Mt
Md
Hg
Mo
Nd
Ne
Np
Ni
Nb
ent
Holmium
Hydrogen
Indium
Iodine
Iridium
Iron
Krypton
Lanthanum
Lawrencium
Lead
Lithium
Lutetium
Magnesium
Manganese
Meitnerium
Mendelevium
Mercury
Molybdenum
Neodymium
Neon
Neptunium
Nickel
Niobium
Elem
He
bol
Helium
Sym
Hf
Hs
Ato
m
i
c
M
(amu ass*
)
[259]
190.23
15.9994
106.42
30.973462
195.078
[244]
[209]
14.0067
164.93032
1.00794
114.818
126.90447
192.217
55.845
83.798
138.9055
[262]
207.2
6.941
174.967
24.305
54.938045
[268]
[258]
200.59
95.94
144.24
20.1797
[237]
58.6934
92.90638
4.002602
178.49
[277]
mbe
ic Nu
Atom
Hafnium
Hassium
Melt
in
g Po
(°C) int
827
3033
-218.3
1554.9
44.2
1768.3
639.4
254
-210.1
2233
-272.2
-269.7
(2536 kPa)
1461
-259.14
156.6
113.7
2466
1538
-157.36
920
1627
327.46
180.54
1652
650
1246
--827
-38.83
2623
1024
-248.59
637
1455
2477
Bo
i
l
i
ng P
o
(°C) int
--5012
-182.9
2963
277
3825
3230
962
-195.79
2720
-252.87
2072
184.3
4428
2861
-153.22
3470
--1749
1342
3402
1090
2061
----356.73
4639
3100
-246.08
4000
2913
4744
-268.93
4603
---
Dens
(gas ity (g/cm 3
e
s
)
m
ea
at ST sured
P)
--22.61
0.001429
12.023
1.823
21.09
19.816
9.196
0.0012506
8.795
0.0000899
7.31
4.94
22.65
7.874
0.0037493
6.146
--11.34
0.535
9.841
1.738
7.47
----13.6
10.28
6.8
0.0008999
20.45
8.908
8.57
0.00017847
13.31
0.0001785
--135
73
137
110
138
--168
75
--37
167
133
136
126
112
187
--146
152
160
160
127
----151
139
--71
--124
146
31
159
---
Atom
ic Ra
(pm) dius
642
840
1313.9
804.4
1011.8
870
584.7
812.1
1402.3
581
1312
558.3
1008.4
880
762.5
1350.8
538.1
--715.6
520.2
523.5
737.7
717.3
--635
1007.1
684.3
533.1
2080.7
604.5
737.1
652.1
2372
(2+)-2.5
(4+)+0.687
(2-)+1.23
(2+)+0.915
(3-)-0.063
(4+)+1.15
(4+)-1.25
(4+)+0.73
(2-)-0.23
(3+)-2.33
(1+)0.000
(3+)-0.3382
(1-)+0.535
(4+)+0.926
(3+)-0.04
--(3+)-2.38
(3+)-2
(2+)-0.1251
(1+)-3.040
(3+)-2.3
(2+)-2.356
(2+)-1.18
--(3+)-1.7
(2+)+0.8535
(6+)+0.114
(3+)-2.32
--(4+)-1.30
(2+)-0.257
(5+)-0.65
---
(4+)-1.70
---
--57.85
0.44
16.74
0.66
22.17
2.82
13
0.71
17.0
0.12
3.281
15.52
41.12
13.81
1.64
6.20
--4.782
3.00
22
8.48
12.91
----2.29
37.48
7.14
0.328
3.20
17.04
30
0.021
27.2
---
First
Ioniz
En
a
t
e
r
g
y (kJ ion
/mol
)
Stan
d
a
r
d
R
e
duct
Po
ion
(for tential
(
V
e
l
)
e
or to ments fr
om
oxid
s
a
t
a
t
e
indic tion
ated
)
658.5
2372.3
--0.130
0.918
0.246
0.769
0.133
0.130
---
1.040
0.165
14.304
0.233
0.214
0.131
0.449
0.248
0.195
--0.130
3.582
0.154
1.023
0.479
----0.140
0.251
0.190
1.030
0.120
0.444
0.265
5.193
0.144
---
En
t
h
a
of Fu lpy
sion
972
ific H
eat
Spec
Table R-7 Properties of Elements (continued)
Enth
a
Vapo lpy of
rizat
ion
--630
6.82
380
12.4
490
325
100
5.57
265
0.90
230
41.57
560
347
9.08
400
--179.5
147
415
128
220
----59.11
600
285
1.71
335
378
690
0.08
630
0.083
Abun
d
Eart ance in
h’s C
rust
--1.8 × 10 -7
46.0
6.3 × 10 -7
0.10
3.7 × 10 -7
-----
0.002
1.2 × 10 -4
0.15
1.6 × 10 -5
4.9 × 10 -5
4 × 10 -7
6.3
1.5 × 10 -7
0.0034
--0.001
0.0017
5.6 × 10 -5
2.9
0.11
----6.7 × 10 -6
1.1 × 10 -4
0.0033
----0.009
0.0017
---
3 × 10 -4
5.5 × 10 -4
ajor
O
x
id
Stat ation
es
M
3+
1-, 1+
1+, 3+
1-, 1+, 5+, 7+
3+, 4+, 5+
2+, 3+
--3+
3+
2+, 4+
1+
3+
2+
2+, 3+, 4+, 6+, 7+
--2+, 3+
1+, 2+
4+, 5+, 6+
2+,3+
--2+, 3+, 4+, 5+, 6+
2+, 3+, 4+
4+, 5+
3-, 2-, 1-, 1+, 2+,
3+, 4+, 5+
2+, 3+
4+, 6+, 8+
2-, 12+, 4+
3-, 3+, 5+
2+, 4+
3+, 4+, 5+, 6+
2-, 2+, 4+, 6+
---
4+
---
Reference Tables
K
Pr
Pm
Pa
Ra
Rn
Re
Rh
Rg
Rb
Ru
Rf
Sm
Sc
Sg
Se
Si
Ag
Na
Sr
S
Ta
Tc
Te
Tb
Tl
Th
Tm
Sn
Ti
W
Uub
Uuh
Uuo
Uup
Uuq
Uut
U
V
Xe
Yb
Y
Zn
Zr
19
59
61
91
88
86
75
45
111
37
44
104
62
21
106
34
14
47
11
38
16
73
43
52
65
81
90
69
50
22
74
112
116
118
115
114
113
92
23
54
70
39
30
40
*[ ] indicates mass of longest-lived isotope
Potassium
Praseodymium
Promethium
Protactinium
Radium
Radon
Rhenium
Rhodium
Roentgenium
Rubidium
Ruthenium
Rutherfordium
Samarium
Scandium
Seaborgium
Selenium
Silicon
Silver
Sodium
Strontium
Sulfur
Tantalum
Technetium
Tellurium
Terbium
Thallium
Thorium
Thulium
Tin
Titanium
Tungsten
Ununbium
Ununhexium
Ununoctium
Ununpentium
Ununquadium
Ununtrium
Uranium
Vanadium
Xenon
Ytterbium
Yttrium
Zinc
Zirconium
39.0983
140.90765
[145]
231.03588
[226]
[222]
186.207
102.9055
[272]
85.4678
101.07
[261]
150.36
44.95591
[266]
78.96
28.0588
107.8682
22.989769
87.62
32.065
180.9479
[98]
127.60
158.92534
204.3822
232.0381
168.93421
118.710
47.867
183.84
[285]
[291]
[294]
[288]
[289]
[284]
238.02891
50.9415
131.293
173.04
88.90585
65.409
91.224
63.38
935
1100
1568
700
-71
3186
1964
--39.31
2334
--1072
1541
--221
1414
961.78
97.72
777
115.2
3017
2157
449.51
1356
304
1842
1545
231.93
1668
3422
------------1132.2
1910
-111.7
824
1526
419.53
1855
759
3290
3000
--1737
-61.7
5596
3695
--688
4150
--1803
2830
--685
2900
2162
883
1382
444.7
5458
4265
988
3230
1473
4820
1950
2602
3287
5555
------------3927
3407
-108
1196
3336
907
4409
0.856
6.64
7.264
15.37
5
0.00973
21.02
12.45
--1.532
12.37
--7.353
2.985
--4.819
2.33
10.49
0.968
2.63
1.96
16.65
11.5
6.24
8.219
11.85
11.72
9.321
7.31
4.507
19.25
------------19.05
6.11
0.0058971
6.57
4.472
7.14
6.511
227
------220
140
137
134
--248
134
----162
--119
118
144
186
215
103
146
136
142
--170
----140
147
139
--------------134
131
--180
134
160
418.8
527
540
568
509.3
1037
760
719.7
--403
710.2
--544.5
633.1
--941
786.5
731
495.8
549.5
999.6
761
702
869.3
565.8
589.4
587
596.7
708.6
658.8
770
------------597.6
650.9
1170.4
603.4
600
906.4
640.1
(1+)-2.925
(3+)-2.35
(3+)-2.29
(5+)-1.19
(2+)-2.916
--(7+)+0.415
(3+)+0.76
--(1+)-2.924
(4+)+0.68
--(3+)-2.3
(3+)-2.03
--(1-)-0.11
(4-)-0.143
(1+)+0.7991
(1+)-2.713
(2+)-2.89
(2-)-0.14
(5+)-0.81
(6+)+0.83
(2-)-1.14
(3+)-2.31
(1+)-0.3363
(4+)-1.83
(3+)-2.32
(4+)+0.15
(4+)-0.86
(6+)-0.09
------------(4+)-1.38
(5+)-0.236
(6+)+2.12
(3+)-2.22
(3+)-2.37
(2+)-0.7926
(4+)-1.55
2.33
6.89
7.7
12.34
8
3
60.43
26.59
--2.19
38.59
--8.62
14.1
--6.69
50.21
11.28
2.60
7.43
1.72
36.57
33.29
17.49
10.15
4.14
13.81
16.84
7.173
14.15
52.31
------------9.14
21.5
2.27
7.66
11.4
7.068
21.00
0.757
0.193
----0.095
0.094
0.137
0.243
--0.363
0.238
--0.197
0.568
--0.321
0.712
0.235
1.228
0.306
0.708
0.140
0.240
0.202
0.182
0.129
0.118
0.160
0.227
0.523
0.132
------------0.116
0.489
0.158
0.155
0.298
0.388
0.278
Table R-7 Properties of Elements (continued)
76.9
330
290
470
125
17
705
495
--72
580
--175
318
--95.48
359
255
97.7
137
45
735
550
114.1
295
165
530
250
290
425
800
------------420
453
12.57
160
380
119
580
1.50
8.7 × 10 -4
--trace
trace
--2.6 × 10 -7
7 × 10 -8
--0.006
1 × 10 -7
--6 × 10 -4
0.0026
--5 × 10 -6
27.0
8 × 10 -6
2.3
0.036
0.042
1.7 × 10 -4
--1 × 10 -7
1 × 10 -4
5.3 × 10 -5
6 × 10 -4
5 × 10 -5
2.2 × 10 -4
0.66
1.1 × 10 -4
------------1.8 × 10 -4
0.019
trace
2.8 × 10 -4
0.0029
0.0079
0.013
1+
3+, 4+
3+
3+, 4+, 5+
2+
3+
3+, 4+, 6+, 7+
3+, 4+, 5+
--1+
2+, 3+, 4+, 5+
--2+, 3+
3+
--2-, 2+, 4+, 6+
2+, 4+
1+
1+
2+
2-, 4+, 6+
4+, 5+
2+, 4+, 6+, 7+
2-, 2+, 4+, 6+
3+, 4+
1+, 3+
4+
--2+, 4+
2+, 3+, 4+
4+, 5+, 6+
------------3+, 4+, 5+, 6+
2+, 3+, 4+, 5+
--2+, 3+
3+
2+
4+
Reference Tables
Reference Tables 973
Reference Tables
Table R-8 Solubility Guidelines
A substance is considered soluble if more than three grams of the substance dissolves in 100 mL of water. The more
common rules are listed below.
1. All common salts of the group 1 elements and ammonium ions are soluble.
2. All common acetates and nitrates are soluble.
3. All binary compounds of group 17 elements (other than F) with metals are soluble except those of silver, mercury(I),
and lead.
4. All sulfates are soluble except those of barium, strontium, lead, calcium, silver, and mercury(I).
5. Except for those in Rule 1, carbonates, hydroxides, oxides, sulfides, and phoshates are insoluble.
Ph
Sul
—
I
S
S
I
S
I
S
D
Ammonium
S
S
S
S
S
S
S
S
S
—
S
S
S
S
Barium
S
S
P
S
S
I
S
S
S
S
S
I
I
D
Calcium
S
S
P
S
S
S
S
S
S
P
S
P
P
P
Copper(II)
S
S
—
S
S
—
I
—
S
I
S
I
S
I
Hydrogen
S
S
—
S
S
—
—
S
S
S
S
S
S
S
Iron(II)
—
S
P
S
S
—
I
S
S
I
S
I
S
I
Iron(III)
—
S
—
S
S
I
I
S
S
I
S
P
P
D
Lead(II)
S
S
—
S
S
I
P
P
S
P
S
I
P
I
Lithium
S
S
S
S
S
?
S
S
S
S
S
P
S
S
Magnesium
S
S
P
S
S
S
I
S
S
I
S
P
S
D
Manganese(II)
S
S
P
S
S
—
I
S
S
I
S
P
S
I
Mercury(I)
P
I
I
S
I
P
—
I
S
I
S
I
P
I
Mercury(II)
S
S
—
S
S
P
I
P
S
P
S
I
D
I
Potassium
S
S
S
S
S
S
S
S
S
S
S
S
S
S
Silver
P
I
I
S
I
P
—
I
S
P
S
I
P
I
Sodium
S
S
S
S
S
S
S
S
S
D
S
S
S
S
Strontium
S
S
P
S
S
P
S
S
S
S
S
I
P
S
Tin(II)
D
S
—
S
S
O
S
D
I
S
I
S
I
Tin(IV)
S
S
—
—
S
S
I
D
—
I
S
—
S
I
Zinc
S
S
P
S
S
P
P
S
S
P
S
I
S
I
Reference Tables
I – insoluble
ide
Suf
fat
ide
ide
lor
Ch
Ca
mi
P – partially soluble
e
Per
chl
o
S
osp
Ox
S
rat
e
Nit
hat
e
rat
e
e
Iod
dro
xid
ate
Hy
—
rom
Ch
S
rbo
Ch
ide
lor
ate
de
e
Bro
S
tat
Ace
Aluminum
S – soluble
974
nat
e
Solubility of Compounds in Water
D – decomposes
Reference Tables
Table R-9 Specific Heat Values (J/g·K)
Substance
c
AIF 3
BaTiO 3
BeO
CaC 2
CaSO 4
CCl 4
CH 3OH
CH 2OHCH 2OH
CH 3CH 2OH
CdO
CuSO 4·5H 2O
0.8948
0.79418
1.020
0.9785
0.7320
0.85651
2.55
2.413
2.4194
0.3382
1.12
Substance
c
Fe 3C
FeWO 4
HI
K 2CO 3
MgCO 3
Mg(OH) 2
MgSO 4
MnS
Na 2CO 3
NaF
0.5898
0.37735
0.22795
0.82797
0.8957
1.321
0.8015
0.5742
1.0595
1.116
Substance
c
NaVO 3
Ni(CO) 4
Pbl 2
SF 6
SiC
SiO 2
SrCl 2
Tb 2O 3
TiCl 4
Y 2O 3
1.540
1.198
0.1678
0.6660
0.6699
0.7395
0.4769
0.3168
0.76535
0.45397
Table R-10 Molal Freezing Point Depression and
Boiling Point Elevation Constants
K fp
(C°kg/mol)
Substance
Acetic acid
Benzene
Camphor
Cyclohexane
Cyclohexanol
Nitrobenzene
Phenol
Water
3.90
5.12
37.7
20.0
39.3
6.852
7.40
1.86
Freezing Point
(°C)
16.66
5.533
178.75
6.54
25.15
5.76
40.90
0.000
K bp
(C°kg/mol)
Boiling Point
(°C)
3.22
2.53
5.611
2.75
--5.24
3.60
0.512
117.90
80.100
207.42
80.725
--210.8
181.839
100.000
Table R-11 Heat of Formation Values
∆H ◦f (kJ/mol) (concentration of aqueous solutions is 1M)
Substance
Ag(s)
AgCl(s)
AgCN(s)
Al 2O 3
BaCl 2(aq)
BaSO 4
BeO(s)
BiCl 3(s)
Bi 2S 3(s)
Br 2
CCl 4(I)
CH 4(g)
C 2H 2(g)
C 2H 4(g)
C 2H 6(g)
CO(g)
CO 2(g)
CS 2(I)
Ca(s)
CaCO 3(s)
CaO(s)
Ca(OH) 2(s)
Cl 2(g)
Co 3O 4(s)
CoO(s)
Cr 2O 3(s)
∆H ◦f
0
-127.0
146.0
-1675.7
-855.0
-1473.2
-609.4
-379.1
-143.1
0
-128.2
-74.6
227.4
52.4
-84.0
-110.5
-393.5
89.0
0
-1206.9
-634.9
-985.2
0
-891.0
-237.9
-1139.7
Substance
CsCl(s)
Cs 2SO 4(s)
Cul(s)
CuS(s)
Cu 2S(s)
CuSO 4(s)
F 2(g)
FeCl 3(s)
FeO(s)
FeS(s)
Fe 2O 3(s)
Fe 3O 4(s)
H(g)
H 2(g)
HBr(g)
HCl(g)
HCl(aq)
HCN(aq)
HCHO
HCOOH
HF(g)
Hl(g)
H 2O(I)
H 2O(g)
H 2O 2(I)
H 3PO 2(I)
∆H ◦f
-443.0
-1443.0
-67.8
-53.1
-79.5
-771.4
0
-399.49
-272.0
-100.0
-824.2
-1118.4
218.0
0
-36.3
-92.3
-167.159
108.9
-108.6
-425.0
-273.3
26.5
-285.8
-241.8
-187.8
-595.4
Substance
H 3PO 4(aq)
H 2S(g)
H 2SO 3(aq)
H 2SO 4(aq)
HgCl 2(s)
Hg 2Cl 2(s)
Hg 2SO 4(s)
l 2(s)
K(s)
KBr(s)
KMnO 4(s)
KOH
LiBr(s)
LiOH(s)
Mn(s)
MnCl 2(aq)
Mn(NO 3) 2(aq)
MnO 2(s)
MnS(s)
N 2(g)
NH 3(g)
NH 4Br(s)
NO(g)
NO 2(g)
N 2O(g)
Na(s)
∆H ◦f
-1271.7
-20.6
-608.8
-814.0
-224.3
-265.4
-743.1
0
0
-393.8
-837.2
-424.6
-351.2
-487.5
0
-555.0
-635.5
-520.0
-214.2
0
-45.9
-270.8
91.3
33.2
81.6
0
Substance
NaBr(s)
NaCl(s)
NaHCO 3(s)
NaNO 3(s)
NaOH(s)
Na 2CO 3(s)
Na 2S(s)
Na 2SO 4(s)
NH 4Cl(s)
O 2(g)
P 4O 6(s)
P 4O 10(s)
PbBr 2(s)
PbCl 2(s)
SF 6(g)
SO 2(g)
SO 3(g)
SrO(s)
TiO 2(s)
Tll(s)
UCl 4(s)
UCl 6(s)
Zn(s)
ZnCl 2(aq)
ZnO(s)
ZnSO 4(s)
∆H ◦f
-361.1
-411.2
-950.8
-467.9
-425.8
-1130.7
-364.8
-1387.1
-314.4
0
-1640.1
-2984.0
-278.7
-359.4
-1220.5
-296.8
-454.5
-592.0
-944.0
-123.8
-1019.2
-1092.0
0
-415.1
-350.5
-982.8
Reference Tables 975
Chapter 2
Section 2.1
1. The density of a substance is 48 g/mL. What is the volume of a sample that
is 19.2 g?
2. A 2.00-mL sample of Substance A has a density of 18.4 g/mL, and a
5.00-mL sample of Substance B has a density of 35.5 g/mL. Do you have
an equal mass of Substances A and B?
Section 2.2
3. Express the following quantities in scientific notation.
a. 5,453,000 m
e. 34,800 s
b. 300.8 kg
f. 332,080,000 cm
c. 0.00536 ng
g. 0.0002383 ms
d. 0.0120325 km
h. 0.3048 mL
4. Solve the following problems. Express your answers in scientific notation.
a. 3 × 10 2 m + 5 × 10 2 m
b. 8 × 10 −5 m + 4 × 10 −5 m
c. 6.0 × 10 5 m + 2.38 × 10 6 m
d. 2.3 × 10 -3 L + 5.78 × 10 -2 L
e. 2.56 × 10 2 g - 1.48 × 10 2 g
f. 5.34 × 10 -3 L - 3.98 × 10 -3 L
g. 7.623 × 10 5 nm - 8.32 × 10 4 nm
h. 9.052 × 10 -2 s - 3.61 × 10 -3 s
5. Solve the following problems. Express your answers in scientific notation.
a. (8 × 10 3 m) × (1 × 10 5 m)
b. (4 × 10 2 m) × (2 × 10 4 m)
c. (5 × 10 -3 m) × (3 × 10 4 m)
d. (3 × 10 -4 m) × (3 × 10 -2 m)
e. (8 × 10 4 g) ÷ (4 × 10 3 mL)
f. (6 × 10 -3 g) ÷ (2 × 10 -1 mL)
g. (1.8 × 10 -2 g) ÷ (9 × 10 -5 mL)
h. (4 × 10 -4 g) ÷ (1 × 10 3 mL)
6. Perform the following conversions.
a. 96 kg to g
e.
b. 155 mg to g
f.
c. 15 cg to kg
g.
d. 584 µs to s
h.
188 dL to L
3600 m to km
24 g to pg
85 cm to nm
7. How many minutes are there in 5 days?
8. A car is traveling at 118 km/h. What is its speed in Mm/h?
Section 2.3
9. Three measurements of 34.5 m, 38.4 m, and 35.3 m are taken. If the
accepted value of the measurement is 36.7 m, what is the percent error for
each measurement?
10. Three measurements of 12.3 mL, 12.5 mL, and 13.1 mL are taken. The
accepted value for each measurement is 12.8 mL. Calculate the percent
error for each measurement.
976
Supplemental Practice Problems
Supplemental Practice Problems
11. Determine the number of significant figures in each measurement.
a. 340,438 g
e. 1.040 s
b. 87,000 ms
f. 0.0483 m
c. 4080 kg
g. 0.2080 mL
d. 961,083,110 m
h. 0.0000481 g
12. Write the following in three significant figures.
a. 0.0030850 km
c. 5808 mL
b. 3.0823 g
d. 34.654 mg
13. Write the answers in scientific notation.
a. 0.005832 g
c. 0.0005800 km
b. 386,808 ns
d. 2086 L
14. Use rounding rules when you complete the following.
a. 34.3 m + 35.8 m + 33.7 m
b. 0.056 kg + 0.0783 kg + 0.0323 kg
c. 309.1 mL + 158.02 mL + 238.1 mL
d. 1.03 mg + 2.58 mg + 4.385 mg
e. 8.376 km - 6.153 km
f. 34.24 s - 12.4 s
g. 804.9 dm - 342.0 dm
h. 6.38 × 10 2 m - 1.57 × 10 2 m
15. Complete the following calculations. Round off the answers to the correct
number of significant figures.
a. 34.3 cm × 12 cm
b. 0.054 mm × 0.3804 mm
c. 45.1 km × 13.4 km
d. 45.5 g ÷ 15.5 mL
e. 35.43 g ÷ 24.84 mL
f. 0.0482 g ÷ 0.003146 mL
Chapter 3
Section 3.2
1. A 3.5-kg iron shovel is left outside through the winter. The shovel, now
orange with rust, is rediscovered in the spring. Its mass is 3.7 kg. How
much oxygen combined with the iron?
2. When 5.0 g of tin reacts with hydrochloric acid, the mass of the products,
tin chloride and hydrogen, totals 8.1 g. How many grams of hydrochloric
acid were used?
Section 3.4
3. A compound is analyzed and found to be 50.0% sulfur and 50.0% oxygen.
If the total amount of the sulfur oxide compound is 12.5 g, how many
grams of sulfur are there?
4. Two unknown compounds are analyzed. Compound I contains 5.63 g of
tin and 3.37 g of chlorine, while Compound II contains 2.5 g of tin and
2.98 g of chlorine. Are the compounds the same?
Chapter 4
Section 4.3
1. How many protons and electrons are in each of the following atoms?
a. gallium
d. calcium
b. silicon
e. molybdenum
c. cesium
f. titanium
Supplemental Practice Problems 977
Supplemental Practice Problems
2. What is the atomic number of each of the following elements?
a. an atom that contains 37 electrons
b. an atom that contains 72 protons
c. an atom that contains 1 electron
d. an atom that contains 85 protons
3. Use the periodic table to write the name and the symbol for each element
identified in Question 2.
4. An isotope of copper contains 29 electrons, 29 protons, and 36 neutrons.
What is the mass number of this isotope?
5. An isotope of uranium contains 92 electrons and 144 neutrons. What is the
mass number of this isotope?
6. Use the periodic table to write the symbols for each of the following
elements. Then, determine the number of electrons, protons, and neutrons
each contains.
a. yttrium-88
d. bromine-79
b. arsenic-75
e. gold-197
c. xenon-129
f. helium-4
7. An element has two naturally occurring isotopes: 14X and 15X. 14X has a
mass of 14.00307 amu and a relative abundance of 99.63%. 15X has a mass
of 15.00011 amu and a relative abundance of 0.37%. Identify the unknown
element.
8. Silver has two naturally occurring isotopes. Ag-107 has an abundance of
51.82% and a mass of 106.9 amu. Ag-109 has a relative abundance of
48.18% and a mass of 108.9 amu. Calculate the atomic mass of silver.
Chapter 5
Section 5.1
1. What is the frequency of an electromagnetic wave that has a wavelength of
4.55 × 10 −3 m? 1.00 × 10 −12 m?
2. Calculate the wavelength of an electromagnetic wave with a frequency of
8.68 × 10 16 Hz; 5.0 × 10 14 Hz; and 1.00 × 10 6 Hz.
3. What is the energy of a quantum of visible light having a frequency of
5.45 × 10 14 s −1?
4. An X ray has a frequency of 1.28 × 10 18 s −1. What is the energy of a quan-
tum of the X ray?
Section 5.3
5. Write the ground-state electron configuration for the following.
a. nickel
c. boron
b. cesium
d. krypton
6. What element has the following ground-state electron configuration
[He]2s 2? [Xe]6s 24f 145d 106p 1?
7. Which element in period 4 has four electrons in its electron-dot structure?
8. Which element in period 2 has six electrons in its electron-dot structure?
9. Draw the electron-dot structure for each element in Question 5.
978
Supplemental Practice Problems
Supplemental Practice Problems
Chapter 6
Section 6.2
1. Identify the group, period, and block of an atom with the following elec-
tron configurations.
a. [He]2s 22p 1
b. [Kr]5s 24d 5
c. [Xe]6s 25f 146d 5
2. Write the electron configuration for the element fitting each of the following
descriptions.
a. a noble gas in the first period
b. a group 4 element in the fifth period
c. a group 14 element in the sixth period
d. a group 1 element in the seventh period
Section 6.3
3. Using the periodic table, rank each group of elements in order of
increasing size.
a. calcium, magnesium, and strontium
b. oxygen, lithium, and fluorine
c. fluorine, cesium, and calcium
d. selenium, chlorine, and tellurium
e. iodine, krypton, and beryllium
Chapter 7
Section 7.2
1. Explain the formation of an ionic compound from zinc and chlorine.
2. Explain the formation of an ionic compound from barium and nitrogen.
Section 7.3
3. Write the chemical formula of an ionic compound composed of the follow-
ing pairs of ions.
a. calcium and arsenide
b. iron(III) and chloride
c. magnesium and sulfide
d. barium and iodide
e. gallium and phosphide
4. Determine the formula for ionic compounds composed of the following
ions.
a. copper(II) and acetate
b. ammonium and phosphate
c. calcium and hydroxide
d. gold(III) and cyanide
5. Name the following compounds.
a. Co(OH) 2
c. Na 3PO 4
b. Ca(ClO 3) 2
d. K 2Cr 2O 7
e. SrI 2
f. HgF 2
Chapter 8
Section 8.1
1. Draw the Lewis structure for each of the following molecules.
a. CCl 2H 2
b. HF
c. PCl 3
d. CH 4
Section 8.2
2. Name the following binary compounds.
a. S 4N 2
c. SF 6
b. OCl 2
d. NO
e. SiO 2
f. IF 7
3. Name the following acids: H 3PO 4, HBr, HNO 3.
Supplemental Practice Problems 979
Supplemental Practice Problems
4. Draw the Lewis structure for each of the following.
a. CO
c. N 2O
e. SiO 2
b. CH 2O
d. OCl 2
f. AlBr 3
Section 8.3
5. Draw the Lewis resonance structure for CO 3 2−.
6. Draw the Lewis resonance structure for CH 3CO 2 −.
7. Draw the Lewis structure for NO and IF 4 −.
8. Determine the molecular geometry, bond angles, and hybrid of each
Section 8.4
molecule in Question 4.
9. Determine whether each of the following molecules is polar or nonpolar.
a. CH 2O
b. BF 3
c. SiH 4
d. H 2S
Section 8.5
Chapter 9
Section 9.1
Write skeleton equations for the following reactions.
1. Solid barium and oxygen gas react to produce solid barium oxide.
2. Solid iron and aqueous hydrogen sulfate react to produce aqueous iron(III)
sulfate and gaseous hydrogen.
Write balanced chemical equations for the following reactions.
3. Liquid bromine reacts with solid phosphorus (P 4) to produce solid
diphosphorus pentabromide.
4. Aqueous lead(II) nitrate reacts with aqueous potassium iodide to produce
solid lead(II) iodide and aqueous potassium nitrate.
5. Solid carbon reacts with gaseous fluorine to produce gaseous carbon
tetrafluoride.
6. Aqueous carbonic acid reacts to produce liquid water and gaseous carbon
dioxide.
7. Gaseous hydrogen chloride reacts with gaseous ammonia to produce solid
ammonium chloride.
8. Solid copper(II) sulfide reacts with aqueous nitric acid to produce aqueous
copper(II) sulfate, liquid water, and nitrogen dioxide gas.
Section 9.2
Classify each of the following reactions into as many types as possible.
9. 2Mo(s) + 3O 2(g) → 2MoO 3(s)
10. N 2H 4(l) + 3O 2(g) → 2NO 2(g) + 2H 2O(l)
Write balanced chemical equations for the following decomposition
reactions.
11. Aqueous hydrogen chlorite decomposes to produce water and gaseous
chlorine(III) oxide.
12. Calcium carbonate(s) decomposes to produce calcium oxide(s) and carbon
dioxide(g).
Use the activity series to predict whether each of the following singlereplacement reactions will occur.
13. Al(s) + FeCl 3(aq) → AlCl 3(aq) + Fe(s)
980
Supplemental Practice Problems
Supplemental Practice Problems
14. Br 2(l) + 2LiI(aq) → 2LiBr(aq) + I 2(aq)
15. Cu(s) + MgSO 4(aq) → Mg(s) + CuSO 4(aq)
Write chemical equations for the following chemical reactions.
16. Bismuth(III) nitrate(aq) reacts with sodium sulfide(aq), yielding
bismuth(III) sulfide(s) plus sodium nitrate(aq).
17. Magnesium chloride(aq) reacts with potassium carbonate(aq), yielding
magnesium carbonate(s) plus potassium chloride(aq).
Section 9.3
Write net ionic equations for the following reactions.
18. Aqueous solutions of barium chloride and sodium fluoride are mixed to
form a precipitate of barium fluoride.
19. Aqueous solutions of copper(I) nitrate and potassium sulfide are mixed to
form insoluble copper(I) sulfide.
20. Hydrobromic acid reacts with aqueous lithium hydroxide.
21. Perchloric acid reacts with aqueous rubidium hydroxide.
22. Nitric acid reacts with aqueous sodium carbonate.
23. Hydrochloric acid reacts with aqueous lithium cyanide.
Chapter 10
Section 10.1
1. Determine the number of atoms in 3.75 mol of Fe.
2. Calculate the number of formula units in 12.5 mol of CaCO 3.
3. How many moles of CaCl 2 contain 1.26 × 10 24 formula units of CaCl 2?
4. How many moles of Ag contain 4.59 × 10 25 atoms of Ag?
Section 10.2
5. Determine the mass in grams of 0.0458 mol of sulfur.
6. Calculate the mass in grams of 2.56 × 10 −3 mol of iron.
7. Determine the mass in grams of 125 mol of neon.
8. How many moles of titanium are contained in 71.4 g?
9. How many moles of lead are equivalent to 9.51 × 10 3 g of Pb?
10. Determine the number of moles of arsenic in 1.90 g of As.
11. Determine the number of atoms in 4.56 × 10 −2 g of sodium.
12. How many atoms of gallium are in 2.85 × 10 3 g of gallium?
13. Determine the mass in grams of 5.65 × 10 24 atoms of Se.
14. What is the mass in grams of 3.75 × 10 21 atoms of Li?
Section 10.3
15. How many moles of each element are in 0.0250 mol of K 2CrO 4?
16. How many moles of ammonium ions are in 4.50 mol of (NH 4) 2CO 3?
17. Determine the molar mass of silver nitrate.
18. Calculate the molar mass of acetic acid (CH 3COOH).
Supplemental Practice Problems 981
Supplemental Practice Problems
19. Determine the mass of 8.57 mol of sodium dichromate (Na 2Cr 2O 7).
20. Calculate the mass of 42.5 mol of potassium cyanide.
21. Determine the number of moles present in 456 g of Cu(NO 3) 2.
22. Calculate the number of moles in 5.67 g of potassium hydroxide.
23. Calculate the number of each atom in 40.0 g of methanol (CH 3OH).
24. What mass of sodium hydroxide contains 4.58 × 10 23 formula units?
Section 10.4
25. What is the percent by mass of each element in sucrose (C 12H 22O 11)?
26. Which compound has a greater percent by mass of chromium, K 2CrO 4 or
K 2Cr 2O 7?
27. Analysis of a compound indicates the percent composition 42.07% Na,
18.89% P, and 39.04% O. Determine its empirical formula.
28. A colorless liquid was found to contain 39.12% C, 8.76% H, and 52.12% O.
Determine the empirical formula of the substance.
29. Analysis of a compound used in cosmetics reveals the compound contains
26.76% C, 2.21% H, 71.17% O and has a molar mass of 90.04 g/mol.
Determine the molecular formula for this substance.
30. Eucalyptus leaves are the food source for panda bears. Eucalyptol is an oil
found in these leaves. Analysis of eucalyptol indicates it has a molar mass
of 154 g/mol and contains 77.87% C, 11.76% H, and 10.37% O. Determine
the molecular formula of eucalyptol.
31. Beryl is a hard mineral that occurs in a variety of colors. A 50.0-g sample
of beryl contains 2.52 g Be, 5.01 g Al, 15.68 g Si, and 26.79 g O. Determine
its empirical formula.
32. Analysis of a 15.0-g sample of a compound used to leach gold from low-
grade ores is 7.03 g Na, 3.68 g C, and 4.29 g N. Determine the empirical
formula for this substance.
Section 10.5
33. Analysis of a hydrate of iron(III) chloride revealed that in a 10.00-g sample
of the hydrate, 6.00 g is anhydrous iron(III) chloride and 4.00 g is water.
Determine the formula and name of the hydrate.
34. When 25.00 g of a hydrate of nickel(II) chloride was heated, 11.37 g of
water was released. Determine the name and formula of the hydrate.
Chapter 11
Section 11.1
Interpret the following balanced chemical equations in terms of particles,
moles, and mass.
1. Mg + 2HCl → MgCl 2 + H 2
2. 2Al + 3CuSO 4 → Al 2(SO 4) 3 + 3Cu
3. Cu(NO 3) 2 + 2KOH → Cu(OH) 2 + 2KNO 3
4. Write and balance the equation for the decomposition of aluminum
carbonate. Determine the possible mole ratios.
982
Supplemental Practice Problems
Supplemental Practice Problems
5. Write and balance the equation for the formation of magnesium hydroxide
and hydrogen from magnesium and water. Determine the possible mole
ratios.
Section 11.2
6. Some antacid tablets contain aluminum hydroxide. The aluminum
hydroxide reacts with stomach acid according to the equation:
Al(OH) 3 + 3HCl → AlCl 3 + 3H 2O. Determine the moles of acid
neutralized if a tablet contains 0.200 mol of Al(OH) 3.
7. Chromium reacts with oxygen according to the equation:
4Cr + 3O 2 → 2Cr 2O 3. Determine the moles of chromium(III) oxide
produced when 4.58 mol of chromium is allowed to react.
8. Space vehicles use solid lithium hydroxide to remove exhaled carbon
dioxide according to the equation: 2LiOH + CO 2 → Li 2CO 3 + H 2O.
Determine the mass of carbon dioxide removed if the space vehicle carries
42.0 mol of LiOH.
9. Some of the sulfur dioxide released into the atmosphere is converted to
sulfuric acid according to the equation: 2SO 2 + 2H 2O + O 2 → 2H 2SO 4.
Determine the mass of sulfuric acid formed from 3.20 mol of sulfur
dioxide.
10. How many grams of carbon dioxide are produced when 2.50 g of sodium
hydrogen carbonate reacts with excess citric acid according to the equation: 3NaHCO 3 + H 3C 6H 5O 7 → Na 3C 6H 5O 7 + 3CO 2 + 3H 2O?
11. Aspirin (C 9H 8O 4) is produced when salicylic acid (C 7H 6O 3) reacts with
acetic anhydride (C 4H 6O 3) according to the equation:
C 7H 6O 3 + C 4H 6O 3 → C 9H 8O 4 + HC 2H 3O 2. Determine the mass of aspirin produced when 150.0 g of salicylic acid reacts with an excess of acetic
anhydride.
Section 11.3
12. Chlorine reacts with benzene to produce chlorobenzene and hydrogen
chloride, Cl 2 + C 6H 6 → C 6H 5Cl + HCl. Determine the limiting reactant
if 45.0 g of benzene reacts with 45.0 g of chlorine, the mass of the excess
reactant after the reaction is complete, and the mass of chlorobenzene
produced.
13. Nickel reacts with hydrochloric acid to produce nickel(II) chloride and
hydrogen according to the equation: Ni + 2HCl → NiCl 2 + H 2. If 5.00 g
of Ni and 2.50 g of HCl react, determine the limiting reactant, the mass of
the excess reactant after the reaction is complete, and the mass of nickel(II)
chloride produced.
Section 11.4
14. Tin(IV) iodide is prepared by reacting tin with iodine. Write the balanced
chemical equation for the reaction. Determine the theoretical yield if a
5.00-g sample of tin reacts in an excess of iodine. Determine the percent
yield if 25.0 g of SnI 4 was recovered.
15. Gold is extracted from gold-bearing rock by adding sodium cyanide in
the presence of oxygen and water, according to the reaction: 4Au(s) +
8NaCN(aq) + O 2(g) + 2H 2O(l) → 4NaAu(CN) 2(aq) + NaOH(aq).
Determine the theoretical yield of NaAu(CN) 2 if 1000.0 g of gold-bearing
rock is used, which contains 3.00% gold by mass. Determine the percent
yield of NaAu(CN) 2 if 38.790 g of NaAu(CN) 2 is recovered.
Supplemental Practice Problems 983
Supplemental Practice Problems
Chapter 12
Section 12.1
1. Calculate the ratio of effusion rates for methane (CH 4) and nitrogen.
2. Calculate the molar mass of butane. Butane’s rate of diffusion is 3.8 times
slower than that of helium.
3. What is the total pressure in a canister that contains oxygen gas at a partial
pressure of 804 mm Hg, nitrogen at a partial pressure of 220 mm Hg, and
hydrogen at a partial pressure of 445 mm Hg?
4. Calculate the partial pressure of neon in a flask that has a total pressure of
1.87 atm. The flask contains krypton at a partial pressure of 0.77 atm and
helium at a partial pressure of 0.62 atm.
Chapter 13
Section 13.1
1. The pressure of air in a 2.25-L container is 1.20 atm. What is the new
pressure if the sample is transferred to a 6.50-L container? Temperature
is constant.
2. The volume of a sample of hydrogen gas at 0.997 atm is 5.00 L. What will
be the new volume if the pressure is decreased to 0.977 atm? Temperature
is constant.
3. A gas at 55.0°C occupies a volume of 3.60 L. What volume will it occupy
at 30.0°C? Pressure is constant.
4. The volume of a gas is 0.668 L at 66.8°C. At what Celsius temperature will
the gas have a volume of 0.942 L, assuming pressure remains constant?
5. The pressure in a bicycle tire is 1.34 atm at 33.0°C. At what temperature
will the pressure inside the tire be 1.60 atm? Volume is constant.
6. If a sample of oxygen gas has a pressure of 810 torr at 298 K, what will be
its pressure if its temperature is raised to 330 K?
7. Air in a tightly sealed bottle has a pressure of 0.978 atm at 25.5°C. What
will be its pressure if the temperature is raised to 46.0°C?
8. Hydrogen gas at a temperature of 22.0°C that is confined in a 5.00-L
cylinder exerts a pressure of 4.20 atm. If the gas is released into a 10.0-L
reaction vessel at a temperature of 33.6°C, what will be the pressure inside
the reaction vessel?
9. A sample of neon gas at a pressure of 1.08 atm fills a flask with a volume of
250 mL at a temperature of 24.0°C. If the gas is transferred to another flask
at 37.2°C and a pressure of 2.25 atm, what is the volume of the new flask?
Section 13.2
10. What volume of beaker contains exactly 2.23 × 10 -2 mol of nitrogen gas
at STP?
11. How many moles of air are in a 6.06-L tire at STP?
12. How many moles of oxygen are in a 5.5-L canister at STP?
13. What mass of helium is in a 2.00-L balloon at STP?
14. What volume will 2.3 kg of nitrogen gas occupy at STP?
984
Supplemental Practice Problems
Supplemental Practice Problems
15. Calculate the number of moles of gas that occupy a 3.45-L container at
a pressure of 150 kPa and a temperature of 45.6°C.
16. What is the pressure in torr that a 0.44-g sample of carbon dioxide gas will
exert at a temperature of 46.2°C when it occupies a volume of 5.00 L?
17. What is the molar mass of a gas that has a density of 1.02 g/L at 0.990 atm
pressure and 37°C?
18. Calculate the grams of oxygen gas present in a 2.50-L sample kept at
1.66 atm pressure and a temperature of 10.0°C.
Section 13.3
19. What volume of oxygen gas is needed to completely combust 0.202 L
of butane gas (C 4H 10)?
20. Determine the volume of methane gas (CH 4) needed to react completely
with 0.660 L of O 2 gas to form methanol (CH 3OH).
21. Calculate the mass of hydrogen peroxide needed to obtain 0.460 L of
oxygen gas at STP. 2H 2O 2(aq) → 2H 2O(l) + O 2(g)
22. When potassium chlorate is heated in the presence of a catalyst such as
manganese dioxide, it decomposes to form solid potassium chloride and
oxygen gas: 2KClO 3(s) → 2KCl(s) + 3O 2(g). How many liters of oxygen
will be produced at STP if 1.25 kg of potassium chlorate decomposes
completely?
Chapter 14
Section 14.2
1. What is the percent by mass of a sample of ocean water that is found to
contain 1.36 g of magnesium ions per 1000 g?
2. What is the percent by mass of iced tea containing 0.75 g of aspartame in
250 g of water?
3. A bottle of hydrogen peroxide is labeled 3%. If you pour out 50 mL of
hydrogen peroxide solution, what volume is hydrogen peroxide?
4. If 50 mL of pure acetone is mixed with 450 mL of water, what is the per-
cent volume?
5. Calculate the molarity of 1270 g of K 3PO 4 in 4.0 L aqueous solution.
6. What is the molarity of 90.0 g of NH 4Cl in 2.25 L aqueous solution?
7. Which is more concentrated, 25 g of NaCl dissolved in 500 mL of water or
a 10% solution of NaCl (percent by mass)?
8. Calculate the mass of NaOH required to prepare a 0.343M solution
dissolved in 2500 mL of water.
9. Calculate the volume required to dissolve 11.2 g of CuSO 4 to prepare a
0.140M solution.
10. How would you prepare 500 mL of a solution that has a new concentration
of 4.5M if the stock solution is 11.6M?
11. Caustic soda is 19.1M NaOH and is diluted for household use. What is the
household concentration if 10 mL of the concentrated solution is diluted
to 400 mL?
Supplemental Practice Problems 985
Supplemental Practice Problems
12. What is the molality of a solution containing 63.0 g of HNO 3 in 0.500 kg
of water?
13. What is the molality of an acetic acid solution containing 0.500 mol of
HC 2H 3O 2 in 0.800 kg of water?
14. What mass of ethanol (C 2H 5OH) will be required to prepare a 2.00m
solution in 8.00 kg of water?
15. Determine the mole fraction of nitrogen in a gas mixture containing
0.215 mol N 2, 0.345 mol O 2, 0.023 mol CO 2, and 0.014 mol SO 2. What is
the mole fraction of N 2?
16. A necklace contains 4.85 g of gold, 1.25 g of silver, and 2.40 g of copper.
What is the mole fraction of each metal?
Section 14.3
17. Calculate the mass of gas dissolved at 150.0 kPa, if 0.35 g of the gas dis-
solves in 2.0 L of water at 30.0 kPa.
18. At which depth, 10 m or 40 m, will a scuba diver have more nitrogen
dissolved in the bloodstream?
Section 14.4
19. Calculate the freezing point and boiling point of a solution containing
6.42 g of sucrose (C 12H 22O 11) in 100.0 g of water.
20. Calculate the freezing point and boiling point of a solution containing
23.7 g of copper(II) sulfate in 250.0 g of water.
21. Calculate the freezing point and boiling point of a solution containing
0.15 mol of the molecular compound naphthalene in 175 g of benzene
(C 6H 6).
Chapter 15
Section 15.1
1. What is the equivalent in joules of 126 Calories?
2. Convert 455 kilojoules to kilocalories.
3. How much heat is required to warm 122 g of water by 23.0°C?
4. The temperature of 55.6 grams of a material decreases by 14.8°C when it
loses 3080 J of heat. What is its specific heat?
5. What is the specific heat of a metal if the temperature of a 12.5-g sample
increases from 19.5°C to 33.6°C when it absorbs 37.7 J of heat?
Section 15.2
6. A 75.0-g sample of a metal is placed in boiling water until its temperature
is 100.0°C. A calorimeter contains 100.00 g of water at a temperature of
24.4°C. The metal sample is removed from the boiling water and
immediately placed in water in the calorimeter. The final temperature of
the metal and water in the calorimeter is 34.9°C. Assuming that the calorimeter provides perfect insulation, what is the specific heat of the metal?
Section 15.3
7. Use Table 15.4 to determine how much heat is released when 1.00 mol of
gaseous methanol condenses to a liquid.
8. Use Table 15.4 to determine how much heat must be supplied to melt
4.60 g of ethanol.
986
Supplemental Practice Problems
Supplemental Practice Problems
Section 15.4
9. Calculate ∆H rxn for the reaction 2C(s) + 2H 2(g) → C 2H 4(g), given the
following thermochemical equations:
2CO 2(g) + 2H 2O(l) → C 2H 4(g) + 3O 2(g) ∆H = 1411 kJ
C(s) + O 2(g) → CO 2(g) ∆H = −393.5 kJ
2H 2(g) + O 2(g) → 2H 2O(l) ∆H = −572 kJ
10. Calculate ∆H rxn for the reaction HCl(g) + NH 3(g) → NH 4Cl(s), given the
following thermochemical equations:
H 2(g) + Cl 2(g) → 2HCl(g) ∆H = −184 kJ
N 2(g) + 3H 2(g) → 2NH 3(g) ∆H = −92 kJ
N 2(g) + 4H 2(g) + Cl 2(g) → 2NH 4Cl(s) ∆H = −628 kJ
Use standard enthalpies of formation from Table 15.5 and Table R-11 to
calculate ∆H° rxn for each of the following reactions.
11. 2HF(g) → H 2(g) + F 2(g)
12. 2H 2S(g) + 3O 2(g) → 2H 2O(l) + 2SO 2(g)
Section 15.5
Predict the sign of ∆S system for each reaction or process.
13. FeS(s) → Fe 2+(aq) + S 2−(aq)
14. SO 2(g) + H 2O(l) → H 2SO 3(aq)
Determine if each of the following processes or reactions is spontaneous or
nonspontaneous.
15. ∆H system = 15.6 kJ, T = 415 K, ∆S system = 45 J/K
16. ∆H system = 35.6 kJ, T = 415 K, ∆S system = 45 J/K
Chapter 16
Section 16.1
1. In the reaction A → 2B, suppose that [A] changes from 1.20 mol/L
at time = 0 to 0.60 mol/L at time = 3.00 min and that [B] = 0.00 mol/L
at time = 0.
a. What is the average rate at which A is consumed in mol/(L∙min)?
b. What is the average rate at which B is produced in mol/(L∙min)?
Section 16.3
2. What are the overall reaction orders in Practice Problems 19 to 22 on
page 577?
3. If halving [A] in the reaction A → B causes the initial rate to decrease to
one-fourth its original value, what is the probable rate law for the reaction?
4. Use the data below and the method of initial rates to determine the rate
law for the reaction 2NO(g) + O 2(g) → 2NO 2(g).
Formation of NO 2 Data
Trial
Initial [NO]
(M)
Initial [O 2]
(M)
Initial Rate
(mol/(L·s))
1
0.030
0.020
0.0041
2
0.060
0.020
0.0164
3
0.030
0.040
0.0082
Supplemental Practice Problems 987
Supplemental Practice Problems
Section 16.4
5. The rate law for the reaction in which 1 mol of cyclobutane (C 4H 8)
decomposes to 2 mol of ethylene (C 2H 4) at 1273 K is Rate = (87 s −1)
[C 4H 8]. What is the instantaneous rate of this reaction when
a. [C 4H 8] = 0.0100 mol/L?
b. [C 4H 8] = 0.200 mol/L?
Chapter 17
Section 17.1
Write equilibrium constant expressions for the following equilibria.
1. N 2(g) + O 2(g) ⇌ 2NO
2. 3O 2(g) ⇌ 2O 3(g)
3. P 4(g) + 6H 2(g) ⇌ 4PH 3(g)
4. CCl 4(g) + HF(g) ⇌ CFCl 2(g) + HCl(g)
5. 4NH 3(g) + 5O 2(g) ⇌ 4NO(g) + 6H 2O(g)
Write equilibrium constant expressions for the following equilibria.
6. NH 4Cl(s) ⇌ NH 3(g) + HCl(g)
7. SO 3(g) + H 2O(l) ⇌ H 2SO 4(l)
8. 2Na 2O 2(s) + 2CO 2(g) ⇌ 2Na 2CO 3(s) + O 2(g)
Calculate K eq for the following equilibria.
9. H 2(g) + I 2(g) ⇌ 2HI(g)
[H 2] = 0.0109, [I 2] = 0.00290, [HI] = 0.0460
10. I 2(s) ⇌ I 2(g)
[I 2(g)] = 0.0665
Section 17.3
11. At a certain temperature, K eq = 0.0211 for the equilibrium
PCl 5(g) ⇌ PCl 3(g) + Cl 2(g).
a. What is [Cl 2] in an equilibrium mixture containing 0.865 mol/L
PCl 5 and 0.135 mol/L PCl 3?
b. What is [PCl 5] in an equilibrium mixture containing 0.100 mol/L
PCl 3 and 0.200 mol/L Cl 2?
12. Use the K sp value for zinc carbonate given in Table 17.4 to calculate its
molar solubility at 298 K.
13. Use the K sp value for iron(II) hydroxide given in Table 17.4 to calculate its
molar solubility at 298 K.
14. Use the K sp value for silver carbonate given in Table 17.4 to calculate
[Ag +] in a saturated solution at 298 K.
15. Use the K sp value for calcium phosphate given in Table 17.4 to calculate
[Ca 2+] in a saturated solution at 298 K.
16. Does a precipitate form when equal volumes of 0.0040M MgCl 2 and
0.0020M K 2CO 3 are mixed? If so, identify the precipitate.
17. Does a precipitate form when equal volumes of 1.2 × 10 -4M AlCl 3 and
2.0 × 10 -3M NaOH are mixed? If so, identify the precipitate.
988
Supplemental Practice Problems
Supplemental Practice Problems
Chapter 18
Section 18.1
1. Write the balanced formula equation for the reaction between zinc and
nitric acid.
2. Write the balanced formula equation for the reaction between magnesium
carbonate and sulfuric acid.
3. Identify the base in the reaction
H 2O(l) + CH 3NH 2(aq) → OH -(aq) + CH 3NH 3 +(aq).
4. Identify the conjugate base described in the reaction in Practice Problems
1 and 2.
5. Write the steps in the complete ionization of hydrosulfuric acid.
6. Write the steps in the complete ionization of carbonic acid.
Section 18.2
7. Write the acid ionization equation and ionization constant expression for
formic acid (HCOOH).
8. Write the acid ionization equation and ionization constant expression for
the hydrogen carbonate ion (HCO 3−).
9. Write the base ionization constant expression for ammonia.
10. Write the base ionization expression for aniline (C 6H 5NH 2).
Section 18.3
11. Is a solution in which [H +] = 1.0 × 10 −5M acidic, basic, or neutral?
12. Is a solution in which [OH -] = 1.0 × 10 −11M acidic, basic, or neutral?
13. What is the pH of a solution in which [H +] = 4.5 × 10 −4M?
14. Calculate the pH and pOH of a solution in which [OH -] = 8.8 × 10 −3M.
15. Calculate the pH and pOH of a solution in which [H +] = 2.7 × 10 −6M.
16. What is [H +] in a solution having a pH of 2.92?
17. What is [OH -] in a solution having a pH of 13.56?
18. What is the pH of a 0.00067M H 2SO 4 solution?
19. What is the pH of a 0.000034M NaOH solution?
20. The pH of a 0.200M HBrO solution is 4.67. What is the acid’s K a?
21. The pH of a 0.030M C 2H 5COOH solution is 3.20. What is the acid’s K a?
Section 18.4
22. Write the formula equation for the reaction between hydriodic acid and
beryllium hydroxide.
23. Write the formula equation for the reaction between perchloric acid and
lithium hydroxide.
24. In a titration, 15.73 mL of 0.2346M HI solution neutralizes 20.00 mL of a
LiOH solution. What is the molarity of the LiOH?
25. What is the molarity of a caustic soda (NaOH) solution if 35.00 mL of
solution is neutralized by 68.30 mL of 1.250M HCl?
Supplemental Practice Problems 989
Supplemental Practice Problems
26. Write the chemical equation for the hydrolysis reaction that occurs when
sodium hydrogen carbonate is dissolved in water. Is the resulting solution
acidic, basic, or neutral?
27. Write the chemical equation for any hydrolysis reaction that occurs when
cesium chloride is dissolved in water. Is the resulting solution acidic, basic,
or neutral?
Chapter 19
Section 19.1
Identify the following information for each problem. What element is
oxidized? Reduced? What is the oxidizing agent? Reducing agent?
1. 2P + 3Cl 2 → 2PCl 3
2. C + H 2O → CO + H 2
3. ClO 3 − + AsO 2 − → AsO 4 3− + Cl −
4. Determine the oxidation number for each element in the following
compounds.
a. Na 2SeO 3
b. HAuCl 4
c. H 3BO 3
5. Determine the oxidation number for the following compounds or ions.
a. P 4O 8
b. Na 2O 2 (Hint: This is like H 2O 2.)
c. AsO 4 −3
Section 19.2
6. How many electrons will be lost or gained in each of the following half-
reactions? Identify whether each is an oxidation or reduction.
a. Cr → Cr 3+
b. O 2 → O 2−
c. Fe +2 → Fe 3+
7. Balance the following reaction by the oxidation number method:
MnO 4 − + CH 3OH → MnO 2 + HCHO (acidic). (Hint: Assign the oxidation of hydrogen and oxygen as usual, and solve for the oxidation number of
carbon.)
8. Balance the following reaction by the oxidation number method:
Zn + HNO 3 → ZnO + NO 2 + NH 3
9. Use the oxidation number method to balance these net ionic equations.
a. SeO 3 2− + I − → Se + I 2 (acidic solution)
b. NiO 2 + SeO 3 2− → Ni(OH) 2 + SO 3 2− (acidic solution)
Use the half-reaction method to balance the following redox equations.
10. Zn(s) + HCl(aq) → ZnCl 2(aq) → H 2(g)
11. MnO 4 −(aq) + H 2SO 3(aq) → Mn 2+(aq) + HSO 4 −(aq) + H 2O(l)
(acidic solution)
12. NO 2(aq) + OH −(aq) → NO 2 −(aq) + NO 3 −(aq) + H 2O(l) (basic
solution)
13. HS −(aq) + IO 3 −(aq) → I −(aq) + S(s) + H 2O(l) (acidic solution)
990
Supplemental Practice Problems
Supplemental Practice Problems
Chapter 20
Section 20.1
1. Calculate the cell potential for each of the following.
a. Co 2+(aq) + Al(s) → Co(s) + Al 3+(aq)
b. Hg 2+(aq) + Cu(s) → Cu 2+(aq) + Hg(s)
c. Zn(s) + Br 2(l) → Br 1−(aq) + Zn 2+(aq)
2. Calculate the cell potential to determine whether the reaction will occur
spontaneously or not spontaneously. For each reaction that is not
spontaneous, correct the reactants or products so that a reaction would
occur spontaneously.
a. Ni 2+(aq) + Al(s) → Ni(s) + Al 3+(aq)
b. Ag +(aq) + H 2(g) → Ag(s) + H +(aq)
c. Fe 2+(aq) + Cu(s) → Fe(s) + Cu 2+(aq)
Chapter 21
Section 21.2
1. Draw the structure of the following branched alkanes.
a. 2,2,4-trimethylheptane
b. 4-isopropyl-2-methylnonane
2. Draw the structure of each of the following cycloalkanes.
a. 1-ethyl-2-methylcyclobutane
b. 1,3-dibutylcyclohexane
Section 21.3
3. Draw the structure of each of the following alkenes.
a. 1,4-hexadiene
c. 4-propyl-1-octene
b. 2,3-dimethyl-2-butene
d. 2,3-diethylcyclohexene
Chapter 22
Section 22.1
1. Draw the structures of the following alkyl halides.
a. chloroethane
d. 1,3-dibromocyclohexane
b. chloromethane
e. 1,2-dibromo-3-chloropropane
c. 1-fluoropentane
Chapter 24
Section 24.2
1. Write balanced equations for each of the following decay processes.
244
a. alpha emission of 96 Cm
70
b. positron emission of 33 As
210
c. beta emission of 83 Bi
116
d. electron capture by 51 Sb
47
2. 20 Ca → β + ?
3.
240
95
Am + ? →
243
97
Bk + n
4. How much time has passed if 1/8 of an original sample of radon-222 is
left? Use Table 24.5 for half-life information.
5. If a basement air sample contains 3.64 μg of radon-222, how much radon
will remain after 19 days?
6. Cobalt-60, with a half-life of 5 years, is used in cancer radiation treatments.
If a hospital purchases 30.0 g, how much would be left after 15 years?
Supplemental Practice Problems 991
0.11 × 100 = 6.92%
33. _
1.59
0.10 × 100 = 6.29%
_
1.59
0.12 × 100 = 7.55%
_
1.59
Chapter 1
No practice problems
Chapter 2
1. No; the density of aluminum is 2.7 g/cm 3; the density
20g
of the cube is _3 = 4 g/cm 3.
5cm
147 g
mass
3. volume = _ = _ = 21.0 mL
7.00 g/mL
density
volume = 20.0 mL + 21.0 mL = 41.0 mL
11. a. 7 × 10 2
b. 3.8 × 10 4
c. 4.5 × 10 6
d. 6.85 × 10 11
e. 5.4 × 10 -3
f. 6.87 × 10 -6
g. 7.6 × 10 -8
h. 8 × 10 -10
13. a. 7 × 10−5
b. 3 × 10 8
c. 2 × 10 2
d. 5 × 10 -12
15. a. (4 × 1) × 10 2 + 8 = 4 × 10 10
b. (2 × 3) × 10 -4 + 2 = 6 × 10 -2
c. (6 ÷ 2) × 10 2 - 1 = 3 × 10 1
d. (8 ÷ 4) × 10 4 - 1 = 2 × 10 3
17. a.
16 g salt
100 g solution
__
; __
100 g solution
16 g salt
1.25
g
1
mL
b. _ ; _
1 mL 1.25 g
25 m _
_
c.
; 1s
1 s 25 m
1000 ms
19. a. 360 s × _ = 360,000 ms
1s
1 kg
_
b. 4800 g ×
= 4.8 kg
1000 g
1m
c. 5600 dm × _ = 560 m
10 dm
1000 mg
d. 72 g × _ = 72,000 mg
1g
1s
2
e. 2.45 × 10 ms × _ = 0.245 s
1000 ms
1 km
1 mm
1m
f. 5 μm × _ × _ × _
1000 μm
1000 mm
1000 m
= 5 × 10 −9 km
1 km
1m
g. 6.800 × 10 3 cm × _ × _
100 cm 1000 m
= 6.800 × 10 -2 km
1 Mg
h. 2.5 × 10 1 kg × __ = 0.025 Mg
1000 kg
1 km
65 mi × _
21. _
= 105 km/h
0.62 mi
1h
23. mass = (volume)(density) = (185 mL)(1.02 g/mL)
mass = 189 g vinegar
(
Solutions to Selected Practice Problems
35. a. 4
b. 7
c. 5
d. 3
37. two significant figures: 1.0 × 10 1, 1.0 × 10 2, 1.0 × 10 3
three significant figures: 1.00 × 10 1, 1.00 × 10 2,
1.00 × 10 3
four significant figures: 1.000 × 10 1, 1.000 × 10 2,
1.000 × 10 3
39. a. 5.482 × 10 -4 g
b. 1.368 × 10 5 kg
c. 3.087 × 10 8 mm
d. 2.014 mL
41. a. 4.32 × 10 3 cm - 1.6 × 10 6 mm
= 4.32 × 10 3 cm - 16 × 10 6 cm
= 4.32 × 10 3 cm - 16,000 × 10 3 cm
= −15,995.68 × 10 3 cm = -16.0 × 10 6 cm
b. 2.12 × 10 7 mm + 1.8 × 10 3 cm
= 2.12 × 10 7 mm + 1.8 × 10 4 mm
= 2120 × 10 4 mm + 1.8 × 10 4 mm
= 2121.8 × 10 4 mm = 2.12 × 10 7 mm
43. a. 2.0 m/s
b. 3.00 m/s
c. 2.00 m/s
d. 2.9 m/s
Chapter 3
5. amount of bromine that reacted = 100.0 - 8.5 = 91.5 g
amount of compound formed = 100.0 + 10.3 - 8.5
= 101.8 g
7. mass reactants = mass products
mass sodium + mass chlorine = mass sodium chloride
mass sodium = 15.6 g
masssodium chloride = 39.7 g
Substituting and solving for mass chlorine yields
15.6 g + mass chlorine = 39.7 g
mass chlorine = 39.7 g - 15.6 g = 24.1 g used in the
reaction.
Because the sodium reacts with excess chlorine,
all of the sodium is used in the reaction; that is,
15.6 g of sodium are used in the reaction.
9. 157.5 g - 106.5 g = 51.0 g
Yes. Mass of reactants equals mass of products.
mass hydrogen
19. percent by mass hydrogen = _
× 100
mass
compound
)
5.00 g acetic acid
(189 g vinegar) __ = 9.45 g acetic acid
100 g vinegar
992
Note: The answers are reported in three significant
figures because student error is the difference between
the actual value (1.59 g/cm 3) and the measured value.
12.4 g
percent by mass hydrogen = _ × 100 = 15.9%
78.0 g
Solutions to Selected Practice Problems
21. mass xy = 3.50 g + 10.5 g = 14.0 g
mass x
percent by mass x = _
mass xy × 100
3.50 g
percent by mass x = _ × 100 = 25.0%
14.0 g
mass y
percent by mass y = _
mass xy × 100
10.5 g
percent by mass y = _ × 100 = 75.0%
14.0 g
Chapter 6
9. a. Sc, Y, La, Ac
c. Ne, Ar, Kr, Xe, Rn
b. N, P, As, Sb, Bi
17. B. The atomic radius increases when going down a
group so helium is the smallest and radon is the biggest.
19. a. the element in period 2, group 1
b. the element in period 5, group 2
c. the element in period 6, group 15
d. the element in period 4, group 18
23. No, you cannot be sure. Having the same mass per-
centage of a single element does not guarantee that
the composition of each compound is the same.
Chapter 7
Chapter 4
7. Three Na atoms each lose 1 e-, forming 1+ ions. One
13. dysprosium
N atom gains 3 e-, forming a 3- ion. The ions attract,
forming Na3N.
15. Yes. 9
17. 25 protons, 25 electrons, 30 neutrons, manganese
( Na ion )
1+
33 Na ions _ + 1 N ion _
19. N-14 is more abundant because the atomic mass is
( N ion )
= 3(1+) + 1(3-) = 0
The overall charge on one formula unit of Na 3N is zero.
closer to 14 than 15.
9. One Sr atom loses 2 e-, forming a 2+ ion. Two
Chapter 5
F atoms each gain 1 e-, forming 1- ions. The ions
attract, forming SrF 2.
1. c = λν
( Sr ion )
ν=c/λ
2+
11 Sr ion _ + 2 F ions _
3.00 × 10 8 m/s
ν = __ = 6.12 × 10 14 Hz
= 1(2+) + 2(1-) = 0
The overall charge on one formula unit of SrF 2 is zero.
4.90 × 10 -7 m
3. 3.00 × 10 8 m/s
5. a. E photon = λν = (6.626 × 10 -34 J·s)(6.32 × 10 20 s -1)
= 4.19 × 10 -13 J
b. E photon = λν = (6.626 × 10 -34 J·s)(9.50 × 10 13 s -1)
= 6.29 × 10 -20 J
c. E photon = λν = (6.626 × 10 -34 J·s)(1.05 × 10 16 s -1)
= 6.96 × 10 -18 J
7. E photon = hc / λ
( F ion )
11. Three group 1 atoms lose 1 e-, forming 1+ ions.
One group 15 atom gains 3 e-, forming a 3- ion. The
ions attract, forming X 3Y, where X represents a group
1 atom and Y represents a group 15 atom.
19. KI
21. AlBr 3
23. The general formula is XY 2, where X represents the
group 2 element and Y represents the group 17 element.
(6.626 × 10 -34 J·s)(3.00 × 10 8 m/s)
E photon = ___
25. Ca(ClO 3) 2
= 1.59 × 10 -24 J
27. MgCO 3; answers will vary
21. a. bromine (35 electrons):
[Ar]4s 23d 104p 5
b. strontium (38 electrons):
c. antimony (51 electrons): [Kr]5s 24d 105p 3
d. rhenium (75 electrons): [Xe]6s 24f 145d 5
e. terbium (65 electrons): [Xe]6s 24f 9
f. titanium (22 electrons): [Ar]4s 23d 2
[Kr]5s 2
23. Sulfur (15 electrons) has the electron configuration
[Ne]3s 23p 4. Therefore, 6 electrons are in orbitals
related to the third energy level of the sulfur atom.
25. [Xe]6s 2; barium
27. aluminum; 3 electrons
29. calcium chloride
31. copper(II) nitrate
33. ammonium perchlorate
Chapter 8
1.
H
— —
1.25 × 10 -1 m
H + H + H + P → H —P
H
3. H + Cl → H — Cl
Solutions to Selected Practice Problems 993
Solutions to Selected Practice Problems
5.
27. Na 2C 2O 4(aq) + Pb(NO 3) 2(aq) →
—
H
—
H + H + H + H + Si → H — Si — H
35. chemical equation: KI(aq) + AgNO 3(aq) →
H
KNO 3(aq) + AgI(s)
complete ionic equation:
K +(aq) + I -(aq) + Ag +(aq) + NO 3 -(aq) →
K +(aq) + NO 3 -(aq) + AgI(s)
net ionic equation: I -(aq) + Ag +(aq) → AgI(s)
15. sulfur dioxide
17. carbon tetrachloride
19. hydroiodic acid
21. chlorous acid
37. chemical equation: AlCl 3(aq) + 3NaOH(aq) →
23. hydrosulfuric acid
25. AgCl
Al(OH)3(s) + 3NaCl(aq)
27. ClF 3
29. strontium acetate is ionic, not molecular: Sr(C 2H 3O 2) 2
—
H—
41.
B—
H
N
H
1+
H
H
H
C=C
—
—
—
39. H
H
—
37.
H
O
45.
O
47.
F
N
O
Cl
H
1O
O
O
O
F
49.
F
57. bent, 104.5°, sp 3
complete ionic equation:
Al 3+(aq) + 3Cl -(aq) + 3Na +(aq) + 3OH 2(aq) →
Al(OH) 3(s) + 3Na +(aq) + 3Cl -(aq)
net ionic equation: Al 3+(aq) + 3OH -(aq) →
Al(OH) 3(s)
39. chemical equation: 5Na 2CO 3(aq) + 2MnCl 5(aq) →
H
43.
PbC 2O 4(s) + 2NaNO 3(aq)
N
O
F
F
1O
O
F
S
F
10NaCl(aq) + Mn 2(CO 3) 5(s)
complete ionic equation:
10Na +(aq) + 5CO 3 2-(aq) + 2Mn 5+(aq) + 10Cl -(aq) →
10Na +(aq) + 10Cl -(aq) + Mn 2(CO 3) 5(s)
net ionic equation: 5CO 3 2-(aq) + 2Mn 5+(aq) →
Mn 2(CO 3) 5(s)
net ionic equation: 2H +(aq) + 2OH -(aq) →
2H 2O(l) or H +(aq) + OH -(aq) → H 2O(l)
41. chemical equation: 2HCl(aq) + Ca(OH) 2(aq) →
F
F
59. tetrahedral, 109°, sp 3
2H 2O(l) + CaCl 2(aq)
complete ionic equation:
2H +(aq) + 2Cl -(aq) + Ca 2+(aq) + 2OH -(aq) →
2H 2O(l) + Ca 2+(aq) + 2Cl -(aq)
net ionic equation: H +(aq) + OH -(aq) → H 2O(l)
43. chemical equation: H 2S(aq) + 1 Ca(OH) 2(aq) →
Chapter 9
1. H 2(g) + Br 2(g) → HBr(g)
3. KClO 3(s) → KCl(s) + O 2(g)
5. CS 2(l) + 3O 2(g) → CO 2(g) + 2SO 2(g)
15. H 2O(l) + N 2O 5(g) → 2HNO 3(aq); synthesis
17. H 2SO 4(aq) + 2NaOH(aq) → Na 2SO 4(aq) + 2H 2O(l)
19. Ni(OH) 2(s) → NiO(s) + H 2O(l)
21. Yes. K is above Zn in the metal activity series.
2K(s) + ZnCl 2(aq) → Zn(s) + 2KCl(aq)
23. No. Fe is below Na in the metal activity series.
25. LiI(aq) + AgNO 3(aq) → AgI(s) + LiNO 3(aq)
994
Solutions to Selected Practice Problems
2H 2O(l) + CaS(aq)
complete ionic equation:
2H +(aq) + S 2-(aq) + Ca 2+(aq) + 2OH -(aq) →
2H 2O(l) + Ca 2+(aq) + S 2-(aq)
net ionic equation: H +(aq) + OH -(aq) → H 2O(l)
45. chemical equation: 2HClO 4(aq) + K 2CO 3(aq) →
H 2O(l) + CO 2(g) + 2KClO 4(aq)
complete ionic equation:
2H +(aq) + 2ClO 4 -(aq) + 2K +(aq) + CO 3 2-(aq) →
H 2O(l) + CO 2(g) + 2K +(aq) + 2ClO 4 -(aq)
net ionic equation: 2H +(aq) + CO 3 2-(aq) →
H 2O(l) + CO 2(g)
47. chemical equation: 2HBr(aq) + (NH 4) 2CO 3(aq) →
H 2O(l) + CO 2(g) + 2NH 4Br(aq)
Solutions to Selected Practice Problems
complete ionic equation:
2H +(aq) + 2Br -(aq) + 2NH 4 +(aq) + CO 3 2-(aq) →
H 2O(l) + CO 2(g) + 2NH 4 +(aq) + 2Br -(aq)
net ionic equation: 2H +(aq) + CO 3 2-(aq) →
H 2O(l) + CO 2(g)
49. chemical equation: 2KI(aq) + Pb(NO 3) 2(aq) →
2KNO 3(aq) + PbI 2(s)
complete ionic equation:
2K +(aq) + 2I -(aq) + Pb 2+(aq) + 2NO 3 -(aq) →
2K +(aq) + 2NO 3 -(aq) + PbI 2(s)
net ionic equation: Pb 2+(aq) + 2I -(aq) → PbI 2(s)
2 mol Cl 29. 2.50 mol ZnCl 2 × _ = 5.00 mol Cl 1 mol ZnCl 2
3 mol SO 4 231. 3.00 mol Fe 2(SO 4) 3 ×__ = 9.00 mol SO 4 21 mol Fe 2(SO 4) 3
2 mol H
33. 1.15 × 10 1 mol H 2O × _ = 23.0 mol H
1 mol H 2O
= 2.30 × 10 1 mol H
12.01 g C
35. a. 2 mol C × _ = 24.02 g
1 mol C
1.008
gH
6 mol H × _ = 6.048 g
1 mol H
16.00 g O
1 mol O × _ = 16.00 g
1 mol O
molar mass C 2H 5OH = 46.07 g/mol
Chapter 10
10 23
6.02 ×
atoms
1. 2.50 mol Zn × __
1 mol
= 1.51 × 10 24 atoms of Zn
6.02 × 10 23 formula units
3. 3.25 mol AgNO 3 × __
1 mol
= 1.96 × 10 24 formula units of AgNO 3
1 mol
5. a. 5.75 × 10 24 atoms Al × __
6.02 × 10 23 atoms
= 9.55 mol Al
1 mol
b. 2.50 × 10 20 atoms Fe × __
6.02 × 10 23 atoms
= 4.15 × 10 -4 mol Fe
26.98 g Al
15. a. 3.57 mol Al × _ = 96.3 g Al
1 mol Al
28.09 g Si
b. 42.6 mol Si × _ = 1.20 × 10 3 g Si
1 mol Si
1 mol Ag
17. a. 25.5 g Ag × _ = 0.236 mol Ag
107.9 g Ag
1 mol S
b. 300.0 g S × _ = 9.355 mol S
32.07 g S
1 mol Li
6.02 × 10 23 atoms
19. a. 55.2 g Li × _ × __
6.94 g Li
1 mol
= 4.79 × 10 24 atoms Li
1 mol Pb
6.02 × 10 23 atoms
b. 0.230 g Pb × _ × __
6.94 g Pb
1 mol
= 6.68 × 10 20 atoms Pb
c.
1 mol Hg
6.02 × 10 23 atoms
11.5 g Hg × _ × __
200.6 g Hg
1 mol
= 3.45 × 10 22 atoms Hg
1 mol Si
6.02 × 10 23 atoms
21. a. 4.56 × 10 3 g Si × _ × __
28.09 g Si
1 mol
= 9.77 × 10 25 atoms Si
1000 g Ti
1 mol Ti
b. 0.120 kg Ti × _ × _
47.87 g Ti
1 kg Ti
6.02 × 10 23 atoms
× __
= 1.51 × 10 24 atoms Ti
1 mol
1.008 g H
b. 1 mol H × _ = 1.008 g
1 mol H
12.01
gC
1 mol C × _ = 12.01 g
1 mol C
14.01 g N
1 mol N × _ = 14.01 g
1 mol N
molar mass HCN
= 27.03 g/mol
12.01 g C
c. 1 mol C × _ = 12.01 g
1 mol C
35.45 g Cl
4 mol Cl × _ = 141.80 g
1 mol Cl
molar mass CCl 4
= 153.81 g/mol
37. Step 1: Find the molar mass of H 2SO 4.
1.008 g H
2 mol H × _ = 2.016 g
1 mol H
32.07
gS
1 mol S × _ = 32.07 g
1 mol S
16.00 g O
4 mol O × _ = 64.00 g
1 mol O
molar mass H 2SO 4 = 98.09 g/mol
Step 2: Make mole → mass conversion.
98.09 g H 2SO 4
1 mol H 2SO 4
3.25 mol H 2SO 4 × __ = 319 g H 2SO 4
39. Potassium permanganate has a formula of KMnO 4.
Step 1: Find the molar mass of KMnO 4.
39.10 g K
= 39.10 g
1 mol K
54.94 g Mn
1 mol Mn × _ = 54.94 g
1 mol Mn
16.00 g O
4 mol O × _
= 64.00 g
1 mol O
1 mol K × _
molar mass KMnO 4
= 158.04 g/mol
Step 2: Make mole → mass conversion.
158.04 g KMnO 4
1 mol KMnO 4
2.55 mol KMnO 4 × __ = 403 g KMnO 4
Solutions to Selected Practice Problems 995
Solutions to Selected Practice Problems
41. a. ionic compound
45. Step 1: Find the number of moles of NaCl.
Step 1: Find the molar mass of Fe 2O 3.
55.85 g Fe
1 mol Fe
16.00
gO
3 mol O × _
1 mol O
2 mol Fe × _ = 111.70 g
molar mass Fe 2O 3
=
48.00 g
= 159.70 g/mol
Step 2: Make mass → mole conversion.
1 mol Fe O
159.70 g Fe 2O 3
2 3
2500 g Fe2O3 × __
= 15.7 × 101 mol Fe2O3
b. ionic compound
Step 1: Find the molar mass of PbCl 4.
207.2 g Pb
1 mol Pb
35.45
g Cl
4 mol Cl × _ = 141.80 g
1 mol Cl
1 mol Pb × _ = 207.2 g
molar mass PbCl 4
= 349.0 g/mol
Step 2: Make mass → mole conversion.
1 mol PbCl
349.0 g PbCl 4
4
254 g PbCl 4 × __
= 0.728 mol PbCl 4
43. a. Step 1: Find the molar mass of Na 2SO 3
22.99 g Na
2 mol Na × _ = 45.98 g
1 mol Na
32.07 g S
_
1 mol S ×
= 32.07 g
1 mol S
16.00 g O
3 mol O × _
= 48.00 g
1 mol O
molar mass Na 2SO 3
= 126.05 g/mol
Step 2: Make mass → mole conversion.
1 mol Na SO
126.05 g Na 2SO 3
2
3
2.25 g Na 2SO 3 × __
= 0.0179 mol Na 2SO 3
Step 3: Make mole → formula unit conversion.
23
6.02 × 10 formula units
0.0179 mol Na 2SO 3 × __
1 mol Na 2SO 3
= 1.08 × 10 22 formula units Na 2SO 3
Step 4: Determine the number of Na + ions.
1.08 × 10 22 formula units Na 2SO 3 ×
2 Na + ions
__
= 2.16 × 10 22 Na + ions
1 formula unit Na 2SO 3
b. 1.08 ×
formula units Na 2SO 3 ×
1 SO 3 2- ion
__
= 1.08 × 10 22 SO 3 2- ions
1 formula unit Na 2SO 3
10 22
c.
126.08 g Na 2SO 3 ___
1 mol Na 2SO 3
__
×
1 mol Na 2SO 3
6.02 × 10 23 formula unit Na 2SO 3
= 2.09 × 10 -22 g Na 2SO 3/formula unit
996
Solutions to Selected Practice Problems
4.59 × 10 24 formula units NaCl ×
1 mol NaCl
___
6.02 × 10 23 formula unit NaCl
= 7.62 mol NaCl 2
Step 2: Find the molar mass of NaCl.
g Na
_
1 mol Na × 22.99
= 22.99 g
1 mol Na
35.45
g Cl
1 mol Cl × _ = 35.45 g
1 mol Cl
molar mass NaCl
= 58.44 g/mol
Step 3: Make mole → mass conversion.
58.44 g NaCl
1 mol NaCl
7.62 mol NaCl × _ = 445 g NaCl
55. Steps 1 and 2: Assume 1 mole; calculate molar mass of
H 2SO 3.
1.008 g H
2.016 g
1 mol H
32.06 g S
1 mol S × _ = 32.06 g
1 mol S
16.00 g O
_
3 mol O ×
= 48.00 g
1 mol O
2 mol H × _ =
molar mass H 2SO 3
= 82.08 g/mol
Step 3: Determine percent by mass of S.
32.06 g S
82.08 g H 2SO 3
percent S = __ × 100 = 39.06% S
Repeat steps 1 and 2 for H 2S 2O 8. Assume 1 mole;
calculate molar mass of H 2S 2O 8.
1.008 g H
1 mol H
32.06
gS
2 mol S × _
1 mol S
2 mol H × _ =
=
2.016 g
64.12 g
16.00 g O
1 mol O
8 mol O × _ = 128.00 g
molar mass H 2S 2O 8 = 194.14 g/mol
Step 3: Determine percent by mass of S.
64.12 g S
194.14 g H 2S 2O 8
percent S = __ × 100 = 33.03% S
H 2SO 3 has a larger percent by mass of S.
57. a. sodium, sulfur, and oxygen; Na 2SO 4
b. ionic
c. Steps 1 and 2: Assume 1 mole; calculate molar
mass of Na 2SO 4.
22.99 g Na
1 mol Na
32.07
gS
1 mol S × _
=
1 mol S
16.00 g O
4 mol O × _ =
1 mol O
2 mol Na × _ =
molar mass Na 2SO 4
45.98 g
32.07 g
64.00 g
= 142.05 g/mol
Solutions to Selected Practice Problems
Step 3: Determine percent by mass of each element.
45.98 g Na
percent Na = __ × 100 = 32.37% Na
142.05 g Na 2SO 4
32.07 g S
percent S = __ × 100 = 22.58% S
142.05 g Na 2SO 4
64.00 g O
percent O = __ × 100 = 45.05% O
142.05 g Na 2SO 4
59. Step 1: Assume 100 g sample; calculate moles of each
element.
1 mol Al
35.98 g Al × _
= 1.334 mol Al
26.98 g Al
1 mol S
64.02 g S × _
= 1.996 mol S
32.06 g S
Step 2: Calculate mole ratios.
1.000 mol Al _
1.334 mol Al = _
_
= 1 mol Al
1.000 mol Al
1 mol Al
1.334 mol Al
1.500 mol S
1.996 mol S
_
_
_
=
= 1.5 mol S
1.000 mol Al
1 mol Al
1.334 mol Al
The simplest ratio is 1 mol Al: 1.5 mol S.
Step 3: Convert decimal fraction to whole number.
In this case, multiply by 2 because 1.5 × 2 = 3.
Therefore, the empirical formula is Al 2S 3.
61. Step 1: Assume 100 g sample; calculate moles of each
element.
1 mol C
60.00 g C × _
= 5.00 mol C
12.01 g C
1 mol H
4.44 g H × _
= 4.40 mol H
1.008 g H
1 mol O
35.56 g O × _
= 2.22 mol O
16.00 g O
Step 2: Calculate mole ratios.
2.25 mol C
2.25 mol C
5.00 mol C
_
=_
=_
1.00 mol O
1 mol O
2.22 mol O
1.98 mol H _
4.40 mol H = _
_
= 2 mol H
1.00 mol O
1 mol O
2.22 mol O
1 mol O
2.22 mol O _
_
= 1.00 mol O = _
1.00 mol O
1 mol O
2.22 mol O
The simplest ratio is 2.25 mol C: 2 mol H: 1 mol O.
Step 3: Convert decimal fraction to whole number.
In this case, multiply by 4 because 2.25 × 4 = 9.
Therefore, the empirical formula is C 9H 8O 4.
63. Step 1: Assume 100 g sample; calculate moles of each
element.
1 mol N
46.68 g N × _
= 3.332 mol N
14.01 g N
_
53.32 g O × 1 mol O = 3.333 mol O
16.00 g O
Step 2: Calculate mole ratios.
1.000 mol N _
3.332 mol N = _
_
= 1 mol N
3.332 mol N
1.000 mol N
1 mol N
1 mol O
3.333 mol O _
_
= 1.000 mol O = _
3.332 mol N
1.000 mol N
1 mol N
The simplest ratio is 1 mol N: 1 mol O.
The empirical formula is NO.
Step 3: Calculate the molar mass of the empirical
formula.
14.01 g N
1 mol N
16.00
gO
1 mol O × _ = 16.00 g
1 mol O
1 mol N × _ = 14.01 g
molar mass NO
= 30.01 g/mol
Step 4: Determine whole number multiplier.
60.01 g/mol
_
= 2.000
30.01 g/mol
The molecular formula is N 2O 2.
65. Step 1: Assume 100 g sample; calculate moles of each
element.
1 mol C
65.45 g C × _
= 5.450 mol C
12.01 g C
1 mol H
5.45 g H × _
= 5.41 mol H
1.008 g H
1 mol O
29.09 g O × _
= 1.818 mol O
16.00 g O
Step 2: Calculate mole ratios.
3.000 mol C
3 mol C
5.450 mol C
_
=_
=_
1.000 mol O
1 mol O
1.818 mol O
2.97
mol
H
3 mol H
5.41 mol H = _ = _
_
1.00 mol O
1 mol O
1.818 mol O
1.000
mol
O
1 mol O
1.818
mol
O
_=_=_
1.000 mol O
1 mol O
1.818 mol O
The simplest ratio is 3 mol C: 3 mol H: 1 mol O.
Therefore, the empirical formula is C 3H 3O.
Step 3: Calculate the molar mass of the empirical
formula.
12.01 g C
1 mol C
1.008
gH
3 mol H × _ = 3.024 g
1 mol H
16.00 g O
1 mol O × _ = 16.00 g
1 mol O
3 mol C × _ = 36.03 g
molar mass C 3H 3O = 55.05 g/mol
Step 4: Determine whole number multiplier.
110.00 g/mol
__
= 1.998, or 2
55.05 g/mol
The molecular formula is C 6H 6O 2.
75. Step 1: Calculate the mass of CoCl 2 remaining.
129.83 g CoCl 2
0.0712 mol CoCl 2 × __ = 9.24 g CoCl 2
1 mol CoCl 2
Step 2: Calculate the mass of water driven off.
mass of hydrated compound - mass of anhydrous
compound remaining
= 11.75 g CoCl 2·xH 2O - 9.24 g CoCl 2 = 2.51 g H 2O
Solutions to Selected Practice Problems 997
Solutions to Selected Practice Problems
Step 3: Calculate moles of each component.
1 mol CoCl 2
9.24 g CoCl 2 × __
129.83 g CoCl 2
= 0.0712 mol CoCl 2
1 mol H 2O
2.51 g H 2O × _
= 0.139 mol H 2O
18.02 g H 2O
Step 4: Calculate mole ratios.
1.00 mol CoCl
1 mol CoCl
0.0712 mol CoCl 2
__
= __2 = _2
1.00 mol CoCl 2
1 mol CoCl 2
0.0712 mol CoCl 2
1.95
mol
H
O
2 mol H 2O
0.139
mol
H
O
2
2
__
= __
=_
1.00 mol CoCl 2
1 mol CoCl 2
0.0712 mol CoCl 2
The formula of the hydrate is CoCl 2·2H 2O. Its name
is cobalt(II) chloride dehydrate.
Chapter 11
1. a. 1 molecule N 2 + 3 molecules H 2 →
2 molecules NH 3
1 mole N 2 + 3 moles H 2 → 2 moles NH 3
28.02 g N 2 + 6.06 g H 2 → 34.08 g NH 3
b. 1 molecule HCl + 1 formula unit KOH →
1 formula unit KCl + 1 molecule H 2O
1 mole HCl + 1 mole KOH →
1 mole KCl + 1 mole H 2O
36.46 g HCl + 56.11 g KOH →
74.55 g KCl + 18.02 g H 2O
c. 2 atoms Mg + 1 molecule O2 →
2 formula units MgO
2 moles Mg + 1 mole O 2 → 2 moles MgO
48.62 g Mg + 32.00 g O 2 → 80.62 g MgO
4 mol Al 3 mol O 2 2 mol Al 2O 3
3. a. _ _ _
3 mol O 2 2 mol Al 2O 3 4 mol Al
2 mol Al 2O 3 _
3 mol O 2 _
4 mol Al
_
4 mol Al 3 mol O 2 2 mol Al 2O 3
3 mol Fe
3 mol Fe 3 mol Fe
b. _ _ _
4 mol H 2O 4 mol H 2 1 mol Fe 3O 4
1 mol Fe 3O 4
4 mol H 2 _
4 mol H 2O _
_
3 mol Fe
3 mol Fe 3 mol Fe
1 mol Fe 3O 4 _
1 mol Fe 3O 4 _
4 mol H 2O
_
4 mol H 2O 4 mol H 2
4 mol H 2
4 mol H 2O _
4 mol H 2
4 mol H 2 _
_
1 mol Fe 3O 4 1 mol Fe 3O 4 4 mol H 2O
2 mol HgO 1 mol O 2 1 mol O 2
c. _ _ _
2 mol Hg 2 mol Hg 2 mol HgO
2 mol Hg _
2 mol HgO
2 mol Hg _
_
2 mol HgO 1 mol O 2 1 mol O 2
11. a. 2CH 4(g) + S 8(s) → 2CS 2(l) + 4H 2S(g)
2 mol CS 2
b. 1.50 mol S 8 × _ = 3.00 mol CS 2
1 mol S 8
4 mol H 2S
_
c. 1.50 mol S 8 ×
= 6.00 mol H 2S
1 mol S 8
998
Solutions to Selected Practice Problems
13. Step 1: Balance the chemical equation.
2NaCl(s) → 2Na(s) + Cl 2(g)
Step 2: Make mole → mole conversion.
1 mol Cl
2 mol NaCl
2
2.50 mol NaCl × _
= 1.25 mol Cl 2
Step 3: Make mole → mass conversion.
70.9 g Cl 2
1 mol Cl 2
1.25 mol Cl 2 × _ = 88.6 g Cl 2
15. 2NaN 3(s) → 2Na(s) + 3N 2(g)
Step 1: Make mass → mole conversion.
1 mol NaN
65.02 g NaN 3
3
100.0 g NaN 3 × _
= 1.538 mol NaN 3
Step 2: Make mole → mole conversion.
3 mol N
2 mol NaN 3
2
1.538 mol NaN 3 × _
= 2.307 mol N 2
Step 3: Make mole → mass conversion.
28.02 g N 2
1 mol N 2
2.307 mol N 2 × _ = 64.64 g N 2
23. Step 1: Make mass → mole conversion.
1 mol Na
100.0 g Na × _
= 4.350 mol Na
22.99 g Na
1 mol Fe 2O 3
100.0 g Fe 2O 3 × __
= 0.6261 mol Fe 2O 3
159.7 g Fe 2O 3
Step 2: Make mole ratio comparison.
0.6261 mol Fe 2O 3
__
4.350 mol Na
0.1439
1 mol Fe 2O 3
compared to _
6 mol Na
compared to
0.1667
a. The actual ratio is less than the needed ratio, so
iron(III) oxide is the limiting reactant.
b. Sodium is the excess reactant.
c. Step 1: Make mole → mole conversion.
2 mol Fe
0.6261 mol Fe 2O 3 × _
= 1.252 mol Fe
1 mol Fe 2O 3
Step 2: Make mole → mass conversion.
55.85 g Fe
1 mol Fe
1.252 mol Fe × _ = 69.92 g Fe
d. Step 1: Make mole → mole conversion.
6 mol Na
0.6261 mol Fe 2O 3 × _
1 mol Fe 2O 3
= 3.757 mol Na needed
Step 2: Make mole → mass conversion.
22.9 g Na
1 mol Na
3.757 mol Na × _ = 86.37 g Na needed
100.0 g Na given - 86.37 g Na needed
= 13.6 g Na in excess
29. a. Step 1: Write the balanced chemical equation.
Zn(s) + I 2(s) → ZnI 2(s)
Step 2: Make mass → mole conversion.
1 mol Zn
125.0 g Zn × _
= 1.912 mol Zn
65.38 g Zn
Solutions to Selected Practice Problems
Step 3: Make mole → mole conversion.
1 mol ZnI
1.912 mol Zn × _2 = 1.912 mol ZnI 2
1 mol Zn
Step 4: Make mole → mass conversion.
319.2 g ZnI 2
1 mol ZnI 2
1.912 mol ZnI 2 × _ = 610.3 g ZnI 2
610.3 g of ZnI 2 is the theoretical yield.
515.6 g ZnI 2
b. % yield = ___ × 100
610.3 g ZnI 2
= 84.48% yield of ZnI 2
Chapter 12
Rate nitrogen
20.2 g/mol
1. _ = _ = √
0.721 = 0.849
Rate neon
28.0 g/mol
3. Rearrange Graham’s law to solve for Rate A.
molar mass
Rate A = Rate B × _B
molar mass A
13. T 1 = 0.00°C + 273 = 273 K
T 2 = 30.0°C + 273 = 303 K
(1.00 atm)(303 K)
PT
V2 _
_
= 1 2 = __ = 0.92
V1
P 2T 1
(1.20 atm)(273 K)
This is a ratio, so there are no units. The final volume
is less than the original volume, so the piston will
move down.
1 mol
21. 1.0 L × _ = 0.045 mol
22.4 L
44.0 g
0.045 mol × _ = 2.0 g
1 mol
1 mol
_
23. 0.416 g ×
= 0.00496 mol
83.80 g
22.4 L
0.00496 mol × _
= 0.111 L
1 mol
25. 0.860 g - 0.205 g = 0.655 g He remaining
Set up the problem as a ratio.
Rate B = 3.6 mol/min
19.2 L
V =_
_
molar mass B
_
= 0.5
molar mass A
Solve for V.
Rate A = 3.6 mol/min × √
0.5
= 3.6 mol/min × 0.71
= 2.5 mol/min
V = __ = 14.6 L
5. P total = 5.00 kPa + 4.56 kPa + 3.02 kPa + 1.20 kPa
= 13.78 kPa
7. N 2 = 590 mm Hg; O 2 = 160 mm Hg; Ar = 8 mm Hg
Chapter 13
(300.0 mL)(99.0 kPa)
V 1P 1
1. V 2 = _ = __ = 158 mL
P2
188 kPa
3. P 2 = 1.08 atm + (1.08 atm × 0.25) = 1.35 atm
(145.7 mL)(1.08 atm)
V 1P 1 __
V2 = _
=
= 117 mL
1.35 atm
P2
5. T 1 = 89°C + 273 = 362 K
(362 K)(1.12 L)
T 1V 2 __
T2 = _
=
= 605 K
V1
0.67 L
605 - 273 = 332°C = 330°C
7. V 2 = 0.67 L - (0.67 L × 0.45) = 0.37 L
(350 K)(0.37 L)
T 1V 2 __
T2 = _
=
= 190 K
V1
0.67 L
9. T 2 = 36.5°C + 273 = 309.5 K
(309.5 K)(1.12 atm)
T 2P 1 __
T1 = _
=
= 135 K
2.56 atm
P2
135 K - 273 = -138°C
11. T 1 = 22.0°C + 273 = 295 K
T 2 = 100.0°C + 273 = 373 K
VTP
T 2P 1
(0.224 mL)(295 K)(1.23 atm)
(373 K)(1.02 atm)
2 1 2
V1 = _
= ___ = 0.214 mL
0.655 g
0.860 g
(19.2 L)(0.655 g)
0.860 g
L·atm
(0.323 mol) 0.0821_
(265 K)
mol·K
nRT
27. V = _ = ___ = 7.81 L
0.900 atm
P
)
(
(3.81 atm)(0.44 L)
PV
29. n = _ = __ = 6.9 × 10 -3 mol
RT
L·atm
0.0821_
(298 K)
(
mol·K
)
39. 2H 2(g) + O 2(g) → 2H 2O(g)
2 volumes H
5.00 L O 2 × __2 = 10.0 L H 2
1 volume O 2
41. N 2 + O 2 = N 2O
2N 2 + O 2 = 2N 2O
1 volume O
2 volumes N 2
2
34 L N 2O × __
= 17 L O 2
1000 g
1 mol CaCO 3
1 mol CO 2
43. 2.38 kg × _ × __ × __
100.09 g
1 kg
1 mol CaCO 3
22.4 L
×_
= 533 L CO 2
1 mol
45. Molecular mass of sodium bicarbonate = 83.9 g/mol
1 mol NaHCO
28 g NaHCO 3 × __3 = 0.33 mol NaHCO 3
83.9 g
For each mole of sodium bicarbonate, one mole of
CO 2 is produced, so 0.33 mol NaHCO 3 will produce
0.33 mol CO 2.
For an ideal gas, molar volume is 22.4 L at 273 K and
1 atm.
T = 20°C + 273 = 293 K
22.4 L _
0.33 mol CO 2 × _
× 293 K = 7.9 L of CO 2
1 mol
273 K
Solutions to Selected Practice Problems 999
Solutions to Selected Practice Problems
Chapter 14
9. 600.0 mL H 2O × 1.0 g/mL = 600.0 g H 2O
20.0 g NaHCO 3
___
× 100 = 3%
600.0 g H 2O + 20.0 g NaHCO 3
11. 1500.0 g - 54.3 g = 1445.7 g solvent
13.
35 mL
__
× 100 = 18%
155 mL + 35 mL
18 mL
15. 15% = __ × 100 = 120 mL
x mL solution
1 mol
17. mol KBr = 1.55 g × _ = 0.0130 mol KBr
119.0 g
mol KBr
0.0130 mol
molarity = __
=_
1.60 L
1.60 L solution
= 8.13 × 10 -3M
19.
x mol Ca(OH)
1.5 L solution
0.25M = __2
x = 0.38 mol Ca(OH) 2
74.08 g
1 mol
0.38 mol Ca(OH) 2 × _
= 28 g Ca(OH) 2
1L
21. mol CaCl 2 = 500.0 mL × _ × 0.20M
1000 mL
0.20 mol
1L
= 500.0 mL × _
×_
= 0.10 mol
1000 mL
1L
110.98 g
mass CaCl 2 = 0.10 mol CaCl 2 × _
1 mol
=11 g
46 g ethanol
0.15 mol ethanol
1L
23. 100 mL × _ × __ × __
1000 mL
1 L solution
1 mol ethanol
1 mL ethanol
× __
= 0.87 mL
0.7893 g ethanol
25. (5.0M)V 1 = (0.25M)(100.0 mL)
(0.25M)(100.0 mL)
V 1 = __ = 5.0 mL
5.0M
1 mol
27. mol Na 2SO 4 = 10.0 g Na 2SO 4 × __
142.04 g Na 2SO 4
= 0.0704 mol Na 2SO 4
0.0704 mol Na SO
1.0000 kg H 2O
4
2
molality = __
= 0.0704m
mass NaOH
29. 22.8% = __ × 100
mass NaOH + mass H 2O
Assume 100.0 g sample.
Then, mass NaOH = 22.8 g
mass H 2O = 100.0 g - (mass NaOH) = 77.2 g
1 mol
mol NaOH = 22.8 g × _
= 0.570 mol NaOH
40.00 g
1 mol
_
mol H 2O = 77.2 g ×
= 4.28 mol H 2O
18.02 g
mol NaOH
mol fraction NaOH = __
mol NaOH + mol H 2O
0.570 mol NaOH
0.570
= ___
=_
4.85
0.570 mol NaOH + 4.28 mol H 2O
1000
Solutions to Selected Practice Problems
= 0.118
The mole fraction of NaOH is 0.118.
1.5 g
37. S 2 = _ = 1.5 g/L
1.0 L
1.5 g/L
S
P 2 = P 1 × _2 = 10.0 atm × _ = 23 atm
S1
0.66 g/L
45. ∆T b = 0.512°C/m × 0.625m = 0.320°C
T b = 100°C + 0.320°C = 100.320°C
∆T f = 1.86°C/m × 0.625m = 1.16°C
T f = 0.0°C − 1.16°C = −1.16°C
∆T f
47. K f = _
m
0.080°C
=_
0.045 m
= 1.8°C/m
It is most likely water because the calculated value is
closest to 1.86°C/m.
Chapter 15
1. 142 Calories = 142 kcal
1000 cal
142 kcal × _
= 142,000 cal
1 kcal
3. Unit X = 0.1 cal
1 cal = 4.184 J
X = (0.1 cal)(4.184 J/cal) = 0.4184 J
1 cal = 0.001 Calorie
X = (0.1 cal)(1 Cal/1000 cal) = 0.0001 Calorie
5. q = c × m × ∆T
5696 J = c × 155 g × 15.0°C
c = 2.45 J/(g·°C)
The specific heat is very close to the value for ethanol.
13. q = c × m × ∆T
5650 J = 4.184 J/(g·°C) × m × 26.6°C
m = 50.8 g
15. q = c × m × ∆T
9750 J = 4.184 J/(g·ºC) × 335 g × ∆T
∆T = 6.96°C
Because the water lost heat, let ∆T = −6.96°C.
∆T = −6.96°C = T f − 65.5°C
T f = 58.5°C
3.22 kJ
1 mol CH 3OH
23. 25.7 g CH 3OH × __ × __
32.04 g CH 3OH
1 mol CH 3OH
= 2.58 kJ
891 kJ
1 mol CH 4
25. 12,880 kJ = m × _ × _
16.04 g CH 4
1 mol CH 4
16.04 g CH 4
1 mol CH
m = 12,880 kJ × _ × _4
1 mol CH 4
891 kJ
Solutions to Selected Practice Problems
0.020M - 0.030M
Average reaction rate = - __
m = 232 g CH 4
4.00 s - 0.00 s
33. a. 4Al(s) + 3O 2(g) → 2Al 2O 3(s)
-0.010M
=-_
= 0.0025 mol/(L·s)
∆H = -3352 kJ
b. ∆H for Equation b = -x kJ
4.00 s
3. HCl is formed so the average rate expression should
be positive.
Average reaction rate =
Add Equation a to Equation b reversed and tripled.
4Al(s) + 3O 2(g) → 2Al 2O 3(s)
∆H = -3352 kJ
3MnO 2(s) → 3Mn(s) + 3O 2(g) ∆H = 3x kJ
4Al(s) + 3MnO 2(s) → 2Al 2O 3(s) + 3Mn(s)
-1789 kJ = 3x kJ + (-3352 kJ)
3x kJ = -1789 kJ + 3352 kJ = +1563 kJ
[HCl] at time t 2 - [HCl] at time t 1
___
= 0.0050 mol/(L·s)
t2 - t1
[HCl] at time t 2 =
(0.0050 mol/(L·s))(t 2 - t 1) + [HCl] at time t 1
= (0.0050 mol/L·s)(4.00 s - 0.00 s) + 0.00 s
= 0.020M
1563 kJ
3
x = _ = +521 kJ
Because the direction of Equation b was changed,
∆H for Equation b = -521 kJ.
35. ∆H 0rxn = [4(33.18 kJ) + 6(-285.83 kJ)] -
19. Rate = k[A] 3
21. Examining trials 1 and 2, doubling [A] has no effect
on the rate; therefore, the reaction is zero order in A.
Examining trials 2 and 3, doubling [B] doubles the
rate; therefore, the reaction is first order in B. Rate =
k[A] 0[B] = k[B]
4(-46.11) kJ = -1397.82
37. Reverse Equation a and change the sign of ∆H 0f to
obtain Equation c.
Add equation b.
c. NO(g) → ΩN 2(g) + ΩO 2(g) ∆H 0f = -91.3 kJ
b. ΩN 2(g) + O 2(g) → NO 2(g) ∆H 0f = ?
Add the equations.
NO(g) + ΩO 2(g) → NO 2(g)
∆H 0rxn = -58.1 kJ = ∆H 0f (c) + ∆H 0f (b)
−58.1 kJ = -91.3 kJ + ∆H 0f (b)
∆H 0f (b) = -58.1 kJ + 91.3 kJ = 33.2 kJ
45. The states of the two reactants are the same on both
31. [NO] = 0.00500M
[H 2] = 0.00200M
k = 2.90 × 10 2 L 2/(mol 2·s)
Rate = k [NO] 2[H 2]
= [2.90 × 10 2 L 2/(mol 2·s)](0.00500M) 2(0.00200M)
= [2.90 × 10 2 L 2/(mol 2·s)](0.00500 mol/k) 2
(0.00200 mol/L)
= 1.45 × 10 -5 mol/(L·s)
33. Rate = k [NO] 2[H 2]
9.00 × 10 -5 mol/(L × s)
Rate
[NO] = _
= ___
2
sides of the equation, so it is impossible from the
equation alone to predict the sign of ∆S system.
= 1.02 ×
47. Calculate T when ∆G system = 0.
1 kJ
-36.8 J/K × _ = -0.0368 kJ/K
1000 J
∆G system = ∆H system - T∆S system
-144 kJ - (T × (−0.0368 kJ/K)) = -144 kJ +
0.0368T kJ/K = 0
√
k[H 2]
(2.90 × 10 )(0.00300mol/L)
10 -2M
Chapter 17
[NO 2] 2
1. a. K eq = _
[N 2O 4]
[NO] 4[H 2O] 6
d. K eq = __
[NH 3] 4[O 2] 5
[H 2] 2[S 2]
b. K eq = _
[H 2S] 2
144 kJ
T = _ = 3910 K
0.0368 kJ/K
[CS 2][H 2] 4
e. K eq = _2
[CH 4][H 2S]
[CH 4][H 2O]
c. K eq = _
[CO][H 2] 3
At any temperature above 3910 K, the reaction is
spontaneous.
3. a. K eq = [C 10H 8(g)]
Chapter 16
b. K eq = [H 2O(g)]
c. K eq = [CO 2(g)]
1. H 2 is consumed. Average reaction rate expression
should be negative.
Average reaction rate =
[H ] at time t - [H ] at time t
∆[H ]
∆t
2
1
2
2
2
- ___
=-_
t −t
2
1
[CO(g)][H 2(g)]
d. K eq = __
[H 2O(g)]
[CO 2(g)]
_
e. K eq =
[CO(g)]
[NO 2] 2
0.0627 2
5. K eq = _ = _ = 0.213
0.0185
[N 2O 4]
7.
[CO][Cl 2]
_
= 8.2 × 10 -2
[COCl 2]
Solutions to Selected Practice Problems 1001
Solutions to Selected Practice Problems
[C H NH +][OH -]
[C 6H 13NH 2]
(0.150)(0.150)
__
= 8.2 × 10 -2
3
6 13
K b = __
[COCl 2]
(0.150)(0.150)
8.2 × 10
[COCl 2] = __
= 0.28M
-2
b. C 3H 7NH 2(aq) + H 2O(l) ⇌
C 3H 7NH 3 -(aq) + OH-(aq)
19. According to the stoichiometry of the equation, the
concentration of B is 0.450M; C and D are 1.00 0.450 = 0.550M.
(0.550)(0.550)
K eq = __ = 1.49
(0.450)(0.450)
21. K sp = [Pb 2+][CO 3 2-] = 7.40 × 10 -14
[H SO -][OH -]
[HSO 3 ]
2
3
K b = __
-
23. At 298 K, [H +] = [OH −] = 1.0 × 10 −7M
−7
1.0 × 10 mol _
Mol H + = __
× 1 L × 300 mL =
1L
1000 mL
3.0 × 10 −8 mol
23. K sp = [Ag +] 3[PO 4 3-] = 2.6 × 10 -18
[PO 4 3-] = s, [Ag +] = 3s
(3s) 3(s) = (27s 3)(s) = 27s 4 = 2.6 × 10 −18
4 2.6 × 10 -18
s = _
= 1.8 × 10 -5 mol/L
23
1 mol
1.8 × 10 16 H + ions
Number of H + = number of OH − = 1.8 × 10 16 ions
25. a. [H +] = 0.0055M
25. a. PbF 2(s) ⇌ Pb 2+(aq) + 2F -(aq)
Q sp = [Pb 2+][F -] 2 = (0.050M)(0.015M) 2
= 1.12 × 10 -5
K sp = 3.3 × 10 -8
Q sp > K sp, so a precipitate of PbF 2 will form.
b. Ag 2SO 4(s) ⇌ 2Ag +(aq) + SO 4 2-(aq)
(0.0050M) 2(0.125M)
K sp = 1.2 × 10 -5
Q sp < K sp, so a precipitate will not form.
Chapter 18
1. a. 2Al(s) + 3H 2SO 4(aq) → Al 2(SO 4) 3(aq) + 3H 2(g)
b. CaCO 3(s) + 2HBr(aq) →
CaBr 2(aq) + H 2O(l) + CO 2(g)
3.
Acid
Conjugate
base
Base
Conjugate
acid
a. NH 4 +
NH 3
OH -
H 2O
b. HBr
Br -
H 2O
H 3O +
c. H 2O
OH -
CO 3 2-
HCO 3 -
13. H 2SeO 3(aq) + H 2O(l) ⇌ HSeO 3 -(aq) + H 3O +(aq)
HSeO 3 -(aq) + H 2O(l) ⇌ SeO 3 2-(aq) + H 3O +(aq)
15. a. C 6H 13NH 2(aq) + H 2O(l) ⇌
C 6H 13NH 3 -(aq ) + OH −(aq)
1002
Solutions to Selected Practice Problems
+
6.02 × 10 H ions
3.0 × 10 −8 mol H + ions × __
=
27
=
c. CO 3 2-(aq) + H 2O(l) ⇌ HCO 3 -(aq) + OH -(aq)
[HCO 3 -][OH -]
K b = __
[CO 3 2-]
d. HSO 3 -(aq) + H 2O(l) ⇌ H 2SO 3(aq) + OH -(aq)
(s)(s) = 7.40 × 10 -14
s = √
7.40 × 10 -14 = 2.72 × 10 -7M
s = 2.72 × 10 -7 mol/L × 267.2 g/mol
= 7.27 × 10 -5 g/L
Q sp = [Ag +] 2[SO 4 2-]
= 3.1 × 10 -6
[C H NH +][OH -]
[C 3H 7NH 2]
3 7
3
K b = __
pH = −log [H +]
pH = −log 0.0055
pH = 2.26
b. [H +] = 0.000084M
pH = −log [H +]
pH = −log 0.000084
pH = 4.08
27. a. [OH −] = 1.0 × 10 −6M
pOH = −log [OH −]
pOH = −log(1.0 × 10 −6)
pOH = 6.00
pH = 14.00 − pOH = 14.00 − 6.00 = 8.00
b. [OH −] = 6.5 × 10 −4M
pOH = −log [OH −]
pOH = −log(6.5 × 10 −4)
pOH = 3.19
pH = 14.00 − pOH = 14.00 − 3.19 = 10.81
c. [H +] = 3.6 × 10 −9M
pH = −log [H +]
pH = −log(3.6 × 10 −9 )
pH = 8.44
pOH = 14.00 − pH = 14.00 − 8.44 = 5.56
d. [H +] = 2.5 × 10 −2M
pH = −log(−2.5 × 10 −2)
pH = 1.60
pOH = 14.00 − pH = 14.00 − 1.60 = 12.40
1.0 × 10 −3 mol
29. [HCl] = [H +] = __ = 0.00020M =
5.0 L
2.0 × 10 −4M
pH = −log(2.0 ×
= −(−3.70) = 3.70
pOH = 14.00 − 3.70 = 10.30
10 −4)
Solutions to Selected Practice Problems
31. [OH −] = antilog (−pOH)
[OH −] = antilog (−5.60) = 2.5 × 10 −6M
pH = 14.00 − 5.60 = 8.40
[H +] = antilog (−8.40) = 4.0 × 10 −9M
Chapter 19
1. a. reduction
b. oxidation
3. Ag + is the oxidizing agent, Fe is the reducing agent;
33. a. pH = 14.00 − pOH
Ag + is reduced, Fe is oxidized
pH = 14.00 − 10.70 = 3.30
[H +] = antilog (−pH)
[H +] = antilog (−3.30) = 5.0 × 10 −4M
[C 6H 5COO −] = [H +] = 5.0 × 10 −4M
[C 6H 5COOH] = 0.0040M − 5.0 × 10 −4M =
0.0035M
(5.0 × 10 −4)(5.0 × 10 −4)
[H +][C 6H 5COO −] __
K a = __
=
−3
[C 6H 5COOH]
5. a. +7
b. +5
c. +3
7. a. -3
b. -3
c. -2
15.
3(+2)
+1 -1
+1 +5 -2
+1 -2 +1
(1.0 × 10 −3)(1.0 × 10 −3)
(0.099)
K a = __ = __
K a = 1.0 × 10 −5
c. pH = 14.00 − pOH
pH = 14.00 − 11.18 = 2.82
[H +] = antilog (−pH)
[H +] = antilog (−2.82) = 1.5 × 10 −3M
[C 3H 7COO −] = [H +] = 1.5 × 10 −3M
[C 3H 7COOH] = 0.150M − 1.5 × 10 −3M = 0.149M
[H +][C H COO −]
[C 3H 7COOH]
(1.5 × 10 −3)(1.5 × 10 −3)
(0.149)
3 7
K a = __
= __
K a = 1.5 × 10 −5
0.5900 mol HCl
1L
45. 49.90 mL HCl × _ × __ =
1000 mL
1 L HCl
2.944 × 10 −2 mol HCl
1 mol NH
2.944 × 10 −2 mol HCl × _3 = 2.944 ×
1 mol HCl
10 −2 mol NH 3
−2
2.944
×
1
0
mol
N
H
M NH 3 = __3 = 1.178M
0.02500 L NH 3
47. a. NH 4 +(aq) + H 2O(l) NH 3(aq) + H 3O +(aq)
The solution is acidic.
b. SO 4 2−(aq) + H 2O(l) HSO 4 −(aq) + OH −(aq)
The solution is neutral.
c. CH 3COO −(aq) + H 2O(l) CH 3COOH(aq) + OH −(aq)
The solution is basic.
d. CO 3 2−(aq) + H 2O(l) HCO 3 −(aq) + OH −(aq)
The solution is basic.
+2 -2
+1 -2
HCl + HNO3 → HOCl + NO + H2O
2(–3)
(3.5 × 10 )
K a = 7.1 × 10 −5
b. pH = 14.00 − pOH
pH = 14.00 − 11.00 = 3.00
[H +] = antilog (−pH)
[H +] = antilog (−3.00) = 1.0 × 10 −3M
[CNO −] = [H +] = 1.0 × 10 −3M
[HCNO] = 0.100 − 1.0 × 10 −3M = 0.099M
[H +][CNO −]
[HCNO]
c. oxidation
d. reduction
3HCl + 2HNO 3 → 3HOCl + 2NO + H 2O
17.
4(+3)(2)
-3 +1
+4 -2
0
+1 -2
NH3(g) + NO2(g) → N2(g) + H2O(l)
3(–4)(2)
8NH 3(g) + 6NO 2(g) → 7N 2(g) + 12H 2O(l)
19.
3(+2)
+1 -2
0
+5 -2
+2 -2
H2S(g) + NO3-(aq) → S(s) + NO(g)
2(–3)
2H +(aq)
+ 3H 2S(g) + 2NO 3 -(aq) →
3S(s) + 2NO(g) + 4H 2O(l)
21.
+2
0
+2
+5 -2
+4 -2
Zn + 2NO3- + 4H+ → Zn2+ + 2NO2 + 2H2O
(–1)
-
Zn + 2NO 3 + 4H + → Zn 2+ + 2NO 2 + 2H 2O
23. 2I -(aq) → I 2(s) + 2e - (oxidation)
14H +(aq) + 6e - + Cr 2O 7 2-(aq) →
2Cr 3+(aq) + 7H 2O(l) (reduction)
Multiply oxidation half-reaction by 3 and add to
reduction half-reaction.
14H +(aq) + 6e - + CrO 7 2-(aq) + 6I -(aq) →
3I 2(s) + 2Cr 3+(aq) + 7H 2O(l) + 6e +
14H (aq) + CrO 7 2-(aq) + 6I -(aq) →
3I 2(s) + 2Cr 3+(aq) + 7H 2O(l)
25. 6OH -(aq) + N 2O(g) →
2NO 2 -(aq) + 4e - + 3H 2O(l) (oxidation)
ClO -(aq) + 2e - + H 2O(l) →
Cl -(aq) + 2OH -(aq) (reduction)
Solutions to Selected Practice Problems 1003
Solutions to Selected Practice Problems
Multiply reduction half-reaction by 2 and add to oxidation half-reaction.
6OH -(aq) + N 2O(g) + 2ClO -(aq) + 4e - + 2H 2O(l) →
2NO 2 -(aq) + 4e - + 3H 2O(l) + 2Cl -(aq) + 4OH -(aq)
31. a. propylbenzene
b. 1-ethyl-2-methylbenzene
c. 1-ethyl-2,3-dimethylbenzene
N 2O(g) + 2ClO -(aq) + 2OH -(aq) →
2NO 2 -(aq) + 2Cl -(aq) + H 2O(l)
Chapter 22
1. 2,3-difluorobutane
3. 1,3-dibromo-2-chlorobenzene
Chapter 20
1. Pt 2+(aq) + Sn(s) → Pt(s) + Sn 2+(aq)
Chapter 23
E 0cell = +1.18 V - (-0.1375 V)
E 0cell = +1.32 V
Sn|Sn 2+||Pt 2+|Pt
No practice problems
3. Hg 2+(aq) + Cr(s) → Hg(l) + Cr 2+(aq)
Chapter 24
E 0cell = +0.851 V - (-0.913 V)
E 0cell = +1.764 V
Cr|Cr 2+||Hg 2+|Hg
5.
E 0cell
E 0cell
E 0cell
7.
= +0.3419 V - (-0.1375 V)
= +0.4794 V
> 0 spontaneous
9.
()
(2)
(2)
2Al 3+(aq)
2+(aq)
11. Sample A will have 16.2 grams remaining after two
half-lives, or 10.54 years. For Sample B, amount
1
remaining = (initial amount) _
2
≈ 32.3 g
()
_t
1
(initial amount) T = (37.6 g) _
(2)
—
—
C3H7
—
19.
CH3
—
—
—
b.
C2H5
T
1
= (58.4 g) _
(2)
10.54y
_
12.32y
10.54y
_
28.79y
≈ 29.2 g
4
+ n → 24
11Na + 2He
CH3
CH3
CH3
C3H7
b. 2,2,6-trimethyl-3-octene
Solutions to Selected Practice Problems
110
48Cd
Balancing the second equation gives:
= β + 110
48Cd
The first equation must then be: n + T = 110
47Ag
110
Balancing this equation gives: n + 109
Ag
=
47
47Ag
The target, then, was silver-109, and the unstable
isotope was silver-110.
110
47Ag
CH3
17. a. 4-methyl-2-pentene
27
13Al
n + T = I and I = β +
C2H5
1004
_t
21. Let T = target and I = unstable isotope. Then,
C2H5 C2H5
CH3CH2CHCHCHCH2CH2CH3
11. a.
(2)
For Sample C, amount remaining =
CH3CHCHCH2CH(CH2)4CH3
b.
(2)
For three half-lives, amount remaining = (initial
n
1
1 3
amount) _
= (10.0 mg) _
= 1.25 mg.
Chapter 21
CH3
()
For two half-lives, amount remaining = (initial
n
1
1 2
amount) _
= (10.0 mg) _
= 2.50 mg.
+ 3Hg 2
E 0cell = 0.920 V - (-1.662 V) = +2.582 V
The reaction is spontaneous.
9. a.
225
88Ra
9. For one half-life, amount remaining = (initial
n
1
1 1
amount) _
= (10.0 mg) _
= 5.00 mg.
2
2
= -0.587 V
< 0 not spontaneous
Al|Al 3+||Hg 2+|Hg 2 2+
2Al(s) + 6Hg 2+(aq) →
4
→ 2He +
Alpha decay
7. E 0cell = 0.920 V - (+1.507 V)
E 0cell
E 0cell
229
90Th
A multilingual science glossary at glencoe.com includes Arabic,
Bengali, Chinese, English, Haitian Creole, Hmong, Korean, Portuguese,
Russian, Tagalog, Urdu, and Vietnamese.
Pronunciation Key
Use the following key to help you sound out words in the glossary.
a . . . . . . . . . . . . . . back (BAK)
ay . . . . . . . . . . . . . day (DAY)
ah . . . . . . . . . . . . . father (FAH thur)
ow . . . . . . . . . . . . . flower (FLOW ur)
ar. . . . . . . . . . . . . . car (CAR)
e . . . . . . . . . . . . . . less (LES)
ee . . . . . . . . . . . . . leaf (LEEF)
ih. . . . . . . . . . . . . . trip (TRIHP)
i (i+con+e). . . . . . idea, life (i DEE uh, life)
oh . . . . . . . . . . . . . go (GOH)
aw . . . . . . . . . . . . . soft (SAWFT)
or . . . . . . . . . . . . . orbit (OR but)
oy . . . . . . . . . . . . . coin (COYN)
oo . . . . . . . . . . . . . foot (FOOT)
ew . . . . . . . . . . . . . food (FEWD)
yoo . . . . . . . . . . . . pure (PYOOR)
yew . . . . . . . . . . . . few (FYEW)
uh . . . . . . . . . . . . . comma (CAHM uh)
u (+con) . . . . . . . . rub (RUB)
sh . . . . . . . . . . . . . shelf (SHELF)
ch . . . . . . . . . . . . . nature (NAY chur)
g . . . . . . . . . . . . . . gift (GIHFT)
j . . . . . . . . . . . . . . . gem (JEM)
ing . . . . . . . . . . . . sing (SING)
zh . . . . . . . . . . . . . vision (VIHZH un)
k . . . . . . . . . . . . . . cake (KAYK)
s . . . . . . . . . . . . . . . . seed, cent (SEED, SENT)
z . . . . . . . . . . . . . . . . zone, raise (ZOHN, RAYZ)
A
Como usar el glosario en espanol:
1. Busca el termino en ingles que desees encontrar.
2. El termino en espanol, junto con la definicion,
se encuentran en la columna de la derecha.
English
Español
absolute zero (p. 445) Zero on the Kelvin scale which represents the lowest possible theoretical temperature; atoms
are all in the lowest possible energy state.
cero absoluto (pág. 445) Equivale a cero grados en la escala
de Kelvin y representa la temperatura teórica más fría
posible; a esta temperatura todos los átomos se encuentran en el menor estado energético posible.
exactitud (pág. 47) Se refiere a la cercanía entre un valor
medido y el valor aceptado.
indicador ácido-base (pág. 662) tinción química cuyo color
cambia al entrar en contacto con soluciones ácidas y
básicas.
solución ácida (pág. 636) Solución que contiene más iones
hidrógeno que iones hidróxido.
constante ácida de ionización (pág. 647) Valor de la expresión de la constante de equilibrio para la ionización de
un ácido débil.
serie de actínidos (pág. 180) Elementos del bloque F del
período 7 de la tabla periódica que aparecen después del
elemento actinio.
complejo activado (pág. 564) Complejo efímero e inestable
de átomos que se puede romper para volver a formar los
reactivos o para formar los productos; a veces también se
le llama estado de transición.
energía de activación (pág. 564) La cantidad mínima de
energía que requieren las partículas de una reacción para
formar el complejo activado y producir la reacción.
sitio activo (pág. 830) Saliente o hendidura a la que se enlaza
un sustrato durante una reacción catalizada por enzimas.
accuracy (p. 47) Refers to how close a measured value is to
an accepted value.
acid-base indicator (p. 662) A chemical dye whose color is
affected by acidic and basic solutions.
acidic solution (p. 636) Contains more hydrogen ions than
hydroxide ions.
acid ionization constant (p. 647) The value of the equilibrium constant expression for the ionization of a weak
acid.
actinide series (p. 180) In the periodic table, the f-block elements from period 7 that follow the element actinium.
activated complex (p. 564) A short-lived, unstable arrangement of atoms that can break apart and re-form the reactants or can form products; also sometimes referred to as
the transition state.
activation energy (p. 564) The minimum amount of energy
required by reacting particles in order to form the activated complex and lead to a reaction.
active site (p. 830) The pocket or crevice to which a substrate binds in an enzyme-catalyzed reaction.
Glossary/Glosario 1005
Glossary/Glosario
actual yield/rendimiento real
actual yield (p. 385) The amount of product produced when
a chemical reaction is carried out.
addition polymerization (p. 811) Occurs when all the atoms
present in the monomers are retained in the polymer
product.
addition reaction (p. 804) A reaction that occurs when other
atoms bond to each of two atoms bonded by double or
triple covalent bonds.
alcohol (p. 792) An organic compound in which a hydroxyl
group replaces a hydrogen atom of a hydrocarbon.
aldehyde (p. 796) An organic compound containing the
structure in which a carbonyl group at the end of a carbon chain is bonded to a carbon atom on one side and a
hydrogen atom on the other side.
aliphatic compounds (a luh FA tihk • KAHM pownd)
(p. 771) Nonaromatic hydrocarbons, such as the alkanes,
alkenes, and alkynes.
alkali metals (p. 177) Group 1 elements, except for hydrogen, they are reactive and usually exist as compounds
with other elements.
alkaline earth metals (p. 177) Group 2 elements in the modern periodic table and are highly reactive.
alkane (p. 750) Hydrocarbon that contains only single
bonds between atoms.
alkene (p. 759) An unsaturated hydrocarbon, such as ethene (C 2H 4), with one or more double covalent bonds
between carbon atoms in a chain.
alkyl halide (p. 787) An organic compound containing a
halogen atom covalently bonded to an aliphatic carbon
atom.
alkyne (p. 763) An unsaturated hydrocarbon, such as
ethyne (C 2H 2), with one or more triple bonds between
carbon atoms in a chain.
allotrope (p. 422) One of two or more forms of an element
with different structures and properties when they are in
the same state—solid, liquid, or gas.
alloy (p. 227) A mixture of elements that has metallic properties; most commonly forms when the elements are
either similar in size (substitutional alloy) or the atoms
of one element are much smaller than the atoms of the
other (interstitial alloy).
alpha particle (p. 123) A particle with two protons and two
neutrons, with a 2+ charge; is equivalent to a helium-4
nucleus, can be represented as α; and is emitted during
radioactive decay.
alpha radiation (p. 123) Radiation that is made up of alpha
particles; is deflected toward a negatively charged plate
when radiation from a radioactive source is directed
between two electrically charged plates.
amide (AM ide) (p. 800) An organic compound in which
the -H group of a carboxylic acid is replaced by a nitrogen atom bonded to other atoms.
amines (A meen) (p. 795) Organic compounds that contain nitrogen atoms bonded to carbon atoms in aliphatic
chains or aromatic rings and have the general formula
RNH 2.
amino acid (p. 826) An organic molecule that has both an
amino group (-NH 2) and a carboxyl group (-COOH).
1006
Glossary/Glosario
amino acid/amino ácido
rendimiento real (pág. 385) Cantidad de producto que se
obtiene al realizar una reacción química.
polimerización de adición (pág. 811) Ocurre cuando todos
los átomos presentes en los monómeros forman parte del
producto polimérico.
reacción de adición (pág. 804) Reacción que ocurre cuando
dos átomos unidos entre sí por enlaces covalentes dobles
o triples se unen con otros átomos.
alcohol (pág. 792) Compuesto orgánico en el que un grupo
hidroxilo reemplaza a un átomo de hidrógeno de un
hidrocarburo.
aldehído (pág. 796) Compuesto orgánico que contiene una
estructura en la que un grupo carbonilo, situado al final de
una cadena de carbonos, se une a un átomo de carbono por
un lado y a un átomo de hidrógeno por el lado opuesto.
compuestos alifáticos (pág. 771) Hidrocarburos no aromáticos como los alcanos, los alquenos y los alquinos.
metales alcalinos (pág. 177) Incluyen los elementos del
grupo 1, a excepción del hidrógeno. Son reactivos y generalmente existen como compuestos con otros elementos.
metales alcalinotérreos (pág. 177) Elementos altamente
reactivos del grupo 2 de la tabla periódica moderna.
alcano (pág. 750) Hidrocarburo que sólo contiene enlaces
sencillos entre sus átomos.
alqueno (pág. 759) Hidrocarburo no saturado, como el
eteno (C 2H 4), que tiene uno o más enlaces covalentes
dobles entre los átomos de carbono en una cadena.
haluro de alquilo (pág. 787) Compuesto orgánico que contiene un átomo de halógeno enlazado covalentemente a
un átomo de carbono alifático.
alquino (pág. 763) Hidrocarburo no saturado, como el acetileno (C 2H 2), que tiene uno o más enlaces triples entre
los átomos de carbono en una cadena.
alótropos (pág. 422) Formas de un elemento que tienen
estructura y propiedades distintas cuando están en el
mismo estado: sólido, líquido o gaseoso.
aleación (pág. 227) Mezcla de elementos que posee propiedades metálicas; en general se forman cuando los elementos tienen un tamaño similar (aleación de sustitución)
o cuando los átomos de un elemento son mucho más
pequeños que los átomos del otro (aleación intersticial).
partícula alfa (pág. 123) Partícula con dos protones y dos
neutrones que tiene una carga 2+ ; equivale a un núcleo
de helio 4, se puede representar como α y es emitida
durante la desintegración radiactiva.
radiación alfa (pág. 123) Radiación compuesta de partículas
alfa; si la radiación proveniente de una fuente radiactiva es
dirigida hacia dos placas cargadas eléctricamente, este tipo
de radiación se desvía hacia la placa con carga negativa.
amida (pág. 800) Compuesto orgánico en el que el grupo
-H de un ácido carboxílico es sustituido por un átomo
de nitrógeno unido a otros átomos.
aminas (pág. 795) Compuestos orgánicos que contienen
átomos de nitrógeno unidos a átomos de carbono en
cadenas alifáticas o anillos aromáticos; su fórmula general es RNH 2.
amino ácido (pág. 826) Molécula orgánica que posee un
grupo amino (-NH 2) y un grupo carboxilo (-COOH).
Glossary/Glosario
amorphous solid/sólido amorfo
amorphous solid (p. 424) A solid in which particles are
not arranged in a regular, repeating pattern that often is
formed when molten material cools too quickly to form
crystals.
amphoteric (AM foh TAR ihk) (p. 639) Describes water
and other substances that can act as both acids and bases.
amplitude (p. 137) The height of a wave from the origin to
a crest, or from the origin to a trough.
anabolism (ah NAB oh lih zum) (p. 844) Refers to the
metabolic reactions through which cells use energy and
small building blocks to build large, complex molecules
needed to carry out cell functions and for cell structures.
anion (AN i ahn) (p. 209) An ion that has a negative
charge.
anode (p. 710) In an electrochemical cell, the electrode
where oxidation takes place.
applied research (p. 17) A type of scientific investigation
that is undertaken to solve a specific problem.
aqueous solution (p. 299) A solution in which the solvent is
water.
aromatic compounds (p. 771) Organic compounds that contain one or more benzene rings as part of their molecular
structure.
Arrhenius model (ah REE nee us • MAH dul) (p. 637)
A model of acids and bases; states that an acid is a substance that contains hydrogen and ionizes to produce
hydrogen ions in aqueous solution and a base is a substance that contains a hydroxide group and dissociates to
produce a hydroxide ion in aqueous solution.
aryl halide (p. 788) An organic compound that contains a
halogen atom bonded to a benzene ring or another aromatic group
asymmetric carbon (p. 768) A carbon atom that has four
different atoms or groups of atoms attached to it; occurs
in chiral compounds.
atmosphere (p. 407) The unit that is often used to report air
pressure.
atom (p. 106) The smallest particle of an element that
retains all the properties of that element; is electrically
neutral, spherically shaped, and composed of electrons,
protons, and neutrons.
atomic emission spectrum (p. 144) A set of frequencies of
electromagnetic waves given off by atoms of an element;
consists of a series of fine lines of individual colors.
atomic mass (p. 119) The weighted average mass of the isotopes of that element.
atomic mass unit (amu) (p. 119) One-twelfth the mass of a
carbon-12 atom.
atomic number (p. 115) The number of protons in an atom.
atomic orbital (p. 152) A three-dimensional region around
the nucleus of an atom that describes an electron’s probable location.
ATP (p. 845) Adenosine triphosphate—a nucleotide that
functions as the universal energy-storage molecule in
living cells.
ATP/ATP
sólido amorfo (pág. 424) Sólido cuyas partículas no están
ordenadas de modo que formen un patrón regular repetitivo; a menudo se forma cuando el material fundido se
enfría demasiado rápido como para formar cristales.
anfotérico (pág. 639) Término que describe al agua y otras
sustancias que pueden actuar como ácidos y bases.
amplitud (pág. 137) Altura de una onda desde el origen
hasta una cresta o desde el origen hasta un valle.
anabolismo (pág. 844) Reacciones metabólicas en las que
las células usan energía y pequeñas unidades básicas para
formar las moléculas grandes y complejas que requieren
para realizar sus funciones celulares y para construir sus
estructuras.
anión (pág. 209) Ion con carga negativa.
ánodo (pág. 710) Electrodo donde sucede la oxidación en
una celda electroquímica.
investigación aplicada (pág. 17) Tipo de investigación científica que se realiza para resolver un problema concreto.
solución acuosa (pág. 299) Solución en la que el agua funciona como disolvente.
compuestos aromáticos (pág. 771) Compuestos orgánicos
que contienen uno o más anillos de benceno como parte
de su estructura molecular.
modelo de Arrhenius (pág. 637) Modelo de ácidos y bases;
establece que un ácido es una sustancia que contiene
hidrógeno y se ioniza para producir iones hidrógeno en
solución acuosa, y que una base es una sustancia que
contiene un grupo hidróxido y se disocia para producir
un ion hidróxido en solución acuosa.
haluro de arilo (pág. 788) Compuesto orgánico que contiene un átomo de halógeno unido a un anillo de benceno u otro grupo aromático.
carbono asimétrico (pág. 768) Átomo de carbono que está
unido a cuatro átomos o grupos de átomos diferentes; se
hallan en compuestos quirales.
atmósfera (pág. 407) Unidad que a menudo se usa para
reportar la presión atmosférica.
átomo (pág. 106) La partícula más pequeña de un elemento
que retiene todas las propiedades de ese elemento; es
eléctricamente neutro, de forma esférica y está compuesto de electrones, protones y neutrones.
espectro de emisión atómica (pág. 144) Conjunto de frecuencias de ondas electromagnéticas que emiten los átomos de un elemento; consta de una serie de líneas finas
de distintos colores.
masa atómica (pág. 119) La masa promedio ponderada de
los isótopos de un elemento.
unidad de masa atómica (uma) (pág. 119) La doceava parte
de la masa de un átomo de carbono 12.
número atómico (pág. 115) El número de protones en un
átomo.
orbital atómico (pág. 152) Región tridimensional alrededor
del núcleo de un átomo que describe la ubicación probable de un electrón.
ATP (pág. 845) Trifosfato de adenosina; nucleótido que
sirve como la molécula universal de almacenamiento de
energía en las células vivas.
Glossary/Glosario 1007
Glossary/Glosario
aufbau principle/principio de aufbau
buffer capacity/capacidad amortiguadora
aufbau principle (p. 156) States that each electron occupies
the lowest energy orbital available.
Avogadro’s number (p. 321) The number 6.0221367 × 10 23,
which is the number of representative particles in
a mole, and can be rounded to three significant digits
6.02 × 10 23.
Avogadro’s principle (p. 452) States that equal volumes of
gases at the same temperature and pressure contain equal
numbers of particles.
principio de aufbau (pág. 156) Establece que cada electrón
ocupa el orbital de energía más bajo disponible.
número de Avogadro (pág. 321) Equivale al número
6.0221367 × 10 23; es el número de partículas representativas en un mol; se puede redondear a tres dígitos significativos: 6.02 × 10 23.
principio de Avogadro (pág. 452) Establece que los
volúmenes iguales de gases, a la misma temperatura y
presión, contienen igual número de partículas.
B
band of stability (p. 866) The region on a graph within
which all stable nuclei are found when plotting the number of neutrons versus the number of protons.
barometer (p. 407) An instrument that is used to measure
atmospheric pressure.
base ionization constant (p. 649) The value of the equilibrium constant expression for the ionization of a base.
base unit (p. 33) A defined unit in a system of measurement
that is based on an object or event in the physical world
and is independent of other units.
basic solution (p. 636) Contains more hydroxide ions than
hydrogen ions.
battery (p. 718) One or more electrochemical cells in a
single package that generates electrical current.
beta particle (p. 123) A high-speed electron with a 1−
charge that is emitted during radioactive decay.
beta radiation (p. 123) Radiation that is made up of beta
particles; is deflected toward a positively charged plate
when radiation from a radioactive source is directed
between two electrically charged plates.
boiling point (p. 427) The temperature at which a liquid’s
vapor pressure is equal to the external or atmospheric
pressure.
boiling-point elevation (p. 500) The temperature difference
between a solution’s boiling point and a pure solvent’s
boiling point.
Boyle’s law (p. 442) States that the volume of a fixed amount
of gas held at a constant temperature varies inversely
with the pressure.
breeder reactor (p. 882) A nuclear reactor that is able to
produce more fuel than it uses.
Brønsted-Lowry model (p. 638) A model of acids and bases
in which an acid is a hydrogen-ion donor and a base is a
hydrogen-ion acceptor.
Brownian motion (p. 477) The erratic, random, movements
of colloid particles that results from collisions of particles
of the dispersion medium with the dispersed particles.
buffer (p. 666) A solution that resists changes in pH when
limited amounts of acid or base are added.
buffer capacity (p. 667) The amount of acid or base a buffer
solution can absorb without a significant change in pH.
1008
Glossary/Glosario
banda de estabilidad (pág. 866) Región de una gráfica en la
que se hallan todos los núcleos estables cuando se grafica
el número de neutrones contra el número de protones.
barómetro (pág. 407) Instrumento que se utiliza para medir
la presión atmosférica.
constante de ionización básica (pág. 649) El valor de la
expresión de la constante de equilibrio para la ionización
de una base.
unidad básica (pág. 33) Unidad definida en un sistema de
medidas; está basada en un objeto o evento del mundo
físico y es independiente de otras unidades.
solución básica (pág. 636) Solución que contiene más iones
hidróxido que iones hidrógeno.
batería (pág. 718) Una o más celdas electroquímicas contenidas en una sola unidad que genera corriente eléctrica.
partícula beta (pág. 123) Electrón de alta velocidad con
una carga 1− que es emitido durante la desintegración
radiactiva.
radiación beta (pág. 123) Radiación compuesta de partículas
beta; si la radiación proveniente de una fuente radiactiva es
dirigida hacia dos placas cargadas eléctricamente, este tipo
de radiación se desvía hacia la placa con carga positiva.
punto de ebullición (pág. 427) Temperatura a la cual la presión de vapor de un líquido es igual a la presión externa
o atmosférica.
elevación del punto de ebullición (pág. 500) Diferencia de
temperatura entre el punto de ebullición de una solución
y el punto de ebullición de un disolvente puro.
ley de Boyle (pág. 442) Establece que el volumen de una
cantidad dada de gas a temperatura constante varía
inversamente según la presión.
reactor generador (pág. 882) Reactor nuclear capaz de producir más combustible del que utiliza.
modelo de Brønsted-Lowry (pág. 638) Modelo de ácidos y bases en el que un ácido es un donante de iones
hidrógeno y una base es un receptor de iones hidrógeno.
movimiento browniano (pág. 477) Movimientos erráticos,
aleatorios de las partículas coloidales, producidos por el
choque entre las partículas del medio de dispersión con
las partículas dispersas.
amortiguador (pág. 666) Solución que resiste los cambios
de pH cuando se agregan cantidades moderadas del
ácido o la base.
capacidad amortiguadora (pág. 667) Cantidad de ácido o
base que una solución amortiguadora puede absorber sin
sufrir un cambio significativo en el pH.
Glossary/Glosario
calorie/caloría
chemical property/propiedad química
C
calorie (p. 518) The amount of heat required to raise the
temperature of one gram of pure water by one degree
Celsius.
calorimeter (p. 523) An insulated device that is used to
measure the amount of heat released or absorbed during
a physical or chemical process.
carbohydrates (p. 832) Compounds that contain multiple
hydroxyl groups, plus an aldehyde or a ketone functional
group, and function in living things to provide immediate and stored energy.
carbonyl group (p. 796) Arrangement in which an oxygen
atom is double-bonded to a carbon atom.
carboxyl group (p. 798) Consists of a carbonyl group
bonded to a hydroxyl group.
carboxylic acid (p. 798) An organic compound that contains
a carboxyl group and is polar and reactive.
catabolism (kuh TAB oh lih zum) (p. 844) Refers to metabolic reactions that break down complex biological molecules for the purpose of forming smaller building blocks
and extracting energy.
catalyst (p. 571) A substance that increases the rate of a
chemical reaction by lowering activation energies but is
not itself consumed in the reaction.
cathode (p. 710) In an electrochemical cell, the electrode
where reduction takes place.
cathode ray (p. 108) Radiation that originates from the
cathode and travels to the anode of a cathode-ray tube.
cation (KAT i ahn) (p. 207) An ion that has a positive
charge.
cellular respiration (p. 846) The process in which glucose is
broken down in the presence of oxygen gas to produce
carbon dioxide, water, and energy.
Charles’s law (p. 445) States that the volume of a given mass
of gas is directly proportional to its kelvin temperature at
constant pressure.
chemical bond (p. 206) The force that holds two atoms
together; may form by the attraction of a positive ion for
a negative ion or by sharing electrons.
chemical change (p. 77) A process involving one or more
substances changing into new substances; also called a
chemical reaction.
chemical equation (p. 285) A statement using chemical
formulas to describe the identities and relative amounts
of the reactants and products involved in the chemical
reaction.
chemical equilibrium (p. 596) The state in which forward
and reverse reactions balance each other because they
occur at equal rates.
chemical potential energy (p. 517) The energy stored in a
substance because of its composition; most is released or
absorbed as heat during chemical reactions or processes.
chemical property (p. 74) The ability or inability of a substance to combine with or change into one or more new
substances.
caloría (pág. 518) Cantidad de calor que se requiere para
elevar un grado centígrado la temperatura de un gramo
de agua pura.
calorímetro (pág. 523) Dispositivo aislado que sirve para
medir la cantidad de calor liberada o absorbida durante
un proceso físico o químico.
carbohidratos (pág. 832) Compuestos que contienen múltiples grupos hidroxilo, además de un grupo funcional
aldehído o cetona, cuya función en los seres vivos es proporcionar energía inmediata o almacenada.
grupo carbonilo (pág. 796) Grupo formado por un átomo
de oxígeno unido por un enlace doble a un átomo de
carbono.
grupo carboxilo (pág. 798) Consiste en un grupo carbonilo
unido a un grupo hidroxilo.
ácido carboxílico (pág. 798) Compuesto orgánico que contiene un grupo carboxilo; es polar y reactivo.
catabolismo (pág. 844) Reacciones metabólicas en las
que se desdoblan moléculas biológicas complejas para
obtener unidades básicas más pequeñas y energía.
catalizador (pág. 571) Sustancia que aumenta la velocidad de
una reacción química al reducir su energía de activación;
el catalizador no es consumido durante la reacción.
cátodo (pág. 710) Electrodo donde sucede la reducción en
una celda electroquímica.
rayo catódico (pág. 108) Radiación que se origina en el
cátodo y viaja hacia el ánodo de un tubo de rayos catódicos.
catión (pág. 207) Ion con carga positiva.
respiración celular (pág. 846) Proceso en el cual la glucosa
es desdoblada en presencia del gas oxígeno para producir
dióxido de carbono, agua y energía.
Ley de Charles (pág. 445) Establece que el volumen de una
masa dada de gas es directamente proporcional a su temperatura Kelvin a presión constante.
enlace químico (pág. 206) La fuerza que mantiene a dos átomos unidos; puede formarse por la atracción de un ion
positivo por un ion negativo compartiendo electrones.
cambio químico (pág. 77) Proceso que involucra una o más
sustancias que se transforman en sustancias nuevas; también se conoce como reacción química.
ecuación química (pág. 285) Expresión que utiliza fórmulas químicas para describir las identidades y cantidades
relativas de los reactivos y productos presentes en una
reacción química.
equilibrio químico (pág. 596) Estado en el que se equilibran
mutuamente las reacciones en sentido directo e inverso de
una reacción química debido a que suceden a tasas iguales.
energía potencial química (pág. 517) La energía almacenada
en una sustancia debido a su composición; la mayoría
es liberada o absorbida como calor durante reacciones o
procesos químicos.
propiedad química (pág. 74) La capacidad de una sustancia
de combinarse con una o más sustancias nuevas o de
transformarse en una o más sustancias nuevas.
Glossary/Glosario 1009
Glossary/Glosario
chemical reaction/reacción química
condensation polymerization/polimerización por condensación
chemical reaction (p. 282) The process by which the atoms
of one or more substances are rearranged to form different substances; occurrence can be indicated by changes
in temperature, color, odor, and physical state.
chemistry (p. 4) The study of matter and the changes that it
undergoes.
chirality (p. 767) A property of a compound to exist in both
left (l-) and right (d-) forms; occurs whenever a compound contains an asymmetric carbon.
chromatography (p. 83) A technique that is used to separate
the components of a mixture based on the tendency of
each component to travel or be drawn across the surface
of another material.
coefficient (p. 285) In a chemical equation, the number
written in front of a reactant or product; in a balanced
equation describes the lowest whole-number ratio of the
amounts of all reactants and products.
reacción química (pág. 282) Proceso por el cual los átomos
de una o más sustancias se reordenan para formar sustancias diferentes; su pueden identificar cuando suceden
cambios en temperatura, color, olor o estado físico.
química (pág. 4) El estudio de la materia y los cambios que
ésta experimenta.
quiralidad (pág. 767) Propiedad de un compuesto para
existir en forma levógira (i-) o dextrógira (d-); ocurre
cuando un compuesto contiene un carbono asimétrico.
cromatografía (pág. 83) Técnica que sirve para separar los
componentes de una mezcla según la tendencia de cada
componente a desplazarse o ser atraído a lo largo de la
superficie de otro material.
coeficiente (pág. 285) Número que precede a un reactivo o
un producto en una ecuación química; en una ecuación
equilibrada, indica la razón más pequeña expresada en
números enteros de las cantidades de reactivos y productos en dicha reacción.
propiedad coligativa (pág. 498) Propiedad física de una
solución que depende del número, pero no de la identidad, de las partículas de soluto disueltas.
colligative property (kol LIHG uh tihv • PRAH pur tee)
(p. 498) A physical property of a solution that depends
on the number, but not the identity, of the dissolved solute particles.
collision theory (p. 563) States that atoms, ions, and molecules must collide in order to react.
colloids (p. 477) A heterogeneous mixture of intermediatesized particles (between atomic-size of solution particles
and the size of suspension particles).
combined gas law (p. 449) A single law combining Boyle’s,
Charles’s, and Gay-Lussac’s laws that states the relationship among pressure, volume, and temperature of a fixed
amount of gas.
combustion reaction (p. 290) A chemical reaction that
occurs when a substance reacts with oxygen, releasing
energy in the form of heat and light.
common ion (p. 620) An ion that is common to two or more
ionic compounds.
common ion effect (p. 620) The lowering of the solubility of
a substance by the presence of a common ion.
complete ionic equation (p. 301) An ionic equation that
shows all the particles in a solution as they realistically
exist.
complex reaction (p. 580) A chemical reaction that consists
of two or more elementary steps.
compound (p. 85) A chemical combination of two or more
different elements; can be broken down into simpler substances by chemical means and has properties different
from those of its component elements.
concentration (p. 480) A measure of how much solute is
dissolved in a specific amount of solvent or solution.
conclusion (p. 15) A judgment based on the information
obtained.
condensation (p. 428) The energy-releasing process by
which a gas or vapor becomes a liquid.
condensation polymerization (p. 811) Occurs when monomers containing at least two functional groups combine
with the loss of a small by-product, usually water.
1010
Glossary/Glosario
teoría de colisión (pág. 563) Establece que los átomos, iones
y moléculas deben chocar para reaccionar.
coloides (pág. 477) Mezcla heterogénea de partículas de
tamaño intermedio (entre el tamaño atómico de partículas en solución y el de partículas en suspensión).
ley combinada de los gases (pág. 449) Ley que combina
las leyes de Boyle, Charles y de Gay-Lussac; indica la
relación entre la presión, el volumen y la temperatura de
una cantidad constante de gas.
reacción de combustión (pág. 290) Reacción química que
ocurre al reaccionar una sustancia con el oxígeno, liberando energía en forma de calor y luz.
ion común (pág. 620) Ion común a dos o más compuestos
iónicos.
efecto del ion común (pág. 620) Disminución de la solubilidad de una sustancia debida a la presencia de un ion
común.
ecuación iónica total (pág. 301) Ecuación iónica que muestra cómo existen realmente todas las partículas en una
solución.
reacción compleja (pág. 580) Reacción química que consiste
en dos o más pasos elementales.
compuesto (pág. 85) Combinación química de dos o más
elementos diferentes; puede ser separado en sustancias
más sencillas por medios químicos y exhibe propiedades
que difieren de los elementos que lo componen.
concentración (pág. 480) Medida de la cantidad de soluto que
se disuelve en una cantidad dada de disolvente o solución.
conclusión (pág. 15) Juicio basado en la información
obtenida.
condensación (pág. 428) El proceso de liberación de energía
mediante el cual un gas o vapor se convierte en líquido.
polimerización por condensación (pág. 811) Ocurre cuando
monómeros que contienen al menos dos grupos funcionales se combinan y pierden un producto secundario
pequeño, generalmente agua.
Glossary/Glosario
condensation reaction/reacción de condensación
condensation reaction (p. 801) Occurs when two smaller
organic molecules combine to form a more complex
molecule, accompanied by the loss of a small molecule
such as water.
conjugate acid (p. 638) The species produced when a base
accepts a hydrogen ion from an acid.
conjugate acid-base pair (p. 638) Consists of two substances
related to each other by the donating and accepting of a
single hydrogen ion.
conjugate base (p. 638) The species produced when an acid
donates a hydrogen ion to a base.
control (p. 14) In an experiment, the standard that is used
for comparison.
conversion factor (p. 44) A ratio of equivalent values used
to express the same quantity in different units; is always
equal to 1 and changes the units of a quantity without
changing its value.
coordinate covalent bond (p. 259) Forms when one atom
donates a pair of electrons to be shared with an atom or
ion that needs two electrons to become stable.
corrosion (p. 724) The loss of metal that results from an oxidation-reduction reaction of the metal with substances in
the environment.
covalent bond (p. 241) A chemical bond that results from
the sharing of valence electrons.
cracking (p. 748) The process by which heavier fractions
of petroleum are converted to gasoline by breaking their
large molecules into smaller molecules.
critical mass (p. 880) The minimum mass of a sample of
fissionable material necessary to sustain a nuclear chain
reaction.
crystal lattice (p. 214) A three-dimensional geometric
arrangement of particles in which each positive ion is
surrounded by negative ions and each negative ion is
surrounded by positive ions; vary in shape due to sizes
and relative numbers of the ions bonded.
crystalline solid (p. 420) A solid whose atoms, ions, or
molecules are arranged in an orderly, geometric, threedimensional structure.
crystallization (p. 83) A separation technique that produces
pure solid particles of a substance from a solution that
contains the dissolved substance.
cyclic hydrocarbon (p. 755) An organic compound that contains a hydrocarbon ring.
cycloalkane (p. 755) Cyclic hydrocarbons that contain
single bonds only and can have rings with three, four,
five, six, or more carbon atoms.
Dalton’s atomic theory (p. 104) States that matter is composed of extremely small particles called atoms; atoms
are invisible and indestructable; atoms of a given element are identical in size, mass, and chemical properties; atoms of a specific element are different from those
of another element; different atoms combine in simple
whole-number ratios to form compounds; in a chemical
reaction, atoms are separated, combined, or rearranged.
Dalton’s atomic theory/teoría atómica de Dalton
reacción de condensación (pág. 801) Ocurre cuando dos
moléculas orgánicas pequeñas se combinan para formar
una molécula más compleja; esta reacción es acompañada
de la pérdida de una molécula pequeña como el agua.
ácido conjugado (pág. 638) Especie que se produce cuando
una base acepta un ion hidrógeno de un ácido.
par ácido-base conjugado (pág. 638) Consiste en dos sustancias que se relacionan entre sí mediante la donación y
aceptación de un solo ion hidrógeno.
base conjugada (pág. 638) Especie que se produce cuando
un ácido dona un ion hidrógeno a una base.
control (pág. 14) Estándar de comparación en un experimento.
factor de conversión (pág. 44) Razón de valores equivalentes
que sirve para expresar una misma cantidad en unidades
diferentes; siempre es igual a 1 y cambia las unidades de
una cantidad sin cambiar su valor.
enlace covalente coordinado (pág. 259) Se forma cuando
un átomo dona un par de electrones para compartirlos
con un átomo o un ion que requieren dos electrones para
adquirir estabilidad.
corrosión (pág. 724) Pérdida de metal producida por una
reacción de óxido-reducción del metal con sustancias en
el ambiente.
enlace covalente (pág. 241) Enlace químico que se produce
al compartir electrones de valencia.
cracking (pág. 748) Proceso por el cual las fracciones más
pesadas de petróleo son convertidas en gasolina al romper
las moléculas grandes en moléculas más pequeñas.
masa crítica (pág. 880) La masa mínima de una muestra
de material fisionable que se necesita para sostener una
reacción nuclear en cadena.
red cristalina (pág. 214) Ordenamiento geométrico tridimensional de partículas en el que cada ion positivo
queda rodeado de iones negativos y cada ion negativo
queda rodeado de iones positivos; su forma varía según
el tamaño y número de iones enlazados.
sólido cristalino (pág. 420) Sólido cuyos átomos, iones o
moléculas forman una estructura tridimensional, ordenada y geométrica.
cristalización (pág. 83) Técnica de separación que produce
partículas sólidas puras de una sustancia a partir de una
solución que contiene dicha sustancia en solución.
hidrocarburo cíclico (pág. 755) Compuesto orgánico que
contiene un anillo de hidrocarburos.
cicloalcano (pág. 755) Hidrocarburos cíclicos que sólo contienen enlaces simples; pueden formar anillos con tres,
cuatro, cinco, seis o más átomos de carbono.
D teoría atómica de Dalton (pág. 104) Establece que la materia se compone de partículas extremadamente pequeñas denominadas átomos; los átomos son invisibles e
indestructibles; los átomos de un elemento dado son
idénticos en tamaño, masa y propiedades químicas; los
átomos de un elemento específico difieren de los de otros
elementos; átomos diferentes se combinan en razones
simples de números enteros para formar compuestos; los
átomos se separan, se combinan o se reordenan durante
una reacción química.
Glossary/Glosario 1011
Glossary/Glosario
Dalton’s law of partial pressures/ley de Dalton de las presiones parciales
Dalton’s law of partial pressures (p. 408) States that the total
pressure of a mixture of gases is equal to the sum of the
pressures of all the gases in the mixture.
de Broglie equation (p. 150) Predicts that all moving particles have wave characteristics and relates each particle’s
wavelength to its frequency, its mass, and Planck’s constant.
decomposition reaction (p. 292) A chemical reaction that
occurs when a single compound breaks down into two or
more elements or new compounds.
dehydration reaction (p. 803) An elimination reaction in
which the atoms removed form water.
dehydrogenation reaction (p. 803) A reaction that eliminates two hydrogen atoms, which form a hydrogen molecule of gas.
delocalized electrons (p. 225) The electrons involved in
metallic bonding that are free to move easily from one
atom to the next throughout the metal and are not
attached to a particular atom.
denaturation (p. 829) The process in which a protein’s natural, intricate three-dimensional structure is disrupted.
denatured alcohol (p. 793) Ethanol to which noxious substances have been added in order to make it unfit to drink.
density (p. 36) The amount of mass per unit volume; a
physical property.
dependent variable (p. 14) In an experiment, the variable
whose value depends on the independent variable.
deposition (p. 429) The energy-releasing process by which a
substance changes from a gas or vapor to a solid without
first becoming a liquid.
derived unit (p. 35) A unit defined by a combination of base
units.
diffusion (p. 404) The movement of one material through
another from an area of higher concentration to an area
of lower concentration.
dimensional analysis (p. 44) A systematic approach to problem solving that uses conversion factors to move from
one unit to another.
dipole-dipole forces (p. 412) The attractions between oppositely charged regions of polar molecules.
disaccharide (p. 833) Forms when two monosaccharides
bond together.
dispersion forces (p. 412) The weak forces resulting from
temporary shifts in the density of electrons in electron
clouds.
disaccharide (p. 82) A technique that can be used to physically separate most homogeneous mixtures based on the
differences in the boiling points of the substances.
double-replacement reaction (p. 296) A chemical reaction
that involves the exchange of ions between two compounds and produces either a precipitate, a gas, or water.
dry cell (p. 718) An electrochemical cell that contains a
moist electrolytic paste inside a zinc shell.
elastic collision (p. 403) Collision in which no kinetic
energy is lost; kinetic energy can be transferred between
the colliding particles, but the total kinetic energy of the
two particles remains the same.
1012
Glossary/Glosario
elastic collision/choque elástico
ley de Dalton de las presiones parciales (pág. 408) Establece
que la presión total de una mezcla de gases es igual a la
suma de las presiones de todos los gases en la mezcla.
ecuación de deBroglie (pág. 150) Predice que todas las
partículas móviles tienen características ondulatorias y
relaciona la longitud de onda de cada partícula con su
frecuencia, su masa y la constante de Planck.
reacción de descomposición (pág. 292) Reacción química
que ocurre cuando un solo compuesto se divide en dos o
más elementos o nuevos compuestos.
reacción de deshidratación (pág. 803) Una reacción de eliminación en la que los átomos que se pierden forman agua.
reacción de deshidrogenación (pág. 803) Reacción orgánica
en la que se pierden dos átomos de hidrógeno, los cuales
se unen y forman una molécula de hidrógeno.
electrones deslocalizados (pág. 225) Los electrones que
forman un enlace metálico; estos electrones pasan fácilmente de un átomo a otro a través del metal y no están
unidos a ningún átomo en particular.
desnaturalización (pág. 829) Proceso que afecta la estructura tridimensional, compleja y natural de una proteína.
alcohol desnaturalizado (pág. 793) Etanol al cual se añaden
sustancias nocivas para evitar que se pueda beber.
densidad (pág. 36) La cantidad de masa por unidad de
volumen; una propiedad física.
variable dependiente (pág. 14) Es la variable de un experimento cuyo valor depende de la variable independiente.
depositación (pág. 429) Proceso de liberación de energía
por el cual una sustancia cambia de gas o vapor a sólido
sin antes convertirse en un líquido.
unidad derivada (pág. 35) Unidad definida por una combinación de unidades básicas.
difusión (pág. 404) El movimiento de un material a través
de otro en dirección al área de menor concentración.
análisis dimensional (pág. 44) Un enfoque sistemático para
resolver un problema en el que se usan factores de conversión para pasar de una unidad a otra.
fuerzas dipolo-dipolo (pág. 412) La atracción entre regiones
con cargas opuestas de moléculas polares.
disacárido (pág. 833) Se forma a partir de la unión de dos
monosacáridos.
fuerzas de dispersión (pág. 412) Fuerzas débiles causadas
por los cambios temporales en la densidad de electrones
en las nubes electrónicas.
destilación (pág. 82) Técnica que se usa para separar físicamente la mayoría de las mezclas homogéneas según las
diferencias en los puntos de ebullición de las sustancias.
reacción de sustitución doble (pág. 296) Reacción química
en la que dos compuestos intercambian iones positivos,
produciendo un precipitado, un gas o agua.
pila seca (pág. 718) Celda electroquímica que contiene una
pasta electrolítica húmeda dentro de un armazón de zinc.
E
choque elástico (pág. 403) Colisión en que no se pierde
energía cinética; la energía cinética es transferida entre
las partículas en choque, pero la energía cinética total de
las dos partículas permanece igual.
Glossary/Glosario
electrochemical cell/celda electroquímica
electrochemical cell (p. 709) An apparatus that uses a redox
reaction to produce electrical energy or uses electrical
energy to cause a chemical reaction.
electrolysis (p. 728) The process that uses electrical energy
to bring about a chemical reaction.
electrolyte (p. 215) An ionic compound whose aqueous
solution conducts an electric current.
electrolytic cell (p. 728) An electrochemical cell in which
electrolysis occurs.
electromagnetic radiation (p. 137) A form of energy exhibiting wavelike behavior as it travels through space; can
be described by wavelength, frequency, amplitude, and
speed.
electromagnetic spectrum (p. 139) Includes all forms of
electromagnetic radiation; the types of radiation differ in
their frequencies and wavelengths.
electron (p. 108) A negatively charged, fast-moving particle
with an extremely small mass that is found in all forms of
matter and moves through the empty space surrounding
an atom’s nucleus.
electron capture (p. 868) A radioactive decay process that
occurs when an atom’s nucleus draws in a surrounding
electron, which combines with a proton to form a neutron, resulting in an X-ray photon being emitted.
electron configuration (p. 156) The arrangement of electrons in an atom, which is prescribed by three rules—
the aufbau principle, the Pauli exclusion principle, and
Hund’s rule.
electron-dot structure (p. 161) Consists of an element’s
symbol, representing the atomic nucleus and inner-level
electrons, that is surrounded by dots, representing the
atom’s valence electrons.
electron sea model (p. 225) Proposes that all metal atoms in
a metallic solid contribute their valence electrons to form
a “sea” of electrons, and can explain properties of metallic solids such as malleability, conduction, and ductility.
electronegativity (p. 194) Indicates the relative ability of an
element’s atoms to attract electrons in a chemical bond.
element (p. 84) A pure substance that cannot be broken
down into simpler substances by physical or chemical
means.
elimination reaction (p. 802) A reaction of organic compounds that occurs when a combination of atoms is
removed from two adjacent carbon atoms forming an
additional bond between the atoms.
empirical formula (p. 344) A formula that shows the smallest whole-number mole ratio of the elements of a compound, and may or may not be the same as the actual
molecular formula.
endothermic (p. 247) A chemical reaction or process in
which a greater amount of energy is required to break
the existing bonds in the reactants than is released when
the new bonds form in the product molecules.
end point (p. 663) The point at which the indicator that is
used in a titration changes color.
end point/punto final
celda electroquímica (pág. 709) Aparato que usa una reacción redox para producir energía eléctrica o que utiliza
energía eléctrica para causar una reacción química.
electrólisis (pág. 728) Proceso que emplea energía eléctrica
para producir una reacción química.
electrolito (pág. 215) Compuesto iónico cuya solución
acuosa conduce una corriente eléctrica.
celda electrolítica (pág. 728) Celda electroquímica en donde
ocurre la electrólisis.
radiación electromagnética (pág. 137) Forma de energía que
exhibe un comportamiento ondulatorio al viajar por el
espacio; se puede describir por su longitud de onda, su
frecuencia, su amplitud y su rapidez.
espectro electromagnético (pág. 139) Incluye toda forma
de radiación electromagnética; los distintos tipos de
radiación difirien en sus frecuencias y sus longitudes de
onda.
electrón (pág. 108) Partícula móvil rápida, de carga negativa
y con una masa extremadamente pequeña. que se encuentra en todas las formas de materia y que se mueve a través
del espacio vacío que rodea el núcleo de un átomo.
captura electrónica (pág. 868) Proceso de desintegración
radiactiva que ocurre cuando el núcleo de un átomo
atrae un electrón circundante, que luego se combina con
un protón para formar un neutrón, provocando la emisión de un fotón de rayos X.
configuración electrónica (pág. 156) El ordenamiento de los
electrones en un átomo; está determinado por tres reglas:
el principio de Aufbau, el principio de exclusión de Pauli
y la regla de Hund.
estructura de puntos de electrones (pág. 161) Consiste en el
símbolo del elemento, que representa al núcleo atómico y
los electrones de los niveles internos, rodeado por puntos
que representan los electrones de valencia del átomo.
modelo del mar de electrones (pág. 225) Propone que todos
los átomos de metal en un sólido metálico contribuyen
con sus electrones de valencia para formar un “mar” de
electrones.
electronegatividad (pág. 194) Indica la capacidad relativa
de los átomos de un elemento para atraer electrones en
un enlace químico.
elemento (pág. 84) Sustancia pura que no puede separarse
en sustancias más sencillas por medios físicos ni químicos.
reacción de eliminación (pág. 802) Reacción de compuestos
orgánicos que ocurre cuando se pierden un conjunto de
átomos en dos átomos adyacentes de carbono, al formarse un enlace entre dichos átomos de carbono.
fórmula empírica (pág. 344) Fórmula que muestra la proporción molar más pequeña expresada en números enteros de los elementos de un compuesto; puede ser distinta
de la fórmula molecular real.
endotérmica (pág. 247) Reacción o proceso químico que
requiere una mayor cantidad de energía para romper los
enlaces existentes en los reactivos, que la que se se libera al
formarse los enlaces nuevos en las moléculas del producto.
punto final (pág. 663) Punto en el que el indicador que se
utiliza en una titulación cambia de color.
Glossary/Glosario 1013
Glossary/Glosario
energy/energía
fatty acid/ácido graso
energy (p. 516) The capacity to do work or produce heat;
exists as potential energy, which is stored in an object
due to its composition or position, and kinetic energy,
which is the energy of motion.
energy sublevels (p. 153) The energy levels contained
within a principal energy level.
enthalpy (p. 527) The heat content of a system at constant
pressure.
enthalpy (heat) of combustion (p. 529) The enthalpy change
for the complete burning of one mole of a given substance.
enthalpy (heat) of reaction (p. 527) The change in enthalpy
for a reaction—the difference between the enthalpy of
the substances that exist at the end of the reaction and
the enthalpy of the substances present at the start
energía (pág. 516) Capacidad de realizar trabajo o producir
calor; existe como energía potencial (almacenada en
un objeto debido a su composición o posición) o como
energía cinética (energía del movimiento).
subniveles de energía (pág. 153) Los niveles de energía dentro de un nivel principal de energía.
entalpía (pág. 527) El contenido de calor en un sistema a
presión constante.
entalpía (calor) de combustión (pág. 529) El cambio de
entalpía causado por la combustión completa de un mol
de una sustancia dada.
entalpía (calor) de reacción (pág. 527) El cambio en la
entalpía que ocurre en una reacción; es decir, la diferencia entre la entalpía de las sustancias que existen al final
de la reacción y la entalpía de las sustancias presentes al
comienzo de la misma.
entropía (pág. 543) Una medida de las formas posibles en
que se puede distribuir la energía de un sistema; está
relacionada con la libertad de movimiento de las partículas del sistema y el número de maneras en que éstas se
pueden ordenar.
enzima (pág. 829) Catalizador biológico.
constante de equilibrio (pág. 599) K eq es el valor numérico
que describe la razón de las concentraciones de los productos con respecto a las concentraciones de los reactivos, cada una de ellas elevada a la potencia correspondiente a su coeficiente en la ecuación equilibrada.
punto de equivalencia (pág. 661) Punto en el cual los moles
de iones H + del ácido equivalen a los moles de iones
OH - de la base.
error (pág. 48) La diferencia entre el valor experimental y el
valor aceptado.
éster (pág. 799) Compuesto orgánico con un grupo carboxilo en el que el hidrógeno del grupo de hidroxilo es
reemplazado por un grupo alquilo; es polar y puede ser
volátil y de olor dulce.
éter (pág. 794) Compuesto orgánico que contiene un
átomo de oxígeno unido a dos átomos de carbono.
evaporación (pág. 426) Proceso en el cual la vaporización
ocurre sólo en la superficie de un líquido.
reactivo en exceso (pág. 379) Reactivo que sobra luego de
finalizar una reacción química.
exotérmica (pág. 247) Reacción o proceso químico en el
que se libera más energía que la requerida para romper
los enlaces en los reactivos iniciales.
experimento (pág. 14) Conjunto de observaciones controladas que se realizan para probar una hipótesis.
propiedad extensiva (pág. 73) Propiedades físicas, como la
masa, la longitud y el volumen, que dependen de la cantidad de sustancia presente.
entropy (p. 543) A measure of the number of possible ways
that the energy of a system can be distributed; related
to the freedom of the system’s particles to move and the
number of ways they can be arranged.
enzyme (p. 829) A biological catalyst.
equilibrium constant (p. 599) K eq is the numerical value that
describes the ratio of product concentrations to reactant
concentrations, with each raised to the power corresponding to its coefficient in the balanced equation.
equivalence point (p. 661) The point at which the moles of
H + ions from the acid equals moles of OH - ions from
the base.
error (p. 48) The difference between an experimental value
and an accepted value
ester (p. 799) An organic compound with a carboxyl group
in which the hydrogen of the hydroxyl group is replaced
by an alkyl group; may be volatile and sweet-smelling
and is polar.
ether (p. 794) An organic compound that contains an oxygen atom bonded to two carbon atoms.
evaporation (p. 426) The process in which vaporization
occurs only at the surface of a liquid.
excess reactant (p. 379) A reactant that remains after a
chemical reaction stops.
exothermic (p. 247) A chemical reaction or process in
which more energy is released than is required to break
bonds in the initial reactants.
experiment (p. 14) A set of controlled observations that test
a hypothesis.
extensive property (p. 73) A physical property, such as
mass, length, and volume, that is dependent upon the
amount of substance present.
F
fatty acid (p. 835) A long-chain carboxylic acid that usually
has between 12 and 24 carbon atoms and can be saturated (no double bonds), or unsaturated (one or more
double bonds).
1014 Glossary/Glosario
ácido graso (pág. 835) Ácido carboxílico de cadena larga
que tiene generalmente entre 12 y 24 átomos de carbono;
puede ser saturado (sin enlaces dobles) o insaturado o no
saturado (con uno o más enlaces dobles).
Glossary/Glosario
fermentation/fermentación
group/grupo
fermentation (p. 847) The process in which glucose is broken down in the absence of oxygen, producing either
ethanol, carbon dioxide, and energy (alcoholic fermentation) or lactic acid and energy (lactic acid fermentation).
filtration (p. 82) A technique that uses a porous barrier to
separate a solid from a liquid.
formula unit (p. 218) The simplest ratio of ions represented
in an ionic compound.
fractional distillation (p. 747) The process by which petroleum can be separated into simpler components, called
fractions, as they condense at different temperatures.
fermentación (pág. 847) Proceso en el cual la glucosa es
desdoblada en ausencia de oxígeno produciendo etanol,
dióxido de carbono y energía (fermentación alcohólica)
o ácido láctico y energía (fermentación del ácido láctico).
filtración (pág. 82) Técnica que utiliza una barrera porosa
para separar un sólido de un líquido.
fórmula unitaria (pág. 218) La razón más simple de iones
representados en un compuesto iónico.
destilación fraccionaria (pág. 747) Proceso mediante el cual
se separa el petróleo en componentes más simples llamados fracciones, las cuales se condensan a temperaturas
diferentes.
energía libre (pág. 546) Energía disponible para hacer trabajo: la diferencia entre el cambio en la entalpía y el producto del cambio de entropía por la temperatura kelvin.
punto de congelación (pág. 428) La temperatura a la cual un
líquido se convierte en un sólido cristalino.
depresión del punto de congelación (pág. 502) Diferencia de
temperatura entre el punto de congelación de una solución y el punto de congelación de su disolvente puro.
frecuencia (pág. 137) Número de ondas que pasan por un
punto dado en un segundo.
celda de combustible (pág. 722) Celda voltaica en la cual la
oxidación de un combustible, como el gas hidrógeno, se
utiliza para producir energía eléctrica.
grupo funcional (pág. 786) Átomo o grupo de átomos que
siempre reaccionan de cierta manera en una molécula
orgánica.
free energy (p. 546) The energy available to do work—the
difference between the change in enthalpy and the product of the entropy change and the kelvin temperature.
freezing point (p. 428) The temperature at which a liquid is
converted into a crystalline solid.
freezing-point depression (p. 502) The difference in temperature between a solution’s freezing point and the freezing
point of its pure solvent.
frequency (p. 137) The number of waves that pass a given
point per second.
fuel cell (p. 722) A voltaic cell in which the oxidation of a
fuel, such as hydrogen gas, is used to produce electric
energy.
functional group (p. 786) An atom or group of atoms that
always reacts in a certain way in an organic molecule.
G
galvanization (p. 727) The process in which an iron object
is dipped into molten zinc or electroplated with zinc to
make the iron more resistant to corrosion.
gamma rays (p. 124) High-energy radiation that has no
electrical charge and no mass, is not deflected by electric
or magnetic fields, usually accompanies alpha and beta
radiation, and accounts for most of the energy lost during radioactive decay.
gas (p. 72) A form of matter that flows to conform to the
shape of its container, fills the container’s entire volume,
and is easily compressed.
Gay-Lussac’s law (p. 447) States that the pressure of a fixed
mass of gas varies directly with the kelvin temperature
when the volume remains constant.
geometric isomers (p. 766) A category of stereoisomers that
results from different arrangements of groups around a
double bond.
Graham’s law of effusion (p. 404) States that the rate of effusion for a gas is inversely proportional to the square root
of its molar mass.
graph (p. 55) A visual display of data.
ground state (p. 146) The lowest allowable energy state of
an atom.
group (p. 177) A vertical column of elements in the periodic table arranged in order of increasing atomic number; also called a family.
galvanizado (pág. 727) Proceso en el cual un objeto de
hierro en sumergido o galvanizado en zinc para aumentar la resistencia del hierro a la corrosión.
rayos gamma (pág. 124) Radiación de alta energía sin carga
eléctrica ni masa; no es desviada por campos eléctricos ni
magnéticos; acompaña generalmente a la radiación alfa y
beta; representa la mayor parte de la energía perdida
durante la desintegración radiactiva.
gas (pág. 72) Forma de la materia que fluye para adaptarse
a la forma de su contenedor, llena el volumen entero del
recipiente y se comprime fácilmente.
ley de Gay-Lussac (pág. 447) Establece que la presión de una
masa dada de gas varía directamente con la temperatura
en grados Kelvin cuando el volumen permanece constante.
isómeros geométricos (pág. 766) Categoría de estereoisómeros originada por los diversos ordenamientos
posibles de grupos alrededor de un enlace doble.
ley de efusión de Graham (pág. 404) Establece que la tasa de
efusión de un gas es inversamente proporcional a la raíz
cuadrada de su masa molar.
gráfica (pág. 55) Representación visual de datos.
estado base (pág. 146) Estado de energía más bajo posible
de un átomo.
grupo (pág. 177) Columna vertical de los elementos en la
tabla periódica ordenados en sentido creciente según su
número atómico; llamado también familia.
Glossary/Glosario 1015
Glossary/Glosario
half-cells/semiceldas
Hund’s rule/regla de Hund
H
half-cells (p. 710) The two parts of an electrochemical cell
in which the separate oxidation and reduction reactions
occur.
half-life (p. 870) The time required for one-half of a radioisotope’s nuclei to decay into its products.
half-reaction (p. 693) One of two parts of a redox reaction—the oxidation half, which shows the number of
electrons lost when a species is oxidized, or the reduction
half, which shows the number of electrons gained when a
species is reduced.
halocarbon (p. 787) Any organic compound containing a
halogen substituent.
halogen (p. 180) A highly reactive group 17 element.
halogenation (p. 790) A process by which hydrogen atoms
are replaced by halogen atoms.
heat (p. 518) A form of energy that flows from a warmer
object to a cooler object.
heat of solution (p. 492) The overall energy change that
occurs during the solution formation process.
Heisenberg uncertainty principle (p. 151) States that it is not
possible to know precisely both the velocity and the position of a particle at the same time.
Henry’s law (p. 496) States that at a given temperature, the
solubility of a gas in a liquid is directly proportional to
the pressure of the gas above the liquid.
Hess’s law (p. 534) States that if two or more thermochemical equations can be added to produce a final equation
for a reaction, then the sum of the enthalpy changes for
the individual reactions is the enthalpy change for the
final reaction.
heterogeneous catalyst (p. 573) A catalyst that exists in a
different physical state than the reaction it catalyzes.
heterogeneous equilibrium (p. 602) A state of equilibrium
that occurs when the reactants and products of a reaction
are present in more than one physical state.
heterogeneous mixture (p. 81) One that does not have a
uniform composition and in which the individual substances remain distinct.
homogeneous catalyst (p. 573) A catalyst that exists in the
same physical state as the reaction it catalyzes.
homogeneous equilibrium (p. 600) A state of equilibrium
that occurs when all the reactants and products of a reaction are in the same physical state.
homogeneous mixture (p. 81) One that has a uniform composition throughout and always has a single phase; also
called a solution.
homologous series (p. 751) Describes a series of compounds
that differ from one another by a repeating unit.
Hund’s rule (p. 157) States that single electrons with the
same spin must occupy each equal-energy orbital before
additional electrons with opposite spins can occupy the
same orbitals.
1016
Glossary/Glosario
semiceldas (pág. 710) Las dos partes de una celda electroquímica en las que ocurren las reacciones separadas de
oxidación y reducción.
vida media (pág. 870) Tiempo requerido para que la mitad
de los núcleos de un radioisótopo se desintegren en sus
productos.
semirreacción (pág. 693) Una de dos partes de una reacción redox: la correspondiente a la oxidación muestra el
número de electrones que se pierden al oxidarse una especie y la correspondiente a la reducción muestra el número
de electrones que se ganan al reducirse una especie.
halocarbono (pág. 787) Cualquier compuesto orgánico que
contiene un sustituyente halógeno.
halógeno (pág. 180) Elemento sumamente reactivo del
grupo 17.
halogenación (pág. 790) Proceso mediante el cual se reemplazan átomos de hidrógeno por átomos de halógeno.
calor (pág. 518) Forma de energía que fluye hacia cuerpos
más fríos.
calor de solución (pág. 492) El cambio global de energía que
ocurre durante el proceso de formación de una solución.
principio de incertidumbre de Heisenberg (pág. 151) Establece
que no es posible saber con precisión y al mismo
tiempo la velocidad y la posición de una partícula.
ley de Henry (pág. 496) Establece que a una temperatura
dada, la solubilidad de un gas en un líquido es directamente proporcional a la presión del gas sobre el líquido.
ley de Hess (pág. 534) Establece que si para producir la ecuación final para una reacción se pueden sumar dos o más
ecuaciones termoquímicas, entonces la suma de los cambios de entalpía para las reacciones individuales equivale
al cambio de entalpía de la reacción final.
catalizador heterogéneo (pág. 573) Catalizador que existe en
un estado físico diferente al de la reacción que cataliza.
equilibrio heterogéneo (pág. 602) Estado de equilibrio que
ocurre cuando los reactivos y los productos de una reacción están presentes en más de un estado físico.
mezcla heterogénea (pág. 81) Aquella que no tiene una
composición uniforme y en la que las sustancias individuales permanecen separadas.
catalizador homogéneo (pág. 573) Catalizador que existe en
el mismo estado físico de la reacción que cataliza.
equilibrio homogéneo (pág. 600) Estado de equilibrio que
ocurre cuando todos los reactivos y productos de una
reacción están en el mismo estado físico.
mezcla homogénea (pág. 81) Aquella que tiene una composición uniforme y siempre tiene una sola fase; también
llamada solución.
serie homóloga (pág. 751) Describe una serie de compuestos que difieren entre sí por una unidad repetitiva.
regla de Hund (pág. 157) Establece que los electrones individuales con igual rotación deben ocupar cada uno orbitales distintos con la misma energía, antes de que electrones adicionales con rotación opuesta puedan ocupar
los mismos orbitales.
Glossary/Glosario
hybridization/hibridación
intermediate/intermediario
hybridization (p. 262) A process in which atomic orbitals
are mixed to form new, identical hybrid orbitals.
hibridación (pág. 262) Proceso mediante el cual se mezclan
los orbitales atómicos para formar orbitales híbridos
nuevos e idénticos.
hidrato (pág. 351) Compuesto que tiene un número específico de moléculas de agua unidas a sus átomos.
reacción de hidratación (pág. 804) Reacción de adición en
la que se añaden el átomo de hidrógeno y el grupo hidroxilo de una molécula de agua a un enlace doble o triple.
hidrocarburo (pág. 745) El compuesto orgánico más simple;
está formado sólo por los elementos carbono e hidrógeno.
reacción de hidrogenación (pág. 804) Reacción de adición
en la que se agrega hidrógeno a los átomos que forman
un enlace doble o triple; requiere generalmente de un
catalizador.
enlace de hidrógeno (pág. 413) Fuerte atracción dipolodipolo entre moléculas que contienen un átomo de
hidrógeno unido a un átomo pequeño, sumamente electronegativo.
grupo hidroxilo (pág. 792) Un grupo hidrógeno-oxígeno
unido covalentemente a un átomo de carbono.
hipótesis (pág. 13) Enunciado tentativo y comprobable o
predicción acerca de lo que ha sido observado.
hydrate (p. 351) A compound that has a specific number of
water molecules bound to its atoms.
hydration reaction (p. 804) An addition reaction in which a
hydrogen atom and a hydroxyl group from a water molecule add to a double or triple bond.
hydrocarbon (p. 745) Simplest organic compound composed only of the elements carbon and hydrogen.
hydrogenation reaction (p. 804) An addition reaction in
which hydrogen is added to atoms in a double or triple
bond; usually requires a catalyst.
hydrogen bond (p. 413) A strong dipole-dipole attraction
between molecules that contain a hydrogen atom bonded
to a small, highly electronegative atom.
hydroxyl group (p. 792) An oxygen-hydrogen group covalently bonded to a carbon atom.
hypothesis (p. 13) A tentative, testable statement or prediction about what has been observed.
I
ideal gas constant (R) (p. 454) An experimentally determined constant whose value in the ideal gas equation
depends on the units that are used for pressure.
ideal gas law (p. 454) Describes the physical behavior of an
ideal gas in terms of pressure, volume, temperature, and
number of moles of gas.
immiscible (ih MIHS ih bul) (p. 479) Describes two liquids
that can be mixed together but separate shortly after you
cease mixing them.
independent variable (p. 14) In an experiment, the variable
that the experimenter plans to change.
induced transmutation (p. 875) The process in which nuclei
are bombarded with high-velocity charged particles in
order to create new elements.
inhibitor (p. 571) A substance that slows down the reaction
rate of a chemical reaction or prevents a reaction from
happening.
inner transition metal (p. 180) A type of group B element
that is contained in the f-block of the periodic table and
is characterized by a filled outermost orbital, and filled or
partially filled 4f and 5f orbitals.
insoluble (p. 479) Describes a substance that cannot be dissolved in a given solvent.
instantaneous rate (p. 578) The rate of decomposition at a
specific time, calculated from the rate law, the specific
rate constant, and the concentrations of all the reactants.
intensive property (p. 73) A physical property that remains
the same no matter how much of a substance is present.
intermediate (p. 580) A substance produced in one elementary step of a complex reaction and consumed in a subsequent elementary step.
constante de los gases ideales (R) (pág. 454) Constante
determinada experimentalmente cuyo valor en la ecuación de los gases ideales depende de las unidades en las
que se expresa la presión.
ley de los gases ideales (pág. 454) Describe el comportamiento físico de un gas ideal en términos de la presión, el
volumen, la temperatura y el número de moles del gas.
inmiscible (pág. 479) Describe dos líquidos que se pueden
mezclar entre sí, pero que se separan poco después de
que se cesa de mezclarlos.
variable independiente (pág. 14) La variable de un experimento que el experimentador piensa cambiar.
transmutación inducida (pág. 875) Proceso en cual se bombardean núcleos con partículas cargadas de alta velocidad para crear elementos nuevos.
inhibidor (pág. 571) Sustancia que reduce la tasa de reacción de una reacción química o evita que ésta suceda.
metal de transición interna (pág. 180) Tipo de elemento
del grupo B contenido dentro del bloque F de la tabla
periódica; se caracteriza por tener el orbital más externo
lleno y los orbitales 4f y 5f parcialmente llenos.
insoluble (pág. 479) Describe una sustancia que no se
puede disolver en un disolvente dado.
velocidad instantánea (pág. 578) La tasa de descomposición
en un tiempo dado, se calcula a partir de la ley de velocidad de la reacción, la constante de velocidad de la reacción y las concentraciones de los reactivos.
propiedad intensiva (pág. 73) Propiedad física que permanece igual sea cual sea la cantidad de sustancia presente.
intermediario (pág. 580) Sustancia producida en un paso
elemental de una reacción compleja y que es consumida
en un paso elemental subsecuente.
Glossary/Glosario 1017
Glossary/Glosario
ion/ion
law of conservation of mass/ley de conservación de la masa
ion (p. 189) An atom or bonded group of atoms with a
positive or negative charge.
ionic bond (p. 210) The electrostatic force that holds oppositely charged particles together in an ionic compound.
ion (pág. 189) Átomo o grupo de átomos unidos que tienen
carga positiva o negativa.
enlace iónico (pág. 210) Fuerza electrostática que mantiene
unidas las partículas con carga opuesta en un compuesto
iónico.
compuestos iónicos (pág. 210) Compuestos que contienen
enlaces iónicos.
energía de ionización (pág. 191) Energía que se requiere
para separar un electrón de un átomo en estado gaseoso;
generalmente aumenta al moverse de izquierda a derecha
a lo largo de un período de la tabla periódica y disminuye
al moverse hacia abajo a lo largo de un grupo.
radiación ionizante (pág. 885) Radiación que posee suficiente
energía como para ionizar la materia con la que choca.
constante del producto iónico del agua (pág. 650) Valor de
la expresión de la constante de equilibrio de la ionización
del agua.
isómeros (pág. 765) Dos o más compuestos que tienen
la misma fórmula molecular pero poseen estructuras
moleculares diferentes.
isótopos (pág. 117) Átomos del mismo elemento con diferente número de neutrones.
ionic compounds (p. 210) Compounds that contain ionic
bonds
ionization energy (p. 191) The energy required to remove
an electron from a gaseous atom; generally increases in
moving from left-to-right across a period and decreases
in moving down a group
ionizing radiation (p. 885) Radiation that is energetic
enough to ionize matter it collides with.
ion product constant for water (p. 650) The value of the
equilibrium constant expression for the self-ionization
of water.
isomers (p. 765) Two or more compounds that have the
same molecular formula but have different molecular
structures.
isotopes (p. 117) Atoms of the same element with different
numbers of neutrons.
J
joule (p. 518) The SI unit of heat and energy.
julio (pág. 518) La unidad SI de medida del calor y la
energía.
K
kelvin (p. 35) The SI base unit of temperature.
ketone (p. 797) An organic compound in which the carbon
of the carbonyl group is bonded to two other carbon
atoms.
kilogram (p. 34) The SI base unit for mass.
kinetic-molecular theory (p. 402) Describes the behavior
of gases in terms of particles in motion; makes several
assumptions about size, motion, and energy of gas particles.
lanthanide series (p. 180) In the periodic table, the f-block
elements from period 6 that follow the element lanthanum.
lattice energy (p. 216) The energy required to separate one
mole of the ions of an ionic compound, which is directly
related to the size of the ions bonded and is also affected
by the charge of the ions.
law of chemical equilibrium (p. 599) States that at a given
temperature, a chemical system may reach a state in
which a particular ratio of reactant and product concentrations has a constant value.
law of conservation of energy (p. 517) States that in any
chemical reaction or physical process, energy may change
from one form to another, but it is neither created nor
destroyed.
law of conservation of mass (p. 77) States that mass is neither created nor destroyed during a chemical reaction
but is conserved.
1018
Glossary/Glosario
kelvin (pág. 35) Unidad básica de temperatura del SI.
cetona (pág. 797) Compuesto orgánico en el que el carbono del grupo carbonilo está unido a otros dos átomos
de carbono.
kilogramo (pág. 34) Unidad básica de masa del SI.
teoría cinético-molecular (pág. 402) Explica el comportamiento de los gases en términos de partículas en movimiento; hace varias suposiciones acerca del tamaño,
movimiento y energía de las partículas de gas.
L
serie de los lantánidos (pág. 180) Los elementos del bloque F del período 6 de la tabla periódica que siguen al
elemento lantano.
energía reticular (pág. 216) Energía que se requiere para
separar un mol de los iones de un compuesto iónico;
está directamente relacionada con el tamaño de los iones
enlazados y es afectada también por la carga de los iones.
ley del equilibrio químico (pág. 599) Establece que a una
temperatura dada, un sistema químico puede alcanzar un
estado en el que la razón particular de las concentraciones del reactivo y el producto tiene un valor constante.
ley de conservación de la energía (pág. 517) Establece que
en toda reacción química y en todo proceso físico la
energía puede cambiar de una forma a otra, pero no
puede ser creada ni destruida.
ley de conservación de la masa (pág. 77) Establece que
durante una reacción química la masa no se crea ni se
destruye, sino que se conserva.
Glossary/Glosario
law of definite proportions/ley de las proporciones definidas
meter/metro
law of definite proportions (p. 87) States that, regardless
of the amount, a compound is always composed of the
same elements in the same proportion by mass.
ley de las proporciones definidas (pág. 87) Establece que,
independientemente de la cantidad, un compuesto siempre se compone de los mismos elementos en la misma
proporción por masa.
ley de las proporciones múltiples (pág. 89) Establece que
cuando la combinación de los mismos elementos forma
compuestos diferentes, una masa dada de uno de los
elementos se combina con masas diferentes del otro
elemento de acuerdo con una razón que se expresa en
números enteros pequeños.
Principio de Le Châtelier (pág. 607) Establece que si se aplica
una perturbación a un sistema en equilibrio, el sistema
cambia en la dirección que reduce la perturbación.
law of multiple proportions (p. 89) States that when different
compounds are formed by the combination of the same
elements, different masses of one element combine with
the same mass of the other element in a ratio of small
whole numbers.
Le Châtelier’s principle (luh SHAHT uh lee yays • PRIHN
sih puhl) (p. 607) States that if a stress is applied to a
system at equilibrium, the system shifts in the direction
that relieves the stress.
Lewis model (p. 641) An acid is an electron-pair acceptor
and a base is an electro-pair donor.
modelo de Lewis (pág. 641) Un ácido es un receptor de
pares de electrones y una base es un donante de pares de
electrones.
estructura de Lewis (pág. 242) Modelo que utiliza diagramas
de puntos de electrones para mostrar la disposición de
los electrones en las moléculas. Los pares de puntos o
líneas representan pares de electrones enlazados.
reactivo limitante (pág. 379) Reactivo que se consume completamente durante una reacción química, limita la duración de la reacción y determina la cantidad del producto.
lípidos (pág. 835) Moléculas biológicas no polares de gran
tamaño que varían en estructura, almacenan energía en
los seres vivos y conforman la mayor parte de la estructura de las membranas celulares.
líquido (pág. 71) Forma de materia que fluye, tiene volumen constante y toma la forma de su envase.
litro (pág. 35) Unidad de volumen del sistema métrico;
equivale a un decímetro cúbico.
Lewis structure (p. 242) A model that uses electron-dot
structures to show how electrons are arranged in molecules. Pairs of dots or lines represent bonding pairs.
limiting reactant (p. 379) A reactant that is totally consumed during a chemical reaction, limits the extent of
the reaction, and determines the amount of product.
lipids (p. 835) Large, nonpolar biological molecules that
vary in structure, store energy in living organisms, and
make up most of the structure of cell membranes.
liquid (p. 71) A form of matter that flows, has constant volume, and takes the shape of its container.
liter (p. 35) The metric unit for volume equal to one cubic
decimeter.
M
mass (p. 9) A measure that reflects the amount of matter.
mass defect (p. 877) The difference in mass between a
nucleus and its component nucleons.
mass number (p. 117) The number after an element’s name,
representing the sum of its protons and neutrons.
matter (p. 4) Anything that has mass and takes up space.
melting point (p. 426) For a crystalline solid, the temperature at which the forces holding a crystal lattice together
are broken and it becomes a liquid.
metabolism (p. 844) The sum of the many chemical reactions that occur in living cells.
metal (p. 177) An element that is solid at room temperature, a good conductor of heat and electricity, and generally is shiny; most metals are ductile and malleable.
metallic bond (p. 225) The attraction of a metallic cation for
delocalized electrons.
metalloid (p. 181) An element that has physical and chemical properties of both metals and nonmetals.
meter (p. 33) The SI base unit for length.
masa (pág. 9) Medida que refleja la cantidad de materia.
defecto másico (pág. 877) La diferencia de masa entre un
núcleo y los nucleones que lo componen.
número de masa (pág. 117) El número que va después del
nombre de un elemento; representa la suma de sus protones y neutrones.
materia (pág. 4) Cualquier cosa que tiene masa y ocupa
espacio.
punto de fusión (pág. 426) Para un sólido cristalino, es la
temperatura a la que se rompen las fuerzas que mantienen
unida la red cristalina y el sólido se convierte en líquido.
metabolismo (pág. 844) El conjunto de las numerosas reacciones químicas que ocurren en las células vivas.
metal (pág. 177) Elemento sólido a temperatura ambiente,
es buen conductor de calor y electricidad y generalmente
es brillante; la mayoría de los metales son dúctiles y
maleables.
enlace metálico (pág. 225) Atracción de un catión metálico
por los electrones deslocalizados.
metaloide (pág. 181) Elementos que tienen las propiedades
físicas y químicas de metales y de no metales.
metro (pág. 33) Unidad básica de longitud del SI.
Glossary/Glosario 1019
Glossary/Glosario
method of initial rates/método de las velocidades iniciales
neutralization reaction/reacción de neutralización
method of initial rates (p. 576) Determines the reaction
order by comparing the initial rates of a reaction carried
out with varying reactant concentrations.
método de las velocidades iniciales (pág. 576) Determina el
orden de la reacción al comparar las velocidades iniciales
de una reacción realizada con diversas concentraciones
de reactivo.
miscible (pág. 479) Describe dos líquidos que son solubles
entre sí.
mezcla (pág. 80) Combinación física de dos o más sustancias puras en cualquier proporción en la que cada sustancia retiene sus propiedades individuales; las sustancias se
pueden separar por medios físicos.
modelo (pág. 10) Explicación matemática, verbal o visual
de datos recolectados en muchos experimentos.
molalidad (pág. 487) La razón del número de moles de
soluto disueltos en un kilogramo de disolvente; también
se conoce como concentración molal.
entalpía (calor) molar de fusión (pág. 530) Cantidad
requerida de calor para fundir un mol de una sustancia
sólida.
entalpía (calor) molar de vaporización (pág. 530) Cantidad
requerida de calor para vaporizar un mol de un líquido.
molaridad (pág. 482) Número de moles de soluto disueltos
por litro de solución; también se conoce como concentración molar.
masa molar (pág. 326) Masa en gramos de un mol de
cualquier sustancia pura.
volumen molar (pág. 452) Para un gas, es el volumen que
ocupa un mol a 0.00°C y una presión de 1.00 atm.
mol (pág. 321) Unidad básica del SI para medir la cantidad
de una sustancia, se abrevia mol; el número de átomos
de carbono en 12 g exactos de carbono puro; un mol es
la cantidad de sustancia pura que contiene 6.02 × 10 23
partículas representativas.
fórmula molecular (pág. 346) Fórmula que especifica
el número real de átomos de cada elemento en una
molécula de la sustancia.
molécula (pág. 241) Se forma cuando dos o más átomos se
unen covalentemente y posee menor energía potencial
que los átomos que la conforman.
fracción molar (pág. 488) La razón del número de moles de
soluto en solución al número total de moles de soluto y
disolvente.
razón molar (pág. 371) En una ecuación equilibrada, se
refiere a la razón entre el número de moles de dos sustancias cualesquiera.
ion poliatómico (pág. 218) Ion formado de un sólo átomo.
monómero (pág. 810) Molécula a partir de la cual se forma
un polímero.
monosacáridos (pág. 832) Los carbohidratos más simples;
se llaman también azúcares simples.
miscible (p. 479) Describes two liquids that are soluble in
each other.
mixture (p. 80) A physical blend of two or more pure
substances in any proportion in which each substance
retains its individual properties; can be separated by
physical means.
model (p. 10) A visual, verbal, and/or mathematical explanation of data collected from many experiments.
molality (p. 487) The ratio of the number of moles of solute dissolved in one kilogram of solvent; also known as
molal concentration.
molar enthalpy (heat) of fusion (p. 530) The amount of heat
required to melt one mole of a solid substance.
molar enthalpy (heat) of vaporization (p. 530) The amount
of heat required to vaporize one mole of a liquid.
molarity (p. 482) The number of moles of solute dissolved
per liter of solution; also known as molar concentration.
molar mass (p. 326) The mass in grams of one mole of any
pure substance.
molar volume (p. 452) For a gas, the volume that one mole
occupies at 0.00°C and 1.00 atm pressure.
mole (p. 321) The SI base unit used to measure the amount
of a substance, abbreviated mol; the number of carbon
atoms in exactly 12 g of pure carbon; one mole is the
amount of a pure substance that contains 6.02 × 10 23 representative particles.
molecular formula (p. 346) A formula that specifies the
actual number of atoms of each element in one molecule
of a substance.
molecule (p. 241) Forms when two or more atoms covalently bond and is lower in potential energy than its constituent atoms.
mole fraction (p. 488) The ratio of the number of moles of
solute in solution to the total number of moles of solute
and solvent.
mole ratio (p. 371) In a balanced equation, the ratio
between the numbers of moles of any two substances.
monatomic ion (p. 218) An ion formed from only one atom.
monomer (p. 810) A molecule from which a polymer is
made.
monosaccharides (p. 832) The simplest carbohydrates, also
called simple sugars.
N
net ionic equation (p. 301) An ionic equation that includes
only the particles that participate in the reaction.
neutralization reaction (p. 659) A reaction in which an acid
and a base react in aqueous solution to produce a salt
and water.
1020
Glossary/Glosario
ecuación iónica neta (pág. 301) Ecuación iónica que incluye
sólo las partículas que participan en la reacción.
reacción de neutralización (pág. 659) Reacción en la que un
ácido y una base reaccionan en una solución acuosa para
producir sal y agua.
Glossary/Glosario
neutron/neutrón
osmotic pressure/presión osmótica
neutron (p. 113) A neutral, subatomic particle in an atom’s
nucleus that has a mass nearly equal to that of a proton.
neutrón (pág. 113) Partícula subatómica neutral en el
núcleo de un átomo que tiene una masa casi igual a la de
un protón.
gas noble (pág. 180) Elemento extremadamente no reactivo
del grupo 18.
no metales (pág. 180) Elementos que generalmente son
gases o sólidos quebradizos, sin brillo y malos conductores de calor y electricidad.
ecuación nuclear (pág. 123) Tipo de ecuación que muestra
el número atómico y el número de masa de las partículas
involucradas.
fisión nuclear (pág. 883) Ruptura de un núcleo en fragmentos más pequeños y más estables; se acompaña de una
gran liberación de energía.
fusión nuclear (pág. 878) Proceso de unión de núcleos
atómicos pequeños en un solo núcleo más grande y más
estable.
reacción nuclear (pág. 122) Reacción que implica un cambio en el núcleo de un átomo.
ácido nucleico (pág. 840) Polímero biológico que contiene
nitrógeno y que participa en el almacenamiento y transmisión de información genética.
nucleones (pág. 865) Los protones de carga positiva y los
neutrones sin carga que contiene el núcleo de un átomo.
nucleótido (pág. 840) Monómeros que forman los ácidos
nucleicos; consisten de una base nitrogenada, un grupo
fosfato inorgánico y un azúcar monosacárido de cinco
carbonos.
núcleo (pág. 112) El diminuto y denso centro con carga
positiva de un átomo; contiene protones con su carga
positiva y neutrones sin carga.
noble gas (p. 180) An extremely unreactive group 18 element.
nonmetals (p. 180) Elements that are generally gases or
dull, brittle solids that are poor conductors of heat and
electricity.
nuclear equation (p. 123) A type of equation that shows
the atomic number and mass number of the particles
involved.
nuclear fission (p. 883) The splitting of a nucleus into
smaller, more stable fragments, accompanied by a large
release of energy.
nuclear fusion (p. 878) The process of binding smaller
atomic nuclei into a single, larger, and more stable
nucleus.
nuclear reaction (p. 122) A reaction that involves a change
in the nucleus of an atom.
nucleic acid (p. 840) A nitrogen-containing biological polymer that is involved in the storage and transmission of
genetic information.
nucleons (p. 865) The positively charged protons and neutral neutrons contained in an atom’s nucleus.
nucleotide (p. 840) The monomer that makes up a nucleic
acid; consists of a nitrogen base, an inorganic phosphate
group, and a five-carbon monosaccharide sugar.
nucleus (p. 112) The extremely small, positively charged,
dense center of an atom that contains positively charged
protons and neutral neutrons.
O
octet rule (p. 193) States that atoms lose, gain, or share electrons in order to acquire the stable electron configuration
of a noble gas.
optical isomers (p. 768) Result from different arrangements
of four different groups around the same carbon atom
and have the same physical and chemical properties
except in chemical reactions where chirality is important.
optical rotation (p. 769) An effect that occurs when polarized light passes through a solution containing an optical
isomer and the plane of polarization is rotated to the
right by a d-isomer or to the left by an l-isomer.
organic compounds (p. 745) All compounds that contain
carbon with the primary exceptions of carbon oxides,
carbides, and carbonates, all of which are considered
inorganic.
osmosis (p. 504) The diffusion of solvent particles across a
semipermeable membrane from an area of higher solvent
concentration to an area of lower solvent concentration.
osmotic pressure (p. 504) The pressure caused when water
molecules move into or out of a solution.
regla del octeto (pág. 193) Establece que los átomos
pierden, ganan o comparten electrones para adquirir la
configuración electrónica estable de un gas noble.
isómeros ópticos (pág. 768) Son resultado de los distintos ordenamientos que adquieren los cuatro grupos
diferentes que rodean a un mismo átomo de carbono;
todos poseen las mismas propiedades químicas y físicas,
excepto en las reacciones químicas donde la quiralidad es
importante.
rotación óptica (pág. 769) Efecto que ocurre cuando la
luz polarizada atraviesa una solución que contiene un
isómero óptico y el plano de polarización rota a la derecha en los isómeros dextrógiros (-d) y a la izquierda en
los isómeros levógiros (-l).
compuestos orgánicos (pág. 745) Todo compuesto que contiene carbono; las excepciones más importantes son los
óxidos de carbono, los carburos y los carbonatos, todos
los cuales se consideran inorgánicos.
osmosis (pág. 504) Difusión de partículas de disolvente a
través de una membrana semipermeable hacia el área
donde la concentración del disolvente es menor.
presión osmótica (pág. 504) La presión que causan las
moléculas de agua al entrar o salir de una solución.
Glossary/Glosario 1021
Glossary/Glosario
oxidation/oxidación
periodic table/tabla periódica
oxidation (p. 681) The loss of electrons from the atoms of a
substance; increases an atom’s oxidation number.
oxidación (pág. 681) Pérdida de electrones de los átomos
de una sustancia; aumenta el número de oxidación de un
átomo.
número de oxidación (pág. 219) La carga positiva o negativa
de un ion monoatómico.
método del número de oxidación (pág. 689) Técnica que
sirve para equilibrar las reacciones redox más difíciles;
se basa en el hecho de que el número de electrones transferidos por los átomos debe ser igual al número de electrones aceptados por otros átomos.
reacción de oxidación-reducción (pág. 680) Toda reacción
química en la que sucede transferencia de electrones de
un átomo a otro; también se llama reacción redox.
agente oxidante (pág. 683) Sustancia que oxida otra sustancia al aceptar sus electrones.
oxiácido (pág. 250) Todo ácido que contiene hidrógeno y
un oxianión.
oxianión (pág. 222) Ion poliatómico compuesto de un elemento, generalmente un no metal, unido a uno o a más
átomos de oxígeno.
oxidation number (p. 219) The positive or negative charge
of a monatomic ion.
oxidation-number method (p. 689) The technique that can
be used to balance more difficult redox reactions, based
on the fact that the number of electrons transferred from
atoms must equal the number of electrons accepted by
other atoms.
oxidation-reduction reaction (p. 680) Any chemical reaction in which electrons are transferred from one atom to
another; also called a redox reaction.
oxidizing agent (p. 683) The substance that oxidizes another
substance by accepting its electrons.
oxyacid (p. 250) Any acid that contains hydrogen and an
oxyanion.
oxyanion (ahk see AN i ahn) (p. 222) A polyatomic ion
composed of an element, usually a nonmetal, bonded to
one or more oxygen atoms.
P
parent chain (p. 753) The longest continuous chain of carbon atoms in a branched-chain alkane, alkene, or alkyne.
pascal (p. 407) The SI unit of pressure; one pascal (Pa) is
equal to a force of one newton per square meter.
Pauli exclusion principle (p. 157) States that a maximum of
two electrons can occupy a single atomic orbital but only
if the electrons have opposite spins.
penetrating power (p. 864) The ability of radiation to pass
through matter.
peptide (p. 828) A chain of two or more amino acids linked
by peptide bonds.
peptide bond (p. 828) The amide bond that joins two amino
acids.
percent by mass (p. 87) A percentage determined by the
ratio of the mass of each element to the total mass of the
compound.
percent composition (p. 342) The percent by mass of each
element in a compound.
percent error (p. 48) The ratio of an error to an accepted
value.
percent yield (p. 386) The ratio of actual yield (from an
experiment) to theoretical yield (from stoichiometric
calculations) expressed as a percent.
period (p. 177) A horizontal row of elements in the modern
periodic table.
periodic law (p. 176) States that when the elements are
arranged by increasing atomic number, there is a periodic repetition of their properties.
periodic table (p. 85) A chart that organizes all known elements into a grid of horizontal rows (periods) and vertical columns (groups or families) arranged by increasing
atomic number.
1022 Glossary/Glosario
cadena principal (pág. 753) La cadena continua más larga
de átomos de carbono en un alcano, un alqueno o un
alquino ramificados.
pascal (pág. 407) La unidad SI de presión; un pascal (Pa) es
igual a una fuerza de un newton por metro cuadrado.
principio de exclusión de Pauli (pág. 157) Establece que cada
orbital atómico sólo puede ser ocupado por un máximo
de dos electrones, pero sólo si los electrones tienen giros
opuestos.
poder de penetración (pág. 864) La capacidad de la radiación de atravesar la materia.
péptido (pág. 828) Cadena de dos o más aminoácidos unidos por enlaces peptídicos.
enlace peptídico (pág. 828) Enlace amida que une dos aminoácidos.
porcentaje en masa (pág. 87) Porcentaje determinado por
la razón de la masa de cada elemento respecto a la masa
total del compuesto.
composición porcentual (pág. 342) Porcentaje en masa de
cada elemento en un compuesto.
porcentaje de error (pág. 48) La razón del error al valor
aceptado.
porcentaje de rendimiento (pág. 386) Razón del rendimiento
real (de un experimento) al rendimiento teórico (de cálculos estequiométricos) expresada como porcentaje.
período (pág. 177) Fila horizontal de elementos en la tabla
periódica moderna.
ley periódica (pág. 176) Establece que al ordenar los elementos por número atómico en sentido ascendente,
existe una repetición periódica de sus propiedades.
tabla periódica (pág. 85) Tabla en la que se organizan
todos los elementos conocidos en una cuadrícula de filas
horizontales (períodos) y columnas verticales (grupos o
familias), ordenados según su número atómico en sentido ascendente.
Glossary/Glosario
pH/pH
pH (p. 652) The negative logarithm of the hydrogen ion
concentration of a solution; acidic solutions have pH values between 0 and 7, basic solutions have values between
7 and 14, and a solution with a pH of 7.0 is neutral.
phase change (p. 76) A transition of matter from one state
to another.
phase diagram (p. 429) A graph of pressure versus temperature that shows which phase a substance exists in under
different conditions of temperature and pressure.
phospholipid (p. 838) A triglyceride in which one of the
fatty acids is replaced by a polar phosphate group
photoelectric effect (p. 142) A phenomenon in which photoelectrons are emitted from a metal’s surface when light
of a certain frequency shines on the surface.
photon (p. 143) A particle of electromagnetic radiation
with no mass that carries a quantum of energy.
photosynthesis (p. 846) The complex process that converts
energy from sunlight to chemical energy in the bonds of
carbohydrates.
physical change (p. 76) A type of change that alters the
physical properties of a substance but does not change its
composition.
physical property (p. 73) A characteristic of matter that can
be observed or measured without changing the sample’s
composition—or example, density, color, taste, hardness,
and melting point.
pi bond (p. 245) A bond that is formed when parallel orbitals overlap to share electrons.
Planck’s constant (h) (p. 142) 6.626 × 10 -34 J·s, where J is
the symbol for the joule.
plastic (p. 789) A polymer that can be heated and molded
while relatively soft.
pOH (p. 652) The negative logarithm of the hydroxide ion
concentration of a solution; a solution with a pOH above
7.0 is acidic, a solution with a pOH below 7.0 is basic,
and a solution with a pOH of 7.0 is neutral.
polar covalent bond (p. 266) A type of bond that forms
when electrons are not shared equally.
polyatomic ion (p. 221) An ion made up of two or more
atoms bonded together that acts as a single unit with a
net charge.
polymerization reaction (p. 810) A reaction in which monomer units are bonded together to form a polymer.
polymers (p. 809) Large molecules formed by combining
many repeating structural units (monomers); are synthesized through addition or condensation reactions.
polysaccharide (p. 833) A complex carbohydrate, which
is a polymer of simple sugars that contains 12 or more
monomer units.
positron (p. 868) A particle that has the same mass as an
electron but an opposite charge.
positron emission (p. 868) A radioactive decay process in
which a proton in the nucleus is converted into a neutron
and a positron, and then the positron is emitted from the
nucleus.
positron emission/emisión de positrones
pH (pág. 652) El logaritmo negativo de la concentración de
iones hidrógeno de una solución; las soluciones ácidas
poseen valores de pH entre 0 y 7, las soluciones básicas
tienen valores entre 7 y 14 y una solución con un pH de
7.0 es neutra.
cambio de fase (pág. 76) La transición de la materia de un
estado a otro.
diagrama de fase (pág. 429) Gráfica de presión contra temperatura que muestra la fase en la que se encuentra una
sustancia bajo distintas condiciones de temperatura y
presión.
fosfolípido (pág. 838) Triglicérido en el que uno de los ácidos grasos es sustituido por un grupo fosfato polar.
efecto fotoeléctrico (pág. 142) Fenómeno en el cual la
superficie de un metal emiten fotoelectrones cuando una
luz de cierta frecuencia ilumina su superficie.
fotón (pág. 143) Partícula de radiación electromagnética
sin masa que transporta un cuanto de energía.
fotosíntesis (pág. 846) Proceso complejo que convierte
la energía de la luz solar en la energía química de los
enlaces en carbohidratos.
cambio físico (pág. 76) Tipo de cambio que altera las
propiedades físicas de una sustancia pero no cambia su
composición.
propiedad física (pág. 73) Característica de la materia que
se puede observar o medir sin cambiar la composición
de una muestra de la materia; por ejemplo, la densidad,
el color, el sabor, la dureza y el punto de fusión.
enlace pi (pág. 245) Enlace que se forma cuando orbitales
paralelos se superponen para compartir electrones.
constante de Planck (h) (pág. 142) 6.626 × 10 -34 J·s, donde
J es el símbolo de julios.
plástico (pág. 789) Polímero que se puede calentar y moldear mientras esté relativamente suave.
pOH (pág. 652) El logaritmo negativo de la concentración
de iones hidróxido de una solución; una solución con un
pOH mayor que 7.0 es ácida, una solución con un pOH
menor que 7.0 es básica y una solución con un pOH de
7.0 es neutra.
enlace covalente polar (pág. 266) Tipo de enlace que se
forma cuando los electrones no se comparten de manera
equitativa.
ion poliatómico (pág. 221) Ion compuesto de dos o más
átomos unidos entre sí que actúan como una unidad con
carga neta.
reacción de polimerización (pág. 810) Reacción en la cual los
monómeros se unen para formar un polímero.
polímeros (pág. 809) Moléculas grandes formadas por
la unión de muchas unidades estructurales repetidas
(monómeros); se sintetizan a través de reacciones de
adición o de condensación.
polisacárido (pág. 833) Carbohidrato complejo; es un
polímero de azúcares simples que contiene 12 ó más
monómeros.
positrón (pág. 868) Partícula que tiene la misma masa que
un electrón pero carga opuesta.
emisión de positrones (pág. 868) Proceso de desintegración
radiactiva en el que un protón del núcleo se convierte en
un neutrón y un positrón y luego el positrón es emitido
del núcleo.
Glossary/Glosario 1023
Glossary/Glosario
precipitate/precipitado
radiochemical dating/datación radioquímica
precipitate (p. 296) A solid produced during a chemical
reaction in a solution.
precision (p. 47) Refers to how close a series of measurements are to one another; precise measurements show
little variation over a series of trials but might not be
accurate.
pressure (p. 406) Force applied per unit area.
primary battery (p. 720) A type of battery that produces
electric energy by redox reactions that are not easily
reversed, delivers current until the reactants are gone,
and then is discarded.
principal energy levels (p. 153) The major energy levels of
an atom.
principal quantum number (n) (p. 153) Assigned by the
quantum mechanical model to indicate the relative sizes
and energies of atomic orbitals.
product (p. 283) A substance formed during a chemical
reaction.
protein (p. 826) An organic polymer made up of animo
acids linked together by peptide bonds that can function
as an enzyme, transport important chemical substances,
or provide structure in organisms.
proton (p. 113) A subatomic particle in an atom’s nucleus
that has a positive charge of 1+.
pure research (p. 17) A type of scientific investigation that
seeks to gain knowledge for the sake of knowledge itself.
precipitado (pág. 296) Sólido que se produce durante una
reacción química en una solución.
precisión (pág. 47) Se refiere a la cercanía de una serie de
medidas entre sí; las medidas precisas muestran poca
variación durante una serie de pruebas, incluso si no son
exactas.
presión (pág. 406) Fuerza aplicada por unidad de área.
batería primaria (pág. 720) Tipo de batería que produce
energía eléctrica por reacciones redox que no son fácilmente reversibles, produce corriente hasta que se agotan
los reactivos y luego se desecha.
niveles energéticos principales (pág. 153) Los niveles energéticos más importantes de un átomo.
número cuántico principal (pág. 153) Asignado por el
modelo mecánico cuántico para indicar el tamaño y la
energía relativas de los orbitales atómicos.
producto (pág. 283) Sustancia que se forma durante una
reacción química.
proteína (pág. 826) Polímero orgánico compuesto de aminoácidos unidos por enlaces peptídicos; puede funcionar
como enzima, transportar sustancias químicas importantes o ser parte de la estructura en los organismos.
protón (pág. 113) Partícula subatómica en el núcleo de un
átomo con carga positiva 1+.
investigación pura (pág. 17) Tipo de investigación científica
que busca obtener conocimiento sin otro interés que
satisfacer el interés científico.
Q
qualitative data (p. 13) Information describing color, odor,
shape, or some other physical characteristic.
quantitative data (p. 13) Numerical information describing
how much, how little, how big, how tall, or how fast.
quantum (p. 141) The minimum amount of energy that can
be gained or lost by an atom.
quantum mechanical model of the atom (p. 152) An atomic
model in which electrons are treated as waves; also called
the wave mechanical model of the atom.
datos cualitativos (pág. 13) Información que describe el
color, el olor, la forma o alguna otra característica física.
datos cuantitativos (pág. 13) Información numérica que
describe cantidad, tamaño o rapidez.
cuanto (pág. 141) La cantidad mínima de energía que
puede ganar o perder un átomo.
modelo mecánico cuántico del átomo (pág. 152) Modelo
atómico en el cual los electrones se estudian como si
fueran ondas; también se denomina modelo mecánico
ondulatorio del átomo.
número cuántico (pág. 146) Número que se asigna a cada
órbita de un electrón.
quantum number (p. 146) The number assigned to each
orbit of an electron.
R
radiation (p. 122) The rays and particles—alpha and beta
particles and gamma rays—that are emitted by radioactive materials.
radioactive decay (p. 122) A spontaneous process in which
unstable nuclei lose energy by emitting radiation.
radioactive decay series (p. 870) A series of nuclear reactions that starts with an unstable nucleus and results in
the formation of a stable nucleus.
radioactivity (p. 122) The process in which some substances
spontaneously emit radiation.
radiochemical dating (p. 873) The process that is used to
determine the age of an object by measuring the amount
of a certain radioisotope remaining in that object.
1024 Glossary/Glosario
radiación (pág. 122) Los rayos y partículas que emiten
los materiales radiactivos (partículas alfa y beta y rayos
gamma).
desintegración radiactiva (pág. 122) Proceso espontáneo
en el que los núcleos inestables pierden energía al emitir
radiación.
serie de desintegración radiactiva (pág. 870) Serie de reacciones nucleares que empieza con un núcleo inestable y
produce la formación de un núcleo estable.
radiactividad (pág. 122) Proceso en el que algunas sustancias emiten radiación espontáneamente.
datación radioquímica (pág. 873) Proceso que sirve para
determinar la edad de un objeto al medir la cantidad restante de cierto radioisótopo en dicho objeto.
Glossary/Glosario
radioisotopes/radioisótopos
salt hydrolysis/hidrólisis de sales
radioisotopes (p. 861) Isotopes of atoms that have unstable
nuclei and emit radiation to attain more stable atomic
configurations.
radiotracer (p. 887) An isotope that emits non-ionizing
radiation and is used to signal the presence of an element
or specific substance; can be used to analyze complex
chemical reactions mechanisms and to diagnose disease.
radioisótopos (pág. 861) Isótopos de átomos que poseen
núcleos inestables y emiten radiación para obtener una
configuración atómica más estable.
radiolocalizador (pág. 887) Isótopo que emite radiación
no ionizante y se utiliza para señalar la presencia de un
elemento o sustancia específica; se usan para analizar los
mecanismos de reacciones químicas complejas y para
diagnosticar enfermedades.
paso determinante de la velocidad de reacción (pág. 581)
El paso elemental más lento en una reacción compleja;
limita la velocidad instantánea de la reacción general.
ley de velocidad de la reacción (pág. 574) Relación
matemática entre la velocidad de una reacción química
a una temperatura dada y las concentraciones de los
reactivos.
reactivo (pág. 283) Sustancia inicial en una reacción
química.
mecanismo de reacción (pág. 580) Sucesión completa de
pasos elementales que componen una reacción compleja.
orden de la reacción (pág. 575) Describe cómo la concentración de un reactivo afecta la velocidad de la reacción
para dicho reactivo.
tasa de reacción (pág. 561) Cambio en la concentración de
un reactivo o producto por unidad de tiempo, generalmente se calcula y expresa en moles por litro por segundo.
reacción redox (pág. 680) Una reacción de oxidorreducción.
agente reductor (pág. 683) Sustancia que reduce otra sustancia al perder electrones.
reducción (pág. 681) Ganancia de electrones por los átomos
de una sustancia; reduce el número de oxidación de los
átomos.
potencial de reducción (pág. 711) Tendencia de una sustancia a ganar electrones.
elementos representativos (pág. 177) Elementos de los grupos 1, 2 y 13 a 18 de la tabla periódica moderna; poseen
una gran variedad de propiedades químicas y físicas.
resonancia (pág. 258) Condición que ocurre cuando existe
más de una estructura válida de Lewis para una misma
molécula.
reacción reversible (pág. 595) Reacción que puede
ocurrir en direcciones normal e inversa; produce un
estado de equilibrio donde las reacciones en sentido normal e inverso ocurren a tasas iguales, ocasionando que
la concentración de reactivos y productos permanezcan
constantes.
rate-determining step (p. 581) The slowest elementary step
in a complex reaction; limits the instantaneous rate of the
overall reaction.
rate law (p. 574) The mathematical relationship between
the rate of a chemical reaction at a given temperature
and the concentrations of reactants.
reactant (p. 283) The starting substance in a chemical reaction.
reaction mechanism (p. 580) The complete sequence of
elementary steps that make up a complex reaction.
reaction order (p. 575) For a reactant, describes how the
rate is affected by the concentration of that reactant.
reaction rate (p. 561) The change in concentration of a
reactant or product per unit time, generally calculated
and expressed in moles per liter per second.
redox reaction (p. 680) An oxidation-reduction reaction.
reducing agent (p. 683) The substance that reduces another
substance by losing electrons.
reduction (p. 681) The gain of electrons by the atoms of a
substance; decreases an atom’s oxidation number.
reduction potential (p. 711) The tendency of a substance to
gain electrons.
representative elements (p. 177) Elements from groups 1,
2, and 13–18 in the modern periodic table, possessing a
wide range of chemical and physical properties.
resonance (p. 258) Condition that occurs when more than
one valid Lewis structure exists for the same molecule.
reversible reaction (p. 595) A reaction that can take place in
both the forward and reverse directions; leads to an equilibrium state where the forward and reverse reactions
occur at equal rates and the concentrations of reactants
and products remain constant.
S
salt (p. 659) An ionic compound made up of a cation from
a base and an anion from an acid.
salt bridge (p. 709) A pathway constructed to allow positive
and negative ions to move from one solution to another.
salt hydrolysis (p. 665) The process in which anions of the
dissociated salt accept hydrogen ions from water, or the
cations of the dissociated salt donate hydrogen ions to
water.
sal (pág. 659) Compuesto iónico formado por un catión proveniente de una base y un anión proveniente de un ácido.
puente salino (pág. 709) Medio que permite el movimiento
de iones positivos y negativos de una solución a otra.
hidrólisis de sales (pág. 665) Proceso en el que los aniones
de una sal disociada aceptan iones hidrógeno del agua
o en el que los cationes de la sal disociada donan iones
hidrógeno al agua.
Glossary/Glosario 1025
Glossary/Glosario
saponification/saponificación
saponification (suh pahn ih fih KAY shuhn) (p. 837) The
hydrolysis of the ester bonds of a triglyceride using an
aqueous solution of a strong base to form carboxylate
salts and glycerol.
saturated hydrocarbon (p. 746) A hydrocarbon that contains
only single bonds.
saturated solution (p. 493) Contains the maximum amount
of dissolved solute for a given amount of solvent at a specific temperature and pressure.
scientific law (p. 16) Describes a relationship in nature that
is supported by many experiments.
scientific methods (p. 12) A systematic approach used in
scientific study; an organized process used by scientists
to do research and to verify the work of others.
scientific notation (p. 40) Expresses any number as a number between 1 and 10 (known as a coefficient) multiplied
by 10 raised to a power (known as an exponent).
second (p. 33) The SI base unit for time.
second law of thermodynamics (p. 543) The spontaneous
processes always proceed in such a way that the entropy
of the universe increases.
secondary battery (p. 720) A rechargeable battery that
depends on reversible redox reactions.
sigma bond (p. 244) A single covalent bond that is formed
when an electron pair is shared by the direct overlap of
bonding orbitals.
significant figures (p. 50) The number of all known digits
reported in measurements plus one estimated digit.
single-replacement reaction (p. 293) A chemical reaction
that occurs when the atoms of one element replace the
atoms of another element in a compound.
solid (p. 71) A form of matter that has its own definite
shape and volume, is incompressible, and expands only
slightly when heated.
solubility (p. 614) The maximum amount of solute that will
dissolve in a given amount of solvent at a specific temperature and pressure.
solubility product constant (p. 614) K sp, which is an equilibrium constant for the dissolving of a sparingly soluble
ionic compound in water.
soluble (p. 479) Describes a substance that can be dissolved
in a given solvent.
solute (p. 299) One or more substances dissolved in a solution.
solution (p. 81) A uniform mixture that can contain solids,
liquids, or gases; also called a homogeneous mixture.
solvation (p. 489) The process of surrounding solute particles with solvent particles to form a solution; occurs only
where and when the solute and solvent particles come in
contact with each other.
solvent (p. 299) The substance that dissolves a solute
to form a solution; the most plentiful substance in the
solution.
species (p. 693) Any kind of chemical unit involved in a
process.
1026 Glossary/Glosario
species/especie
saponificación (pág. 837) La hidrólisis de los enlaces éster
de un triglicérido, usando una solución acuosa de una
base fuerte, para formar sales de carboxilato y glicerol.
hidrocarburo saturado (pág. 746) Hidrocarburo que sólo
contiene enlaces sencillos.
solución saturada (pág. 493) Solución que contiene la cantidad máxima de soluto disuelto para una cantidad dada
de disolvente a una temperatura y presión específicas.
ley científica (pág. 16) Describe una relación natural
demostrada en muchos experimentos.
métodos científicos (pág. 12) Enfoque sistemático que se
usa en los estudios científicos; proceso organizado que
siguen los científicos para realizar sus investigaciones y
verificar el trabajo realizado por otros científicos.
notación científica (pág. 40) Expresa cualquier número
como un número entre 1 y 10 (conocido como coeficiente) multiplicado por 10 elevado a alguna potencia
(conocida como exponente).
segundo (pág. 33) Unidad básica de tiempo del SI.
segunda ley de la termodinámica (pág. 543) Los procesos espontáneos siempre proceden de una forma que
aumenta la entropía del universo.
batería secundaria (pág. 720) Batería recargable que
depende de reacciones redox reversibles.
enlace sigma (pág. 244) Enlace covalente simple que se
forma cuando se comparte un par de electrones mediante
la superposición directa de los orbitales del enlace.
cifras significativas (pág. 50) El número de dígitos conocidos que se reportan en medidas, más un dígito estimado.
reacción de sustitución simple (pág. 293) Reacción química
que ocurre cuando los átomos de un elemento reemplazan a los átomos de otro elemento en un compuesto.
sólido (pág. 71) Forma de la materia que tiene su propia
forma y volumen, es incompresible y sólo se expande
levemente cuando se calienta.
solubilidad (pág. 614) Cantidad máxima de soluto que se
disolverá en una cantidad dada de disolvente a una temperatura y presión específicas.
constante de producto de solubilidad (pág. 614) Se representa como K sp; es la constante de equilibrio para la disolución de un compuesto iónico moderadamente soluble
en agua.
soluble (pág. 479) Describe una sustancia que se puede
disolver en un disolvente dado.
soluto (pág. 299) Una o más sustancias disueltas en una
solución.
solución (pág. 81) Mezcla uniforme que puede contener sólidos, líquidos o gases; llamada también mezcla homogénea.
solvatación (pág. 489) Proceso de rodear las partículas de
soluto con partículas del disolvente para formar una solución; ocurre sólo en los lugares y en el momento en que
las partículas de soluto y disolvente entran en contacto.
disolvente (pág. 299) Sustancia que disuelve un soluto para
formar una solución; la sustancia más abundante en la
solución.
especie (pág. 693) Cualquier clase de unidad química que
participa en un proceso.
Glossary/Glosario
specific heat/calor específico
specific heat (p. 519) The amount of heat required to raise
the temperature of one gram of a given substance by one
degree Celsius.
specific rate constant (p. 575) A numerical value that relates
reaction rate and concentration of reactant at a specific
temperature.
spectator ion (p. 301) Ion that does not participate in a
reaction.
spontaneous process (p. 542) A physical or chemical change
that occurs without outside intervention and may require
energy to be supplied to begin the process.
standard enthalpy (heat) of formation (p. 537) The change
in enthalpy that accompanies the formation of one mole
of a compound in its standard state from its constituent
elements in their standard states.
standard hydrogen electrode (p. 711) The standard electrode against which the reduction potential of all electrodes can be measured.
states of matter (p. 71) The physical forms in which all
matter naturally exists on Earth—most commonly as a
solid, a liquid, or a gas.
stereoisomers (p. 766) A class of isomers whose atoms are
bonded in the same order but are arranged differently in
space.
steroids (p. 839) Lipids that have multiple cyclic rings in
their structures.
stoichiometry (p. 368) The study of quantitative relationships between the amounts of reactants used and products formed by a chemical reaction; is based on the law
of conservation of mass.
strong acid (p. 644) An acid that ionizes completely in
aqueous solution.
strong base (p. 648) A base that dissociates entirely into
metal ions and hydroxide ions in aqueous solution.
strong nuclear force (p. 865) A force that acts on subatomic
particles that are extremely close together.
structural formula (p. 253) A molecular model that uses
symbols and bonds to show relative positions of atoms;
can be predicted for many molecules by drawing the
Lewis structure.
structural isomers (p. 765) A class of isomers whose atoms
are bonded in different orders with the result that they
have different chemical and physical properties despite
having the same formula.
sublimation (p. 83) The energy-requiring process by which
a solid changes directly to a gas without first becoming a
liquid.
substance (p. 5) Matter that has a definite composition; also
known as a chemical.
substituent groups (p. 753) The side branches that extend
from the parent chain; they appear to substitute for a
hydrogen atom in the straight chain.
substitution reaction (p. 790) A reaction of organic compounds in which one atom or group of atoms in a molecule is replaced by another atom or group of atoms.
substitution reaction/reacción de sustitución
calor específico (pág. 519) Cantidad de calor requerida para
elevar la temperatura de un gramo de una sustancia dada
en un grado centígrado (Celsius).
constante de velocidad de la reacción (pág. 575) Valor
numérico que relaciona la velocidad de la reacción y la
concentración de reactivos a una temperatura específica.
ion espectador (pág. 301) Ion que no participa en una
reacción.
proceso espontáneo (pág. 542) Cambio físico o químico que
ocurre sin intervención externa; la iniciación del proceso
puede requerir un suministro de energía.
entalpía (calor) estándar de formación (pág. 537) Cambio en
la entalpía que acompaña la formación de un mol de un
compuesto en su estado normal, a partir de sus elementos constituyentes en su estado normal.
electrodo normal de hidrógeno (pág. 711) Electrodo estándar que sirve de referencia para medir el potencial de
reducción de todos los electrodos.
estados de la materia (pág. 71) Las formas físicas en las que
la materia existe naturalmente en la Tierra, más comúnmente como sólido, líquido o gas.
estereoisómeros (pág. 766) Clase de isómeros cuyos átomos
se unen en el mismo orden, pero con distinta disposición
espacial.
esteroides (pág. 839) Lípidos con múltiples anillos en sus
estructuras.
estequiometría (pág. 368) El estudio de las relaciones cuantitativas entre las cantidades de reactivos utilizados y los
productos formados durante una reacción química; se
basa en la ley de la conservación de la masa.
ácido fuerte (pág. 644) Ácido que se ioniza completamente
en solución acuosa.
base fuerte (pág. 648) Base que se disocia enteramente en
iones metálicos e iones hidróxido en solución acuosa.
fuerza nuclear fuerte (pág. 865) Fuerza que actúa sólo en
las partículas subatómicas que se encuentran extremadamente cercanas.
fórmula estructural (pág. 253) Modelo molecular que usa
símbolos y enlaces para mostrar las posiciones relativas de los átomos; esta fórmula se puede predecir para
muchas moléculas al trazar su estructura de Lewis.
isómeros estructurales (pág. 765) Clase de isómeros cuyos
átomos están unidos en distinto orden, por lo que tienen
propiedades químicas y físicas diferentes a pesar de tener
la misma fórmula.
sublimación (pág. 83) Proceso que requiere de energía en el
que un sólido se convierte directamente en gas, sin convertirse primero en un líquido.
sustancia (pág. 5) Materia con una composición definida;
también se conoce como sustancia química.
grupos sustituyentes (pág. 753) Las ramas laterales que se
extienden desde la cadena principal y parecen sustituir
un átomo de hidrógeno de la cadena recta.
reacción de sustitución (pág. 790) Reacción de compuestos
orgánicos en la cual un átomo o un grupo de átomos en
una molécula son sustituidos por otro átomo o grupo de
átomos.
Glossary/Glosario 1027
Glossary/Glosario
substrate/sustrato
titration/titulación
substrate (p. 830) A reactant in an enzyme-catalyzed reaction that binds to specific sites on enzyme molecules.
sustrato (pág. 830) Reactivo en una reacción catalizada por
enzimas que se enlaza a sitios específicos en las moléculas de la enzima.
solución sobresaturada (pág. 494) Aquella que contiene más
soluto disuelto que una solución saturada a la misma
temperatura.
tensión superficial (pág. 418) Energía requerida para
aumentar el área superficial de un líquido en una cantidad dada; es producida por una distribución desigual de
las fuerzas de atracción.
surfactante (pág. 419) Compuesto, como el jabón, que
reduce la tensión superficial del agua al romper los
enlaces de hidrógeno entre las moléculas de agua; llamado también agente tensioactivo.
alrededores (pág. 526) En termoquímica, incluye todo el
universo a excepción del sistema.
suspensión (pág. 476) Tipo de mezcla heterogénea cuyas
partículas se asientan con el tiempo y pueden separarse
de la mezcla por filtración.
reacción de síntesis (pág. 289) Reacción química en la que
dos o más sustancias reaccionan para generar un solo
producto.
sistema (pág. 526) En termoquímica, se refiere a la parte
específica del universo que contiene la reacción o el proceso en estudio.
supersaturated solution (p. 494) Contains more dissolved
solute than a saturated solution at the same temperature.
surface tension (p. 418) The energy required to increase the
surface area of a liquid by a given amount; results from
an uneven distribution of attractive forces.
surfactant (p. 419) A compound, such as soap, that lowers the surface tension of water by disrupting hydrogen
bonds between water molecules; also called a surface
active agent.
surroundings (p. 526) In thermochemistry, includes everything in the universe except the system.
suspension (p. 476) A type of heterogeneous mixture whose
particles settle out over time and can be separated from
the mixture by filtration.
synthesis reaction (p. 289) A chemical reaction in which
two or more substances react to yield a single product.
system (p. 526) In thermochemistry, the specific part of
the universe containing the reaction or process being
studied.
T
technology (p. 9) The practical use of scientific information.
temperature (p. 403) A measure of the average kinetic
energy of the particles in a sample of matter.
theoretical yield (p. 385) In a chemical reaction, the maximum amount of product that can be produced from a
given amount of reactant.
theory (p. 16) An explanation supported by many experiments; is still subject to new experimental data, can be
modified, and is considered valid it if can be used to
make predictions that are proven true.
thermochemical equation (p. 529) A balanced chemical
equation that includes the physical states of all the reactants and the energy change, usually expressed as the the
change in enthalpy.
thermochemistry (p. 525) The study of heat changes that
accompany chemical reactions and phase changes.
thermonuclear reaction (p. 883) A nuclear fusion reaction.
thermoplastic (p. 813) A type of polymer that can be melted
and molded repeatedly into shapes that are retained
when it is cooled.
thermosetting (p. 813) A type of polymer that can be
molded when it is first prepared but when cool cannot be
remelted.
titrant (p. 661) A solution of known concentration used to
titrate a solution of unknown concentration; also called
the standard solution.
titration (p. 660) The process in which an acid-base neutralization reaction is used to determine the concentration of a solution of unknown concentration.
1028 Glossary/Glosario
tecnología (pág. 9) Uso práctico de la información científica.
temperatura (pág. 403) Medida de la energía cinética promedio de las partículas en una muestra de materia.
rendimiento teórico (pág. 385) La cantidad máxima de
producto que se puede producir a partir de una cantidad
dada de reactivo, durante una reacción química.
teoría (pág. 16) Explicación respaldada por muchos experimentos; está sujeta a los resultados obtenidos en nuevos
experimentos, se puede modificar y se considera válida si
permite hacer predicciones verdaderas.
ecuación termoquímica (pág. 529) Ecuación química equilibrada que incluye el estado físico de todos los reactivos y
el cambio de energía, este último usualmente expresado
como el cambio en entalpía.
termoquímica (pág. 525) El estudio de los cambios de calor
que acompañan a las reacciones químicas y a los cambios
de fase.
reacción termonuclear (pág. 883) Reacción de fusión nuclear.
termoplástico (pág. 813) Tipo de polímero que se puede
fundir y moldear repetidas veces en formas que el
plástico mantiene al enfriarse.
fraguado (pág. 813) Tipo de polímero que se puede moldear la primera vez que es producido, pero que no puede
fundirse de nuevo una vez que se ha enfriado.
solución tituladora (pág. 661) Solución de concentración
conocida que se usa para titular una solución de concentración desconocida; también conocida como solución
estándar.
titulación (pág. 660) Proceso en el que se usa una reacción
de neutralización ácido-base para determinar la concentración de una solución de concentración desconocida.
Glossary/Glosario
transition elements/elementos de transición
viscosity/viscosidad
transition elements (p. 177) Elements in groups 3–12 of the
modern periodic table and are further divided into transition metals and inner transition metals.
transition metal (p. 180) The elements in groups 3–12 that
are contained in the d-block of the periodic table and,
with some exceptions, is characterized by a filled outermost s orbital of energy level n, and filled or partially
filled d orbitals of energy level n −1.
transition state (p. 564) Term used to describe an activated
complex because the activated complex is as likely to
form reactants as it is to form products.
transmutation (p. 865) The conversion of an atom of one
element to an atom of another element.
transuranium element (p. 876) An element with an atomic
number of 93 or greater in the periodic table.
triglyceride (p. 836) Forms when three fatty acids are
bonded to a glycerol backbone through ester bonds; can
be either solid or liquid at room temperature.
triple point (p. 429) The point on a phase diagram representing the temperature and pressure at which the three
phases of a substance (solid, liquid, and gas) can coexist.
Tyndall effect (TIHN duhl • EE fekt) (p. 478) The scattering of light by colloidal particles.
elementos de transición (pág. 177) Elementos de los grupos
3 al 12 de la tabla periódica moderna; se subdividen en
metales de transición y metales de transición interna.
metal de transición (pág. 180) Elementos de los grupos 3 al
12 del bloque d de la tabla periódica; con algunas excepciones, se caracterizan por tener lleno el orbital externo
s del nivel de energía n y por tener orbitales d llenos o
parcialmente llenos en el nivel de energía n −1.
estado de transición (pág. 564) Término que se usa para
describir un complejo activado por su probabilidad de
formar tanto reactivos como productos.
transmutación (pág. 865) Conversión de un átomo de un
elemento a un átomo de otro elemento.
elemento transuránico (pág. 876) Elementos de la tabla
periódica con un número atómico igual o mayor que 93.
triglicérido (pág. 836) Se forma cuando tres ácidos grasos
se enlazan a un cadena principal de glicerol por enlaces
éster; puede ser sólido o líquido a temperatura ambiente.
punto triple (pág. 429) El punto en un diagrama de fase que
representa la temperatura y la presión en la que coexisten
las tres fases de una sustancia (sólido, líquido y gas).
efecto Tyndall (pág. 478) Dispersión de la luz causada por
las partículas coloidales.
U
unit cell (p. 421) The smallest arrangement of atoms in a
crystal lattice that has the symmetry as the whole crystal;
a small representative part of a larger whole.
universe (p. 526) In thermochemistry, is the system plus the
surroundings.
unsaturated hydrocarbon (p. 746) A hydrocarbon that contains at least one double or triple bond between carbon
atoms.
unsaturated solution (p. 493) Contains less dissolved solute
for a given temperature and pressure than a saturated
solution; has further capacity to hold more solute.
celda unitaria (pág. 421) El conjunto más pequeño de átomos en una red cristalina que posee la simetría de todo el
cristal; pequeña parte representativa de un entero mayor.
universo (pág. 526) En termoquímica, se refiere el sistema
más los alrededores.
hidrocarburo no saturado (pág. 746) Hidrocarburo que
contiene por lo menos un enlace doble o triple entre sus
átomos de carbono.
solución no saturada (pág. 493) Aquella que contiene menos
soluto disuelto a una temperatura y presión dadas que
una solución saturada; puede contener cantidades adicionales del soluto.
V
valence electrons (p. 161) The electrons in an atom’s outermost orbitals; determine the chemical properties of an
element.
vapor (p. 72) Gaseous state of a substance that is a liquid or
a solid at room temperature.
vaporization (p. 426) The energy-requiring process by
which a liquid changes to a gas or vapor.
vapor pressure (p. 427) The pressure exerted by a vapor
over a liquid.
vapor pressure lowering (p. 499) The lowering of vapor
pressure of a solvent by the addition of a nonvolatile solute to the solvent.
viscosity (p. 417) A measure of the resistance of a liquid to
flow, which is affected by the size and shape of particles,
and generally increases as the temperature decreases and
as intermolecular forces increase.
electrones de valencia (pág. 161) Los electrones en el orbital
más externo de un átomo; determinan las propiedades
químicas de un elemento.
vapor (pág. 72) Estado gaseoso de una sustancia que es
líquida o sólida a temperatura ambiente.
vaporización (pág. 426) Proceso que requiere energía en el
que un líquido se convierte en gas o vapor.
presión de vapor (pág. 427) Presión que ejerce un vapor
sobre un líquido.
disminución de la presión de vapor (pág. 499) Reducción de
la presión de vapor de un disolvente por la adición de un
soluto no volátil al disolvente.
viscosidad (pág. 417) Medida de la resistencia de un líquido
a fluir; es afectada por el tamaño y la forma de las partículas y en general aumenta cuando disminuye temperatura
y cuando aumentan las fuerzas intermoleculares.
Glossary/Glosario 1029
Glossary/Glosario
voltaic cell/pila voltaica
X ray/rayos X
voltaic cell (p. 709) A type of electrochemical cell that converts chemical energy into electrical energy by a spontaneous redox reaction.
VSEPR model (p. 261) Valence Shell Electron Pair Repulsion
model, which is based on an arrangement that minimizes
the repulsion of shared and unshared pairs of electrons
around the central atom.
pila voltaica (pág. 709) Tipo de celda electroquímica
que convierte la energía química en energía eléctrica
mediante una reacción redox espontánea.
modelo RPCEV (pág. 261) Modelo de Repulsión de los
Pares Electrónicos de la Capa de Valencia; se basa en un
ordenamiento que minimiza la repulsión de los pares de
electrones compartidos y no compartidos alrededor del
átomo central.
W
wavelength (p. 137) The shortest distance between equivalent points on a continuous wave; is usually expressed in
meters, centimeters, or nanometers.
wax (p. 838) A type of lipid that is formed by combining
a fatty acid with a long-chain alcohol; is made by both
plants and animals.
weak acid (p. 645) An acid that ionizes only partially in
dilute aqueous solution.
weak base (p. 648) A base that ionizes only partially in
dilute aqueous solution to form the conjugate acid of the
base and hydroxide ion.
weight (p. 9) A measure of an amount of matter and also
the effect of Earth’s gravitational pull on that matter.
longitud de onda (pág. 137) La distancia más corta entre
puntos equivalentes en una onda continua; se expresa
generalmente en metros, centímetros o nanómetros.
cera (pág. 838) Tipo de lípido que se forma al combinarse
un ácido graso con un alcohol de cadena larga; son elaborados por plantas y animales.
ácido débil (pág. 645) Ácido que se ioniza parcialmente en
una solución acuosa diluida.
base débil (pág. 648) Base que se ioniza parcialmente en
una solución acuosa diluida para formar el ácido conjugado de la base y el ion hidróxido.
peso (pág. 9) Medida de la cantidad de materia y también
del efecto de la fuerza gravitatoria de la Tierra sobre esa
materia.
X
X ray (p. 864) A form of high-energy, penetrating electromagnetic radiation emitted from some materials that are
in an excited electron state.
1030
Glossary/Glosario
rayos X (pág. 864) Forma de radiación electromagnética
penetrante de alta energía que emiten algunos materiales
que se encuentran en un estado electrónico excitado.
Absolute zero
Anions
Index Key
Italic numbers = illustration/photo
act. = activity
A
Absolute zero, 445
Absorption spectrum, 145, 164 act.
Accelerants, 91
Accuracy, 47–48
Acetaldehyde, 796
Acetaminophen, 800
Acetic acid, 634, 798, 800
Acetone, 432 act., 797
Acetylene. See Ethyne
Acid anhydrides, 643
Acid-base chemistry, 633 act., 634–668;
acid-base titration, 660–663, 664 prob.,
670 act.; acids, strength of, 644–647,
648 act.; Arrhenius model, 637, 642
table; bases, strength of, 648–649;
Brønsted-Lowry model, 638–640,
642 table; buffers, 666–667, 668 act.;
chemical properties of acids and bases,
635; hydronium and hydroxide ions,
636; ion-product of water and, 650
prob., 650–651; Lewis model, 641–643,
642 table; litmus paper and, 633 act.,
635, 658; milestones in understanding,
636–637; molarity and pH, 656; monoprotic and polyprotic acids, 640–641,
641 table; neutralization reactions,
659–660; pH and, 633 act., 652, 653,
653 prob., 654 prob.; physical properties of acids and bases, 634–635; pOH
and, 652, 653; salt hydrolysis, 665
Acid-base indicators, 658, 663, 664
Acid-base titration. See Titration
Acid hydrolysis, 665
Acidic solutions, 636
Acid ionization constant (K a), 647, 647
table, 970 table; calculate from pH,
656, 657 prob.
Acid mine waste, biotreatment of, 920
Acidosis, 666
Acid rain, 637
Acids. See also Acid-base chemistry;
acid ionization constant (K a), 647,
647 table, 656, 657 prob.; anhydrides,
643; Arrhenius, 637; Brønsted-Lowry,
638–639, 646; chemical properties,
635; conjugate, 638; electrical conductivity, 635; in household items, 633
act.; ionization equations, 645, 645
table; molarity and pH of strong, 656;
monoprotic, 640, 640 table; naming,
250–251, 252; pH of. See pH; physical
Bold numbers = vocabulary term
prob. = problem
properties, 634–635; polyprotic, 640–
641, 641 table; strength of, 644–647,
648 act.; strong, 644; titration of. See
Titration; weak, 645
Actinide series, 180, 185, 921
Activated complex, 564
Activation energy (E a), 564–566,
571–572
Active site, 830
Activities. See CHEMLABs; Data
Analysis Labs; Launch Labs;
MiniLabs; Problem-Solving Labs
Activity series, 293–294, 310 act.
Actual yield, 385
Addition: scientific notation and, 42,
948; significant figures and, 53, 53
prob., 952, 953 prob.
Addition polymerization, 811
Addition reactions, 804 table, 804–805
Adenine (A), 841
Adenosine diphosphate (ADP), 845
Adenosine triphosphate (ATP), 532, 845
Adhesion, 419
Adipic acid, 798
ADP (adenosine diphosphate), 845
Age of Polymers. See Polymers
Agitation, 492
AIDS, 389
Air masses, density of and weather, 37
Air pressure, 406; deep sea diving and,
408 act.; measurement of, 406–407;
units of, 407
Alcoholic fermentation, 847
Alcohols, 792–793; denatured, 793;
elimination reactions, 803; evaporation of, 432 act., 816 act.; functional
groups, 787 table; layering of in graduated cylinder, 31 act.; naming, 793;
properties, 792–793, 816 act.
Aldehydes, 787 table, 796 table, 796–797
Algal blooms, 250
Algebraic equations, 954–955, 955 prob.
Aliphatic compounds, 771. See also
Alkanes; Alkenes; Alkynes
Alkali metals (Group 1A), 177, 906–909
Alkaline batteries, 719
Alkaline earth metals (Group 2A), 177,
910–915
Alkanes, 750–758; alkyl halides and,
789; branched-chain, 752–753,
754–755 prob.; burner gas analysis,
776 act.; chemical properties, 758;
condensed structural formulas, 751;
cycloalkanes, 755–756, 756–757
prob.; hydrogenation reactions, 805;
naming, 751, 752–753, 754–755
prob.; nonpolarity of, 757, 758; physical properties, 758; solubility, 758;
straight-chain, 750–751
Alkenes, 759; addition reactions involving, 804; naming, 760, 761 prob.; properties, 762; stereoisomers, 766; uses, 762
Alkyl groups, 752, 753 table
Alkyl halides, 787; dehydrogenation
reactions, 803; naming, 788; parent
alkanes v., 789 table; substitution
reactions, 791
Alkynes, 763–764; ethyne, synthesize
and observe, 762 act.; examples, 763
table; hydrogenation reactions, 805;
naming, 763; properties, 764; uses, 764
Allotropes, 938
Alloys, 81, 227–228; commercially
important, 228 table; interstitial, 228;
magnesium, 913; substitutional, 228;
transition metal, 916
Alnico, 228 table
Alpha decay, 867, 868 table
Alpha particles, 123, 861 table, 862, 864,
888 table
Alpha radiation, 123, 124 table, 861, 861
table, 862, 888 table
Alternative energy specialist, 729
Aluminum, 159 table, 226 table, 730–
731, 922, 923, 924
Aluminum oxide, 212
Amide functional group, 787 table
Amides, 787 table, 800, 800 table
Amines, 787 table, 795, 795 table
Amino acids, 826–827, 827 table
Amino functional group, 787 table, 826
Ammonia: as Brønsted-Lowry base,
639; evaporation of, 432 act.; Lewis
structure, 243, 255 prob.; polarity of,
268; production of, 290, 462, 594, 596,
597; sigma bonds in, 244, 245
Ammoniated cattle feed, 601
Ammonium, 221 table
Amorphous solids, 424
Amphoteric, 639
Amplitude, 137
Anabolism, 844–845
Analytical balance, 77, 79
Analytical chemistry, 11 table, 79, 341
Anhydrides, 643
Anhydrous calcium chloride, 354
Aniline, 795
Anions, 209
Index 1031
Index
Anodes
Anodes, 107, 710
Antacids, 659
Antarctica, ozone hole over, 7, 20–21
Anthracene, 772
Antilogarithms, 966–967
Antimony, 932, 933, 935
Applied research, 17
Aqueous solutions, 299–308. See also
Solutions; electrolytes in and colligative properties, 498–499; ionic compounds in, 300; ionic equations and,
301, 302 prob.; molecular compounds
in, 299; nonelectrolytes in and colligative properties, 499; overall equations
for reactions in, 307; reactions producing water in, 303, 304 prob.; reactions
that form gases, 281 act., 304–305, 306
prob.; reactions that form precipitates
in, 300, 301 act., 302 prob.; solvation of
ionic compounds in, 490; solvation of
molecular compounds in, 491
Aragonite, 214
Archaeologist, 891
Argon, 159 table, 185 table, 944, 945
Aristotle, 103, 103 table, 416
Aromatic compounds, 771–774; benzene, 770–771; carcinogenic, 774;
fused-ring systems, 772; naming,
772–773, 773 prob.
Arrhenius model of acid-base chemistry, 637, 642 table
Arrhenius, Svante, 636, 637
Arsenic, 932, 933
Arson investigator, 91
Art restorer, 23
Aryl halides, 788
Aspirin, 810
Astatine, 940, 941
Asymmetric carbon, 768
Atmosphere (atm), 407, 407 table
Atmosphere, Earth’s: cycling of carbon
dioxide in, 505; elements in, 901;
layers of, 5; ozone layer and, 5–8
Atomic bomb, 879
Atomic distances, 113 act.
Atomic emission spectrum, 144–145,
164 act.
Atomic Force Microscope, 291
Atomic mass, 119–120, 121 prob., 126
act.
Atomic mass unit (amu), 119, 325, 969
table
Atomic nucleus, 112; discovery of, 112;
nuclear model of mass and, 326 act.
Atomic number, 115, 116 prob., 118
prob.
Atomic orbitals, 152, 154, 262
Atomic radii, trends in, 187, 188, 189
prob.
1032 Index
Blood
Atomic solids, 422, 422 table
Atomic structure: Bohr model of,
146–148, 150 act.; Dalton’s model
of, 104 table, 104–105; Democritus’
early idea of, 103; Greek philosophers’
views of, 102–103, 103 table; milestones in understanding, 110–111;
nuclear atomic model, 112–114, 136;
plum pudding model, 110; quantum
mechanical model, 149–152; try to
determine, 135 act.
Atomic weapons, 111
Atoms, 10, 106–107; atom-to-mass
conversions, 331 prob.; determining
structure of. See Atomic structure;
excited state, 146, 147; ground state,
146; mass-to-atom conversions,
329–330, 330 prob.; size of, 106, 112;
stability of, 240; subatomic particles,
113–114, 114 table; viewing, 107
ATP (adenosine triphosphate), 845
Aufbau diagram, 156–157, 157 table,
160
Aufbau principle, 156, 157 table
Automobile air safety bags, 292
Average rate of reaction, 560–562, 562
prob.
Avogadro’s number, 321, 326 act., 969
table
Avogadro’s principle, 452
B
Bacteria, nitrogen-fixing, 934
Bakelite, 809, 810, 813
Baker, 847
Baking, acid-base chemistry and, 669
Baking powder, 669
Baking soda, 378 act., 669
Balanced chemical equations: conservation of mass and, 285, 288; deriving,
285–286, 286 table, 287 prob., 288,
288. See also Stoichiometry; mole
ratios and, 371–372; particle and mole
relationships in, 368–369; relationships derived from, 369 table
Balanced forces, 597
Ball-and-stick molecular models, 253, 746
Balmer (visible) series, 147, 148, 150 act.
Band of stability, 866
Bar graphs, 56
Barite, 214
Barium, 226 table, 910–911, 913, 914
Barium carbonate, 302, 302 prob.
Barium chloride, 913
Barium sulfate, 621
Barometers, 407, 416
Base hydrolysis, 665
Base ionization constant (K b), 649, 649
table, 970 table
Bases. See also Acid-base chemistry;
antacids, 659; Arrhenius, 637; base
ionization constant (K b), 649, 649
table; Brønsted-Lowry, 638–639;
chemical properties, 635; conjugate,
638; in household items, 633 act.;
molarity and pH of strong, 656; physical properties, 634–635; strength of,
648–649; strong, 649; titration of. See
Titration; weak, 649
Base units, 33, 35–37
Basic solutions, 636
Batteries, 717, 718–723; dry cells, 718–
720; fuel cells, 722–723; lead-acid,
720–721, 930; lemon battery, 707 act.;
lithium, 721–722
Becquerel, Henri, 860–861, 885
Beetles, bioluminescent, 309
Bent molecular shape, 263 table
Benzaldehyde, 796 table, 797
Benzene, 770–771; carcinogenic nature
of, 774; naming of substituted,
772–773
Benzopyrene, 774
Bernoulli, Daniel, 416
Beryl, 214
Beryllium, 158 table, 161 table, 910–
911, 912
Beryls, 912
Best-fit line, 56–57
Beta decay, 867, 868 table
Beta particles, 123, 861 table, 863, 864,
888 table
Beta radiation, 123, 124 table, 861, 861
table, 862, 863, 888 table
Binary acids, 250, 252
Binary ionic compounds, 210, 219
Binary molecular compounds, 248–250,
249 prob., 252
Binding energy, 877, 878
Biochemist, 308
Biochemistry, 11 table
Biofuel cells, 724 act.
Biofuels, 774 act., 775
Biogas, 775
Biological metabolism. See Metabolism
Bioluminescence, 309, 693
Biomolecules: carbohydrates, 825 act.,
832–834; lipids, 835–839; nucleic
acids, 840–843; proteins, 826–831
Bioremediation, 920
Bismuth, 932, 933, 935
Bismuth subsalicylate, 935
Blocks, periodic table, 183–185. See also
Specific blocks
Blood, pH of, 666, 668 act.
Index
Bloodstains
Chemical equilibrium
Bloodstains, detecting, 697
Body temperature, reaction rate and, 583
Bohr atomic model, 146–148, 150 act.
Bohr, Niels, 110, 146
Boiling, 427
Boiling point, 77, 427; of alkanes, 758;
of covalent compounds, 270; of halocarbons, 789; as physical property, 73
Boiling point elevation, 500–501, 503
prob.
Boltzmann, Ludwig, 402
Bond angles, 261
Bond character, 266
Bond dissociation energies, 247
Bonding pairs, 242
Bonds. See Chemical bonds
Book preservation, 661
Borates, 214
Boron, 158 table, 161 table, 184, 922,
923, 924
Boron group (Group 13), 922–925
Bose-Einstein condensate, 417
Bose, Satyendra Nath, 417
Boyle, Robert, 442
Boyle’s law, 442–443, 443 prob., 444 act.,
451 table
Branched-chain alkanes, 752–753;
alkyl groups, 752; naming, 752–753,
754–755 prob., 760, 761 prob.
Brass, 228 table
Breathing, Boyle’s law and, 444 act.
Breeder reactors, 882
Brine, electrolysis of, 730
Bromate, 221 table
Bromine, 120, 180, 940, 941, 942
Brønsted, Johannes, 638
Brønsted-Lowry model, 638–640, 642
table, 646
Bronze, 228 table
Brownian motion, 477
Brown, Robert, 477
Buckminsterfullerene, 928
Buckyballs, 928
Buffer capacity, 667
Buffers, 666–667, 668 act.
Buffer systems, 666–667, 668 act.
Bufotoxin, 839
Burner gas analysis, 776 act.
Butane, 750, 751, 751 table
1-Butene, 759 table
2-Butene, 759 table
Butyl group, 753 table
C
Cadaverine, 795
Cadmium, 920
Calcium, 177, 195, 910–911, 913, 914
Calcium chloride, 913
Calcium hydroxide, 287
Calibration technician, 56
Calorie (cal), 518
Calorimeter, 523–524, 525 prob., 532 prob.
Calx of mercury, 79
Cancer, 163, 887
Canola oil, hydrogenation of, 805 act.
Capillary action, 419
Caramide, 800
Carbohydrates, 832–834; disaccharides,
833; functions of, 832; monosaccharides, 832–833; polysaccharides, 833–
834; test for simple sugars, 825 act.
Carbolic acid, 636
Carbon. See also Organic compounds;
abundance of, 84; analytical tests for,
926–927; atomic properties, 158 table,
161 table, 926–927; common reactions
involving, 926–927; in human body,
195; organic compounds and, 745;
physical properties, 926; uses of, 928
Carbonated beverages, 495
Carbonates, 214
Carbon dating, 873–874, 883
Carbon dioxide, 256 prob., 430, 505
Carbon group (Group 4A), 926–931,
932–935
Carbonic acid, 634
Carbon tetrachloride, 20, 267–268
Carbonyl compounds, 796–801; aldehydes, 796–797; carboxylic acids, 798;
ketones, 797
Carbonyl group, 787 table, 796
Carboxyl group, 787 table, 798, 798
table, 826
Carboxylic acids, 798, 798 table; condensation reactions, 801; functional
groups, 787 table; naming, 798;
organic compounds derived from,
799–800, 800 act.; properties, 798
Carcinogens, 774
Cardiac scans, 925
Careers. See Careers in Chemistry; In
the Field
Careers in Chemistry: alternative energy
specialist, 729; baker, 847; biochemist,
308; calibration technician, 56; chemical engineer, 580; chemistry teacher,
123; environmental chemist, 7; flavor
chemist, 267; food scientist, 219; heating and cooling specialist, 527; materials scientist, 81; medicinal chemist,
342; metallurgist, 423; meteorologist,
447; nursery worker, 646; petroleum
technician, 748; pharmacist, 381; pharmacy technician, 483; polymer chemist, 813; potter, 682; radiation therapist,
887; research chemist, 185; science
writer, 604; spectroscopist, 139
Cast iron, 228 table
Catabolism, 844–845
Catalysts, 571–573. See also Enzymes;
chemical equilibrium and, 611;
hydrogenation reactions and, 805;
temperature and, 850 act.
Catalytic converters, 573
Cathode rays, 108
Cathode-ray tubes, 107–108
Cathodes, 107, 710
Cations, 207–208
Cattle feed, 601
Cave formation, 643
CDs, 924
Cell membrane, 838
Cell notation, 713
Cell potential: applications of, 716;
calculate, 713–714, 715 prob., 717;
measure, 734 act.
Cellular respiration, 846
Celluloid, 490
Cellulose, 834
Celsius scale, 34
Centrifuge, 490
CERN, 111
Cesium, 194, 906, 907, 909
Cesium clock, 909
CFCs. See Chlorofluorocarbons (CFCs)
Chadwick, James, 110, 113
Chain reactions, 859 act., 879, 880
Chance, scientific discoveries and, 18
Charles, Jacques, 444
Charles’s law, 441 act., 444–445, 446
prob., 451 table
Chelation therapy, 229
Chemical bonds, 206; character of, 266;
covalent. See Covalent bonds; electron affinity and, 265; ionic. See Ionic
bonds; melting point and, 242 act.;
metallic. See Metallic bonds; valence
electrons and, 207
Chemical changes, 69 act., 77, 92 act.,
281 act. See also Chemical reactions
Chemical engineer, 580
Chemical equations, 285. See also
Ionic equations; Nuclear equations;
Redox equations; Stoichiometry;
Thermochemical equations; balancing, 285–286, 286 table, 287 prob.,
288; coefficients in, 369; interpretation, 370 prob.; mole ratios and,
371–372; products, 283; reactants,
283; relationships derived from, 369;
symbols used in, 283, 283 table
Chemical equilibrium, 596; addition
of products and, 608; addition of
Index 1033
Index
Chemical formulas
reactants and, 607; catalysts and, 611;
changes affecting, 593 act.; characteristics of, 604; common ion effect
and, 620–621; concentration and, 607;
determine point of, 593 act.; dynamic
nature of, 597–598; equilibrium constant (K eq), 599–600, 604, 605 prob.;
equilibrium expressions, 600, 601
prob., 602, 603 prob.; hemoglobinoxygen equilibrium in body, 623; law
of, 599–600; Le Châtelier’s principle
and, 606–611; moles of reactant v.
moles of product and, 609; removal
of products and, 608; reversible reactions and, 595–596; temperature and,
609–610, 611 act.; volume and pressure and, 608–609
Chemical formulas, 85; for binary ionic
compounds, 219, 220 prob.; empirical.
See Empirical formula; for hydrates,
351 table, 352, 353 prob., 356 act.;
for ionic compounds, 218–219, 220
prob., 221, 222 prob.; molecular. See
Molecular formulas; mole relationship to, 333–334, 334–335 prob.; for
monatomic ions, 218–219; name of
molecular compound from, 251; percent composition from, 342, 343 prob.;
for polyatomic ionic compounds, 221,
222 prob.; structural. See Structural
formulas
Chemical potential energy, 517
Chemical properties, 74
Chemical reaction rates. See Reaction
rates
Chemical reactions, 77, 282–288; actual
yield from, 385; addition, 804–805;
in aqueous solutions, 299–301, 302
prob., 303–305, 306 prob., 307–308;
classification of, 291 prob.; combustion, 290–291, 532 prob., 533;
condensation, 801; conservation of
mass and, 77, 78 prob., 79, 285, 288;
decomposition, 292, 292 prob.; dehydration, 803; dehydrogenation, 803;
elimination, 802; endothermic, 216,
247; equations for, 283 table, 283–285;
evidence of, 69 act., 77, 282–283, 367
act.; excess reactants in, 379, 384;
exothermic, 216, 247; heat from. See
Thermochemistry; limiting reactants,
379–381, 382–383 prob.; milestones in
understanding, 290–291; neutralization, 659–660; nuclear reactions v.,
860 table; organic. See Organic reactions; oxidation reduction reactions,
806–807; percent yield from, 386,
386 prob., 388; products of, identify,
1034 Index
Concentration
92 act.; products of, predict, 298, 298
table, 807–808; rates of. See Reaction
rates; redox. See Redox reactions;
replacement, 293–294, 295 prob.,
296–297; spontaneity of, 542–545,
546–547, 548 prob., 566–567; stoichiometry in. See Stoichiometry;
substitution, 790–791; synthesis, 289;
theoretical yield from, 385
Chemical symbols, 84
Chemistry, 4, 11; benefits of studying,
22; branches of, 11, 11 table; symbols
and abbreviations used in, 968 table
Chemistry & Health: elements of the
body, 195; evolution and HIV, 389;
hemoglobin-oxygen equilibrium, 623;
hyperbaric oxygen therapy, 465; laser
scissors, 163; PA-457 anti-HIV drug,
389; rate of reaction and body temperature, 583; toxicology, 59
Chemistry teacher, 123
CHEMLABs, 228. See also Data Analysis
Labs; Launch Labs; MiniLabs; absorption and emission spectra, 164 act.;
alcohols, properties of, 816 act.; atomic
mass of unknown element, 126 act.;
burner gas analysis, 776 act.; calorimetry, 550 act.; density, dating coins
by, 60 act.; descriptive chemistry, 196
act.; enzyme action and temperature,
850 act.; evaporation, compare rates
of, 432 act.; gas, identify an unknown,
466 act.; hydrate, determine formula
for, 356 act.; hydrocarbon burner gas
analysis, 776 act.; ionic compounds,
formation of, 230 act.; metals, reactivity of, 310 act.; molar solubility, calculate and compare, 624 act.; molecular
shape, 272 act.; mole ratios, determine,
390 act.; products of chemical reaction,
identify, 92 act.; reaction rate, affect of
concentration on, 584 act.; redox and
the damaging dumper, 698 act.; solubility rate, factors affecting, 506 act.;
vapor pressure and popcorn popping,
466 act.; voltaic cell potentials, measure, 734 act.; water analysis, 24 act.
Chernobyl, 880, 883, 889 act.
Chewing gum, percent composition,
342 act.
Chimney soot, 774
Chirality, 767, 768
Chlorate, 221 table
Chlorine, 89–90, 119–120, 159 table,
180, 940, 941, 942
Chlorine bleach, 942
Chlorite, 221 table
Chlorofluorocarbons (CFCs), 7–8, 17,
20, 291, 788
Chloromethane, 787
Chlorophyll, 912
Chocolate, 431
Chromatograms, polarity and, 269 act.
Chromatography, 82 act., 83, 269 act.
Chrome, 328
Chromium, 160, 328, 918, 919
Cinnameldehyde, 796 table, 797
Circle graphs, 55
cis- isomers, 766
Clay, 476
Clay roofing tiles, 302
Clouds, 428
Cloud seeding, 495
Cobalt, 918, 919
Coefficients, 285; balancing equations
and, 285; scientific notation and, 40–41
Cohesion, 419
Cold-packs, 515 act., 528
Collagen, 831
Colligative properties, 498–504; boiling
point elevation, 500–501; electrolytes
and, 498–499; freezing point depression, 501–502, 502 act., 503 prob.;
osmotic pressure, 504; vapor pressure
lowering, 499–500
Collision theory, 563–564, 564 table
Colloids, 477, 477 table, 478
Color: change in as evidence of chemical
reaction, 283; as physical property, 73
Combined gas law, 449, 450 prob., 451
table, 454
Combustion engines, 290
Combustion reactions, 290–291, 532
prob., 533
Common ion, 620
Common ion effect, 620–621
Complementary base pairs, 841, 842
Complete ionic equations, 301, 302
prob., 304 prob.
Complex carbohydrates. See
Polysaccharides
Complex reactions, 580
Compounds, 85–87; compare melting points of, 242 act.; formulas for.
See Formulas; ionic. See Ionic compounds; law of definite proportions
and, 87–88; law of multiple proportions and, 89–90; mass-to-mole
conversions, 337, 337 prob.; molar
mass of, 335, 335 prob.; mole-to-mass
conversions, 336, 336 prob.; percent
composition and. See Percent composition; properties of, 86; separating
components of, 86; stability of, 240
Computer chips, 181, 929
Concentration, 475 act., 480–488. See
Solution concentration; calculate from
Index
Concentration ratios
equilibrium constant expression, 612,
613 prob.; chemical equilibrium and,
607; qualitative descriptions of, 480;
ratios of. See Concentration ratios;
reaction rate and, 569, 574–576, 584
act.
Concentration ratios: molality, 480
table, 487, 487 prob.; molarity, 480
table, 482, 483 prob.; mole fraction,
480 table, 488; percent by mass, 480
table, 481, 481 prob.; percent by volume, 480 table, 482
Conclusions, 15
Condensation, 76, 428
Condensation polymerization, 811
Condensation reactions, 801
Condensed structural formulas, 751
Conductivity: among types of elements
177–181; as physical property, 73;
explanation of, 226; of ionic compounds in solution, 215, 498–499
Conjugate acid-base pair, 638
Conjugate acids, 638, 641 table
Conjugate bases, 638, 641 table
Conservation of energy. See Law of conservation of energy
Conservation of mass. See Law of conservation of mass
Constant, 14
Controls, 14
Conversion factors, 44–46, 46 prob.,
319 act.
Coordinate covalent bonds, 259
Copper: acid mine waste, 920; electron
configuration, 160; in fireworks, 913;
flame test for, 92 act.; law of multiple
proportions and, 89–90; melting and
boiling point, 226 table; in microchip
wiring, 919; as paint pigment, 919;
properties of, 74 table; purification of,
731–732
Core, iron in Earth’s, 919
Corn oil, 31 act.
Corrosion, 724–727, 726 act.
Counting units, 320
Covalent bonds, 241–247; bond angle,
261, 263 table; coordinate, 259; double,
245; electron affinity and, 265; electronegativity and, 266; energy in, 247; formation of, 241; hybridization and, 262;
length of, 246; nonpolar, 266; pi bonds
and, 245; polar, 266, 267–268; sigma
bonds and, 244, 245; single, 242–244;
strength of, 246–247; super ball properties, 239 act.; triple, 245
Covalent compounds: boiling points
of, 270; formulas from names of, 251;
intermolecular forces in, 269–270;
Dissociation equations
Lewis structures for, 253–260, 255 prob.,
256 prob., 257 prob., 258 prob., 260
prob.; melting points of, 242 act., 270;
naming, 248–251, 249 prob., 252; polarity of and chromatograms, 269 act.;
properties of, 270; shape of (VSEPR
model), 261–262, 263 table, 264 prob.
Covalent gases, 270
Covalent molecular solids, 270
Covalent network solids, 270, 422, 422
table, 423
Cracking, 748
CRC Handbook of Chemistry and
Physics, 75, 77
Crick, Francis, 637, 841–842
Crime-scene investigator, 697
Critical mass, 880
Critical point, 429
Crookes, Sir William, 108
Crude oil. See Petroleum
Crust, Earth’s, 901
Cryosurgery, 934
Cryotherapy, 934
Crystal lattices, 214, 270, 420–421, 422
act.
Crystalline solids, 420–421, 422 table;
categories, 422 table, 422–423; crystal
unit cells, 421, 422 act.
Crystallization, 83
Cube root, 949
Cubic unit cells, 421 table
Curie, Marie, 861, 882, 915
Curie, Pierre, 861, 882
Cyanide, 221 table
Cyclic hydrocarbons, 755
Cycloalkanes, 755–756, 756–757 prob.
Cyclohexane, 755
Cyclohexanol, 793
Cyclohyexylamine, 795
Cysteine, 827 table
Cytosine (C), 841
D
Dalton, John, 417
Dalton’s atomic theory, 104 table,
104–105, 109
Dalton’s law of partial pressures, 408,
409 prob., 410
Data, 13
Data Analysis Labs. See also
CHEMLABs; Launch Labs; MiniLabs;
Problem-Solving Labs; antimicrobial
properties of polymers, 216 act.;
atomic distances in highly ordered
pyrolytic graphite (HOPG), 113 act.;
biofuel cells, 724 act.; gas pressure and
deep sea diving, 408 act.; hydrogena-
tion of canola oil, 805 act.; microbes,
electric current from, 724 act.; oxidation rate of dichloroethene isomers,
768 act.; oxygen in moon rocks, 387
act.; ozone levels in Antarctica, 21
act.; polarity and chromatograms, 269
act.; redox reactions and space shuttle
launch, 691 act.; turbidity and Tyndall
effect, 478 act.
d-block elements, 185, 916
de Broglie equation, 150
de Broglie, Louis, 149
Decane, 751 table
Decomposition reactions, 292, 292
prob., 566 act.
Deep sea diving, gas pressure and, 408
act.
Dehydration reactions, 803
Delocalized electrons, 225
Democritus, 103, 103 table, 416
Denaturation, 829
Denatured alcohol, 793
Density, 36–37; calculate, 37; date coins
by, 60 act.; of gases, 403, 456, 457 act.;
identification of unknowns by, 37, 38
prob., 39 act.; of liquids, 31 act., 415;
as physical property, 73; of solids, 420;
units of, 36
Dental amalgams, 228 table
Deoxyribonucleic acid. See DNA
(deoxyribonucleic acid)
Deoxyribose sugar, 841
Dependent variables, 14, 56
Deposition, 429
Derived units, 35–36, 44
Desalination, 730
Descriptive chemistry, 196 act.
Dessicants, 354
Detergents, 13 act., 419, 924
Deuterium, 904
Diamonds, 423, 928
Diatomic molecules, 241
Dichloroethene, 768 act.
Dietary salt, 908
Diffusion, 404, 405
Dilute solutions, 485, 486 prob.
Dimensional analysis, 44–46, 46 prob.,
956, 956 prob.
Dinitrogen pentoxide, 565 act.
Dipeptides, 828
Dipole-dipole forces, 269, 411, 412–413
Direct relationships, 961
Disaccharides, 833
Dispersion forces, 269, 411, 412
Dispersion medium, 477 table
Dissociation energy, 247
Dissociation equations, strong bases,
648, 648 table
Index 1035
Index
Distillation
Entropy
Distillation, 82
Distilled water: electrical conductivity
of, 205 act.; evaporation of, 432 act.
Diving, gas pressure and, 408 act.
Division operations, 54
DNA (deoxyribonucleic acid), 841–842,
842 act., 843
Dobson, G. M. B., 6
Dobson units (DU), 6
d orbitals, 154
Dose of radiation, 889–890
Dose-response curve, 59
Double covalent bonds, 245, 246
Double helix, DNA, 841
Double-replacement reactions, 296–
297, 297 prob., 297 table
Down’s cells, 729
Drake, Edwin, 749
Dry cells, 718–720; alkaline batteries,
719; primary batteries, 720; secondary batteries, 720; silver batteries, 719;
zinc-carbon, 718–719
Dry ice, 428
Drywall, 914
Ductility, 226
DVDs, 924
E
Earth: atmosphere of, 5, 901; elements
in core of, 919; elements in crust of,
84, 901; elements in oceans of, 901;
entropy and geologic changes on, 545
Effusion, 404–405, 405 prob.
Egyptian cubits, 46 prob.
Einstein, Albert, 143, 417, 877
Elastic collisions, 403
Electrical conductivity: of acids and
bases, 635; of ionic compounds, 214–
215; of metals, 180, 226; of strong
acids, 645; of various compounds, 205
act.; of weak acids, 645, 648 table
Electric charge, observe, 101 act.
Electrochemical cell potentials, 711–
717, 734 act.; calculate, 713–714, 715
prob., 717; cell notation, 713; half-cell
potentials, 712, 712 table; of standard
hydrogen electrode, 711
Electrochemical cells, 707 act., 709,
709–711; alkaline batteries, 719;
chemistry of, 710–711; dry cells,
718–720; electrochemical cell potentials, 711–714, 715 prob., 716–717;
electrolysis and, 728–732; half-cells,
710; lead-acid batteries, 720–721;
lithium batteries, 721–722; primary
and secondary batteries, 720; silver
batteries, 719
1036 Index
Electrochemistry: batteries, 717, 718–
723; biofuel cells, 724 act.; corrosion,
724–727; electrochemical cell potentials, 711–714, 715 prob., 716–717;
electrochemical cells, 707 act., 709;
electrolysis, 728–732; lemon battery,
707 act.; redox reactions in, 708–709;
voltaic cell chemistry, 710–711
Electrolysis, 86, 728–732; aluminum
production, 730–731; desalination by,
730; electroplating and, 732; of molten NaCl, 729; ore purification and,
731–732
Electrolytes, 215; colligative properties
of aqueous solutions and, 498–499;
strong, 498; weak, 498
Electrolytic cells, 728; aluminum production and, 730–731; electrolysis of
brine and, 730; electrolysis of molten
NaCl and, 729; electroplating and,
732; purification of ores and, 731–732
Electromagnetic radiation, 137–139,
140 prob., 861 table, 863–864
Electromagnetic (EM) spectrum,
138–139
Electromagnetic wave relationship, 137,
150
Electromotive force (emf), 710
Electron affinity, 265
Electron capture, 868, 868 table
Electron configuration notation, 158–
159; first period elements, 158 table;
second period elements, 158 table;
third period elements, 159 table
Electron configurations, 156–162;
aufbau principle and, 156–157, 157
table; electron configuration notation,
158–159; electron-dot structures, 161,
162 prob.; exceptions to predicted,
160; ground state, 156; Hund’s rule
and, 157; Noble-gas notation, 159;
orbital diagrams of, 158; Pauli exclusion principle and, 157; periodic table
trends, 182–185, 186 prob.; valence
electrons, 161
Electron-dot structures, 161, 161 table,
162 prob., 207. See also Lewis structures
Electronegativity, 194, 265; bond
character and, 266, 266 table; bond
polarity and, 266, 267; periodic table
trends, 194, 265; redox and, 684
Electronegativity scale, 194, 212, 265
Electron mediator, 724 act.
Electrons, 108; charge of, 108–109; discovery of, 107–109; energy levels and,
146–148; location of around nucleus,
152; mass of, 108–109, 119, 969 table;
photoelectric effect and, 142; properties of, 114 table; quantum mechanical
model of atom and, 150–152; valence,
161
Electron sea model, 225
Electroplating, 732
Electrostatic force, 865
Elements, 10, 84–85, 87; abundance
of various, 84; in atmosphere, 901;
atomic number of, 115, 116 prob., 118
prob.; chemical symbols for, 84; color
key, 968 table; in Earth’s atmosphere,
901; in Earth’s core, 919; in Earth’s
crust, 84, 901; in Earth’s oceans, 901;
emission spectra of, 164 act.; in the
human body, 195; isotopes, 117; law
of definite proportions, 87–88; law of
multiple proportions, 89–90; periodic
table of. See Periodic table; physical
states of, 84; properties of, 180 act.,
196 act., 971–974 table; representative, 177, 196 act.
Elimination reactions, 802
Emeralds, 912
Emission spectra, 164 act.
Empirical formulas, 344; from mass
data, 349–350 prob.; from percent
composition, 344, 345 prob., 347
Endothermic reactions, 216, 247, 528,
528 table
End point (titration), 663
Energy, 516–522; bond dissociation, 247;
change during solution formation,
475 act., 492; changes of state and,
530–530, 531 act., 532 prob.; chemical cold pack and, 515 act.; chemical
potential, 517; flow of as heat, 518. See
also Heat; kinetic, 402, 403, 516–517,
710; lattice, 216–217; law of conservation of, 517; potential, 516–517; quantized, 141–143, 146; solar, 522; units of,
518, 518 prob., 518 table; uses of, 516;
voltaic cells and, 710–711
Energy levels, 153
Energy sublevels, 153–154
English units, 32
Enthalpy (H), 527; calculate changes
in (Hess’s law), 534–536, 536 prob.;
calorimetry measurement of, 550 act.;
changes of state and, 530–533, 531
act., 532 prob.; thermochemical equations and, 529
Enthalpy (heat) of combustion
(∆H comb), 529, 529 table
Enthalpy (heat) of reaction (∆H rxn),
527–528
Entropy (S), 543; Earth’s geologic processes and, 545; predict changes in,
Index
Environmental chemist
544–545; reaction spontaneity and,
546–547, 548 prob.; second law of
thermodynamics and, 543
Environmental chemist, 7
Environmental chemistry, 11 table
Enzymes, 826, 829–830. See also
Catalysts; Proteins; affect on reaction
rate, 571; chirality and, 767, 768; temperature and, 850 act.
Enzyme-substrate complex, 830
Equations: algebraic, 954–955, 955 prob.;
atomic number, 115; average rate of
reaction, 562; boiling point elevation,
500; Boyle’s law, 443; cell potential,
714; Charles’s law, 445; chemical. See
Chemical equations; Dalton’s law of
partial pressures, 409; density, 37; dilution, 485; Einstein’s (E=mc 2), 877;
electromagnetic wave relationship, 137,
150; energy of a photon, 143; energy of
a quantum, 142; error, 48; Gay-Lussac’s
law, 447; general rate law, 575; Gibbs
free energy, 515 act., 546; Graham’s
law of effusion, 404; Henry’s law, 496;
ideal gas law, 454; induced transmutation, 876 prob.; ionic, 301; ion-product
of water, 650; law of conservation of
mass, 77; mass number, 117; molality,
487; molarity, 482; mole fraction, 488;
neutralization, 659–660; nuclear, 123,
869, 869 prob.; overall, 307; percent by
mass, 87, 481; percent by mass from
the chemical formula, 342; percent by
volume, 482; percent error, 48; percent
yield, 386; pH, 652; pH and pOH,
relationship between, 652; pOH, 652;
quantum, energy of, 142; radiation,
intensity and distance of, 890; radioactive element, remaining amount of,
871; rate law, 574; skeleton, 284; slope
of a line, 57, 962; specific heat, 520;
summation, 540; symbols used in, 283
table; thermochemical, 529–533; word,
284
Equilibrium. See Chemical equilibrium;
Solubility equilibrium
Equilibrium concentrations, calculate,
612, 613 prob.
Equilibrium constant (K eq), 599–600,
604, 605 prob.
Equilibrium constant expressions,
599–600; calculate concentrations
from, 612, 613 prob.; for heterogeneous equilibrium, 602, 603 prob.; for
homogeneous equilibrium, 600, 601
prob.; Le Châtelier’s principle and,
606–611; solubility product constant
expressions. See Solubility product
constant expressions
Example Problems
Equivalence point, 661
Error, 48
Essential elements, 383
Essential oils, 770
Esterification, 806 table
Esters, 787 table, 799, 799 table, 800 act.
Ethanal, 796
Ethanamide, 800
Ethane, 750, 751 table, 793
Ethanol, 432 act., 792–793, 816 act.
Ethene, 759 table, 762, 803
Ether functional group, 787 table
Ethers, 787 table, 794, 794 table
Ethylamine, 795
Ethyl group, 753 table
Ethyne (acetylene), 762 act., 763, 763,
764
Evaporation, 426–427, 432 act., 816 act.
Everyday Chemistry: baking soda and
baking powder and cooking, 669;
chocolate, manufacture of, 431; garlic
and pain receptors, 815; history in a
glass of water, 355; killer fashion, 229
Example Problems: algebraic equations,
955 prob.; alkanes, naming, 754–755
prob.; alkenes, naming, 761 prob.;
aromatic compounds, naming, 773
prob.; atomic mass, 121 prob.; atomic
number, 116 prob., 118 prob.; atomic
radii trends, 189 prob.; atom-to-mass
conversions, 330 prob.; average rate of
reaction, 562 prob.; balancing equations, 287 prob.; boiling point elevation, 503 prob.; Boyle’s law, 443 prob.;
branched-chain alkanes, naming,
754–755 prob.; cell potential, calculate,
715 prob.; Charles’s law (gas temperature and volume relationship), 446
prob.; chemical equations, interpret,
370 prob.; combined gas law, 450 prob.;
combustion reactions, energy released
by, 532 prob.; concentration from equilibrium constant expression, 613 prob.;
conservation of mass, 78 prob.; conversion factors, 46 prob.; cycloalkanes,
naming, 756–757 prob.; density and
volume to find mass, 38 prob.; dimensional analysis, 956 prob.; electron
configuration and the periodic table,
186 prob.; electron-dot structure, 162
prob.; empirical formula from mass
data, 349–350 prob.; empirical formula
from percent composition, 345 prob.;
energy of a photon, 143 prob.; energy
units, convert, 518 prob.; equilibrium
constant expression for heterogeneous
equilibrium, 603 prob.; equilibrium
constant expression for homogeneous
equilibrium, 601 prob.; equilibrium
constants, value of, 605 prob.; formula
for polyatomic compound, 222 prob.;
formulas for ionic compound, 220
prob.; freezing point depression, 503
prob.; gas stoichiometry, 461 prob.;
Gay-Lussac’s law, 448 prob.; Graham’s
law of effusion, 405 prob.; half-reaction method, 695 prob.; heat absorbed,
calculate, 521 prob.; hydrates, determine formula for, 353 prob.; ideal gas
law, 455 prob.; induced transmutation
equations, 876 prob.; instantaneous
reaction rates, 579 prob.; ionic equations and precipitation reactions, 302
prob.; ionic equations for aqueous
solutions forming gases, 306 prob.;
ionic equations for aqueous solutions
forming water, 304 prob.; ion product
constant, 651 prob.; ion product constant Q sp, 619 prob.; Lewis structure
for covalent compound with multiple
bonds, 256 prob.; Lewis structure for
covalent compound with single bond,
255 prob.; Lewis structures, 244 prob.;
limiting reactant, determine, 382–383
prob.; mass number, 118 prob.; massto-atom conversions, 330 prob.; massto-mass stoichiometric conversion, 377
prob.; mass-to-mole conversions, 329
prob.; mass-to-mole conversions for
compounds, 337 prob.; mass to moles
to particles conversions, 338–339
prob.; molality, 487 prob.; molarity, 483
prob.; molarity from titration data, 664
prob.; molar solubility, 616 prob.; molar
volume, 453 prob.; molecular formula
from percent composition, 348–349
prob.; molecular shape, 264 prob.; mole
relationship from a chemical formula,
334 prob.; mole-to-mass conversion,
328 prob.; mole-to-mass conversions
for compounds, 336 prob.; mole-tomass stoichiometric conversion, 376
prob.; mole-to-mole stoichiometric
conversion, 375 prob.; net ionic redox
equation, balance, 692; nuclear equations, balancing, 869 prob.; oxidation
number, determine, 687 prob.; oxidation-number method, 690 prob.;
particles, convert to moles, 324 prob.;
percent by mass, 481; percent error,
49 prob.; percent yield, 386 prob.; pH,
calculate, 653 prob., 654 prob.; pOH,
calculate, 654 prob.; radioactive element, remaining amount of, 872 prob.;
reaction spontaneity, 548 prob.; redox
reactions, identify, 685 prob.; scientific
Index 1037
Index
Excess reactants
Gas laws
notation, 41 prob., 43 prob.; significant
figures, 51 prob., 53 prob., 54 prob.;
significant figures and, 951 prob., 953
prob.; single-replacement reactions,
295 prob.; standard enthalpy (heat) of
formation, 540 prob.; unit conversion,
958 prob.; wavelength of EM wave, 140
prob.
Excess reactants, 379, 384
Exothermic reactions, 216, 247; activation energy and, 565; enthalpy and,
527, 528 table
Expanded octets, 259
Experimental data, percent composition
from, 341–342, 342 act.
Experiments, 14. See also CHEMLABs;
MiniLabs; Problem-Solving Labs;
laboratory safety and, 18, 19 table
Exponents, 40–41
Extensive properties, 73
Extrapolation, 57, 963
F
Fahrenheit scale, 34
Families, periodic table. See Groups
Faraday, Michael, 770
Fasteners, arrange, 173 act.
Fats. See Lipids
Fatty acids, 767, 835–836, 837
f-Block elements, 185, 916
Femtochemistry, 581
Fermentation, 847–848; alcoholic, 847;
lactic acid, 848
Fermi, Enrico, 882
Fermionic condensate, 417
Ferromagnetism, 916
Fertilizers, 250, 388, 462
Fiber-optic cable, 930
Filtration, 82
Fire extinguishers, ideal gas law and,
456, 457 act.
Firefly, bioluminescence, 309
Fireworks, 913
First period elements: electron configuration notation, 158 table; orbital
diagrams, 158 table
Fission, 111
Flame retardant fabric, 935
Flame tests, 92 act., 144 act., 907, 923
Flat-screen televisions, 925
Flavor chemist, 267
Fleming, Alexander, 18
Flexible-fuel vehicles (FFV), 549
Fluidity, 416
Fluids, 416
Fluoridation, 622 act., 942
Fluoride, 180
1038 Index
Fluorine: analytical tests for, 941;
atomic properties, 941; common reactions involving, 940; electron configuration and orbital diagram, 158 table;
electron-dot structure, 161 table; electronegativity of, 194, 265; isotopes,
120; physical properties, 940
Fluoroapatite, 622 act.
Fog, 428
Foldables: acid-base chemistry, 633 act.;
atoms, 101 act.; biomolecules, 825
act.; bond character, 239 act.; chemical reactions, 281 act.; concentration
of solutions, 475 act.; electrochemical
cells, 707 act.; electron configuration, 135 act.; equilibrium, changes
affecting, 593 act.; functional groups,
785 act.; gas laws, 441 act.; Gibbs free
energy equation, 515 act.; hydrocarbon compounds, 743 act.; hydrocarbons, 743 act.; ionic compounds, 205
act.; mole conversion factors, 319 act.;
periodic trends, 173 act.; properties
and changes, 69 act.; reaction rates,
559 act.; redox equations, balance, 679
act.; scientific method, 3 act.; states of
matter, 401 act.; stoichiometric calculations, 367 act.; types of graphs, 31
act.; types of radiation, 859 act.
Food: from fermentation, 847; homogenization, 490; measure calories in,
550 act.; preservation of, 571; test for
simple sugars in, 825 act.
Food scientist, 219
f orbitals, 154
Forces: balanced, 597; dipole-dipole,
269, 411, 412–413; dispersion, 269,
411, 412; intermolecular, 411–414
Forensic accelerant detection, 91
Forensics CHEMLABs: density, dating
coins by, 60 act.; hydrocarbon burner
gases, identify, 776 act.; identify the
damaging dumper, 698 act.; water
source, determine, 24 act.
Forensics, luminol and, 697
Formaldehyde, 796, 797
Formic acid, 634
Formulas. See Chemical formulas;
Structural formulas
Formula unit, 218
Fossil fuels: natural gas, 416, 745, 747;
petroleum, 747–748
Fractional distillation, 747–748
Fractionation, 747–748
Fractions, 964, 965–966
Francium, 84, 180 act., 194, 265, 906,
907
Franklin, Rosalind, 637
Free energy (G system), 546–547; calculate, 547, 548 prob.; sign of, 547, 547
table
Freezing, 428
Freezing point, 428
Freezing point depression, 501–502, 502
act., 503 prob.
Frequency, 137
Fructose, 832, 833
Fuel cells, 722–723, 905
Fuel rods, nuclear reactor, 880–882
Functional groups, 785 act., 786, 787
table; amide group, 800; carbonyl
group, 796; carboxyl group, 798;
hydroxyl group, 792
Fused-ring systems, 772
Fusion, molar enthalpy (heat) of
(∆H fus), 530
Fusion nuclear reactions, 883–884
Fusion (phase change), 425–426, See
also Melting
G
Gadolinium, 921
Galactose, 832, 833
Gallium, 922, 923, 924
Galvanization, 727
Gamma radiation, 124, 861, 861 table,
862, 863, 888 table
Gamma rays, 124, 863, 864
Garlic, 815
Gases, 72, 402–410; compression and
expansion of, 72 act., 404; Dalton’s
law of partial pressures and, 408, 409
prob., 410; density of, 403; diffusion
and effusion of, 404–405; formation
of in aqueous solutions, 281 act.,
304–305, 306 prob.; gas laws. See Gas
laws; identify an unknown, 466 act.;
kinetic-molecular theory and, 402–
403; molar volume of, 452, 453 prob.;
pressure and volume relationship
(Boyle’s law), 442–443, 443 prob., 444
act.; real v. ideal, 457–459; solubility
of, 495–496, 497 prob.; temperature
and volume relationship, 441 act.
Gas grills, 375, 461
Gas laws, 442–451; Boyle’s law (pressure
and volume relationship), 442–443,
443 prob., 444 act.; Charles’s law
(temperature and volume), 441 act.,
444–445, 446 prob.; combined gas law,
449, 450 prob., 454; Gay-Lussac’s law
(temperature and pressure relationship), 447, 448 prob.; ideal gas law,
454, 455 prob., 456; summary of, 451
table; temperature scales and, 451
Index
Gasoline octane rating system
Gasoline octane rating system, 748–749
Gas particles, 403; kinetic energy of,
403; motion of, 403; size of, 403
Gas pressure, 406–410; air pressure and,
406–407; Boyle’s law (pressure and
volume relationship), 442–443, 443
prob., 444 act.; Charles’s law (temperature and volume), 441 act., 444–445,
446 prob.; combined gas law, 449, 450
prob., 454; Dalton’s law of partial pressures and, 408, 409 prob., 410; deep
sea diving and, 408 act.; Gay-Lussac’s
law (temperature and pressure relationship), 447, 448 prob.; ideal gas
law, 454, 455 prob., 456
Gas stoichiometry, 460–464; industrial
applications of, 464; volume-mass
problems, 462, 462–463 prob.; volumevolume problems, 460–461, 461 prob.
Gay-Lussac’s law, 447, 448 prob., 451
table
Geckos, grip of, 271
Geiger counters, 885
Gemstones, 912
Geometric isomers, 766
Germanium, 181, 926–927, 930
Germanium tetrachloride, 930
GFP (green fluorescent protein), 309
Gibbs free energy (G system), 515 act.,
546–547, 548 prob.
Gibbs, J. Willard, 546
Glass, 929
Glucose, 532, 532 prob., 832, 833
Glutamic acid, 827 table
Glutamine, 827 table
Glycerol, 31 act., 793
Glycine, 827 table, 828
Glycogen, 834. See also Polysaccharides
Goiter, 943
Gold, 228 table, 920
Gold foil experiment, Rutherford’s, 110,
111–112, 113, 862
Gold leaf, 920
Graduated cylinder, layers of liquids in,
31 act.
Graham’s law of effusion, 404–405, 405
prob.
Graham, Thomas, 404
Grams (g), 34
Graphite, 423
Graphite golf shafts, 928
Graphs, 55–58; bar, 56; circle, 55; interpreting, 57–58; line, 56–57, 959–963
Gravimetric analysis, 341
Gravitation, law of universal, 16
Great Smog (London), 291
Greek philosophers, ideas on structure
of matter, 102–103, 103 table
Heterogeneous mixtures
Green fluorescent protein (GFP), 309
Ground state, 146
Ground-state electron configuration,
143 prob.
Ground-state electron configurations,
156–160; aufbau principle and,
156–157, 157 table; electron configuration notation, 158–159; exceptions
to predicted, 160; Hund’s rule and,
157; noble-gas notation, 159; orbital
diagrams of, 158; Pauli exclusion
principle and, 157; problem-solving
strategy, 160
Group 1 elements (Alkali metals), 182
table, 182–184, 192, 207 table, 208,
208 table, 906, 906–909; (representative elements), 177
Group 2 elements (Alkaline earth
metals), 182, 183, 184, 207 table,
208, 208 table, 218 table, 219 table,
910–915
Group 13 elements (Boron group), 184,
207 table, 208, 208 table, 219 table,
922–925
Group 14 elements (Carbon group),
184, 207 table, 219 table, 243, 926–931
Group 15 elements (Nitrogen group),
184, 207 table, 209, 209 table, 218
table, 243, 932–935
Group 16 elements (Oxygen group),
184, 207 table, 209 table, 218 table,
243, 936–939
Group 17 elements (Halogens), 184, 207
table, 209, 209 table, 218 table, 243,
940–943
Group 18 elements (Noble gases), 180,
184, 185 table, 192, 207 table, 944–945
Groups (families), periodic table, 177;
atomic radii trends, 188, 189 prob.;
electron configuration and position
on periodic table, 183; ionic radii
trends, 191
Grove, William, 722
Guanine (G), 841
Gypsum, 490, 491, 914
H
Haber-Bosch process, 290
Hahn, Otto, 111
Half-cells, 710
Half-life, 870–871, 871 table
Half-reaction method, 693–694, 694
table, 695 prob.
Half-reactions, 693
Halides, 214
Hall, Charles Martin, 730
Hall-Héroult process, 730–731
Halocarbons, 787 table, 787–789; alkyl
halides, 787; aryl halides, 788; functional group, 787, 787 table; naming,
788; properties of, 789; substitution
reactions forming, 790; uses of, 789
Halogenated hydrocarbons, 940
Halogenation, 790
Halogen functional group, 787 table,
787–788
Halogen light bulbs, 942
Halogens, 180
Halogens (Group 17 elements), 184, 207
table, 209, 209 table, 218 table, 243,
940–943
Halogens, 940–943; analytical tests for,
941; applications of, 942–943; atomic
properties, 941; common reactions
involving, 940; covalent bonding in,
243; physical properties of, 940; predict
reactivity of, 294 act.; single-replacement reactions involving, 294, 294 act.
Halothane, 790, 791
Hardness, as physical property, 73
Hard water, 24 act.
HD DVDs, 924
Heart stress test, 925
Heat (q), 518. See also
Thermochemistry; absorption of by
chemical reactions. See Endothermic
reactions; calorimetry and, 523–524,
525 prob., 550 act.; release of by
chemical reactions. See Exothermic
reactions; specific heat, 519–520, 521
prob., 522, 526 act.; thermochemical
systems and, 523–524; units of, 518,
518 prob.
Heating and cooling specialist, 527
Heating curves, 531 act.
Heat of combustion (∆H comb), 529,
529 table
Heat of reaction (∆H rxn), 527–528
Heat of solution, 475 act., 492
Heat-pack reaction, 527, 542
Heat-treated steel, 227 act.
Heavy hydrogen (deuterium), 904
Heisenberg uncertainty principle, 151
Helium, 158 table, 159, 183, 185 table,
192, 944, 945
Hemoglobin, 623, 830
Henry’s law, 495–496, 497 prob.
Heptane, 751, 751 table
Héroult, Paul L. T., 730
Hertz (Hz), 137
Hess’s law, 534–536, 536 prob.
Heterogeneous catalysts, 573
Heterogeneous equilibrium, 602, 603
prob.
Heterogeneous mixtures, 81, 87,
Index 1039
Index
Hexagonal unit cells
476–478; colloids, 477, 477 table;
separating components of, 82–83;
suspensions, 476
Hexagonal unit cells, 421 table, 422 act.
Hexane, 751 table
HFCs (hydrofluorocarbons), 788
Hill, Julian, 18
HIV, 389
Homogeneous catalysts, 573
Homogeneous equilibrium, 600, 601
prob.
Homogeneous mixtures, 81, 82–83, 87,
478–479
Homogenization, 490
Homologous series, 751
Hope Diamond, 40
HOPG, atomic distances in, 113 act.
Hormones, 831, 839
Household items, acidity of, 633 act.
How It Works: bioluminescence, 309;
flexible-fuel vehicles (FFV), 549;
gecko grip, 271; mass spectrometer,
125; methane digester, 775; pacemaker, 733
Hubble Space Telescope, 912
Human body, elements in, 84, 195
Human immunodeficiency virus (HIV),
389
Hund’s rule, 157
Hybridization, 262
Hybrid orbitals, 262
Hydrates, 351–354; formulas for, 351
table, 352, 353 prob., 356 act.; naming,
351; uses for, 354
Hydration (solvation in water), 489
Hydration reactions, 804, 804 table
Hydrocarbons, 291, 745–749. See also
specific types; alkanes. see Alkanes;
alkenes. See Alkenes; alkynes, 763–764;
aromatic. See Aromatic compounds;
burner gas analysis, 776 act.; chirality
of, 767; Foldable, 743 act.; halogenated,
940; isomers of, 765–766, 768–769;
models of, 743 act., 746; refinement of
petroleum, 747–748; saturated, 746;
substituted. See Substituted hydrocarbons; unsaturated, 746
Hydrofluorocarbons (HFCs), 788
Hydrogen, 904–905; abundance of, 84;
atomic properties, 153–155, 158 table,
904; Bohr model of, 146–148, 147
table; emission spectrum, 144, 145,
147–148, 150 act.; in human body,
195; isotopes of, 904; physical properties, 904; single-replacement reactions
involving, 293; in stars, 905
Hydrogenated fats, 805
Hydrogenation, 767, 836
1040
Index
Ionization energy
Hydrogenation reactions, 804 table,
804–805, 805 act.
Hydrogen bonds, 411, 413–414
Hydrogen carbonate, 221 table
Hydrogen cyanide, 647
Hydrogen fluoride, 244, 244 prob., 639
Hydrogen fuel cells, 905
Hydrogen peroxide, 89
Hydrometers, 37
Hydronium ions, 636, 652; calculate
concentration of from pH, 655 prob.;
calculate concentrations from, 651,
651 prob.; calculate pH from concentration of, 653 prob., 654 prob.
Hydroxide ions, 221 table, 636, 652;
calculate concentration of from pH,
655 prob.; calculate concentrations
from, 651, 651 prob.; calculate pOH
from concentration of, 654 prob.
Hydroxyl group, 787 table, 792, 816 act.
Hyperbaric oxygen therapy, 465
Hyperthermia, 583
Hypochlorite, 221 table
Hypothermia, 583
Hypotheses, 13
I
Ice, 420, 425–426
Ideal gas constant (R), 454, 969 table
Ideal gases, real versus, 457–459
Ideal gas law, 454, 455 prob., 456;
density and, 456; derive other laws
from, 458; exceptions to, 458–459;
fire extinguishers and, 457 act.; molar
mass and, 456
Immiscible, 479
Independent variables, 14, 56
Indicators, acid-base, 658, 663, 664
Indium, 922, 923, 925
Indium-tin oxide, 925
Induced fit, 830
Induced transmutation, 875, 882; equations representing, 876 prob.; transuranium elements, 876
Industrial chemistry, 11 table, 341, 464
Infrared (Paschen) series, 147, 148, 150
act.
Inhibitors, 571
Initial rates, method of, 576, 577 prob.
Inner transition metals, 180, 185, 916,
917
Inorganic chemistry, 11 table
Insoluble, 479
Instantaneous reaction rates, 578–579,
579 prob.
Insulin, 831
Intensive properties, 73, 77
Intermediates, 580
Intermolecular forces, 411–414; covalent compounds and, 269–270;
dipole-dipole, 411, 412–413; dispersion, 411, 412; evaporation and, 432
act.; grip of a gecko and, 271; hydrogen bonds, 411, 413–414
International Union of Pure and
Applied Chemistry (IUPAC), naming
conventions. See Naming conventions
Interpolation, 57, 963
Interstitial alloys, 228
In the Field: archaeologist, 891; arson
investigator, 91; art restorer, 23;
crime-scene investigator, 697; environmental chemist, 505; molecular
paleontologist, 849
Intramolecular forces, comparison of,
411 table
Inverse relationships, 961
Iodate, 221 table
Iodine, 86, 940, 941, 943
Iodine-131, 887
Iodine deficiency, 943
Ion concentration: from K sp, 617 prob.,
618–619; from pH, 655, 655 prob.
Ionic bonds, 210; electronegativity and,
266; energy in, 216–217, 217 table
Ionic compounds, 210–215; in aqueous
solutions, 300; binary, 210; formation
of, 211–212, 212 prob., 216, 230 act.;
formulas for, 218–219, 220 prob., 221,
221 prob., 222 prob.; lattice energies
of, 216–217, 217 table; melting point
of, 242 act.; milestones in understanding, 212–213; naming, 222, 223–224;
oxidation number of, 219; physical
properties, 212, 214–215, 230 act.;
physical structure, 212–214; polyatomic. See Polyatomic ions; solvation
of aqueous solutions of, 490; study
organizer, 205 act.
Ionic crystals, 215
Ionic equations, 301, 302 prob., 304
prob.; complete, 301; for reactions
forming gases, 304–305, 306 prob.;
for reactions forming water, 303, 304
prob.; net, 301
Ionic liquids, 229
Ionic radii, periodic table trends, 189–
191, 189–191
Ionic solids, 422, 422 table, 423
Ionization constants. See Acid ionization constant; base ionization
constant
Ionization energy, 191–194; chemical
bonds and, 207; periodic table trends,
193
Index
Ionizing radiation
Lithium batteries
Ionizing radiation, 885, 886; biological
effects of, 888–890; medical uses of,
886–887
Ion product constant (Q sp), 618–619,
619 prob.
Ion product constant for water, 650–
651, 651 prob.
Ions, 189; anion formation, 209; cation
formation, 207; formula for monatomic, 218–219; ionic radii periodic
table trends, 189–191; metal, 208;
monatomic. See Monatomic ions;
naming, 222–223; oxidation number
of, 219; polyatomic, 221, 222 prob.;
pseudo-noble gas configuration, 208;
stability of, 240; transition metal, 208
Iron: in acid mine waste, 920; Earth’s
core and, 919; as paint pigment, 919;
redox reactions oxidizing, 693 table;
rust formation, 74, 77, 679 act.
Iron oxide. See Rusting
Isobutane, 752
Isomers, 765; cis-, 766; geometric, 766;
optical, 768–769; stereoisomers, 766;
structural, 765; trans-, 766; trans-fatty
acid, 767
Isopropyl alcohol, 432 act.
Isopropyl group, 753 table
Isotopes, 117, 118 prob.. See also
Radioactivity; abundance of, 117,
120; atomic mass and, 117, 118 act.,
119–120, 121 prob., 126 act.; mass of,
117; modeling, 120 act.; notation for,
117; radioactive. See Radioisotopes
IUPAC naming conventions. See
Naming conventions
J
James Webb Space Telescope (JWST), 912
Jin, Deborah S., 417
Joule (J), 142, 518
K
Kekule, Friedrich August, 771
Kelvin (K), 35, 451
Kelvin scale, 35, 451
Ketones, 787 table, 797, 797 table
Kilns, 461
Kilocalorie (kcal), 518
Kilogram (kg), 34
Kilometer (km), 33
Kinetic energy (KE), 516–517; kineticmolecular theory and, 402, 403, 517;
voltaic cells and, 710
Kinetic-molecular theory, 402–403;
assumptions of, 403; compression and
expansion of gases and, 404; density of
gases and, 403; diffusion and effusion
of gases and, 404–405; liquids and, 415
Knocking, 748
Krypton, 185 table, 944, 945
Kwolek, Stephanie, 491
L
Lab activities. See CHEMLABs;
Data Analysis Labs; Launch Labs;
MiniLabs; Problem-Solving Labs
Laboratory safety, 18, 19 table
Lactic acid fermentation, 848
Lactose, 833
Lanthanide series, 180, 185, 916
Large Hadron Collider, 111
Laser scissors, 163
Lattice energy, 216–217, 217 table
Launch Labs: arrange items, 173 act.;
atomic structure, 135 act.; chemical
change, evidence of, 281 act.; chemical change, observe, 69 act.; chemical
cold pack, 515 act.; chemical reaction,
observe, 367 act.; covalent bonding (super ball properties), 239 act.;
electrical conductivity of solutions,
205 act.; electric charge, observe,
101 act.; equilibrium point, 593 act.;
hydrocarbons, model, 743 act.; lemon
battery, 707 act.; liquids, layering of
(density), 31; liquids, properties of,
401 act.; mole conversion factors,
319 act.; nuclear chain reactions, 859
act.; reaction rates, speeding, 559 act.;
rust formation, 679 act.; slime, make,
785 act.; solution formation, energy
change and, 475 act.; sugars, test for
simple, 825 act.; temperature and gas
volume (Charles’s Law), 441 act.; viscosity of liquids, 401 act.; Where is it?
(conservation of matter), 3 act.
Lavoisier, Antoine, 79, 174, 174 table,
184, 290
Law, 16
Law of chemical equilibrium, 599–600
Law of conservation of energy, 517
Law of conservation of mass, 77, 78
prob., 79; balancing equations and,
285, 288; Dalton’s experimental evidence of, 105; molar mass and, 335;
stoichiometry and, 368
Law of definite proportions, 87–88
Law of multiple proportions, 89–90
Law of octaves, 175
Law of universal gravitation, 16
Lawrencium, 921
LCD panels, 925
Lead, 229, 926–927, 930; poisoning, 229
Lead-acid storage batteries, 720–721,
930
Lead shot, 228 table
Le Châtelier, Henri-Louis, 607
Le Châtelier’s principle, 607; chemical
equilibrium and, 606–611; common
ion effect and, 620–621; ion-product
of water and, 650, 650 prob.; molar
solubility and, 624 act.
Lecithin, 431
Lemon battery, 707 act.
Length, 33, 33 table
LEO GER, 681
Lewis, G. N., 161, 212, 641
Lewis model, 641–643, 642 table
Lewis structures, 242, 244 prob., 253–
260. See also Electron-dot structures;
covalent compound with multiple
bond, 256 prob.; covalent compound
with single bond, 255 prob.; modeling,
272 act.; octet rule exceptions and,
258–259, 260 prob.; polyatomic ions,
256, 257 prob.; resonance and, 258
Light: continuous spectrum of, 138;
dual nature of, 143; electromagnetic
spectrum, 138–139; particle nature
of, 141–143; speed of (c), 137; visible
spectrum of, 139; wave nature of,
137–139, 140 prob., 143
“Like dissolves like”, 489
Limestone, 635, 643
Limiting reactants, 379–381; calculating product with, 380–381, 382–383
prob.; determining, 380
Linear molecular shape, 261, 263 table
Line graphs, 56–57, 58, 959–963
Line, slope of, 57, 962
Line spectra. See Emission spectra
Lipid bilayer, 838
Lipids, 13 act., 830, 835–839; fatty
acids, 835–836, 837; phospholipids,
838; saponification of, 837, 837 act.;
steroids, 839; triglycerides, 836–837;
waxes, 838
Liquids, 71, 415–419; adhesion and
cohesion of, 419; attractive forces in,
417; capillary action, 419; compression of, 415; density of, 31 act., 415;
evaporation of, 426–427, 432 act.; fluidity of, 416; properties of, compare,
401 act.; shape and size of particles in,
417; surface tension, 418–419; viscosity of, 401 act., 417, 418
Liter (L), 35
Lithium, 136, 158 table, 161 table, 177,
226 table, 906, 907, 913
Lithium batteries, 721–722, 908
Index 1041
Index
Litmus paper
Molal boiling point elevation constant
Litmus paper, 633 act., 635, 658
Logarithms, 966–967
London forces. See Dispersion forces
London, Fritz, 412
Lowry, Thomas, 638
LP (liquefied propane) gas, 750
Luciferin, 309
Luminol, 697
Lunar missions, oxygen in moon rocks,
387 act.
Lyman (ultraviolet) series, 147, 148,
150 act.
Lysine, 827 table
M
Magnesium, 159 table, 177, 910–911,
912, 913
Magnesium oxide, 210, 217 table
Magnetic resonance imaging, 921
Malleability, 226
Manganese, 918, 920
Manhattan Project, 882
Manometers, 407
Mass, 9–10; determine from density
and volume, 38 prob.; identify an
unknown by, 50 act.; law of conservation of, 77, 78 prob., 79, 105; massto-atom conversions, 329–330, 330
prob.; mass-to-mole conversions, 329
prob.; mass-to-mole conversions for
compounds, 337, 337 prob.; mass-tomoles-to-particles conversions, 338,
338–339 prob.; molar. See Molar mass;
mole-to-mass conversions, 328 prob.;
SI base unit for, 33 table, 34; volumemass gas stoichiometry, 462, 462–463
prob.; weight v., 9–10
Mass defect, 877
Mass number, 117, 118 prob.
Mass spectrometry, 125, 327
Mass-to-mass stoichiometric conversions, 374, 377, 377 prob.
Material Safety Data Sheets (MSDS), 59
Materials scientist. See Careers in
Chemistry; In the Field
Math Handbook, 946–967; algebraic
equations, 954–955, 955 prob.; antilogarithms, 967; dimensional analysis,
956 prob.; fractions, 964, 965–966;
line graphs, 959–963; logarithms,
966–967; percents, 965; ratios, 964;
scientific notation, 946–948; significant figures, 949–950, 951 prob.;
square and cube roots, 949; unit conversion, 957–958, 958 prob.
Matter: categories of, 87; characteristics
of, 9–10; chemical changes in, 69 act.,
1042 Index
77; chemical properties of, 74; Greek
philosophers’ theories of, 102–103;
mixtures of. See Mixtures; physical
changes in, 76–77; physical properties
of, 73; properties of, observe, 74–75;
pure substances. See Pure substances;
states of. See States of matter; study of
chemistry and, 4
Maxwell, James, 402
Measurement, 295; accuracy of, 47–48;
precision of, 47–48; significant figures
and, 50–51; units of, 32–37
Medicinal chemist, 342
Meitner, Lise, 111
Melting, 425–426, 530
Melting point, 77, 426
Melting points: of alkanes, 758; bond
type and, 242 act.; of covalent compounds, 270; of metals, 226, 226 table;
as physical property, 73
Mendeleev, Dmitri, 85, 175, 176 table,
184
Mercury, 73 table, 226
Mercury(II) oxide, 79
Metabolism, 844–848; anabolism,
844–845; ATP and, 845; catabolism,
844–845; cellular respiration, 846;
fermentation, 847–848; photosynthesis, 846
Metal alloys, 227–228
Metal carbonates, 635
Metal ions: formation of, 208; monatomic, 218, 219, 219 table
Metallic bonds, 225
Metallic hydroxids, 648
Metallic solids, 422, 422 table, 423
Metalloids, 181, 196 act.
Metallurgist, 423
Metals, 177. See also Alkali metals;
Alkaline earth metals; Inner transition metals; Transition metals; acidbase reactions and, 635; activities of,
310 act.; boiling points, 226, 226 table;
bonding in, 225; ductility of, 177, 226;
durability of, 226; electrical conductivity of, 177, 226; fireworks and, 913;
hardness and strength of, 226; malleability of, 177, 226; melting points,
226, 226 table; periodic table position,
177; properties of, 177, 196 act., 226,
226 table; purification of by electrolysis, 731–732; reactivity of, 293–294,
310 act.; single-replacement reactions
involving, 293–294; specific heat of,
526 act.; thermal conductivity of, 226
Meteorologist, 447
Meter (m), 33, 33 table
Methanal, 796
Methane, 243, 244, 245, 291, 745, 747,
750, 751, 751 table
Methane digester, 775
Methanol, 793, 816 act.
Method of initial rates, 576, 577 prob.
Methylbenzene, 772
Methyl chloroform, 20
Methyl group, 753 table
Methyl red, 662
Meyer, Lothar, 175, 176 table, 184
Microbes, electric current from, 724 act.
Microchips, 919
Microwaves, 137, 140 prob.
Midgley, Thomas Jr., 7
Milligrams (mg), 34
Millikan, Robert, 109
Milliliters (ml), 33 table, 36
Millimeter (mm), 33, 33 table
Mineralogists, 214
Minerals, 383; classification of, 214;
crystal lattice structure, 214
Mineral supplements, 220
MiniLabs. See also CHEMLABs; Data
Analysis Labs; Problem-Solving Labs;
acid strengths, compare, 648 act.;
bond type and melting point, 242
act.; chemical equilibrium, stress and,
611 act.; corrosion, 726 act.; crystal
unit cells, model, 422 act.; density
of unknown objects, 39 act.; esters,
recognize, 800 act.; ethyne, synthesize
and observe, 762 act.; flame test, 144
act.; freezing point depression, 502
act.; halogens, predict reactivity of,
294 act.; heat-treated steel, properties of, 227 act.; isotopes, model, 120
act.; molar volume and mass (fire
extinguisher), 457 act.; observation
skills, develop, 13 act.; paper chromatography, 82 act.; percent composition
of chewing gum, 342 act.; periodic
trends, model, 193 act.; precipitateforming reaction, observe, 301 act.;
radioactive decay, model, 873 act.;
reaction rate and temperature, 571
act.; saponification (soap making),
837 act.; specific heat, 526 act.; stoichiometry of baking soda decomposition, 378 act.; tarnish removal (redox
reaction), 683 act.
Miscible, 479
Mixtures, 80–83, 87; heterogeneous, 81,
476–478; homogeneous, 81, 478–479;
separate components of, 80, 82 act.,
82–83
Mobile phase, chromatography, 83
Model, 10, 15
Molal boiling point elevation constant
(K b), 500, 500 table, 976 table
Index
Molal freezing point elevation constant
Molal freezing point elevation constant
(K f), 502, 502 table, 976 table
Molality (m), 480 table, 487, 487 prob.
Molar calculations, history in a glass of
water and, 355
Molar enthalpy (heat) of condensation,
530
Molar enthalpy (heat) of fusion, 530
Molar enthalpy (heat) of vaporization,
530, 531 act.
Molarity (M), 480 table, 482, 483 prob.;
from titration, 663, 664 prob., 670 act.
Molar mass, 326–332; atom-to-mass
conversions, 331 prob.; of compounds,
335, 335 prob.; effusion rate and, 404,
405 prob.; ideal gas law and, 456;
mass-to-atom conversions, 329–330,
330 prob.; mass-to-mole conversions,
329 prob.; mole-to-mass conversions,
327–328, 328 prob.; nuclear model of
mass and, 326 act.
Molar solubility, 615–617, 616 prob.,
621, 624 act.
Molar solutions, preparation of, 484,
485, 486 prob.
Molar volume, 452, 453 prob., 969 table
Mole (mol), 321–324; chemical formulas and, 333–334, 334–335 prob.;
conversion factors, 319 act.; convert
particles to, 323, 323 prob., 324 prob.;
convert to particles, 322; as counting unit, 319 act., 320; mass-to-mole
conversions, 329 prob.; mass-to-mole
conversions for compounds, 337, 337
prob.; mass to moles to particles conversions, 338, 338–339 prob.; molar
mass and, 326–332; mole-to-mass
conversions, 327–328, 327–328, 328
prob.; mole-to-mass conversions for
compounds, 336, 336 prob.
Molecular compounds: in aqueous solutions, 299; formation of, 241; formulas
from names of, 251; Lewis structures
for, 253–260, 255 prob., 256 prob.,
257 prob., 258 prob., 260 prob.; naming, 248–251, 249 prob., 252; shape of
(VSEPR model), 261–262, 263 table,
264 prob., 272 act.; solvation of aqueous solutions of, 491
Molecular formulas, 253, 346–347; of
organic compounds, 746; from percent composition, 346–347, 348–349
prob.
Molecular manufacturing, 107
Molecular paleontologist, 849
Molecular shape, 261–262, 263 table,
264 prob., 267–268
Molecular solids, 422, 422 table
Nylon
Molecules, 241; diatomic, 241; shape
of, 261–262, 263 table, 264 prob.,
267–268
Mole fraction, 480 table, 488, 488 prob.
Mole ratios, 371–372, 390 act.
Mole-to-mass stoichiometric conversions, 374, 376, 376 prob.
Mole-to-mole stoichiometric conversions, 373–374, 375 prob.
Monatomic ions, 218; formulas for,
218–219; oxidation number of, 219
Monoclinic unit cells, 421 table, 422 act.
Monomers, 810
Monoprotic acids, 640, 641 table
Monosaccharides, 825 act., 832–833
Montreal Protocol, 20
Moon rocks, oxygen in, 387 act.
Moseley, Henry, 115, 176, 176 table, 184
Mothballs, 428
Motor oil, viscosity of, 417, 418
Multidrug therapy, 389
Multiple covalent bonds, 245–246
Multiplication, 54, 54 prob.
N
Naming conventions: acids, 250–251,
250–251, 252; alcohols, 793; aldehydes, 796; alkenes, 760, 761 prob.;
alkynes, 764; amides, 800; amines, 795;
aromatic compounds, 772–773, 773
prob.; binary molecular compounds,
248–250, 249 prob., 252; branchedchain alkanes, 752–753, 754–755 prob.;
carboxylic acids, 798; cycloalkanes,
756, 756–757 prob.; esters, 799; halocarbons, 788; hydrates, 351; ionic
compounds, 223–224; ions, 222–223;
ketones, 797; oxyanions, 222 table,
222–223; straight-chain alkanes, 751
Nanoparticles, 216 act.
Nanotechnology, 107
Nanotubes, 928
Naphthalene, 772
National Oceanic and Atmospheric
Administration (NOAA), 20, 21 act.
Natural gas, 416, 745, 747
Negatively charged ions. See Anions
Neon, 143, 158 table, 161 table, 185
table, 944, 945
Net ionic equations, 301, 302 prob., 304
prob.
Net ionic redox equations, balancing,
691, 692 prob.
Network solids, 270
Neutralization equations, 659–660
Neutralization reactions, 659–660
Neutral solutions, 636
Neutron activation analysis, 886, 891
Neutrons, 113, 114 table, 119, 969 table
Neutron-to-proton ratio, nuclear stability and, 865, 866
Newlands, John, 175, 176 table
Newton, Sir Isaac, 16
NiCad batteries, 720
Nickel, 919
Night-vision lenses, 930
Nitrate, 221 table
Nitrite, 221 table
Nitrogen, 158 table, 161 table, 195, 932,
933, 934
Nitrogen cryotherapy, 934
Nitrogen-fixation, 462, 934
Nitrogenous bases, 841, 843
Noble gases (Group 18), 180, 183, 184,
185 table, 207, 944–945
Noble-gas notation, 159
Nonane, 751 table
Nonmetals, 180; ions of, 209; periodic
table position, 177; properties of,
196 act.
Nonpolar covalent bonds, 266
Nonpolar molecules, 267–268, 269
Nuclear atomic model, 112–113, 136
Nuclear chain reactions. See Chain
reactions
Nuclear equations, 123, 869, 869 prob.
Nuclear fission, 878–880; chain reactions and, 879–880; nuclear reactors
and, 880–882
Nuclear fusion, 883–884
Nuclear power plants, 878, 880–882
Nuclear reactions, 122; balanced equations representing, 863, 869, 869
prob.; chain reactions, 859 act., 879–
880; chemical reactions vs., 860 table;
induced transmutation, 875–876,
876 prob.; mass defect and binding
energy, 877–878; milestones in understanding, 882–883; nuclear fission,
878–880; nuclear fusion, 883–884;
radioactive decay series, 870; thermonuclear reactions, 883
Nuclear reactors, 878, 880–882
Nuclear stability, 124, 865–866
Nuclear waste, storage of, 882
Nucleic acids, 636, 840–843; DNA,
841–842, 842 act.; RNA, 843
Nucleons, 865
Nucleotides, 840
Nucleus (atomic), 112; discovery of,
112; nuclear model of mass and, 326
act.; size of, 112
Nutritional calories, 518
Nylon, 18, 594, 811
Index 1043
Index
Observation
Phase changes
O
Observation, 13, 13 act.
Oceans: elements in, 901; sequestration
of carbon dioxide in, 505
Octahedral molecular shape, 261, 263
table
Octane, 751, 751 table
Octane rating system, 748–749
Octet rule, 193, 240; exceptions to,
258–259, 260 prob.
Odor, 73, 283
Oil drop experiment, Milikan’s, 109
Oil of wintergreen, 800 act.
Oleic acid, 835
Optical isomers, 768–769
Optical rotation, 769
Orbital diagrams, 158, 158 table, 159
table
Orbitals, 152, 154, 262
Order of operations, algebraic, 954–955,
955 prob.
Ores, 731–732
Organic chemistry, 11 table, 745
Organic compounds, 744–745. See also
Hydrocarbons; carbon-carbon bonds
in, 746; models of, 746; reactions
forming. See Organic reactions
Organic reactions: addition reactions,
804–805; condensation reactions, 801;
dehydration reactions, 803; dehydrogenation reaction, 803; elimination
reactions, 802; oxidation reduction
reactions, 806–807; products of, predict, 807–808; substitution reactions,
790–791
Organosilicon oxide, 239 act.
Orthorhombic unit cell, 421 table, 422
act.
Osmosis, 504
Osmotic pressure, 504
Overall equations, 307
Oxalic acid, 798
Oxidation, 681
Oxidation number, 219, 682; determine,
686, 686 table, 687 prob.; monatomic
ion formulas and, 219; in redox reactions, 688; of various elements, 688
table
Oxidation-number method, 689, 689
table, 690 prob.
Oxidation reduction reactions, 680. See
also Redox reactions
Oxidizing agent, 683
Oxyacids, 250–251, 252
Oxyanions, 222, 223
Oxygen: abundance of, 84; analytical
1044
Index
tests for, 937; atomic properties, 937;
common reactions involving, 936–
937; diatomic, 241; electron configuration and orbital diagram, 158 table;
electron-dot structure, 161 table; in
human body, 195, 623; photosynthesis
and, 846, 912, 938; physical properties, 73 table, 936
Oxygen group (group 16), 184, 207
table, 209 table, 218 table, 243,
936–939
Ozone, 5, 6, 21 act., 938
Ozone depletion, 20–21
Ozone hole, 7, 20–21, 21 act.
Ozone layer, 5–8, 938; chlorofluorocarbons (CFCs) and, 7–8, 20; formation of
ozone in, 6; thinning of, 7, 20, 21 act.
P
PA-457 anti-HIV drug, 389
Pacemakers, 733
Pain receptors, temperature and, 815
Painting restoration, 23
Paint pigments, 919
Paleontologist, 849
Papain, 829
Paper chromatography, 82 act., 83, 269
act.
Paraffin, 270
Paramagnetism, 916, 917
Parent chain, 752
Partial pressure, Dalton’s law of, 408,
409 prob., 410
Particle accelerators, 875
Particle model of light, 141–143
Particles: convert moles to, 322, 323
prob.; convert to moles, 323, 324
prob.; counting, 320–321; mass-tomoles-to-particles conversions, 338,
338–339 prob.; representative, 321
Pascal (Pa), 407
Paschen (infrared) series, 147, 148, 150
act.
Pasteur, Louis, 767
Pauli exclusion principle, 157
Pauling, Linus, 194, 771
Paulings, 194
Pauli, Wolfgang, 157
p-Block elements, 184
Penetrating power, 864; of alpha particles, 862; of beta particles, 863; of
X rays, 864
Penicillin, 18
Pennies: dating by density, 60 act.;
model isotopes with, 120 act.
Pentane, 751, 751 table
Peptide bond, 827–828
Peptides, 828
Percent by mass concentration ratio,
87–88, 480 table
Percent by volume concentration ratio,
480 table, 482, 482 prob.
Percent composition, 341–342; from
chemical formula, 342, 343 prob.;
empirical formula from, 344, 345
prob.; from experimental data,
341–342, 342 act.; molecular formula
from, 346–347, 348–349 prob.
Percent error, 48–49, 49 prob.
Percents, 965; as conversion factors, 44
Percent yield, 386, 386 prob., 388
Perchlorate, 221 table
Perfumes, 770
Periodic law, 176
Periodic table of the elements, 85, 173
act., 174–177, 178–179, 180–181;
atomic radii trends, 187–188, 189
prob.; blocks on, 183–185; boxes on,
177; electron configuration of elements and, 182–185, 186 prob.; electronegativity trends, 194, 265; groups
(families), 177; history of development of, 174–177, 176 table, 184–185;
ionic radii trends, 189–191; ionization
energy trends, 193; model periodic
trends, 193 act.; model trends, 173
act.; nonmetals, 180; periods (rows),
177, 182; predict element properties
from, 180 act.
Periods, periodic table, 85, 177; atomic
radii trends, 188, 189 prob.; electron
configuration, 182 table; ionic radii
trends, 190; ionization energies, 192
table; valence electrons and, 182
Permaganate, 221 table
Perspiration, 426
Petroleum, 747–749, 790
Petroleum technician, 748
PET scans, 888
Pewter, 228 table
pH, 652, 653; acid ionization constant
(K a) from, 656, 657 prob.; of familiar
substances, 652; of household items,
633 act.; ion concentration from, 655,
655 prob.; from ion concentrations,
653 prob., 654 prob.; measurement of,
633 act., 635, 658
Pharmacist, 381
Pharmacy technician, 483
Phase changes, 76–77, 425–430; boiling,
427; condensation, 428; deposition,
429; evaporation, 426–427, 432 act.;
freezing, 428; melting, 425–426; phase
diagrams and, 429–430; six possible
transitions, 425; sublimation, 428;
Index
Phase diagrams
thermochemical equations for, 530–
531, 531 act.; vaporization, 426–427
Phase diagrams, 429–430
Phenanthrene, 772
Phenolthphalein, 658, 662
Phenylalanine, 827 table, 828
pH meters, 637, 658
Phosphate ion structure, 257 prob.
Phosphates, 250
Phospholipases, 838
Phospholipids, 838
Phosphoric acid, 634
Phosphors, 180, 886
Phosphorus, 159 table, 932, 933, 934
Phosphorus trihydride, 264 prob.
Photocopies, 939
Photoelectric effect, 142–143
Photoelectrons. See Electrons
Photons, 143, 143 prob.
Photosynthesis, 846, 912, 938
Photovoltaic cells, 142, 522
pH paper, 633 act., 635, 658
pH scale, 636
Physical changes, 76–77
Physical chemistry, 11 table
Physical constants, 969 table
Physical properties, 73; of common
substances, 73 table; extensive, 73;
intensive, 73, 77; mineral identification by, 73; observe, 74–75
Pi bond, 245–246
Pie charts, 55
Planck, Max, 141–142
Planck’s constant, 142, 969 table
Plants: hydrogen cyanide in, 647; nitrogen-fixation, 462, 934; photosynthesis, 846, 912, 938; waxes, 838
Plasma, 71, 417
Plastics, 789, 802, 810–811, 814
Plastic viscosity, 431
Platinum, 918
Plum pudding model, 110
pOH, 652, 653, 654 prob.
Polar covalent bonds, 266, 267–268
Polarized light, 769
Polar molecules, 267–268; chromatograms and, 269 act.; ideal gas law and,
459; shape of, 267–268; solubility of,
268
Polonium, 882, 936, 937
Polyacrylonitrile, 812 table
Polyatomic ions, 221, 970 table;
common, 221 table; formulas for, 221,
222 prob.; Lewis structures, 256, 257
prob.; naming, 222–223
Polycarbonate, 809
Polycyclic aromatic hydrocarbons
(PAHs), 807
Practice Problems
Polyethylene, 762, 810, 811
Polyethylene terephthalate (PET), 810,
812 table
Polymer chemist, 813
Polymer chemistry, 11 table
Polymerization reactions, 810–811
Polymers, 809–814; antimicrobial
properties of, 216 act.; common, 812
table; milestones in understanding,
810–811; properties of, 813; reactions
forming, 810–811; recycling of, 814;
synthetic, 809
Polymethyl methacrylate, 812 table
Polypeptides, 828
Polyphenols, 662
Polypropylene, 812 table
Polyprotic acids, 640–641, 641 table
Polysaccharides, 833–834
Polyurethane, 812 table
Polyvinyl chloride (PVC), 812 table
Polyvinylidene chloride, 812 table
Popcorn, 466 act.
p orbitals, 154
Positive ions. See Cations
Positron, 868
Positron emission, 868, 868 table, 888
Positron emission transaxial tomography (PET), 888
Potassium, 86, 117, 136, 906, 907
Potential energy, 516–517
Potter, 682
Pottery kilns, 461
Practice Problems: acid-metal reactions,
635 prob.; acids, naming, 251 prob.;
aromatic compounds, naming, 773
prob.; atomic mass, 121 prob.; atomic
number, 116 prob., 118 prob.; atomic
radii trends, 189 prob.; atoms-tomass conversions, 331 prob.; average
reaction rates, 563 prob.; balanced
chemical equations, interpret, 371
prob.; binary molecular compounds,
naming, 249 prob.; Boyle’s law (pressure and volume relationship),
443 prob.; branched-chain alkanes,
naming, 755 prob.; branched-chain
alkenes, naming, 761 prob.; calorimetry data, 525 prob.; Charles’s law,
446 prob.; chemical equations, write,
287 prob.; chemical reactions, classify, 291 prob.; combined gas law,
450 prob.; conjugate acid-base pairs,
640 prob.; cycloalkanes, naming, 757
prob.; decomposition reactions, 292
prob.; dilute stock solutions, 486 prob.;
double-replacement reactions, 297
prob.; electron configuration and the
periodic table, 186 prob.; electron-
dot structures, 162 prob.; empirical
formula from mass data, 350 prob.;
empirical formula from percent composition, 346 prob.; energy released
by reaction, 532 prob.; energy units,
convert, 519 prob.; equilibrium concentrations, 613 prob.; equilibrium
constant expressions, 601 prob., 603
prob.; equilibrium constants, value of,
605 prob.; expanded octets, 260 prob.;
formulas from names of molecular
compounds, 251 prob.; freezing and
boiling point depressions, 503 prob.;
gas-forming reactions, 306 prob.;
Gay-Lussac’s law, 448 prob.; Graham’s
law of effusion, 405 prob.; groundstate electron configuration, 160
prob.; half-cell potentials, 716 prob.;
half-reaction method, 695 prob.; halocarbons, naming, 788 prob.; Henry’s
law, 497 prob.; Hess’s law, 537 prob.;
hydrate, determine formula for, 353
prob.; ideal gas law, 455 prob.; induced
transmutation, 876 prob.; instantaneous reaction rates, 579 prob.; ion
concentrations, 617 prob.; ion concentrations from pH, 655 prob.; ionic
compound formation, 212 prob.; ionic
compounds, formulas for, 221 prob.,
222 prob.; ionic compounds, naming, 223 prob.; ionization constant of
water, 651 prob.; ionization equations
and base ionization constants, 649
prob.; isotopes, amount of remaining, 872 prob.; law of conservation of
mass, 78 prob.; law of definite proportions, 88 prob.; Lewis structures,
244 prob., 255 prob., 256 prob., 257
prob., 258 prob., 260 prob.; limiting
reactant, determine, 383 prob.; mass
number, 118 prob.; mass-to-mass
stoichiometry, 377 prob.; mass-tomole conversions, 329 prob.; massto-mole conversions for compounds,
337 prob.; mass-to-moles-to-particles
conversions, 339 prob.; molality, 487
prob.; molarity, 483 prob.; molarity
from titration data, 664 prob.; molar
mass and, 335 prob.; molar solubility,
616 prob.; molar solutions, 484 prob.;
molar volume, 453 prob.; molecular
shape, 264 prob.; mole fraction,
488 prob.; mole ratios, 372 prob.;
mole relationships from a chemical
formula, 335 prob.; moles, convert
to particles, 323 prob.; mole-to-mass
conversions, 328 prob.; mole-to-mass
conversions for compounds, 336
Index 1045
Index
Precipitates
prob.; mole-to-mass stoichiometry,
376 prob.; mole-to-mole stoichiometry, 375 prob.; nuclear equations, balancing, 869 prob.; oxidation number,
687 prob.; oxidation-number method,
690 prob., 692 prob.; oxidation-reduction reactions, 685 prob.; partial
pressure of a gas, 409 prob.; particles,
convert to moles, 324 prob.; percent
by mass, 481 prob.; percent by volume, 482 prob.; percent composition,
344 prob.; percent yield, 387 prob.;
pH, acid dissociation constant from,
657 prob.; pH from [H +], 653 prob.;
photon, energy of, 143 prob.; pOH
and pH from [OH -], 654 prob.; precipitate-forming reactions, 302 prob.;
precipitates, predicting, 619 prob.; rate
laws, 577 prob.; reaction spontaneity, 545 prob., 548 prob.; resonance
structures, 258 prob.; salt hydrolysis,
665 prob.; single-replacement reactions, 295 prob.; skeleton equations,
284 prob.; specific heat, 521 prob.;
standard enthalpies of formation, 541
prob.; volume-mass gas stoichiometry,
463 prob.; volume-volume problems,
461 prob.; water-forming reactions,
304 prob.; wavelength, 140 prob.
Precipitates, 296; determine with K sp,
618, 619 prob.; reactions in aqueous
solutions forming, 300, 301 act., 302
prob.
Precipitation, 428
Precision, 47–48, 50
Pressure, 406; chemical equilibrium
and, 608–609; combined gas law and,
449, 450 prob.; extreme and ideal gas
law, 458, 466 act.; gas temperature and
(Gay-Lussac’s law), 447, 448 prob.; gas
volume and (Boyle’s law), 442–443,
443 prob., 444 act.; partial pressure
of a gas, 408, 409 prob., 410; popcorn
popping and, 466 act.; solubility of
gases and (Henry’s law), 495–496, 497
prob.; units of, 407, 407 table
Primary batteries, 720
Principle energy levels, 153, 154
Principle quantum numbers (n), 153
Problem-Solving Labs: Bohr model of
the atom, 150 act.; Boyle’s law and
breathing, 444 act.; decomposition
rate, variation in, 566 act.; DNA
replication, 842 act.; elements, predict properties of by periodic table
position, 180 act.; fluoride ions and
prevention of tooth decay, 622 act.;
francium, predict properties of, 180
1046 Index
Rate constant
act.; gas, release of compressed, 72
act.; identify an unknown by mass
and volume, 50 act.; molar enthalpy
(heat) of vaporization, 531 act.; molar
mass, Avogadro’s number, and atomic
nucleus, 326 act.; pH of blood, 668
act.; radiation exposure, distance and,
890 act.; rate of decomposition of
dinitrogen pentoxide, 566 act.
Problem-Solving Strategies: groundstate electron configuration, 160;
halogens, predict reactivity of, 294
act.; ideal gas law, derive other laws
from, 458; ionic compound naming
flowchart, 224; Lewis structures, 254;
mass defect and binding energy, 878;
molarity from titration, 663; molar
solubility, streamlining calculation
of, 621; potential of voltaic cell, 717;
redox equations, balance, 696; rounding numbers, 52; significant figures,
recognizing, 51; stoichiometry, 374
Products, 77, 283; addition of and
chemical equilibrium, 608; calculating
when reactant is limiting, 380–381,
382–383 prob.; identifying, 92 act.;
predicting, 298, 298 table; removal of
and chemical equilibrium, 608
Propane, 750, 751, 751 table; chemical
equation for, 370 prob.; gas grills and,
375
Propanol, 816 act.
Propene, 759 table
Propyl group, 753 table
Proteins, 826–831; amino acid building blocks, 826–827; denaturation of,
829; enzymes, 826, 829–830; peptide
bonds in, 827–828; polypeptides, 828;
protein hormones, 831; structural
proteins, 831; three-dimensional
structure, 829; transport proteins, 830
Protium, 904
Protons, 113, 114 table, 119, 969 table
Prussian blue, 916
Pseudo-noble gas configurations, 208
PTFE (nonstick coating), 811
Pure covalent bond, 266
Pure research, 17
Pure substances, 70, 87. See also
Substances; compounds. See
Compounds; elements. See Elements;
mixtures of. See Mixtures; physical
properties of, 73
Putrescine, 795
Q
Qualitative data, 13
Quantitative data, 13
Quantized energy, 141–143, 146
Quantum, 141–142
Quantum mechanical model of atom,
149–152
Quantum number (n), 147
Quarks, 111, 114
R
Rad, 889
Radiation, 122; alpha, 123, 124 table,
861, 861 table, 862, 888 table; average
annual exposure to, 890 table; beta,
123, 124 table, 861, 861 table, 862,
863, 888 table; biological effects of,
888–890, 889 table; detection of, 885–
886; discovery of, 860–861; distance
and, 889 act., 890; dose of, 889–890;
gamma, 124, 861, 861 table, 862, 863,
888 table; intensity of and distance,
889 act., 890; ionizing, 885; medical
uses of, 886–887; neutron activation
analysis, 891; scientific uses of, 886;
types of, 123–124, 859 act., 861 table,
861–864
Radiation-detection tools, 885–886
Radiation therapist, 887
Radiation therapy, 887
Radioactive decay, 122, 861; model, 873
act.; nuclear stability and, 865–866;
radiochemical dating and, 873–874;
rate of, 870–871, 872 prob., 873–874;
transmutation, 865; types of, 866–868,
868 table
Radioactive decay series, 870
Radioactivity, 122. See also Radiation;
detection of, 885–886; discovery of,
860–861, 915
Radiocarbon dating. See Carbon dating
Radiochemical dating, 873–874
Radioisotopes, 861; half-life of,
870–871, 871 table; medical uses of,
887–888; radioactive decay of. See
Radioactive decay; radiochemical dating and, 873–874
Radiotracers, 887
Radium, 882, 910–911, 915
Radium-226, 862
Radon, 944
Radon gas, 915
Rainbows, 138
Rare Earth elements. See f-Block
elements
Rate constant (k), 574
Index
Rate-determining steps
Rate-determining steps, 581–582
Rate laws, 574–576
Rates, reaction. See Reaction rates
Ratios, 964
Reactants, 77, 283; addition of and
chemical equilibrium, 607; calculate
product when limited, 380–381,
382–383 prob.
Reaction mechanisms, 580–582; complex reactions, 580; intermediates,
580; rate-determining steps, 581–582
Reaction order, 575–577; determination
of, 576, 577 prob.; first-order reaction
rate laws and, 575; other-order reaction rate laws and, 575–576
Reaction rate laws. See Rate laws
Reaction rates, 561–567; activation
energy and, 564–566; average rate
of, 560–562, 562 prob.; catalysts and,
571–573; collision theory and, 563,
564; concentration and, 569, 584
act.; decomposition of dinitrogen
pentoxide, 565 act.; factors affecting,
559 act.; inhibitors and, 571; instantaneous, 578–579, 579 prob.; ratedetermining steps, 581–582; rate laws,
574–576; reactivity of reactants and,
566–567; speeding, 559 act.; spontaneity and, 542–545, 566–567; surface
area and, 569–570; temperature and,
570, 571 act.
Reaction spontaneity (∆G), 542–545;
Earth’s geologic processes and, 545;
entropy and, 544–545, 545 prob.; free
energy and, 548 prob.; Gibbs free
energy and, 546–547; reaction rate
and, 566–567
Real-World Chemistry: algal blooms
and phosphates, 250; ammoniated
cattle feed, 601; book preservation
and, 661; cathode ray, 108; chrome
and chromium, 328; clay roofing tiles,
302; enzymes (papain), 829; food
preservation, 571; fuel cells, 722; gas
grills, 375, 461; Gay-Lussac’s law and
pressure cookers, 448; hydrogen cyanide, 647; iron oxidation, 685; kilns,
461; liquid density measurement, 37;
mineral identification, 73; mineral
supplements, 220; perspiration, 426;
photoelectric effect, 142; polycyclic
aromatic hydrocarbons (PAHs), 807;
reef aquariums, 287; saltwater fish
and freezing point depression, 503;
scuba diving and helium, 192; solar
energy, 142; solar fusion, 883; specific
heat, 521; sunscreen, protection from
Sigma bonds
UV radiation, 5; trans-fatty acids, 767;
zinc-plating, 295
Reaumur scale, 451
Recycling, 814
Redox equations, balancing, 679 act.,
689–696; half-reaction method,
693–693, 695 prob.; net ionic redox
equations, 691, 692 prob.; oxidationnumber method, 689, 689 table, 690
prob.; problem-solving flow-chart, 696
Redox reactions, 680–688, 806–807;
bioluminescence, 693; in electrochemistry, 707 act., 708–709, 711;
electronegativity and, 684; electron
transfer and, 680–682; forensics and,
697, 698 act.; identify, 685 prob.;
oxidation, 681; oxidation number,
219, 682, 686, 686 table, 687 prob.,
688; oxidizing agents, 683; reducing
agents, 683; reduction, 681; reversal
of (electrolysis), 728; rust formation,
679 act.; space shuttle launch and, 691
act.; summary of, 683 table; tarnish
removal, 683 act.
Reduction, 681
Reduction agent, 683
Reduction potential, 711
Reef aquariums, 287
Refrigerators, CFCs and, 7–8
Rem, 889
Replacement reactions, 293–294, 296–
297; double-replacement, 296–297;
single-replacement, 293–294, 295
prob.
Representative elements, 177, 184, 196
act.
Representative particles, 321; convert
moles to, 322; convert to moles, 323,
323 prob., 324 prob.; mass to moles to
particles conversions, 338, 338–339
prob.
Research: applied, 17; pure, 17
Research chemist, 185
Resonance, 258
Reversible reactions, 595
Rhombohedral unit cells, 421 table, 422
act.
RNA (ribonucleic acid), 843
Roentgen, Wilhelm, 860, 889
Rubber, 762
Rubidium, 906, 907
Rusting, 74, 77, 724–727; observe, 726
act.; prevent, 685, 725–727; redox
reactions in, 679 act., 724–725; as
spontaneous process, 542–543
Rutherford, Ernest, 110, 111–112, 112–
113, 862, 875
Rutherfordium, 185
S
Saccharin, 810
Sacrificial anodes, 726
Safety, lab, 18, 19 table
Safety matches, 934
Salicylaldehyde, 796 table, 797
Salt bridges, 709
Salt hydrolysis, 665
Saltwater fish, 503
Saponification, 837, 837 act.
Saturated fats, 805
Saturated fatty acids, 835–836
Saturated hydrocarbons, 746
Saturated solutions, 493
s-Block elements, 184
Scandium, 185
Scanning tunneling microscope (STM),
107, 213
Schrodinger wave equation, 152
Science writer, 604
Scientific investigations. See also
CHEMLABs; Data Analysis Labs;
MiniLabs; Problem-Solving Labs;
accidental discoveries and, 18; applied
research, 17; pure research, 17; safety
and, 18; scientific method and, 12–16
Scientific law, 16
Scientific methods, 12–16; conclusion,
15; experiments, 14–15; hypothesis,
13; observation, 13, 13 act.; scientific
law and, 16; theory and, 16
Scientific notation, 40–43, 946–948;
addition and subtraction and, 41
prob., 42, 948; multiplication and
division and, 43, 43 prob., 948
Scintillation counter, 886
Scuba diving, helium and, 192
Seaborg, Glenn, 921
Second (s), 33
Secondary batteries, 720
Second ionization energy, 192
Second law of thermodynamics, 543,
546
Second period elements, 158 table,
161 table
Seed crystal, 495
Selenium, 936, 937, 939
Semimetals. See Metalloids
Sensitive teeth, 914
Serine, 827 table
Sex hormones, 839
Shape-memory alloys, 213
Ships, corrosion of hulls of, 725–726
Side chains, amino acid, 827
Sigma bonds, 244, 245
Index 1047
Index
Significant figures
Significant figures, 50–51, 51 prob.,
949–950, 951 prob.; adding and subtracting, 53, 53 prob., 952, 953 prob.;
atomic mass values and, 328; multiplication and division and, 54, 54 prob.,
952; rounding numbers and, 52, 952
Silicates, 214
Silicon, 84, 159 table, 181, 926–927, 929
Silicon computer chips, 929
Silicon dioxide, 929
Silver, 226 table, 920
Silver batteries, 719
Silver nitrate flame test, 92 act.
Simple sugars. See Monosaccharides
Single covalent bonds, 242–244
Single-replacement reactions, 293–294,
295 prob.; metal replaces hydrogen,
293; metal replaces metal, 293–294,
310 act.; nonmetal replaces nonmetal,
294, 294 act.
SI units, 32–37, 958 table
Skeleton equations, 284
Slime, 785 act.
Slope, line, 57, 962
Soap, 419, 634, 837 act.
Sodium, 136, 159, 159 table, 177, 906,
907, 908, 913
Sodium bicarbonate, 308
Sodium carbonate, 378 act.
Sodium chloride, 70, 73 table, 85, 205
act., 210, 211 table, 213, 729
Sodium hypochlorite, 683
Sodium perborate, 924
Sodium/potassium ATPase, 909
Sodium-potassium pump, 909
Soft water, 24 act.
Solar energy, 142, 354, 522
Solar fusion, 883
Solidification, 76. See also Freezing
Solids, 71, 420–424; amorphous, 424;
crystalline, 420–423, 422 act., 422
table; density of, 39 act., 420; molecular, 422
Solubility, 479, 493–497; factors affecting, 492–494, 506 act.; of gases,
495–496, 497 prob.; guidelines for,
975 table; of polar molecules, 268;
saturated solutions and, 493; supersaturated solutions and, 494–495;
temperature and, 493–494, 494 table;
unsaturated solutions and, 493
Solubility product constant (K sp),
614–619, 969 table; compare, 624 act.;
ion concentrations from, 617, 617
prob., 618–619; ion product constant
(Q sp) and, 618–619, 619 prob.; molar
solubility from, 615–617, 616 prob.;
predicting precipitates, 618
1048 Index
Strong electrolytes
Solubility product constant expressions, 614–619; ion concentrations
from, 617, 618–619, 619 prob.; molar
solubility from, 616 prob., 616–617;
predicting precipitates, 618, 619 prob.;
writing, 614–615
Soluble, 479
Solutes, 299
Solution concentration. See
Concentration
Solution formation. See Solvation
Solutions, 81, 478–479; acidic. See
Acidic solutions; aqueous. See
Aqueous solutions; basic. See Basic
solutions; boiling point elevation,
500–501, 503 prob.; concentration,
475 act., 480–488; dilution of, 485,
486 prob.; electrolytes and colligative properties, 498–499; formation
(solvation), 489–492; freezing point
depression, 501–502, 502 act., 503
prob.; heat of solution, 475 act.,
492; milestones in understanding,
490–491; molar. See Molar solutions;
neutral, 636; osmotic pressure and,
504; saturated, 493; solubility and. See
Solubility; supersaturated, 494–495;
types of, 81 table, 479 table; unsaturated, 493; vapor pressure lowering
and, 499–500
Solution systems, 81, 81 table
Solvation, 489–492; aqueous solutions
of ionic compounds, 490; aqueous
solutions of molecular compounds,
491; factors affecting, 492–494, 506
act.; heat of solution, 475 act., 492;
“like dissolves like”, 489
Solvents, 299
s orbitals, 154
Space-filling molecular model, 253, 746
Space shuttle, 691 act., 722
Space telescopes, 912
Spandex, 811
Species, 693
Specific heat, 519–520, 522, 976 table;
calorimetry and, 523–524, 525 prob.,
526 act.; heat absorbed, calculate, 520,
521 prob.; heat released, calculate,
520; solar energy and, 522; of various
substances, 520 table
Specific rate constant (k), 574
Spectator ions, 301
Spectroscopist, 139
Speed of light (c), 137, 969 table
Spontaneous processes, 542. See also
Reaction spontaneity (∆G)
Spontaneity, reaction rate and. See
Reaction spontaneity (∆G)
Square root, 949
Stainless steel, 228 table
Standard enthalpy (heat) of formation,
537–541, 538 table, 540 prob.
Standard hydrogen electrode, 711
Standardized Test Practice, 28–29,
66–67, 98–99, 132–133, 170–171,
202–203, 236–237, 278–279, 316–317,
364–365, 398–399, 438–439, 472–473,
512–513, 556–557, 590–591, 630–631,
676–677, 704–705, 740–741, 782–783,
822–823, 856–857, 898–899
Standard reduction potentials, 712;
applications of, 716; calculate, 713–
714, 715 prob.; determine, 712, 712
table; measure, 734 act.
Standard temperature and pressure
(STP), 452
Starch, 834
States of matter, 71–72; gases, 72, 72
act., 402–410; liquids, 71, 401 act.,
415–419; milestones in understanding, 416–417; phase changes, 76–77,
425–430; solids, 71, 420–424; summarize information on, 401 act.
Stationary phase, chromatography, 83
Stearic acid, 835
Steel, 227, 227 act.
Stereoisomers, 766. See also Optical
isomers
Sterling silver, 228 table
Steroids, 839
Steroid toxins, 839
Stock solutions, dilution of, 485, 486
prob.
Stoichiometry, 368–378; actual yield
and, 385; baking soda decomposition,
378 act.; interpret chemical equations, 370 prob.; mass-to-mass conversions, 377, 377 prob.; mole ratios
and, 371–372, 390 act.; mole-to-mass
conversions, 376, 376 prob.; moleto-mole conversions, 373–374, 375
prob.; particle and mole relationships
and, 368–369; percent yield and, 386,
386 prob., 388; problem-solving flow
chart, 374; product, calculate when
reactant is limiting, 380–381, 382–383
prob.; reactions involving gases. See
Gas stoichiometry; theoretical yield
and, 385; titration and. See Titration
Storage batteries, 720
Straight-chain alkanes, 750–751
Stratosphere, 5
Straussman, Fritz, 111
Strong acids, 644, 656
Strong bases, 648, 656
Strong electrolytes, 498
Index
Strong nuclear force
Strong nuclear force, 865
Strontium, 186 prob., 910–911, 913, 914
Strontium-90, 870, 871 table
Strontium carbonate, 913
Strontium chloride, 914
Structural formulas, 253, 253, 746, 751
Structural isomers, 765
Structural proteins, 831
Subatomic particles, 114 table, 119 table
Sublimation, 83, 428
Suboctets, 259
Substances, 5, 70
Substituent groups, 752
Substituted cycloalkanes, naming, 756,
756–757 prob.
Substituted hydrocarbons: alcohols,
792–793; aldehydes, 796–797; amides,
800; amines, 795; carboxylic acids,
798; chemical reactions involving. See
Organic reactions; crosslinks (make
slime), 785 act.; esters, 799, 800 act.;
ethers, 794; functional groups, 785
act., 786, 787 table; halocarbons,
787–791; ketones, 797
Substitutional alloys, 228
Substitution reactions, 790–791
Substrates, 830
Subtraction: scientific notation and, 42;
significant figures and, 53
Sucrose, 73 table, 88, 205 act., 833
Sulfur, 159 table, 195, 936–937, 939
Sulfuric acid, manufacture of, 388, 939
Sunburn, 5
Sunlight, continuous spectrum of, 138
Sunscreen, 5
Sun, solar fusion in, 883
Superacids, 637
Super ball, properties of, 239 act.
Supercritical mass, 880
Supersaturated solutions, 494–495
Surface area: reaction rate and, 569–
570; solvation and, 492
Surface tension, 418–419
Surfactants, 419
Surroundings (thermochemical), 526
Suspensions, 476
Synthesis reactions, 289
System (thermochemical), 526
Systeme International d’Unites. See SI
units
T
Table salt. See Sodium chloride
Tap water, hard and soft, 24 act.
Tarnish removal, 683, 683 act.
Tartaric acid, 767
Tyndall effect
Taste, 262
Taste buds, 262
Television, 108
Tellurium, 936, 937
Temperature, 403; change in as evidence
of chemical reaction, 282; chemical
equilibrium and, 609–610, 611 act.;
combined gas law and, 449, 450 prob.;
enzyme action and, 850 act.; evaporation rate and, 432 act.; extreme and
ideal gas law, 458; gas pressure and
(Gay-Lussac’s law), 447, 448 prob.; gas
volume and (Charles’s Law), 441 act.,
444–445, 446 prob.; pain receptors
and, 815; reaction rate and, 570, 571
act., 583; solubility and, 493–494, 494
table; viscosity and, 418
Temperature inversion, 428
Temperature scales, 34–35; convert
between, 34, 35; gas laws and, 451
Tetraethyl lead, 930
Tetragonal unit cell, 421 table, 422 act.
Tetrahedral molecular shape, 261, 263
table
Thallium, 922, 923, 925
Theoretical chemistry, 11 table
Theoretical yield, 385
Theory, 16
Thermal conductivity, 226
Thermochemical equations, 529–533;
for changes of state, 530–531, 531
act.; Hess’s law, 534–536, 536 prob.;
standard enthalpy (heat) of formation,
537–541, 540 prob.; writing, 529
Thermochemical universe, 526, 546
Thermochemistry, 523–528; combustion reactions, 532 prob., 533; enthalpy
and enthalpy changes, 526–528;
enthalpy (heat) of reaction, 527–528;
Hess’s law, 534–536, 536 prob.; molar
enthalpy (heat) of fusion, 530–531;
molar enthalpy (heat) of vaporization,
530; phase changes and, 530–531; surroundings, 526; systems, 526; thermochemical equations, 529–533
Thermocouples, 34
Thermodynamics, second law of, 543
Thermoluminescent dosimeter (TLD),
885
Thermonuclear reactions, 883
Thermoplastic polymers, 813
Thermosetting polymers, 813
Third ionization energy, 192
Third period elements, 159 table
Thixotropic substances, 476
Thomson, J. J., 108–109, 110, 212
Thomson, William (Lord Kelvin), 35
Thorium, 921
Three Mile Island, 880, 883
Thymine (T), 841
Time, 33
Tin, 226 table, 926–927, 930
Tinplate, 930
Titanium, 180, 181, 228, 918, 919
Titrant, 661
Titration, 660–663; acid-base indicators and, 662, 663; end point of, 663;
molarity from, 663, 664 prob., 670
act.; steps in, 661
Tokamak reactor, 884
Tolerances, 49
Toluene, 774
Tools, zinc plating of, 295
Tooth decay, fluoride and, 622 act.
Torricelli, Evangelista, 406
Touch sensors, 920
Toxicologist, 59
Toxicology, 59
Trace elements, 195
Transactinide elements, 185
Trans-fatty acids, 767
trans- isomers, 766
Transition elements, 177, 916–921;
analytical tests for, 917; applications
of, 918–921; atomic properties, 917;
common reactions involving, 916;
inner transition metals, 180; locations
of strategic, 918; physical properties
of, 916; transition metals, 180
Transition metal ions, 208, 219, 219
table
Transition metals, 180, 185
Transition state, 564
Transmutation, 865, 875
Transport proteins, 830
Transuranium elements, 876
Triclinic unit cells, 421 table
Triglycerides, 836–837, 837 act.; phospholipids, 838; saponification of, 838,
838 act.
Trigonal bipyramidal molecular shape,
263 table
Trigonal planar molecular shape, 261,
263 table
Trigonal pyramid molecular shape, 261,
263 table
Triple covalent bonds, 245, 246
Triple point, 429
Tritium, 904
Troposphere, 5
Tungsten, 226, 918
Turbidity, 478 act.
Tyndall effect, 478, 478 act.
Index 1049
Index
Ultraviolet radiation
U
Ultraviolet radiation: overexposure to,
damage from, 5; ozone layer and, 5, 6
Ultraviolet (Lyman) series, 147, 150 act.
Unbalanced forces, 597
Unit cell, 421, 421 table, 422 act.
Units, 32–37; base SI, 33–35; converting
between, 957–958, 958 prob.; derived
SI, 35–37; English, 32
Universe (thermochemical), 526, 546
Unsaturated fatty acids, 835–836
Unsaturated hydrocarbons, 746
Unsaturated solutions, 493
Ununquadium, 185
Uranium-235, 878–879, 880
Uranium-238, 863, 880
Urea, 800
UV-B radiation, 5
V
Valence electrons, 161; chemical bonds
and, 207; periodic table trends, 182–
185, 186 prob.
Valence Shell Electron Pair Repulsion
(VSEPR) theory. See VSEPR model
Valine, 827 table
van der Waals forces, 269–270, 271
Vapor, 72
Vaporization, 426–427; molar enthalpy
(heat) of vaporization, 530, 531 act.
See also Boiling, Evaporation
Vapor pressure, 427
Vapor pressure lowering, 499–500
Variables, 14; controlling, 14–15;
dependent, 14, 56; independent, 14
Venom, 838
Vinegar-baking soda volcano, 669
Viscosity, 401 act., 417, 418
Visible (Balmer) series, 147, 148, 150 act.
Visible spectroscopy, 917
Visible spectrum, 138–139
Vitalism, 744
Vitamins, 383
Vocabulary margin features: alloy, 227;
anhydrous, 352; aromatic, 771; atom,
103; attain, 243; aufbau, 157; bond,
794; buffer, 667; capacity, 721; cis-, 766;
class, 799; combustion, 290; completion, 599; complex, 845; compound,
300; concentrated, 485; concentration, 561; concept, 113; conceptualize,
845; conduct, 215; conductor, 180;
conform, 642; conjugate, 639; convert,
595; correspond, 711; demonstrate,
547; deposit, 747; derive, 372; disac-
1050
Index
Zinc plating
charide, 833; element, 85; eliminate,
751; environment, 75; evolve, 5; force,
419; formula, 284; gases, 403; generate,
878; homologous, 751; indicators, 663;
initial, 576; investigate, 566; meter, 33;
method, 694; mixture, 81; mole, 321,
456; monosaccharide, 833; neutral,
113; orient, 412; overlap, 244; ozone,
5; percent, 48; period, 159; periodic,
176; phenomenon, 141; polysaccharide, 833; potential, 714; pressure, 495;
product, 381; radiation, 863; random,
544; ratio, 333, 462; recover, 21; reduce,
730; reduction, 681; resonance, 258;
saturated, 494; species, 693; specific,
119; stoichiometry, 369; stress, 607;
structure, 184; sum, 42; system, 543;
trans-, 766; transfer, 219; trigonal planar, 262; unstable, 867; weight, 10
Volt, 710
Volta, Alessandro, 709
Voltaic cell potentials. See
Electrochemical cell potentials
Voltaic cells, 709–711; chemistry of,
710–711; electrochemical cell potentials, 711–714, 715 prob., 716–717,
734 act.; half-cells, 710
Voltaic pile, 709
Volume: chemical equilibrium and,
608–609; combined gas law and, 449,
450 prob.; determine mass of object
from, 38 prob.; gas pressure and
(Boyle’s law), 442–443, 443 prob., 444
act.; gas stoichiometry and, 460–461,
461 prob., 462, 462–463 prob.; gas
temperature and (Charles’ Law), 441
act., 444–445, 446 prob.; identify an
unknown by, 50 act.; SI units for,
35–36
Volumetric analysis, 341
VSEPR model, 261–262, 263 table, 264
prob., 272 act.
W
Warfarin, 59
Water: adhesion and cohesion of, 419;
amphoteric nature of, 639; boiling of,
427, 969 table; capillary action, 419;
changes of state and, 76, 425–428;
chemical properties, 75; condensation
of, 428; covalent bonds in, 240, 243;
density of solid, 420; electrical conductivity of, 205 act.; electrolysis of,
86; evaporation of, 426–427, 432 act.;
formation of in aqueous solutions, 303,
304 prob.; freezing, 428, 969 table; hard
v. soft, 24 act.; history in a glass of,
355; hydration reactions forming, 804;
hydrogen bonds in, 413–414; ion product constant for (K w), 650–651, 651
prob.; law of multiple proportions and,
89; layering of in graduated cylinder,
31 act.; Lewis structure, 243; melting
of, 425–426; phase diagram, 429, 430;
physical properties, 73 table, 75; polarity of, 267–268; as pure substance, 70;
sigma bonds in, 244, 245; solutions of.
See Aqueous solutions; surface tension
of, 419; thermochemistry, 530–531,
531 act.; turbidity and Tyndall effect,
478 act.; vaporization of, 426
Watson, James, 637, 841–842
Wavelength, 137, 140 prob.
Wave mechanical model of the atom.
See Quantum mechanical model of
atom
Wave model of light, 137–139; atomic
emission spectrum and, 144–145;
dual nature of light and, 143
Waves, 137–138; amplitude of, 137;
electromagnetic wave relationship,
137; frequency of, 137; wavelength of,
137, 140 prob.
Waxes, 838
Weak acids, 645, 648 table
Weak bases, 649
Weak electrolytes, 498
Weather balloons, 449
Weather patterns, density of air masses
and, 37
Weight, 9–10
Willstater, Richard, 912
Wohler, Friedrich, 744
Word equations, 284
X
Xenon, 944, 945
X-ray crystallography, 212
X rays, 137, 864, 914
Xylene, 772, 774
Z
Zewail, Ahmed, 581
Zinc, 208, 920
Zinc-carbon dry cells, 718–719
Zinc plating, 295
Photo Credits
Cover SPL/Photo Researchers; iv (t)courtesy of Thandi Buthelezi, (tc)courtesy of Laurel
Dingrando, (bc)courtesy of Nicholas Hainen, (b)courtesy of Dinah Zike; 2 (t)Ted Kinsman/
Science Photo Library/Photo Researchers, (c)Beateworks Inc./Alamy, (b)Daniel Sambraus/
Photo Researchers, (bkgd)BL Images Ltd/Alamy; 3 Tom Pantages; 4 (l)STScI/NASA/CORBIS,
(r)Atlantide Phototravel/CORBIS; 5 CORBIS; 6 David Hay Jones/Science Photo Library/Photo
Researchers; 7 NASA/Photo Researchers; 9 David Young-Wolff/PhotoEdit; 10 (l)AFP/Getty
Images, (r)NASA Ames Research Center/Photo Researchers; 13 Art Vandalay/Getty Images;
14 (t)Matt Meadows, (b)Martyn F. Chillmaid/Science Photo Library/Photo Researchers; 15
Chuck Bryan/epa/CORBIS; 17 Hank Morgan/Science Photo Library/Photo Researchers; 18
(l)Charles D. Winters/Photo Researchers, (r)Dr Jeremy Burgess/Science Photo Library/Photo
Researchers; 19 Matt Meadows; 21 NASA/Science Photo Library/Photo Researchers; 22
(l)Philippe Psaila/Science Photo Library/Photo Researchers, (r)Eye Of Science/Science Photo
Library/Photo Researchers; 23 (tl)The Andy Warhol Foundation, Inc./Art Resource, NY,
(tr)courtesy of Sharon Miller/NASA; 26 STScI/NASA/CORBIS; 30 Photri/T.Sanders; 31 Matt
Meadows; 32 (l)Rhoda Peacher, (r)Janet Horton Photography; 34 Robert Rathe; 37 (t)Matt
Meadows, (b)B. Runk/S. Schoenberger/Grant Heilman Photography; 40 The Hope Diamond/
Smithsonian Institution, Washington DC/The Bridgeman Art Library; 42 Ed Young/CORBIS; 44
CORBIS; 49 Chris Gibson/Alamy; 52 Matt Meadows; 59 Jonathan Nourok/PhotoEdit; 68 Magnus
Hjorleifsson/Getty Images; 70 (l)Luca Trovato/Getty Images, (r)Thomas Raupach/Peter Arnold,
Inc.; 71 (t)Michael Newman/PhotoEdit, (b)Colin Young-Wolff/PhotoEdit; 72 (t)Richard T.
Nowitz/CORBIS, (b)Spencer Grant/PhotoEdit; 73 (l)Sydney James/Getty Images, (r)Scientifica/
Visuals Unlimited; 74 (l)Gibson Stock Photography, (r)Richard Megna, Fundamental
Photography, NYC; 75 British Antarctic Survey/Science Photo Library/Photo Researchers; 76
(l)Ilianski/Alamy, (r)Design Pics Inc./Alamy; 77 (t)Alan Schein/zefa/CORBIS, (b)Astrid & Hannsfrieder Michler/Science Photo Library/Photo Researchers; 79 (l r)Richard Megna, Fundamental
Photography, NYC; 80 (l)Custom Medical Stock Photo, (r)Envision/CORBIS; 81 Robert Fournier/
Visuals Unlimited; 82 Martyn F. Chillmaid/Photo Researchers; 83 Tony Freeman/PhotoEdit; 84
(l)Barry Mason/Alamy, (c)Tony Freeman/PhotoEdit, (r)AP Photo/Breakthrough Films &
Televisions Inc., Randy Brooke; 85 Science Museum/SSPL/The Image Works; 86 (tl)Andrew
Lambert Photography/Photo Researchers, (tr)Charles D. Winters/Photo Researchers, (b)Larry
Stepanowicz/Fundamental Photography, NYC; 90 Matt Meadows/Peter Arnold, Inc.; 91 Robert
Corry; 100 (inset)Colin Cuthbert/Photo Researchers, (bkgd)CORBIS; 101 Tom Pantages; 102
(l)PhotoLink/Getty Images, (t)Andre Jenny/Alamy, (r)Digital Vision/PunchStock, (b)Sean Daveys/
Australian Picture Library/CORBIS; 103 (t)Science Photo Library/Photo Researchers, (b)The Art
Archive/Museo Nazionale Palazzo Altemps Rome/Dagli Ort; 104 (t)Rischgitz/Getty Images,
(b)Wellcome Library, London; 106 (l)Stockdisc/PunchStock, (r)European Space Agency/Science
Photo Library/Photo Researchers; 107 Philippe Plailly/Science Photo Library/Photo Researchers;
110 SSPL/The Image Works; 111 (l)Bettmann/CORBIS, (r)CERN/Photo Researchers; 113
Research Group of Professor C. J. Zhong/SUNY-Binghamton/Supported by NSF; 117 Dan Peha/
viestiphoto.com; 120 Eitan Simanor/Alamy; 122 (l r)Image Source/Getty Images; 125 Mauro
Fermariello/Science Photo Library/Photo Researchers; 126 Janet Horton Photography; 134
Roger Ressmeyer/CORBIS; 135 Matt Meadows; 136 137 Richard Megna, Fundamental
Photography, NYC; 138 David Parker/Science Photo Library/Photo Researchers; 141 CORBIS;
142 Andrew Fox/CORBIS; 145 (t b)Richard Megna, Fundamental Photography, NYC; 149 John
D. Norman/CORBIS; 153 Alberto Biscaro/Masterfile; 164 Matt Meadows; 172 Jim Sugar/Science
Faction/Getty Images; 173 Tom Pantages; 175 Science Photo Library/Photo Researchers; 177
Courtesy of Dell Inc.; 181 Miyoko Oyashiki/CORBIS Sygma; 185 Lawrence Berkley National
Laboratory; 192 Brandon D. Cole/CORBIS; 195 3D4Medicalcom/Getty Images; 204 CORBIS;
205 Matt Meadows; 206 David Nardini/Getty Images; 208 Richard Megna, Fundamental
Photography, NYC; 210 (l)Andrew Lambert Photography/Photo Researchers, (r)Charles D.
Winters/Photo Researchers; 212 Colin Woods/Alamy; 213 (t)Manfred Kage/Peter Arnold, Inc.,
(c)Cat Gwynn/CORBIS, (b)Philippe Plailly/Science Photo Library/Photo Researchers; 214
(l r)Traudel Sachs/Phototake, (c)Mark A. Schneider/Photo Researchers; 220 Richard Megna,
Fundamental Photography, NYC; 228 Greg Huglin/SuperStock; 229 Macduff Everton/CORBIS;
230 Matt Meadows; 238 BIOS Gilson FranÁois/Peter Arnold, Inc.; 239 Matt Meadows; 240
Charles Krebs/Getty Images; 244 Visual Arts Library (London)/Alamy; 247 Charles O’Rear/
CORBIS; 257 Suzanne Long/Alamy; 261 Matt Meadows; 268 Tony Craddock/Photo Researchers;
270 Scientifica/Visuals Unlimited; 271 (t)Peter Weber/Getty Images, (tcl)Perennou Nuridsany/
Photo Researchers, (cr)Susumu Nishinaga/Photo Researchers, (b bcl)Prof. Kellar Autumn, Lewis
& Clark College; 272 Matt Meadows; 280 (t)Robert Clay/Alamy, (b)Terry W. Eggers/CORBIS,
(bkgd)Woodfall Wild Images/Alamy; 281 Matt Meadows; 282 Charles D. Winters/Photo
Researchers; 283 (l)Mihaela Ninic/Alamy, (c)Phototake Inc./Alamy, (b)VStock/Alamy; 284
Charles D. Winters/Photo Researchers; 287 Marilyn Genter/The Image Works; 290 (t)Josh
Westrich/zefa/CORBIS, (bl)Jeff Vanuga/CORBIS, (br)Mary Evans Picture Library/The Image
Works; 291 (l)Bettmann/CORBIS, (r)David Tipling/Alamy; 292 Courtesy of Mercedes-Benz
Canada; 293 (l)Charles D. Winters/Photo Researchers, (r)Yoav Levy/Phototake; 295 Donald
Pye/Alamy; 296 Andrew Lambert Photography/Photo Researchers; 299 Tom Pantages; 300
303 Matt Meadows; 305 Charles D. Winters/Photo Researchers; 309 (l)Darwin Dale/Photo
Researchers, (r)Eye of Science/Photo Researchers, (bkgd)E.R. Degginger/Animals Animals Earth Scenes; 310 Matt Meadows; 318 (t)Tom Pantages, (b)CORBIS, (bkgd)Tom Stack/Tom
Stack & Associates; 319 320 321 Matt Meadows, 322 CORBIS; 325 326 327 Matt Meadows;
328 Jeff Greenberg/PhotoEdit; 335 Matt Meadows; 341 (l)Comstock Images/Alamy, (r)GECO
UK/Photo Researchers; 346 Tony Freeman/PhotoEdit; 351 Alfred Pasieka/Photo Researchers;
352 354 356 Matt Meadows; 366 Clive Schaupmeyer/AGStockUSA/Science Photo Library/Photo
Researchers; 368 Charles D. Winters/Photo Researchers; 371 Division of Chemical Education,
Inc., American Chemical Society; 373 Richard Megna/Fundamental Photography, NYC; 375
Rhonda Peacher Photography; 379 Aaron Haupt; 380 Chris McElcheran/Masterfile; 384 385
Matt Meadows; 388 Gunter Marx Photography/CORBIS; 389 3D4Medicalcom/Getty Images; 390
Matt Meadows; 400 Richard W. Ramette; 401 Matt Meadows; 402 (l)Steve McCutcheon/Visuals
Unlimited, (c)Lester V. Bergman/CORBIS, (b)Dirk Wiersma/Photo Researchers; 406 H. Turvey/
Photo Researchers; 410 Tom Pantages; 415 Richard Megna/Fundamental Photography, NYC;
416 (t)Gabe Palmer/Alamy, (b)SSPL/The Image Works; 417 (l)Kent Wood/Photo Researchers,
(r)Geoffrey Wheeler/Submission from National Institute of Standards and Technology; 418 Pier
Munstermanu/Foto Nature/Minden Pictures; 419 Richard Megna, Fundamental Photography,
NYC; 420 Daryl Benson/Masterfile; 421 (tl)Charles D. Winters/Science Photo Library/Photo
Researchers, (tc bl br)Mark A. Schneider/Visuals Unlimited, (tr)Jeff J. Daly, Fundamental
Photography, NYC, (bcl)Carl Frank/Science Photo Library/Photo Researchers, (bcr)Roberto De
Gugliemo/Science Photo Library/Photo Researchers; 422 Ross Frid/Visuals Unlimited; 423
Deborah Davis/PhotoEdit; 424 Wally Eberhart/Visuals Unlimited; 426 CORBIS; 428 (t)Richard
Megna, Fundamental Photography, NYC, (b)Alissa Crandall/CORBIS; 431 Peter Scholey/Getty
Images; 432 Matt Meadows; 440 (t)Patrick Ward/CORBIS, (b)Elizabeth Opalenik/CORBIS,
(bkgd)CORBIS; 441 Matt Meadows; 448 Marie-Louise Avery/Alamy; 449 Roger Ressmeyer/
CORBIS; 454 unlike by STOCK4B; 456 Cordelia Malloy/Science Photo Library; 457 Matt
Meadows; 458 (l)Pasquale Sorrentino/Science Photo Library/Photo Researchers, (r)Paul
Broadbent/Alamy Images; 459 (l)Barry Runk/Grant Heilman Photography, (r)Lee Pengelly/
Alamy Images; 461 Thomas R. Fletcher/www.proseandphotos.com; 462 Denny Eilers/Grant
Heilman Photography; 464 Janet Horton Photography; 465 Jason Cohn/Reuters/CORBIS;
466 Matt Meadows; 474 (t)David Papazian/Beateworks/CORBIS, (b)Peter Bowater/Alamy,
(bkgd)Tom Feiler/Masterfile; 475 Matt Meadows; 476 Tom Pantages; 478 Matt Meadows/Peter
Arnold, Inc.; 480 Tom Pantages; 482 AP Photo/L.G. Patterson; 484 Matt Meadows; 485 Richard
Megna, Fundamental Photography, NYC; 489 Matt Meadows; 490 (l)Hulton-Deutsch Collection/
CORBIS, (r)SuperStock; 491 (t)Richard Megna/Fundamental Photography, NYC, (b)courtesy of
DuPont; 492 (t b)Tiercel Photographics, (c)Rhonda Peacher Photography; 493 Andrew Lambert
Photography/Science Photo Library; 494 The McGraw-Hill Companies, Inc./Stephen Frisch,
photographer; 495 Theo Allofs/Visuals Unlimited; 496 (t)Marilyn Genter/The Image Works,
(bl)Rachel Epstein/PhotoEdit, (br)CORBIS; 498 FP, Fundamental Photography, NYC; 501 (l)AP
Photo/Gerry Broome, (r)Tom Pantages; 505 Courtesy of Dr. Christopher L. Sabine, National
Oceanic and Atmospheric Administration; 506 Tom Pantages; 508 Leonard Lessin/Peter Arnold,
Inc.; 511 Courtesy NODC; 514 Purestock/Getty Images; 515 Matt Meadows; 516 (l)Agence
Zoom/Getty Images, (r)Donald Miralle/Getty Images; 517 Alan Sirulnikoff/Photo Researchers;
519 (l)Stephen Chernin/Getty Images, (r)Bob Krist/CORBIS; 521 Matt Meadows; 522 Eurelios/
Phototake; 524 Tom Pantages; 526 Matt Meadows; 527 Tim Fuller; 528 Phil Degginger/Alamy;
533 Janet Horton Photography; 534 (l)CORBIS, (r)Mark A. Schneider/Visuals Unlimited; 537 Will
& Deni McIntyre/Photo Researchers; 539 Jeff Maloney/Getty Images; 542 Ton Koene/Visuals
Unlimited; 544 Dinodia Photo Library/PixtureQuest; 545 Matt Meadows; 546 Jon Arnold
Images/Alamy; 549 (t)AP Photo, (b)Joshua Matz/Grant Heilman Photography; 550 Matt
Meadows; 552 Wesley Hitt/Alamy; 554 Frank Cezus/Getty Images; 554 Marc Muench/Getty
Images; 558 (inset)PhotriMicroStock/J.Greenberg, (bkgd)Transtock Inc/Alamy; 559 Matt
Meadows; 560 (l)Motoring Picture Library/Alamy, (cl)The Car Photo Library, (cr)John Terence
Turner/Taxi/Getty Images, (r)Getty Images; 563 Masterfile Corporation; 567 Charles D. Winters/
Photo Researchers; 568 Tom Pantages; 569 Richard Megna, Fundamental Photography, NYC;
570 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 571 Tom Pantages;
572 (l)Arco Images/Alamy, (r)SuperStock; 574 (l)Mark Thomas/Science Photo Library/Photo
Researchers, (r)Dr Jurgen Scriba/Science Photo Library/Photo Researchers; 581 Stephen Wilkes/
Getty Images; 584 Matt Meadows; 592 Stock Connection Distribution/Alamy; 593 Matt
Meadows; 594 Randall Hyman Photography; 597 Tim Fuller; 598 Oote Boe/Alamy; 600 Martyn
Chillmaid /Photolibrary; 601 Dr. A. Leger/ISM/Phototake; 603 Plowes ProteaPix; 606 Shalom
Ormsby/Blend Images/Getty Images; 608 Getty Images; 610 Richard Megna, Fundamental
Photography, NYC; 612 Tim Brakemeier/dpa/CORBIS; 614 (l)James L. Amos/CORBIS, (r)199698 AccuSoft Inc., All right/Robert Harding World Imagery/CORBIS; 615 Yoav Levy/Phototake;
618 620 Tom Pantages; 623 Mount Everest from the South. AlpineAscents.com Collection;
624 Matt Meadows; 625 David Taylor/Photo Researchers; 627 Matt Meadows; 629 MarieLouise Avery/Alamy; 632 (t b)Tim Fuller, (bkgd)Jane Faircloth/TRANSPARENCIES, Inc.; 633 Matt
Meadows; 634 (l)Pat O’Hara/CORBIS, (r)W. Wayne Lockwood, M.D./CORBIS; 635 (l cl r)Tom
Pantages, (cr)Eric Fowke/PhotoEdit; 636 With kind permission of the University of Edinburgh/
The Bridgeman Art Library; 637 (tl)courtesy of the Archives, California Institue of Technology,
(r)Kazuyoshi Nomachi/CORBIS, (bl)Pasieka/Science Photo Library/Photo Researchers; 638
Spencer Grant/PhotoEdit; 639 Ciaran Griffin/Getty Images; 643 Jim Wark/Peter Arnold, Inc.; 644
645 Matt Meadows; 646 Louise Lister/Getty Images; 652 (t)Ingram Publishing/Alamy, (cl)Sue
Wilson/Alamy, (cr)foodfolio/Alamy, (bl)Eric Fowke/PhotoEdit, (br)Janet Horton Photography;
654 Peter Dean/Grant Heilman Photography; 656 Matt Meadows; 658 (l)Matt Meadows,
(r)Andrew Lambert Photography/Science Photo Library/Photo Researchers; 659 660 661 662
663 664 665 Matt Meadows; 666 Sisse Brimberg/Getty Images; 668 Dr. Dennis Kunkel/Visuals
Unlimited; 669 (l)Charles D. Winters/Photo Researchers, (r)CORBIS; 672 673 674 Matt
Meadows; 678 (inset)Tom Pantages, (bkgd)Jeff Daly/Fundamental Photography, NYC; 679
Tom Pantages; 680 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 681 Tom
Pantages; 682 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 685 Dean
Conger/CORBIS; 686 John Cancalosi/Peter Arnold, Inc.; 689 L. S. Stepanowicz/Visuals Unlimited;
693 E. R. Degginger/Photo Researchers; 694 Tom Pantages; 697 (t)Mikael Karlsson/Alamy,
(b)Adrian Neumann/[email protected]; 700 Tom Pantages; 701 (t)Peticolas/Megna,
Fundamental Photography, NYC, (cl)Tony Freeman/PhotoEdit, (cr)Ian Pilbeam/Alamy; 702 Tom
Pantages; 703 (t)Richard Megna, Fundamental Photography, NYC, (bl br)Yuliya Andrianova/
Echo Ceramics; 706 (l)Tom Pantages, (tr) bobo/Alamy, (br)Khalid Ghani/NHPA, (bkgd)Michael
Durham/Nature Picture Library; 707 Matt Meadows; 709 Royal Institution/SSPL/The Image
Works; 710 (t)Rafael Macia/Photo Researchers, (b)Chuck Franklin/Alamy; 719 (l)Tom Pantages,
(r)Sami Sarkis/Alamy; 721 Stockbyte Platinum/Alamy; 722 (tl)Paul Silverman, Fundamental
Photography, NYC, (tr)Paul Rapson/Science Photo Library/Photo Researchers, (r)Ferruccio/
Alamy; 723 Pasquale Sorrentino/Photo Researchers; 724 Ilianski/Alamy; 725 Roger Ressmeyer/
CORBIS; 726 Geoff Butler; 730 Tom Pantages; 731 Jeff Greenberg/PhotoEdit; 733 Tom
Pantages; 742 Steve Starr/CORBIS; 743 Andrew Lambert Photography/Science Photo Library/
Photo Researchers; 744 Panorama Media (Beijing)Ltd./Alamy; 745 A. T. Willett/Alamy; 748
Keith Dannemiller/Alamy; 749 Rachel Epstein/PhotoEdit; 752 (l)Michael Newman/PhotoEdit,
(r)Janet Horton Photography; 757 Robin Nelson/PhotoEdit; 762 Michael Newman/PhotoEdit;
764 Paul A. Souders/CORBIS; 767 (l)Masterfile, (r)Beth Galton/Getty Images; 770 R H
Productions/Getty Images; 772 (tl)Paul Silverman, Fundamental Photography, NYC, (tr)CORBIS,
(bl)Colin Garratt, Milepost 92½/CORBIS, (br)SSPL/The Image Works; 774 PicturePress/Getty
Images; 775 Peter Titmuss/Alamy; 776 Matt Meadows; 784 (inset)Science Pictures Ltd/Science
Photo Library/Photo Researchers, (bkgd)Waina Cheng/Photolibrary; 785 786 Matt Meadows;
787 David Hoffman Photo Library/Alamy; 789 DK Limited/CORBIS; 790 Keith Wood/Getty
Images; 791 Paul Almasy/CORBIS; 797 Bill Aron/PhotoEdit; 798 Norm Thomas/Photo
Researchers; 799 (l)Masterfile, (r)J.Garcia/photocuisine/CORBIS; 802 Cordelia Molloy/Photo
Researchers; 803 Chuck Franklin/Alamy; 807 (t)NASA/ESA/STScI/Science Photo Library/Photo
Credits 1051
Credits
Researchers, (b)CORBIS; 809 Alan L. Detrick/Science Photo Library/Photo Researchers; 810
(t)Myrleen Ferguson Cate/PhotoEdit, (bl)SSPL/The Image Works, (br)Victor De Schwanberg/
Science Photo Library/Photo Researchers; 811 (l)Bettmann/CORBIS, (r)Danita Delimont/Alamy;
812 (t)Siede Preis/Photodisc Green/Getty Images, (tc)David Young-Wolff/PhotoEdit, (b)CORBIS,
(bc)Dorling Kindersley/Getty Images; 813 David R. Frazier Photolibrary, Inc.; 815 Neil
Emmerson/Robert Harding World Imagery/Getty Images; 816 Matt Meadows; 824 (t)Eye Of
Science/Science Photo Library/Photo Researchers, (c)Dr. Kessel & Dr. Kardon/Tissues & Organs/
Visuals Unlimited, (b)Steve Gschmeissner/Photo Researchers, (bkgd)AK PhotoLibrary/Alamy;
825 Matt Meadows; 826 (l) John Conrad/CORBIS, (r)Ron Niebrugge/Alamy; 829 Janet Horton
Photography; 831 (l)CORBIS, (r)Medical-on-Line/Alamy; 833 IndexStock; 834 (l)Foodcollection.
com/Alamy, (r)Brand X Pictures/Alamy; 835 D. Hurst/Alamy; 836 Michael Newman/PhotoEdit;
838 Pat O’Hara/CORBIS; 839 Joe Mc Donald/Animals Animals/Earth Scenes; 846 (t)CORBIS,
(b)AP Photo/Joe Cavaretta; 847 (t)David Young-Wolff/PhotoEdit, (b)Alex Farnsworth/The Image
Works; 848 Wally McNamee/CORBIS; 849 (t)epa/CORBIS, (b)Mary Schweitzer; 855 CORBIS;
858 (t)ADEAR/RDF/Visuals Unlimited, (c)ISM/Phototake, (b)Science Photo Library/Photo
Researchers, (bkgd)John Terence Turner/Taxi/Getty Images; 859 Comstock Images/Alamy; 860
(l)alwaysstock, LLC/Alamy, (r)Lee C. Coombs/Phototake; 861 C. Powell, P. Fowler & D. Perkins/
Photo Researchers; 864 Reuters/CORBIS; 874 Pixtal/SuperStock; 880 vario images GmbH &
Co.KG/Alamy; 881 Savintsev Fyodor/ITAR-TASS/CORBIS; 882 (t)Catherine Pouedras/Science
Photo Library/Photo Researchers, (bl)Bettmann/CORBIS, (br)John Hopkins Medical Institute/
AIP/Photo Researchers; 883 (t)epa/CORBIS, (b)D. Ducros/Photo Researchers; 884 (t)EFDA-JET/
Photo Researchers; 886 Martin Bond/Science Photo Library/Photo Researchers; 887 Custom
Medical Stock Photo/cmsp.com; 888 (tl)ISM/Phototake, (tr)WDCN/Univ. College London/Photo
Researchers, (b)Mediscan; 891 Johan Reinhard; 901 CORBIS; 904 (l)SPL/Photo Researchers,
(r)Matt Meadows; 905 (t)European Southern Observatory/Photo Researchers, (b)Melanie
Stetson Freeman/The Christian Science Monitor via Getty Images; 906 Richard Megna/
Fundamental Photography, NYC; 907 (l)David Taylor/Science Photo Library/Photo Researchers,
(c cl)Jerry Mason/Science Photo Library/Photo Researchers, (cr r)Tom Pantages, (t)NASA/epa/
1052 Credits
CORBIS, (b)Michael Dalton, Fundamental Photography, NYC; 909 Geoffrey Wheeler;
910 Charles D. Winters/Photo Researchers; 911 (l)Andrew Lambert/Photo Researchers,
(r)Fundamental Photography, NYC; 912 (l)Mark A. Schneider/Photo Researchers, (r)courtesy of
Northrop Grumman Space Technology; 913 (t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/
CORBIS; 914 (t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers; 915 (l)Fred
Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS; 916 Cordelia Molloy/Science
Photo Library/Photo Researchers; 917 Martyn F. Chillmaid/Photo Researchers; 918 Colin
Walton/Alamy; 919 (t)Roger Harris/Photo Researchers, (c)Tom Pantages, (b)Kalicoba/Alamy;
920 (t)The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)Theodore Clutter/Photo
Researchers; 921 (t)ISM/Phototake, (b)Fritz Goro/Time & Life Pictures/Getty Images; 924 (t)Tom
Pantages, (tc)Greg Stott/Masterfile, (b)Toshiba Corporation images, (bc)Eye of Science/Photo
Researchers; 925 (t)Judith Collins/Alamy, (b)Collection CNRI/Phototake; 926 Andrew Lambert
Photography/Science Photo Library/Photo Researchers; 927 David Taylor/Photo Researchers;
928 (tl)Chemical Design/Science Photo Library/Photo Researchers, (tr)Johner Images/Getty
Images, (b)Dr Tim Evans/Science Photo Library/Photo Researchers; 929 Phil Schermeister/
CORBIS; 930 (t)Martin Dohrn/naturepl.com, (c)Goodshoot-Jupiterimages France/Alamy,
(b)Allan H Shoemake/Taxi/Getty Images; 931 Chinch Gryniewicz, Ecoscene/CORBIS; 933 Tom
Pantages; 934 (t)Wally Eberhart/Visuals Unlimited, (c)Dr P. Marazzi/Photo Researchers, (b)Al
Francekevich/CORBIS; 935 (t,bl)Michael Newman/PhotoEdit, (br)Janet Horton; 937 Chuck Place
Photography; 938 (t)Scientifica/Visuals Unlimited, (b)Glow Images/Alamy; 939 Leslie Garland
Picture Library/Alamy; 940 Larry Stepanowicz/Visuals Unlimited; 941 Andrew Lambert
Photography/Science Photo Library/Photo Researchers; 942 Michael Newman/PhotoEdit;
944 (l)Charles D. Winters/Photo Researchers, (r)Ted Kinsman/Science Photo Library/Photo
Researchers; 945 (t)epa/CORBIS, (bl)Phototake Inc./Alamy, (br)Wolfgang Kaehler/CORBIS; 946
(l)Chris Bjornberg/Photo Researchers, (r)Daniele Pellegrini/Photo Researchers; 947 (t)Julian
Baum/Science Photo Library/Photo Researchers, (b)CORBIS; 952 Matt Meadows; 956 ABN Stock
Images/Alamy; 958 Matt Meadows; 959 Bill Aron/PhotoEdit; 964 Matt Meadows; 965 Elena
Rooraid/PhotoEdit; 967 Geoff Butler
Chemistry nline
glencoe.com
Access your Student Edition on the Internet so you don't need
to bring your textbook home every night. You can link to features and get additional practice with these online study tools.
Check out the following features
on your Online Learning Center:
Study Tools
• Interactive Tables
• Interactive Time Line
• Interactive Figures
Study to Go
Multilingual Science Glossary
Extensions
Periodic Table Links
Career Links
Math Handbook
Prescreened Web Links
Section Self-Check Quizzes
Chapter Tests
Standardized Test Practice
Vocabulary PuzzleMaker
Personal Tutor
Online Student Edition
WebQuest Projects
Science Fair Ideas
Internet ChemLabs
For Teachers
Teacher Bulletin Board
Teaching Today, and much more!
About the Photo:
When a piece of sodium metal is dropped into
a flask of bromine gas, the vigorous reaction
produces heat and sparks of light.
Safety Symbols
These safety symbols are used in laboratory and investigations in this book to indicate possible hazards.
Learn the meaning of each symbol and refer to this page often. Remember to wash your hands thoroughly
after completing lab procedures.
SAFETY SYMBOLS
HAZARD
EXAMPLES
PRECAUTION
REMEDY
Special disposal
procedures need to be
followed.
certain chemicals,
living organisms
Do not dispose of these
materials in the sink or
trash can.
Dispose of wastes as
directed by your teacher.
Organisms or other
biological materials that
might be harmful to
humans
bacteria, fungi, blood,
unpreserved tissues, plant
materials
Avoid skin contact with
these materials. Wear
mask or gloves.
Notify your teacher if you
suspect contact with
material. Wash hands
thoroughly.
Objects that can burn
skin by being too cold or
too hot
boiling liquids, hot plates,
dry ice, liquid nitrogen
Use proper protection
when handling.
Go to your teacher for
first aid.
Use of tools or glassware
that can easily puncture or
slice skin
razor blades, pins,
scalpels, pointed tools,
dissecting probes,
broken glass
Practice common-sense
behavior and follow
guidelines for use of
the tool.
Go to your teacher for
first aid.
Possible danger to
respiratory tract from
fumes
ammonia, acetone, nail
polish remover, heated
sulfur, moth balls
Make sure there is good
ventilation. Never smell
fumes directly. Wear a
mask.
Leave foul area and
notify your teacher
immediately.
Possible danger from
electrical shock or burn
improper grounding, liquid
spills, short circuits,
exposed wires
Double-check setup with
teacher. Check condition
of wires and apparatus.
Do not attempt to fix
electrical problems. Notify
your teacher immediately.
Substances that can
irritate the skin or mucous
membranes of the
respiratory tract
pollen, moth balls, steel
Wear dust mask and
wool, fiberglass, potassium gloves. Practice extra care
permanganate
when handling these
materials.
Chemicals that can react
with and destroy tissue
and other materials
bleaches such as
hydrogen peroxide; acids
such as sulfuric acid,
hydrochloric acid; bases
such as ammonia,
sodium hydroxide
Wear goggles, gloves,
and an apron.
Immediately flush the
affected area with water
and notify your teacher.
TOXIC
Substance may be
poisonous if touched,
inhaled, or swallowed.
mercury, many metal
compounds, iodine,
poinsettia plant parts
Follow your teacher’s
instructions.
Always wash hands
thoroughly after use.
Go to your teacher for
first aid.
FLAMMABLE
Open flame may ignite
flammable chemicals,
loose clothing, or hair.
alcohol, kerosene,
potassium permanganate,
hair, clothing
Avoid open flames and
heat when using
flammable chemicals.
Notify your teacher
immediately. Use fire
safety equipment if
applicable.
OPEN FLAME
Open flame in use, may
cause fire.
hair, clothing, paper,
synthetic materials
Tie back hair and loose
clothing. Follow teacher's
instructions on lighting
and extinguishing flames.
Always wash hands
thoroughly after use.
Go to your teacher for
first aid.
DISPOSAL
BIOLOGICAL
EXTREME
TEMPERATURE
SHARP
OBJECT
FUME
ELECTRICAL
IRRITANT
CHEMICAL
Eye Safety
Proper eye
protection should
be worn at all
times by anyone
performing or
observing science
activities.
Clothing
Protection
Animal
Safety
This symbol
appears when substances could stain
or burn clothing.
This symbol
appears when
safety of animals
and students
must be ensured.
Go to your teacher for
first aid.
Radioactivity
Handwashing
This symbol
appears when
radioactive
materials are used.
After the lab, wash
hands with soap
and water before
removing goggles
PERIODIC TABLE OF THE ELEMENTS
1
1
Hydrogen
1
Atomic number
1
Symbol
H
2
H
2
3
4
5
6
7
Lithium
3
Liquid
State of
matter
Solid
Synthetic
1.008
Atomic mass
1.008
Gas
Hydrogen
Element
Beryllium
4
Li
Be
6.941
9.012
Sodium
11
Magnesium
12
Na
Mg
22.990
24.305
Potassium
19
Calcium
20
3
Scandium
21
4
Titanium
22
5
Vanadium
23
6
7
Chromium
24
Manganese
25
8
Iron
26
9
Cobalt
27
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
39.098
40.078
44.956
47.867
50.942
51.996
54.938
55.847
58.933
Rubidium
37
Strontium
38
Yttrium
39
Zirconium
40
Niobium
41
Ruthenium
44
Rhodium
45
Molybdenum Technetium
43
42
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
85.468
87.62
88.906
91.224
92.906
95.94
(98)
101.07
102.906
Cesium
55
Barium
56
Lanthanum
57
Hafnium
72
Tantalum
73
Tungsten
74
Rhenium
75
Osmium
76
Iridium
77
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
132.905
137.327
138.905
178.49
180.948
183.84
186.207
190.23
192.217
Francium
87
Radium
88
Actinium
89
Rutherfordium
104
Dubnium
105
Seaborgium
106
Bohrium
107
Hassium
108
Meitnerium
109
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Mt
(223)
(226)
(227)
(261)
(262)
(266)
(264)
(277)
(268)
The number in parentheses is the mass number of the longest lived isotope
for that element.
Lanthanide series
Actinide series
Cerium
58
Praseodymium Neodymium
59
60
Promethium
61
Samarium
62
Europium
63
Ce
Pr
Nd
Pm
Sm
Eu
140.115
140.908
144.242
(145)
150.36
151.965
Thorium
90
Protactinium
91
Uranium
92
Neptunium
93
Plutonium
94
Americium
95
Th
Pa
U
Np
Pu
Am
232.038
231.036
238.029
(237)
(244)
(243)
Metal
18
Metalloid
Nonmetal
Recently
observed
13
11
Nickel
28
Copper
29
15
16
17
He
4.003
Boron
5
10
14
Helium
2
12
Zinc
30
Carbon
6
Nitrogen
7
Oxygen
8
Fluorine
9
Neon
10
B
C
N
O
F
Ne
10.811
12.011
14.007
15.999
18.998
20.180
Aluminum
13
Silicon
14
Phosphorus
15
Sulfur
16
Chlorine
17
Argon
18
Al
Si
P
S
Cl
Ar
26.982
28.086
30.974
32.066
35.453
39.948
Gallium
31
Germanium
32
Arsenic
33
Selenium
34
Bromine
35
Krypton
36
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
58.693
63.546
65.39
69.723
72.61
74.922
78.96
79.904
83.80
Palladium
46
Silver
47
Cadmium
48
Indium
49
Tin
50
Antimony
51
Tellurium
52
Iodine
53
Xenon
54
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
106.42
107.868
112.411
114.82
118.710
121.757
127.60
126.904
131.290
Platinum
78
Gold
79
Mercury
80
Thallium
81
Lead
82
Bismuth
83
Polonium
84
Astatine
85
Radon
86
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
195.08
196.967
200.59
204.383
207.2
208.980
208.982
209.987
222.018
Darmstadtium Roentgenium
111
110
Ds
Rg
(281)
(272)
Ununbium
112
* Uub
(285)
Ununtrium Ununquadium Ununpentium Ununhexium
113
114
115
116
* Uut
* Uuq
* Uup
* Uuh
(284)
(289)
(288)
(291)
Ununoctium
118
* Uuo
(294)
names and symbols for elements 112, 113, 114, 115, 116, and 118 are temporary. Final names will be
*The
selected when the elements’ discoveries are verified.
Gadolinium
64
Terbium
65
Dysprosium
66
Holmium
67
Erbium
68
Thulium
69
Ytterbium
70
Lutetium
71
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
157.25
158.925
162.50
164.930
167.259
168.934
173.04
174.967
Curium
96
Berkelium
97
Californium
98
Einsteinium
99
Fermium
100
Mendelevium
101
Nobelium
102
Lawrencium
103
Cm
Bk
Cf
Es
Fm
Md
No
Lr
(247)
(247)
(251)
(252)
(257)
(258)
(259)
(262)

Documentos relacionados