UNIVERSIDAD NACIONAL DE MAR DEL PLATA Facultad de

Transcripción

UNIVERSIDAD NACIONAL DE MAR DEL PLATA Facultad de
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 1
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
1- OBJETIVOS:
a) Caracterizar los sistemas intensivos de producción de plantas hortícolas en el área de
influencia de la Facultad de Ciencias Agrarias (U.N.M.P.).
b) Discutir los componentes y la formulación de diferentes propuestas productivas en
emprendimientos hortícolas y ornamentales a través de un enfoque ecofisiológico.
2- CONTENIDOS MÍNIMOS:
a) Describir la tecnología de manejo en emprendimientos hortícolas a partir de sus contenidos
conceptuales.
b) Describir las variables ecofisiológicas asociadas con la productividad y calidad comercial de
productos hortícolas bajo cultivo intensivo.
c) Relacionar las características ecofisiológicas de las diferentes especies hortícolas con el
manejo tecnológico que permite optimizar la productividad comercial.
Ciclo lectivo
VIGENCIA
Form. Prog. 1
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 2
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
3- PROGRAMA ANALÍTICO:
I. Caracterización de un sistema de producción de plantas hortícolas bajo cultivo intensivo
Describir las características tecnológicas de los cultivos intensivos hortícolas y los factores involucrados en la
optimización de la producción en ambientes con bajo diferente grado de control ambiental.
II. Implantación de cultivos en sistemas de producción intensivos
Discutir los diferentes aspectos agronómicos pre-plantación que afectan la productividad final de cultivos
hortícolas bajo cultivo intensivo.
III. Generación del rendimiento en especies hortícolas
Generar un esquema conceptual que describa los procesos ecofisiológicos involucrados en la generación del
rendimiento en diferentes especies hortícolas, describiendo las herramientas de evaluación del crecimiento que
permitan estimar los mecanismos involucrados.
III.1. Cultivos para producción de hojas: lechuga, apio, espinaca, repollo.
Descripción de las variables ecofisiológicas determinantes de la productividad y calidad comercial: iniciación y
expansión de hojas; forma, tamaño y número de hojas. Relaciones fuente-destino. Cambios durante la ontogenia
foliar. Mecanismos de retrocontrol asociados con la acumulación de biomasa aérea (relaciones hídricas,
nutricionales y hormonales). Interpretación de las recomendaciones tecnológicas de manejo en términos
ecofisiológicos que permitan optimizar las respuestas y variar las propuestas en diferentes sistemas de
producción.
III.2. Cultivos para producción de brotes: espárrago, repollito de Bruselas.
Descripción de las variables ecofisiológicas determinantes de la productividad y calidad comercial:
funcionamiento del órgano reservante e hipertrofia de yemas foliares en respuesta a estímulos, hídricos,
nutricionales, hormonales y endógenas (partición de fotoasimilados). Discusión de la tecnología disponible y de
los avances en el manejo hormonal que aseguren una máxima productividad.
III.3. Cultivos para la producción de órganos reservantes: puerro, papa, cebolla, zanahoria, remolacha.
Ecofisiología de la acumulación de reservas asociadas con el rendimiento comercial en órganos
subterráneos. Descripción de los procesos de estolonización, tuberización, bulbificación e hipertrofia de raíces
reservantes como una vía para entender las recomendaciones tecnológicas y sugerir estrategias culturales
alternativas.
Ciclo lectivo
VIGENCIA
Form. Prog. 2
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 3
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
3- PROGRAMA ANALÍTICO:
III.4. Cultivos para la producción de inflorescencias: brócoli, coliflor.
Ecofisiología de la floración. Iniciación floral, formación de la estructura prefloral. Variables involucradas en la
generación del rendimiento comercial.
III.5. Cultivos para la producción de frutos: tomate, pimiento, zapallo, zapallito.
Ecofisiología de la fructificación. Crecimiento vegetativo-reproductivo. Procesos involucrados en el
crecimiento y maduración de frutos. Frutos partenocárpicos. Forma y tamaño de frutos. Factores limitantes de la
productividad. Discusión de la tecnología de producción en diferentes productos en términos de los factores
involucrados en las recomendaciones tecnológicas.
III.6. Cultivos para la producción de granos: poroto, arveja, maíz dulce.
Ecofisiología de la producción de granos hortícolas. Descripción del ciclo productivo en función de las
variables involucradas en la generación del rendimiento comercial. Identificación de limitantes potenciales y
discusión de nuevas alternativas potenciales.
Ciclo lectivo
VIGENCIA
Form. Prog. 2
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 4
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
4- PROGRAMA DE ACTIVIDADES PRÁCTICAS:
CLASE N° 1: Problemática de Cultivos Intensivos.
Características tecnológicas de los cultivos intensivos. Factores involucrados en la optimización de
la producción bajo condiciones ambientales controladas.
CLASE N° 2: Implantación de Cultivos Intensivos
Descripción de los factores involucrados durante la implantación de cultivos en ambientes
protegidos y el comportamiento de plantas a partir de diferentes formas de propagación.
CLASE N° 3: Cultivos para producción de hojas (Lechuga)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 4: Cultivos para producción de hojas (Apio, Espinaca, Repollo)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 5: Cultivos para producción de brotes (Espárrago)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 6: Cultivos para producción de yemas hipertrofiadas (Repollito de Bruselas)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 7: Cultivos para producción de órganos reservantes (Puerro-Cebolla)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 8: Cultivos para producción de órganos reservantes (Papa)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 9: Cultivos para producción de órganos reservantes (Zanahoria-Remolacha)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 10: Cultivos para producción de Inflorescencias (Brócoli-Coliflor)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
Ciclo lectivo
VIGENCIA
Form. Prog. 3
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 5
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
4- PROGRAMA DE ACTIVIDADES PRÁCTICAS:
CLASE N° 11: Cultivos para producción de Frutos (Tomate)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 12: Cultivos para producción de Frutos (Pimiento-Zapallo-Zapallito)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 13: Cultivos para producción de Granos (Arveja-Poroto-Maíz Dulce)
Descripción de los factores ecofisiológicas determinantes de la productividad y calidad comercial.
Composición química. Diversificación de la oferta comercial. Manejo tecnológico alternativo.
CLASE N° 14: Seminario de discusión
Discusión acerca de la metodología de trabajo para establecer pautas de calidad comercial en
diferentes productos intensivos. Diseño de estrategias tecnológicas basadas en la ecofisiología de las
especies involucradas que permitan optimizar los objetivos comerciales para diferentes mercados
consumidores.
Ciclo lectivo
VIGENCIA
Form. Prog. 3
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 6
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
5. I. Caracterización de un sistema de producción de plantas hortícolas bajo cultivo intensivo
CARLILE, W.R. (1999): The effects of the environment lobby on the selection and use of growing media. Acta
Horticulturae, 481: 587-596.
CLARKE, N.D.; J.L. SHIPP; W.R. JARVIS; A.P. PAPADOPOULOS; T.J. JEWETT (1994): Integral management of
greenhouse crops. A conceptual and potentially practical model. HortScience, 29: 846-849.
DAVIDSON, H.; R. MECKLENBURG; C. PETERSON (1988): Nursery management. Administration and Culture. Prentice
Hall, New Jersey, 413 pp.
DEHNEN-SCHMUTZA, K.; O. HOLDENRIEDERB; M.J. JEGERC; M. PAUTASSOC (2010): Structural change in the
international horticultural industry: Some implications for plant health. Scientia Horticulturae, 125: 1-15.
DI BENEDETTO, A. (2005): Manejo de Cultivos Horticolas: bases ecofisiológicas y tecnológicas. 373 páginas.
Orientación Gráfica Editora S.R.L. (ISBN 987-9260-30-9).
JONGEBREUR, A.A.; L. SPEELMAN (1997): Future trends in agricultural engineering. Netherlands Journal of Agricultural
Science, 45: 3-14.
KRUG, H.; H.P. LIEBIG (1994): Model for planning and control transplant production in climate controlled greenhouses. I.
Production planning. Gartenbauwissenschaft, 59: 108-115.
KRUG, H.; H.P. LIEBIG (1995): Model for planning and control transplant production in climate controlled greenhouses. II.
Production control. Gartenbauwissenschaft, 60: 22-28.
PEET, M.M. (1999): Greenhouse crop stress management. Acta Horticulturae, 481: 643-654.
STYER, R.; D.S. KORANSKI (1997): Plug & transplant production. A grower´s guide. Ball Publishing, Batavia, Illinois.374
pp.
Van LENTEREN, J.C. (2000): A greenhouse without pesticides: fact or fantasy? Crop Protection, 19: 375-384.
5. II. Implantación de cultivos en sistemas de producción intensivos.
BENGOUGH, A.G.; M.F. BRANSBY; J. HANS; S.J. Mc KENNA; T.J. ROBERTS; T.A. VALENTINE (2006): Root
responses to soil physical conditions; growth dynamics from field to cell. Journal of Experimental Botany, 57: 437-447.
BRUSSAARD, L.; H.G. van FAASSEN (1994): Effects of compaction on soil biota and soil biological processes. En: Soil
Compaction in Crop Production (Soane, B.D.; C. van Ouwerkerk, Ed.), Elseviere Science, B.V., 215-235.
CARRERA, L.M.; J.S. BUYER; B. VINYARD; A.A. ABDUL-BAKI; L.J. SIKORA; J.R. TEASDALE (2007): Effects of cover
crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Applied Soil
Ecology, 37: 247-255.
CHANG, E.H; R.S. CHUNG; Y.H. TSAI (2007): Effect of different application rates of organic fertilizer on soil enzyme
activity and microbial population. Soil Science and Plant Nutrition, 53: 132-140.
CHERR, C.M.; J.M.S. SCHOLBERG; R. Mc SORLEY (2006): Green manure approaches to crop production: A synthesis.
Agronomy Journal, 98: 302-319.
ERICKSON, T. (1995): Growth and shoot:root ratio of seedlings in relation to nutrient availability. Plant and Soil, 168-169:
205-214.
GUERIF, J. (1994): Effects of compaction on soil strength parameters. En: Soil Compaction in Crop Production (Soane,
B.D.; C. van Ouwerkerk, Ed.), Elseviere Science, B.V., 191-213.
HERENCIA, J.F.; J.C. RUIZ-PORRAS; S. MELERO; P.A. GARCIA-GALAVIS; E. MORILLO; C. MAQUEDA (2007):
Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield.
Agronomy Journal, 99: 973-983.
HORTON, R.; M.D. ANKENY; R.R. ALLMARAS (1994): Effects of compaction on soil hydraulic properties. En: Soil
Compaction in Crop Production (Soane, B.D.; C. van Ouwerkerk, Ed.), Elseviere Science, B.V., 141-165.
JACKSON, L.E.; I. RAMIREZ; R. YOKOTA; S.A. FENNIMORE; S.T. KOIKE; D.M. HENDERSON; W.E. CHANEY; F.J.
CALDERON; K. KLONSKY (2004): On-farm assessment of organic matter and tillage management on vegetable yield, soil,
weeds, pests, and economics in California. Agriculture, Ecosystems and Environment, 103: 443-463.
KRISTENSEN, H. L.; K. THORUP-KRISTENSEN (2007): Effects of vertical distribution of soil inorganic nitrogen on root
growth and subsequent nitrogen uptake by field vegetable crops. Soil Use and Management, 23: 338-347.
MITCHELL, A.E.; Y.J. HONG; E. KOH; D.M. BARRETT; D.E. BRYANT; R.F. DENISON; S. KAFFKA (2007): Ten-year
comparison of the Influence of organic and conventional crop management practices on the content of flavonoids in tomatoes.
Journal of Agricultural Food Chemistry, 55: 6154-6159.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Uso
Interno
Facultad de
Ciencias Agrarias
AREA
Folio Nº 7
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
PANAGOPOULOS, T.; J.JESUS; M.D.C. ANTUNES; J. BELTRAÑO (2006): Analysis of spatial interpolation for optimizing
management of a salinized field cultivated with lettuce. European Journal of Agronomy, 24: 1-10.
RUSSO, V.M.; M. TAYLOR (2006): Soil amendments in transition to organic vegetable production with comparison to
conventional methods: Yields and economics. HortScience, 41: 1576-1583.
SMUKLER, S.M.; L.E. JACKSON; L. MURPHRE; R. YOKOTA; S.T. KOIKE; R.F. SMITH (2008): Transition to large-scale
organic vegetable production in the Salinas Valley, California. Agriculture, Ecosystems and Environment, 126: 168-188.
STOCKDALE, E.A.; J.L. GAUNT; J. VOS (1997): Soil-Plant nitrogen dynamics: what concepts are required? European
Journal of Agronomy, 7: 145-159.
TARARA, J.M. (2000): Microclimate modification with plastic mulch. HortScience, 35: 169-180.
VEPRASKAS, M.J. (1994): Plant response mechanisms to soil compaction. En: Plant- Environment Interactions.
(Wilkinson, R.E.), Marcel Dekker, Inc., 263-287.
YAO, H.; X. JIAO; F. WU (2006): Effects of continuous cucumber cropping and alternative rotations under protected
cultivation on soil microbial community diversity. Plant and Soil, 284: 195-203.
5. III. Generación del rendimiento en especies hortícolas
5. III. I. Cultivos para producción de hojas:
ALI, M.; A.J. GRIFFITHS; K.P WILLIAMS; D.L. JONES (2007): Evaluating the growth characteristics of lettuce in
vermicompost and green waste compost. European Journal of Soil Biology 43: S316-S319.
AL-MASKRI, A.; L. AL-KHARUSI; H. AL-MIQBALI; M. M. KHAN (2010): Effects of salinity stress on growth of Lettuce
(Lactuca sativa) under closed-recycle nutrient film technique. International Journal of Agriculture and Biology, 12: 377-380.
ARAKI, A.; J. RATTIN; A. DI BENEDETTO; P. MIRAVE (2007): Temperature and cytokinin relationships on lettuce
(Lactuca sativa L.) and celery (Apium graveolens L.) nursery growth and yield. International Journal of Agricultural Research,
2: 725-730.
BARASSI, C.A.; G. AYRAULT; C.M. CREUS; R.J. SUELDO; M.T. SOBRERO (2006): Seed inoculation with Azospirillum
mitigates NaCl effects on lettuce. Scientia Horticulturae 109: 8–14.
BIDDINGTON, N.L.; T.H. THOMAS (1978): Thermodormancy in celery seeds and its removal by cytokinins and
gibberellins. Physiologia Plantarum, 42: 401-2.
BICZAK, R.; E. GURGUL; B. HERMAN (1998): The effect of NPK fertilization on yield and content of chlorophyll, sugars
and ascorbic acid in celery. Folia Horticulturae, 23-24: 23-34.
BOESE, S.R. and N.P.A. HUNER (1990): Effect of growth temperature and temperature shifts on spinach leaf morphology
and photosynthesis. Plant Physiology, 94: 1830-1836.
BOTH, A.J.; A.R. LEED; E. GOTO; L.D. ALBRIGHT and R.W. LANGHANS (1996): Greenhouse spinach production in a
NFT system. Acta Horticulturae, 440: 187-192.
BOOIJ, R.; E.J.J. MEURS (1993): Flower induction and initiation in celeriac (Apium graveolens L. var. rapaceum Mill.
DC.): effect of temperature and plant age. Scientia Horticulturae, 55: 227-38.
BOZKURT, S.; G.S. MANSUROGLU; M. KARA; S. ÖNDER (2009): Responses of lettuce to irrigation levels and nitrogen
forms. African Journal of Agricultural Research, 4: 1171-1177.
BREWSTER, J.L.; R.A. SUTHERLAND (1993): The rapid determination in controlled environments of parameters for
predicting seedling growth rates in natural conditions. Annals of Applied Biology, 122: 123-133.
BRIAND, B.; V. DURAND; C. MERCAT-ROMMENS (2008): Identifying the relationships between agronomic and
radioecological variables using a crop model applied to lettuce. Journal of Agronomy, 7: 148-155.
BROADLEY, M.R.; A.J. ESCOBAR-GUTIERREZ; A. BURNS; G. BURNS (2000): What are the effects of nitrogen
deficiency on growth components of lettuce? New Phytologist, 147: 519-526.
BROADLEY, M.R.; A.J. ESCOBAR-GUTIERREZ; A. BURNS; G. BURNS (2001): Nitrogen-limited growth of lettuce is
associated with lower stomatal conductance. New Phytologist, 152: 97-106.
BUWALDA, F.; M. WARMENHOVEN (1999): Growth-limiting phosphate nutrition suppresses nitrate accumulation in
greenhouse lettuce. Journal of Experimental Botany, 335: 813-821.
CHEN, B.M.; Z.H. WANG; S.X. LI; G.X. WANG; H.X. SONG; X.N. WANG (2004): Effects of nitrate supply on plant growth,
nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science,
167: 635–643.
CHOW, W.S.; M.C. BALL and J.M. ANDERSON (1990): Growth and photosynthetic responses of spinach to salinity:
Implications of K+ nutrition for salt tolerance. Australian Journal of Plant Physiology, 17: 563-578.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Uso
Interno
Facultad de
Ciencias Agrarias
AREA
Folio Nº 8
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
CHUN, C.; A. WATANABE; H.H. KIM; T. KOZAI and J. FUSE (2000): Bolting and growth of Spinacea oleracea L. can be
altered by modifying the photoperiod during transplant production. HortScience, 35: 624-626.
CIOLKOSZ, D.E.; L.D. ALBRIGHT; A.J. BOTH (1998): Characterizing, evapotranspiration in a greenhouse lettuce crop.
Acta Horticulturae, 456: 255-261.
DAPOIGNY, L., S. de TOURDONNET, J.ROGER-ESTRADE; M. H. JEUFFROY; A. FLEURY (2000): Effect of nitrogen
nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and
temperature. Agronomie, 20: 843-55.
DAVIS, J.M.; W.H. LOESCHER (1990): [14C]-Assimilate translocation in the light and dark in celery (Apium graveolens)
leaves of different ages. Physiologia Plantarum, 79: 656-62.
DELEURAN, L.; R. GISLUM and B. BOELT (2005): Placement of nitrogen in spinach (Spinacea oleracea L.): a method to
increase seed yield?. Acta Agriculturae Scandinavica, 55: 68-75.
DE TOURDONNET, S.; J.M. MEYNARD; F. LAFOLIE; J. ROGER-ESTRADE; J. LAGIER; M. SEBILLOTTE (2001): Nonuniformity of environmental conditions in greenhouse lettuce production increases the risk of N pollution and lower product
quality. Agronomie, 21: 297-309.
DOWNS, R.J. (1985): Irradiance and plant growth in greenhouses during winter. HortScience, 20: 1125-7.
ECONOMAKIS, C.D.; R. KOLEILAT (1997): Effect of nitrogen concentration on growth, water, and nutrient uptake of
lettuce plants in solution culture. Acta Horticulturae, 449: 223-228.
ESPINOZA, L.; C.A. SANCHEZ; T.J. SCHUENEMAN (1993): Celery yield responds to phosphorus rate but not
phosphorus placement on histosols. HortScience, 28: 1168-70.
EVERAARTS, A.P. (1999): Harvest date prediction for field vegetables. A review. Gartenbauwissenschaft, 64: 20-25.
EZZO, M.I.; A.A. GLALA; S.M. SINGER (2008): Influence of some alternative nitrogen sources and regimes on two salad
cabbage cultivars. Australian Journal of Basic and Applied Sciences, 2: 733-737.
FERENTINOS, K.P.; L.D. ALBRIGHT; D.V. RAMANI (2000): Optimal light integral and carbón dioxide concentration
combinations for lettuce in ventilated greenhouses. Journal of Agricultural Engineering Research, 77: 309-315.
FINK, M. (2001): Yield and external quality of kohlrabi as affected by soil mineral nitrogen residue at harvest. Journal of
Horticultural Science & Biotechnology, 76: 419-23.
FONTES, P.C.R.; P.R.G. PEREIRA; R.M. CONDE (1997): Critical chlorophyll, total nitrogen, and nitrate-nitrogen in leaves
associated to maximum lettuce yield. Journal of Plant Nutrition, 20: 1061-1068.
FOX, T.C.; R.A. KENNEDY; W.H. LOESCHER (1986): Developmental changes in photosynthetic gas exchange in the
polyol-synthesizing species Apium graveolens. Plant Physiology, 82: 307-311.
FRANTZ, J.M.; G. RITCHIE; N.N. COMETTI; J. ROBINSON; B. BUGBEE (2004): Exploring the limits of crop productivity:
Beyond the limits of tipburn in lettuce. Journal of the American Society for Horticultural Science, 129: 331-338.
GIMENEZ, C; R.F.OTTO; N. CASTILLA (2002): Productivity of leaf and root vegetables crops under direct cover. Scientia
Horticulturae, 94: 1-11.
HARA, T.; A. NAKAGAWA; Y. SONODA (1982): Effects of nitrogen supply and removal of outer leaves on the head
development of cabbage plants. Journal of the American Society for Horticultural Science, 50: 481-86.
HARA, T.; Y. SONODA (1979a): The role of macronutrients in cabbage-head formation. Growth performance of a
cabbage plant and potassium nutrition in the plant. Soil Science and Plant Nutrition, 25: 103-11.
HARA, T.; Y. SONODA (1979b): The role of macronutrients for cabbage-head formation. I. Contribution to cabbage-head
formation of nitrogen, phosphorus or potassium supplied at different growth stages. Soil Science and Plant Nutrition, 25: 11320.
HARA, T.; Y. SONODA (1982): Cabbage head development as affected by nitrogen and temperature. Soil Science and
Plant Nutrition, 28: 109-17.
HARTZ, T.K.; P.R. JOHNSTONE; E. WILLIAMS; R.F. SMITH (2007): Establishing lettuce leaf nutrient optimum ranges
through DRIS analysis. HortScience, 42: 143-147.
HASANEEN, M.N.A.; M.E. YOUNIS; D.M.A. EL-BIALY (2008): Plant growth, metabolism and adaptation in relation to
stress conditions: Further studies supporting nullification of harmful effects of salinity in lettuce plants by urea treatment. Plant
Soil Environment, 54: 123-131.
ISENBERG, F.M.R.; A. PENDERGRESS; J.E. CARROLL, L. HOWELL; E.B. OYER (1975): The use of weight, density,
heat units, and solar radiation to predict the maturity of cabbage for storage. Journal of the American Society for Horticultural
Science, 100: 313-6.
JACOBSEN, J.V.; E. PRESSMAN (1979): A structural study of germination in celery (Apium graveolens L.) seed with
emphasis on endosperm breakdown. Planta, 144: 241-8.
.
Ciclo lectivo
VIGENCIA
Form. Prog. 8
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Uso
Interno
Facultad de
Ciencias Agrarias
AREA
Folio Nº 9
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
KHAN, W.; U.P. RAYIRATH; S. SUBRAMANIAN; M.N. JITHESH; P. RAYORATH; D. M. HODGES; A.T. CRITCHLEY; J.S.
CRAIGIE; J.NORRIE; B. PRITHIVIRAJ (2009): Seaweed extracts as biostimulants of plant growth and development. Journal
of Plant Growth Regulation, 28:386–399.
KATO, T.; A. SOOEN (1978): Physiological studies on the head formation in cabbage. I. Effect of defoliation of wrapper
leaves on the head formation posture. Journal of the Japanese Society for Horticultural Science, 47: 351-6.
KATO, T.; A. SOOEN (1979): Physiological studies on the head formation in cabbage. II. Effect of root prining on the head
formation posture. Journal of the Japanese Society for Horticultural Science, 48: 26-30.
KATO, T.; A. SOOEN (1980): Physiological studies on the head formation in cabbage. III. The role of the terminal bud in
the head formation posture. Journal of the Japanese Society for Horticultural Science, 49: 426-34.
LAI, W.A.; P.D. REKHA; A.B. ARUN; C.C. YOUNG (2008): Effect of mineral fertilizer, pig manure, and Azospirillum
rugosum on growth and nutrient contents of Lactuca sativa L. Biology and Fertility of Soils, 45:155–164.
LASA, B.; S. FRECHILLA; C. LAMSFUS and P.M. APARICIO-TEJO (2001): The sensitivity to ammonium nutrition is
related to nitrogen accumulation. Scientia Horticulturae, 91: 143-152.
LEE, J., R.D. PARK, Y.W. KIM; J.H. SHIM, D.H. CHAE, Y.S. RIM; B.K. SOHN, T.H. KIM; K.Y. KIM (2004) Effect of food
waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresource Technology 93: 21–28.
LEENHARDT, D.; F. LAFOLIE; L. BRUCKLER (1998): Evaluating irrigation strategies for lettuce by simulation: 1. Water
flow simulations. European Journal of Agronomy, 8: 249-65.
LEENHARDT, D.; F. LAFOLIE; L. BRUCKLER; A.M. de COCKBORNE (1998): Evaluating irrigation strategies for lettuce
by simulation: 2. Nitrogen budget. European Journal of Agronomy, 8: 267-82.
LEONARDI, C. (1998): Dry matter yield and nitrogen content in celery under salt stress contitions. Acta Horticulturae, 458:
257-261.
LINKER, R.; C. JOHNSON-RUTZKE (2005): Modeling the effect of abrupt changes in nitrogen availability on lettuce
growth, root–shoot partitioning and nitrate concentration. Agricultural Systems 86: 166–189.
LORETO, F.; S. DELFINE and A. ALVI (1997): On the contribution of mesophyll resistance to CO 2 diffusion to
photosynthesis limitation during water and salt stress. Acta Horticulturae, 449: 417-422.
MAFTOUN, M.; F. MOSHIRI; N. KARIMIAN and A.M. RONAGHI (2004): Effect of two organic wastes in combination with
phosphorus on growth and chemical composition of spinach and soil properties. Journal of Plant Nutrition, 27: 1635-1651.
MICCOLIS, V.; V. CANDIDO; G. POSCA (2000): Influence of some agronomical practices on qualitative and yield traits of
lettuce heads. Acta Horticulturae, 533: 533-541.
NASCIMENTO, W.M.; D.J. CANTLIFFE; D.J. HUBER (2000): Thermotolerance in lettuce seeds: Association with ethylene
and endo--mannanase. Journal of the American Society for Horticultural Science, 125: 518-24.
NISHIJIMA, T.; N. FUKINO (2005a): Geometrical analysis of development of erect leaves as a factor in head formation of
Brassica rapa L. (I) Geometrical change of growing leaves in head cultivars. Scientia Horticulturae 104: 407–419.
NISHIJIMA, T.; N. Fukino (2005b): Geometrical analysis of development of erect leaves as a factor in head formation of
Brassica rapa L. (I) Comparative analysis of headed and non-headed cultivars. Scientia Horticulturae 104: 421–431.
NOGUCHI, K.; K. SONOIKE and I. TERASHIMA (1996): Acclimation of respiratory properties of leaves of Spinacea
oleracea L., a sun species, and of Alocasia macrorrhiza (L.) Don, a shade species, to changes in growth irradiance. Plant Cell
Physiology, 37: 377-384.
NOGUCHI, K.O.; N.L. TAYLOR; A.H. MILLAR; H. LAMBERS and D.A. DAY (2005): Response of mitochondria to light
intensity in the leaves of sun and shade species. Plant, Cell and Environment, 28: 760-771.
PARLEVLIET, J.E. (1967): The influence of external factors on the growth and development of spinach cultivars
(Spinacea oleracea L.). Mededelingen Landbouwhogeschool, 67: 1-75.
PHARR, D.M.; J.M.H. STOOP; J.D. WILLIAMSON; M.E. STUDER FEUSI; M.O. MASSEL; M.A. CONLKING (1995): The
dual role of mannitol as osmoprotectant and photoassimilate in celery. HortScience, 30: 1182-1188.
PRESSMAN, E. (1998): Celery. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 10: 387-407. CAB Publishing.
PRESSMAN, E.; R. SHAKED (1991): Interactive effects of Ga s, Cks and growth retardants on the germination of celery
seeds. Plant Growth Regulation, 10: 65-72.
QIN, L.; J. HE; S.K. LEE; I.C. DODD (2007): An assessment of the role of ethylene in mediating lettuce (Lactuca sativa)
root growth at high temperatures. Journal of Experimental Botany, 58: 3017–3024.
RAMIN, A.A.; J.G. ATHERTON (1991): Manipulation of bolting and flowering in celery (Apium graveolens var. Dulce). II.
Juvenility. Journal of Horticultural Science, 66: 709-717.
ROELOFSE, E.W.; D.W. HAND; R.L. HALL (1989): The effect of daylength on the development of glasshouse celery.
Journal of Horticultural Science, 64: 283-292.
ROELOFSE, E.W.; D.W. HAND; R.L. HALL (1990): The effects of temperature and “night-break” lighting on the
development of glasshouse celery. Journal of Horticultural Science, 65: 297-307.
Ciclo lectivo
VIGENCIA
Form. Prog. 9
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 10
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
SALO, T. (1999): Effects of band placement and nitrogen rate on dry matter accumulation, yield and nitrogen uptake of
cabbage, carrot and onion. Agricultural and Food Science in Finland, 2: 157-232.
SANTAMARIA, P.; A. ELIA; F. SERIO; M. GONNELLA; A. PARENTE (1999): Comparison between nitrate and ammonium
nutrition in fennel, celery, and Swiss chard. Journal of Plant Nutrition, 22: 1091-1106.
SAWADA, Y.; M. AOKI; K. NAKAMINAMI; W. MITSUSHAHI; K. TATEMATSU; T. KUSHIRO; T. KOSHIBA; Y. KAMIYA; Y.
INOUE; E. NAMBARA; T. TOYOMASU (2008a): Phytochrome- and gibberellin-mediated regulation of abscisic acid
metabolism during germination of photoblastic lettuce seeds. Plant Physiology, 146: 1386–1396.
SAWADA, Y.; T. KATSUMATA; J. KITAMURA; H. KQWAIDE; M. NAKAJIMA; T. ASAMI; K. NAKMINAMI; T. KURAHASHI;
W. MITSUSHASHI; Y. INOUE; T. TOYOMASU (2008b): Germination of photoblastic lettuce seeds is regulated via the control
of endogenous physiologically active gibberellins content, rather than of gibberellin responsiveness. Journal of Experimental
Botany, 12: 3383–3393.
SEGINER I. (2004): Equilibrium and Balanced Growth of a Vegetative Crop. Annals of Botany 93: 127-139.
SANTAMARIA, P.; A. ELIA; F. SERIO; M. GONNELLA; A. PARENTE (1999): Comparison between nitrate and ammonium
nutrition in fennel, celery and Swiss chard. J. Plant Nutrition., 22: 1091-1106.
SHALHEVET, J. (1994): Using water of marginal quality for crop production: major issues. Agricultural Water
Management, 25: 233-269.
SHANNON, M.C.; C.M. GREIVE; S.M. LESCH and J.H. DRAPER (2000): Analysis of salt tolerance in nine leafy
vegetables irrigated with saline drainage water. Journal of the American Society for Horticultural Science, 125: 658-664.
SHANON, M.C.; C.M. GRIEVE; S.M. LESCH; J. H. DRAPER (2000): Analysis of salt tolerance in nine leafy vegetables
irrigated with saline drainage water. Journal of the American Society for Horticultural Science, 125: 658-664.
SHEHATA, S.M.; H. S. ABDEL-AZEM; A.A. EL-YAZIED; A.M. EL-GIZAWY (2010): Interactive effect of mineral nitrogen
and biofertilization on the growth, chemical Composition and yield of celeriac plant. European Journal of Scientific Research,
2: 248-255.
SHIH, S.F.; G.S. RAHI (1985): Evapotranspiration, yield and water table studies of celery. Transactions of the American
Society of Agricultural Engineers, 28: 1212-8.
SIMONNE, E.; A. SIMONNE; L. WELLS (2001): Nitrogen source affects crunchiness, but not lettuce yield. Journal of Plant
Nutrition, 24: 743-51.
SIOMOS, A.S. (1999): Planting date and within-row plant spacing effects on pak choi yield and quality characteristics.
Journal of Vegetable Crop Production, 4: 65-73.
SOUNDY, P.; D.J. CANTLIFFE; G.J. HOCHMUTH; P.J. STOFFELLA (2001): Nutrient requirements for lettuce transplants
using a flotation irrigation system. I: Phosphorus. HortScience, 36: 1066-1070.
STEINGROBE, B.; M.K. SCHENK (1997): Calculation of the total nitrate uptake of lettuce (Lactuca sativa L.) by use of a
mathematical model to simulate nitrate inflow. Zietschrift Pflanzenernähr. Bodenkultur, 160: 73-79.
STOFFELLA, P.J.; M.F. FLEMING (1990): Plant population influences yield variability of cabbage. Journal of the American
Society for Horticultural Science, 115: 708-11.
STONE, D.A. (1998): The effects of “starter” fertilizer injection on the growth and yield of drilled vegetable crops in relation
to soil nutrient status. Journal of Horticultural Science and Biotechnology, 73: 441-451.
SUNDSTROM, F.J.; R.N. STORY (1984): Cultivar and growing season effects on cabbage head development and weight
loss during storage. HorScience, 19: 589-90.
THOMAS, T.H. (1978): Relationship between bolting and seed dormancy of different celery cultivars. Scientia
Horticulturae, 9: 311-6.
THOMAS, T.H. (1989): Giberellin involvement in dormancy-break and germination of seeds of celery (Apium graveolens
L.). Plant Growth Regulation, 8: 255-61.
THOMAS, T.H.; A.S. DEARMAN; N.L. BIDDINGTON (1986): Evidence for the accumulation of a germination inhibitor
during progressive thermoimbibition of seeds of celery (Apium graveolens L.). Plant Growth Regulation, 4: 177-84.
TREMBLAY, N.; S. YELLE; A. GOSSELIN (1987): Effects of CO 2 enrichment, nitrogen and phosphorus fertilization on
growth and yield of celery transplants. HortScience, 22: 875-6.
TREMBLAY, N.; S. YELLE; A. GOSSELIN (1988): Effects of CO 2 enrichment, nitrogen and phosphorus fertilization during
the nursery period on mineral composition of celery. Journal of Plant Nutrition, 11: 37-49.
TREMBLAY, N.; A. GOSSELIN (1989a): Growth and nutrient status of celery seedlings in response to nitrogen fertilization
and NO3:NH4 ratio. HortScience, 24: 284-8.
TREMBLAY, N.; A. GOSSELIN (1989b): Growth, nutrient status, and yield of celery seedlings in response to urea
fertilization. HortScience, 24: 288-291.
VAN HENTEN, E.J. (1994): Validation of a dynamic lettuce growth model for greenhouse climate control. Agricultural
Systems, 45: 55-72.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 10
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 11
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
VAN HENTEN, E.J.; G. VAN STRATENT (1994): Sensitivity analysis of a dynamic growth model of lettuce. Journal of
Agricultural Engineering Research, 59: 19-31.
VAN IERSEL, M. W. (2003): Carbon use efficiency depends on growth respiration, maintenance respiration, and relative
growth rate. A case study with lettuce. Plant, Cell and Environment, 26: 1441-1449.
WANG, Z.; S. LI (2004): Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in
vegetables. Journal of Plant Nutrition, 27: 539-556.
WAYCOTT, W. (1993): Transition to flowering in lettuce: effect of photoperiod. HortScience, 28: 530.
WHITE, J.M. (1977): Effect of cultivation on cabbage yield and head weight. Proceedings of the Florida State Horticultural
Society, 90: 365-7.
WIEN, A. (1998): Lettuce. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 14: 479-510. CAB Publishing.
WILKS, D.S.; D.W. WOLFE (1998): Optimal use and economic value of weather forecasts for lettuce irrigation in a humid
climate. Agricultural and Forest Meteorology, 89: 115-129.
WILLCUTTS, J.F.; A.R. OVERMAN; G.J. HOCHMUTH; D.J. CANTLIFFE; P. SOUNDY (1998): A comparison of three
mathematical models of response to applied nitrogen: A case study using lettuce. HortScience, 33: 833-836.
WISSEMEIER, A.H.; G. ZÜHLKE (2002): Relation between climatic variables, growth and the incidence of tipburn in fieldgrown lettuce as evaluated by simple, partial and multiple regression analysis. Scientia Horticulturae, 93: 193-204.
XU, G.; LEVKOVITCH, I.; SORIANO, S.; WALLACH, R.; A. SILBER (2004): Integrated effect of irrigation frequency and
phosphorus level on lettuce: P uptake, root growth and yield. Plant and Soil 263: 297–309.
YAMORI, W.; K. NOGUCHI and I. TERASHIMA (2005): Temperature acclimation of photosynthesis in spinach leaves:
analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and
Environment, 28: 536-547.
ZAPATA, P.J.; M. SERRANO; M.T. PRETEL; A. AMOROS and M.A. BOTELLA (2004): Polyamines and ethylene
changes during germination of different plant species under salinity. Plant Science, 167: 781-788.
5. III. II. Cultivos para producción de brotes: Espárrago-Repollito de Bruselas
ABUZEID, A.E.; S.J. WILCOCKSON (1989): Effect of sowing date, plant density and year on growth and yield of Brussels
sprouts (Brassica oleracea var. bullata subvar. gemmifera). Journal of Agricultural Science Cambridge, 112: 359-75.
ADLER, P.R.; R.J. DUFAULT; L. WATERS (1984): Influence of nitrogen,, phosphorus, and potassium on asparagus
transplant quality. HortScience, 19: 565-6.
BENSON, B.L. (1982): Sex influences on foliar trati morphology in asparagus. HortScience, 17: 625-7.
BOOIJ, R. (2000): Effects of nitrogen on yield components of brussels sprouts (Brassica oleracea L. var. gemmifera).
Gartenbauwissenschaft, 65: 30-4.
BROWN, S.W. (1984): An evaluation of on-farm mechanisation for harvesting and handling asparagus. New Zealand
Agricultural Science, 18: 34-7
CULPEPPER, C.W.; H.H. MOON (1939): Effects of temperature upon the rate of elongation of the stems of asparagus
grown under field conditions. Plant Physiology, 14: 255-270.
DOWNTON, W.J.S.; E. TOROKFALVY (1975): Photosyntheis in developing asparagus plants. Australian Journal of Plant
Physiology, 2: 367-75.
DROST, D.T. (1998): Asparagus. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 18: 621-649. CAB
Publishing.
DROST, D.T. (1999): Irrigation effects on asparagus root distribution. Acta Horticulturae, 479: 283-288.
DROST, D.T.; D. WILCOX-LEE (1990): Effect of soil matric potential on growth and physiological responses of
greenhouse grown asparagus. Acta Horticulturae, 271: 467-476.
DROST, D.T.; D. WILCOX-LEE (1997a): Soil water deficits and asparagus: I. Shoot, root, and bud growth during two
seasons. Scientia Horticulturae, 70: 131-143.
DROST, D.T.; D. WILCOX-LEE (1997b): Soil water deficits and asparagus: II. Bud size and subsequent spear growth.
Scientia Horticulturae, 70: 145-153.
DROST, D.; D.WILCOX-LEE (2000): Tillage alters root distribution in a mature asparagus planting. Scientia Horticulturae,
83: 187-204.
DUFAULT, R.J.; J.K. GREIG (1983): Dynamic growth characteristics in seedling asparagus. Journal of the American
Society for Horticultural Science, 108: 1026-30.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 11
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 12
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
EVERAARTS, A.P. (1999): Harvest date prediction for field vegetables. A review. Gartenbauwissenschaft, 64: 20-25.
EVERAARTS, A.P.; C.P. de MOEL (1998a): The effect of planting date and plant density on yield and grading of Brussels
sprouts. Journal of Horticultural Science & Biotechnology, 73: 549-554.
EVERAARTS, A.P.; M.L. Van BEUSICHEM (1998b): The effect of planting date and plant density on nitrogen uptake and
nitrogen harvest by Brussels sprouts. Journal of Horticultural Science & Biotechnology, 73: 704-710.
EVERAARTS, A.P.; R. BOOIJ; C.P. de MOEL (1998c): Yield formation in Brussels sprouts. Journal of Horticultural
Science & Biotechnology, 73: 711-721.
EVERAARTS, A.P.; M.E.T. VLASWINKEL (2000): The effect of nitrogen, harvest date and bud size on postharvest
yellowing of buds of an early and a late cultivar of Brussels sprout (Brassica oleracea var. gemmifera). Journal of Horticultural
Science & Biotechnology, 75: 470-5.
FINK, M.; C. FELLER (2001): Nitrogen uptake of Brussels sprouts-validation of a model. Journal of Horticultural Science &
Biotechnology, 76: 615-9.
FISHER, N.M. (1974a): The effect of plant density, date of apical bud removal and leaf removal on the growth and yield of
single harvest Brussels sprouts (Brassica oleracea var. gemmifera D.C.). II: Variation in bud size. Journal of Agricultural
Science, 83: 489-96.
FISHER, N.M. (1974b): The effect of plant density, date of apical bud removal and leaf removal on the growth and yield of
single harvest Brussels sprouts (Brassica oleracea var. gemmifera D.C.). III: The component of marketable yield. Journal of
Agricultural Science, 83: 497-503.
GĄSECKA, M.; J. STACHOWIAK, W. KRZESIŃSKI, M. KNAFLEWSKI; P. GOLIŃSKI (2008): Changes in glucose,
fructose and sucrose contents in storage roots of asparagus during vegetation period. Vegetable Crops Research Bulletin, 69:
145-154.
GAYE, M.M.; A.R. MAURE (1991): Modified transplant production techniques to increase yield and improve earliness of
Brussels sprouts. Journal of the American Society for Horticultural Science, 116: 210-4.
HAYNES, R.L. (1987): Accumulation of dry matter and changes in storage carbohydrates and amino acid content in the
first 2 years of asparagus growth. Scientia Horticulturae, 32: 17-23.
HUSSAIN, A.; F. ANJUM, A. RAB; M. SAJID (2006): Effect of nitrogen on the growth and yield of asparagus (Asparagus
officinalis). Journal of Agricultural and Biological Science, 1: 41-47.
KMITIENE, L.; A. ZEBRAUSKIENE; A. KMITASs (2009): Comparison of biological characteristics and productivity of
introduced cultivars of asparagus (Asparagus officinalis L.). Agronomy Research 7, 11-20.
KNAFLEWSKI, M.; W. KRZESIŃSKI; M. GĄSECKA; J. STACHOWIAK (2010): Yielding of asparagus depending on
harvest ending date. Vegetable Crops Research Bulletin, 73, 67-75.
KRZESIŃSKI, W.; J. STACHOWIAK; M. GĄSECKA; M. KNAFLEWSKI (2007): Sugar content in spears versus asparagus
yielding. Vegetable Crops Research Bulletin, 67, 127-136.
KU, Y.G.; D.J. WOOLLEY (2006): Effect of plant growth regulators and spear bud scales on growth of Asparagus
officinalis spears. Scientia Horticulturae 108: 238–242.
KURTAR, E.S. (2006): The effect of planting times on some vegetable characters and yield components in Brussels
sprouts (Brassica oleracea var. gemmifera). Journal of Agronomy, 5: 186-190.
LINDGREN, D.T. (1990): Influence of planting depth and interval to initial harvest on yield and plant response of
asparagus. HortScience, 25: 754-6.
MATSUBARA, S. (1980): ABA content and levels of GA-like substances in asparagus buds and roots in relation to bud
dormancy and growth. Journal of the American Society for Horticultural Science, 105: 527-532.
MONOKROUSOS, N.; E.M. PAPATHEODOROU; J.D. DIAMANTOPOULOS; G.P. STAMOU (2006): Soil quality variables
in organically and conventionally cultivated field sites. Soil Biology and Biochemistry 38: 1282–1289.
MOON, D.M. (1976): Yield potential of Asparagus officinalis L. New Zealand Journal of Experimental Agriculture, 4: 435-8.
NICOLA, S.; L. BASOCCU (2000): Containerized transplant production of asparagus: effects of nitrogen supply and
container cell size on plant quality and stand establishment. Acta Horticulturae, 511: 249-256.
POLLOCK, C.J. (1986): Fructans and the metabolism of sucrose in vascular plants. New Phytology, 104: 1-24.
PRESSMAN, E.; A.A. SCHAFFER; D. COMPTON; E. ZAMSKI (1993): Seasonal changes in the carbohydrate content of
two cultivars of asparagus. Scientia Horticulturae, 53: 149-55.
ROBB, A.R. (1984): Physiology of asparagus (Asparagus officinalis) as related to the productivity of the crop. New
Zealand Journal of Experimental Agriculture, 12: 251-60.
ROBB, R.L.; B.R. GARDNER (1989): Asparagus yield response to water and nitrogen. Transactions of the American
Society of Agricultural Engineers, 32: 105-12.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 12
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 13
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
THOMAS, T.H. (1972): The distribution of hormones in relation to apical dominance in Brussels sprouts ((Brassica
oleracea var. gemmifera D.C.) plants. Journal of Experimental Botany, 23: 294.301.
VALENZUELA, H.R.; D.R. BIENZ (1989): Asparagus aphid feeding and freezing damage asparagus plants. Journal of the
American Society for Horticultural Science, 114: 576-81.
VELTEN, K.; P.J. PASCHOLD; A. STAHEL (2003): Optimization of cultivation measures affecting soil temperature.
Scientia Horticulturae 97: 163–184.
WILCOX-LEE, D. (1987): Soil matric potential, plant water relations and growth in asparagus. HortScience, 22: 22-24.
WIEN, H.C.; D.C.E. WURR (1998): Cauliflower, Broccoli, Cabagge and Brussels Sprouts. En: The Physiology of
Vegetable Crops (ed. A, Wien), Cap. 15: 511-552. CAB Publishing.
5. III. III. Cultivos para producción de órganos reservantes: Puerro-Cebolla-Papa-Zanahoria-Remolacha
ABDALLA, A.A.; L.K. MANN (1963): Bulb development in the onion (Allium cepa L.) and the effect of storage temperature
on bulb rest. Hilgardia, 35: 85-112.
ABDEL-MOTAGALLY, F.M.F.; K.K. ATTIA (2009): Response of sugar beet plants to nitrogen and potassium fertilization
in sandy calcareous soil. International Journal of Agricultural Biology, 11: 695-700.
ABDRABBO, M.A.A.; A.A. KHALIL; M.K.K. HASSANIEN; A.F. ABOU-HADID (2010): Sensitivity of potato yield to climate
change. Journal of Applied Sciences Research, 6: 751-755.
AIKMAN, D.P.; L.R. BENJAMIN (1994): A model for plant and crop growth, allowing for competition for light by the use of
potential and restricted projected crown zone areas. Annals of Botany, 73: 185-94.
AISHA, A.H.; A.R. FATMA, A. RIZK; A.M. SHAHEEN; M.M. ABDEL-MOUTY (2007): Onion plant growth, bulbs yield and
its physical and chemical properties as affected by organic and natural fertilization. Research Journal of Agriculture and
Biological Sciences, 3: 380-388.
AISHA, H.A.; A.S. TAALAB (2008): Effect of natural and/or chemical potassium fertilizers on growth, bulbs yield and some
physical and chemical constituents of onion (Allium cepa, L.). Research Journal of Agriculture and Biological Sciences, 4:
228-237.
ALI, M.K.; M.F. ALAM; M.N. ALAM; S. ISLAM; M.A.T. KHANDAKER (2007): Effect of nitrogen and potassium level on
yield and quality seed production of onion. Journal of Applied Sciences Research, 3: 1889-1899.
ALMEKINDERS, C.J.M.; J.H. NEUTEBOOM; P.C. STRUIK (1995): Relation between berry weight, number of seed
perberry and 100-seed weight in potato inflorescences. Scientia Horticulturae, 61: 177-184.
ANTONIOUS, G.F.; C.M. LEE; J.C. SNYDER (2001): Sustainable soil management practices and quality of potato grown
on erodible lands. Journal of Environmental Science and Health, 36: 435-44.
ATHERTON, J.G.; E.A. BASHER; J.L. BREWTER (1984): The effect of photoperiod on flowering in carrot. Journal of
Horticultural Science, 59: 213-5.
ATHERTON, J.G.; J. CRAIGON; E.A. BASHER (1990): Flowering and bolting in carrot. I. Juvenility, cardinal temperatures
and thermal times for vernalization. Journal of Horticultural Science, 65: 423-9.
ASHRAFUZZAMAN, M; M.N. MILLAT; M.R. ISMAIL; M.K. UDDIN; S.M. SHAHIDULLAH; S. MEON (2009): Paclobutrazol
and bulb size effect on onion seed production. International Journal of Agricultural Biology, 11: 245-250.
BALALI, G.R.; M.R. HADI, P.; Y.H. BIDRAM; A.G. NADERI; A. ESLAMI (2008): Effect of pot size, planting date and
genotype on minituber production of Marfona potato cultivar. African Journal of Biotechnology, 7: 1265-1270.
BASET, M. A.; M. R. KARIM; M. AKTER (2009): Measurement and analysis of total factor productivity growth in modern
variety potato. Journal of Agriculture & Rural Development; 7: 65-71.
BATUTIS, E.J.; E.E. EWING (1982): Far-red reversal of red light effect during long night induction of potato (Solanum
tuberosum L.). Plant Physiology, 69: 672-4.
BELANGER, G.; J.R. WALSH; J.E. RICHARDS; P.H. MILBURN; N. ZIADI (2001): Tuber growth and biomass partitioning
of two potato cultivars grown under different N fertilization rates with and without irrigation. American Journal of Potato
Research, 78: 109-117.
BENJAMIN, L.R. (1982): Some effects of different times of seedling emergence, population density and seed size on rootsize variation in carrot populations. Journal of Agricultural Science, 98: 537-54.
BENJAMIN, L.R. (1984a): Role of foliage habit in the competition between differently sized plants in carrot crops. Annals
of Botany, 53: 549-57.
BENJAMIN, L.R. (1984b): The relative importance of some different sources of plant-weight variation in drilled and
transplanted leeks. Journal of Agricultural Science, 103: 527-537.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 13
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 14
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
BENJAMIN, L.R. (1987): The relative importance of cluster size, sowing depth, time of seedling emergence and betweenplant spacing on variation in plant size in red beet (Beta vulgaris L.) crops. Journal of Agricultural Science, 108: 221-30.
BENJAMIN, L.R. (1988): A single equation to quantify the hierarchy in plant size induced by competition within
monocultures. Annals of Botany, 62: 199-214.
BENJAMIN, L.R. (1990): Variation in time of seedling emergence within populations: a feature which determines
individual growth and development. Advances in Agronomy, 44: 1-25.
BENJAMIN, L.R.; N. BELL (1985): The influence of seed type and plant density on variation in plant size of red beet (Beta
vulgaris L.) crops. Journal of Agricultural Science, 105: 563-71.
BENJAMIN, L.R.; R.A. SUTHERLAND (1992): Control of mean root weight in carrots (Daucus carota) by varying withinand between-row spacing. Journal of Agricultural Science, 119: 59-70.
BENJAMIN, L.R.; M.J. WREN (1978): Root development and source-sink relations in carrot Daucus carota L. Journal of
Experimental Botany, 29: 425-33.
BENJAMIN, L.R.; M.J. WREN (1980): Root development and source sink relations in carrot, Daucus carota L. II. Effects
of root pruning on carbon assimilation and the partitioning of assimilates. Journal of Experimental Botany, 31: 1139-46.
BENJAMIN, L.R.; A. Mc GARRY; D. GRAY (1998): The Root Vegetables; Beet, Carrot, parsnip and turnip. En: The
Physiology of Vegetable Crops (ed. A, Wien), Cap. 16: 553-580. CAB Publishing.
BENJAMIN, L.R.; R.A. SUTHERLAND; D. SENIOR (1985): The influence of sowing date and row spacing on the plant
density and yield of red beet. Journal of Agricultural Science, 104: 615-24.
BEN KHEDHER, M.; E.E. EWING (1985): Growth analyses of eleven potato cultivars grown in the greenhouse under long
photoperiods with and without heat stress. American Potato Journal, 62: 537-554.
BENTINI, M.; C. CAPRARA; R. MARTELLI (2006): Harvesting damage to potato tubers by analysis of impacts recorded
with an instrumented sphere. Biosystems Engineering, 94: 75–85.
BIEMOND, H.; J.VOS (1992): Effects of nitrogen on the development and growth of the potato plant. 2. The partitioning of
dry matter, nitrogen and nitrate. Annals of Botany, 70: 37-45.
BIERHUIZEN, J.F.; W.A. WAGENVOORT (1974): Some aspects of seed germination in vegetables. I. The determination
and application of heat sums and minimum temperature for germination. Scientia Horticulturae, 2: 213-9.
BIRDSALL, M.; R.D. Mac LEOD (1990): Early growth of the root system in Allium cepa. Canadian Journal of Botany, 68:
747-753.
BODLAENDER, K.B.A.; C. LUGT; J. MARINUS (1964): The induction of second-growth in potato tubers. European
Potato Journal, 7: 57-71.
BOLANDI, A.R.; H. HAMIDI; R.A. GHAVIDEL (2011): The effects of size and microtuber dormancy on production of
potato minitubers. American-Eurasian Journal of Agriculture & Environment Science, 10: 169-173.
BREWSTER, J.L. (1979): The response of growth rate to temperature of seedlings of several Allium crop species. Annals
of Applied Biology, 93: 351-357.
BREWSTER, J.L. (1982a): Flowering and seed production in overwintered cultivars of bulb onions. II. Quantitative
relationships between mean temperatures and daylengths and the rate of inflorescence development. Journal of Horticultural
Science, 57: 103-8.
BREWSTER, J.L. (1982b): Growth, dry matter partition and radiation interception in an overwintered bulb onion crop.
Annals of Botany, 49: 609-17.
BREWSTER, J.L. (1983): Effects of photoperiod, nitrogen nutrition and temperature on inflorescence initiation and
development in onion (Allium cepa L.). Annals of Botany, 51: 429-440.
BREWSTER, J.L. (1985): The influence of seedling size and carbohydrate status and of photon flux density during
vernalization on inflorescence initiation in onion (Allium cepa L.). Annals of Botany, 55: 403-14.
BREWSTER, J.L. (1990): The effect of the duration of daily irradiance on the growth rates of seedlings of leek (Allium
ampeloprasum L.) and Japanese bunching onion (Allium fistulosum L.). Scientia Horticulturae, 43: 207-211.
BREWSTER, J.L. (1998): Onions and Garlic. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 17: 581-619.
CAB Publishing.
BREWSTER, J.L.; R.A. SUTHERLAND (1993): The rapid determination in controlled environments of parameters for
predicting seedling growth rates in natural conditions. Annals of Applied Biology, 122: 123-133.
BREWSTER, J.L.; M.F MONDAL; G.E.L. MORRIS (1986): Bulb development in onion (Allium cepa L.) IV. Influence on
yield of radiation interception, its efficiency of conversion, the duration of growth and dry-matter partitioning. Annals of Botany,
58: 221-33.
BREWSTER, J.L.; P.J. SALTER; R.J. DARBY (1977): Analysis of the growth and yield of overwintered onions. Journal of
Horticultural Science, 52: 335-46.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 14
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 15
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
BRUNSGAARD, G.; J.N. SORENSEN; K. KAACK and B.O. EGGUM (1997): Protein quality and energy density of leek
(Allium porrum L.) as influenced by water and nitrogen supply and plant age at harvest. Journal of the Science of Food and
Agriculture, 74: 237–243.
BUFLER, G. (2009): Exogenous ethylene inhibits sprout growth in onion bulbs. Annals of Botany, 103: 23-28.
BURT, R.L. (1964): Influence of short periods of low temperature on tuber initiation in the potato. European Potato
Journal, 7: 197-209.
BUTT, A.M. (1968): Vegetative growth, morphogenesis and carbohydrate content of the onion plant as a function of light
and temperature under field- and controlled conditions. Medelingen Landbouwhogeschool, 68 (10): 1-211.
CHINCINSKA, I.A.; J. LIESCHE; U. KRÜGEL; J. MICHALSKA; P. GEIGENBERGER; B. GRIMM; C. KÜHN (2008):
Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiology,
146: 515-528.
CHIPMAN, E.W.; E. THORPE (1977): Effects of chilling and depth of plant setting on the incidence of multiple hearts and
shape of sweet Spanish onions. Canadian Journal of Plant Science, 57: 1219-21.
CHOPEA, G.A., L.A. TERRY; P.J. WHITE (2006): Effect of controlled atmosphere storage on abscisic acid concentration
and other biochemical attributes of onion bulbs. Postharvest Biology and Technology 39: 233–242.
CLAASSENS, M.M.J.; D. VREUGDENHIL (2000): Is dormancy breaking of potato tubers the reverse of tuber initiation?
Potato Research, 43: 347-69.
COLEMAN, W.K.; D.J. DONNELLY; S.E. COLEMAN (2001): Potato microtubers as research tools: A review. American
Journal of Potato Research, 78: 47-55.
COOLONG, T.W.; D.A. KOPSELL, D.E. KOPSELL; W.M. RANDLE (2004): Nitrogen and sulfur influence nutrient usage
and accumulation in onion. Journal of Plant Nutrition, 27:1667–1686.
CROSTHWAITE, S.K.; G.I. JENKINS (1993): The role of leaves in the perception of vernalizing temperatures in sugar
beet. Journal of Experimental Botany, 44: 801-6.
DAS GUPTA, D.K. (1972a): Developmental physiology of sugar beet. III. The effects of decapitation and removing part of
the root and shoot on subsequent growth of sugar beet. Journal of Experimental Botany, 23: 93-102.
DAS GUPTA, D.K. (1972b): Developmental physiology of sugar beet. IV. Effects of growth substances and differential
root and shoot on subsequent growth of sugar beet. Journal of Experimental Botany, 23: 103-13.
DAVENPORT, J.R.; E.M. BENTLEY (2001): Does potassium fertilizer form, source and time of application influence
potato yield and quality in the Columbia Basin?. American Journal of Potato Research, 78: 311-18.
DE CLERQ, H. and E. Van BOCKSTAELE (2002): Leek: Advances in Agronomy and Breeding. En: Allium Crop Science:
Recent Advances. (Ed.: Rabinowitch, H.D. & L. Currah). CABI Publishing, UK, 431-458.
DELLACECCA, V.; A.F.S. LOVATO (2000): Effects of different plant densities and planting systems on onion ( Allium
cepa L.) bulb quality and yield. Acta Horticulturae, 533: 197-203.
DEMAGANTE, A.L.; P. VANDER ZAAG (1988): The response of potato (Solanum spp.) to photoperiod and light intensity
under high temperatures. Potato Research 31: 73-83.
DIAZ PEREZ, J.C.; W.M. RANDLE; G. BOYHAN; R.W. WALCOTT; D. GIDDINGS; D. BERTRAND; J.F. SANDERS;
R.D. GITAITIS (2004): Effects of mulch and irrigation system on sweet onion: I. Bolting, plant growth and bulb yield and
quality. Journal of the American Society for Horticultural Science, 129: 218-224.
DUNCAN, D.A.; E.E. EWING (1984): Initial anatomical changes associated with tuber formation on single-node potato
(Solanum turerosum L.) cuttings. Annals of Botany, 53: 607-10.
DYSON, P.W.; D.J. WATSON (1971): An analysis of the effects of nutrient supply on the growth of potato crops. Annals
of Applied Biology, 69: 47-63.
EL-BASSIONY, A.M. (2006): Effect of potassium fertilization on growth, yield and quality of onion plants. Journal of
Applied Sciences Research, 2: 780-785.
EL-HAK, M.Z. (1969): Influence of different daylengths on development and tuber formation of the potato plant.
Medelingen Landbouwhoeschool, 69 (18): 1-16.
ELLIS, R.H.; E.H. ROBERTS (1977): A revised seed viability monomograph for onion. Seed Research, 5: 93-103.
EL-TANTAWY, E.M.; A.K. EL-BEIK (2009): Relationship between growth, yield and storability of onion (Allium Cepa L.)
with fertilization of nitrogen, sulphur and copper under calcareous soil conditions. Research Journal of Agriculture and
Biological Sciences, 5: 361-371.
EL-TOHAMY, W.A.; A.Kh. KHALID; H.M. EL-ABAGY; S.D. ABOU-HUSSEIN (2009): Essential oil, growth and yield of
Onion (Allium Cepa L.) in response to foliar application of some micronutrients. Australian Journal of Basic and Applied
Sciences, 3: 201-205.
EVERAARTS, A.P. (1999): Harvest date prediction for field vegetables. A review. Gartenbauwissenschaft, 64: 20-25.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 15
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 16
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
EWING, E.E. (1981): Heat stress and the tuberization stimulus. American Potato Journal, 58: 31-49.
EWING, E.E. (1992): Tuber formation in potato: induction, initiation, and growth. Horticultural Reviews, 14: 89-198.
EWING, E.E. (1998): Potato. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 8: 295-344. CAB Publishing.
EWING, E.E. and P.F. WAREING (1978): Shoot, stolon, and tuber formation on potato (Solanum tuberosum L.) cuttings
in response to photoperiods. Plant Physiology, 61: 348-53.
FICK, G.W.; W.A. WILLIAMS; R.S. LOOMIS (1971): Recovery from partial defoliation and pruning in sugar beet. Crop
Science, 11: 718-21.
FIDALGO, F.; A. SANTOS, I. SANTOS; R. SALEMA (2004): Effects of long-term salt stress on antioxidant defense
systems, leaf water relations and chloroplast ultrastructure of potato plants. Annals of Applied Biology, 145:185-192.
FINCH-SAVAGE, E.W.; K. PHELPS (1993): Onion (Allium cepa L.) seedling emergence patterns can be explained by the
influence of soil temperature and water potential on seed germination. Journal of Experimental Botany, 44: 407-14.
FINCH-SAVAGE, W.E.; J.R.A. STECKEL; K. PHELPS (1998): Germination and post-germination growth to carrot
seedling emergence: predictive threshold models and sources of variation between sowing occasions. New Phytologist, 139:
505-16.
FINCH-SAVAGE, W.E.; K. PHELPS; J.R.A. STECKEL; W.R. WHALLEY; H.R. ROWSE (2001): Seed reserve-dependent
growth responses to temperature and water potential in carrot (Daucus carota L.). Journal of Experimental Botany, 52: 218797.
FLEISHER, D.H.; R.M. SHILLITO; D.J. TIMLIN; S.H. KIM; V.R. REDDY (2006): Approaches to modeling potato leaf
appearance rate. Agronomy Journal, 98:522-528.
FLEISHER, D.H.; D.J. TIMLIN; V.R. REDDY (2008): Interactive effects of carbon dioxide and water stress on potato
canopy growth and development. Agronomy Journal, 100:711-719.
FRAPPELL, B.D. (1973): Plant spacing of onions. Journal of Horticultural Science, 48: 19-28.
GACHANGO, E.; S.I. SHIBAIRO; J.N. KABIRA; G.N. CHEMININGWA; P. DEMO (2008): Effects of light intensity on
quality of potato seed tubers. African Journal of Agricultural Research, 3: 732-739.
GALE, J.; H.C. KOHL; R.M. HAGAN (1967): Changes in the water balance and photosynthesis of onion, bean and cotton
plants under saline conditions. Physiologia Plantarum, 20: 408-20.
GASZTONYI, M.N.; H. DAOOD; M.T. HAJOS; P. BIACS (2001): Comparison of red beet (Beta vulgaris var conditiva)
varieties on the basis of their pigment components. Journal of the Science of Food and Agriculture, 81: 932-3.
GHONAME, A.; Z.F. FAWZY; A.M. EL-BASSIONY; G.S. RIADAND; M.M.H.A. EL-BAKY (2007): Reducing onion bulbs
flaking and increasing bulb yield and quality by potassium and calcium application. Australian Journal of Basic and Applied
Sciences, 1: 610-618.
GOLTZ, S.M.; C.B. TANNER; A.A. MILLAR; A.R.G. LANG (1971): Water balance of a seed onion field. Agronomy
Journal, 63: 762-5.
GRAY, D. (1973): The growth of individual tubers. Potato Research, 16: 80-4.
GRAY, D. and J.R.A. STECKEL (1983): Some aspects of umbel order and harvest date on carrot seed variability and
seedling performance. Journal of Horticultural Science, 58: 73-82.
GRAY, D. and J.R.A. STECKEL (1986a): The effects of several cultural factors on leek (Allium porrum L.) seed
production. Journal of Horticultural Science, 61: 307-313.
GRAY, D. and J.R.A. STECKEL (1986b): The effects of seed-crop plant density, transplant size, harvest date and seed
grading on leek (Allium porrum L.) seed quality. Journal of Horticultural Science, 61: 315-323.
GRAY, D. (1984): The performance of carrot seeds in relation to their viability. Annals of Applied Biology, 104: 559-65.
GRAY, D.; J.C. HOLMES (1970): The effect of short periods of shading at different stages of growth on the development
of tuber number and yield. Potato Research, 13: 215-9.
GRAY, J. R.; A. STECKEL and L. J. HANDS (1992): Leek (Allium porrum L.) seed development and germination. Seed
Science Research, 2:89-95.
GRAY, D.; J.A. WARD (1987): A comparison of leek (Allium porrum) and onion (Allium cepa) seed development. Annals
of Botany, 60: 181-7.
GREENWOOD, D.J.; A. GERWITZ; D.A. STONE; A. BARNES (1982): Root development in vegetable crops. Plant and
Soil, 68: 75-96.
GREENWOOD, D.J.; J.J. NEETESON; A. DRAYCOTT; G. WIJNEN; D.A. STONE (1992): Measurement and simulation of
the effects of N-fertilizer on growth, plant composition and distribution of soil mineral-N in nationwide onion experiments.
Fertilizer Research, 31: 305-18.
HALVORSON, A.D.; M.E. BARTOLO; C.A. REULE; A. BERRADA (2008): Nitrogen effects on onion yield under drip and
furrow irrigation. Agronomy Journal, 100:1062-1069.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 16
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 17
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
HAMILTON, B.K.; L.M. PIKE; K.S. YOO (1997): Clonal variations of pungency, sugar content, and bulb weight of onions
due to sulphur nutrition. Scientia Horticulturae, 71: 131-6.
HAMMES, P.S.; E.A. BEYERS (1973): Localization of the photoperiodic perception in potatoes. Potato Research, 16: 6872.
HAMMES, P.S.; P.C. NEL (1975): Control mechanisms in the tuberization process. Potato Research, 18: 262-72.
HARTMANN, A.; M. SENNING, P. HEDDEN; U. SONNEWALD; S. SONNEWALD (2011): Reactivation of meristem
activity and sprout growth in potato tubers require both cytokinin and gibberellins. Plant Physiology, 155: 776-796.
HAY, R.K.M. and J.R. BROWN (1988): Field studies of leaf development and expansion in the leek (Allium porrum).
Annals of Applied Biology, 113: 617-625.
HAY, R.K.M. and D.R. KEMP (1992): The prediction of leaf canopy expansion in the leek from a simple model
dependent on primordial development. Annals of Applied Biology, 120: 537–545.
HAYNES, K.G.; B.A. CLEVIDENCE; D. RAO; B.T. VINYARD; J.M. WHITE (2010): Genotype· environment interactions for
potato tuber carotenoid content. Journal of the American Society for Horticultural Science, 135:250-258.
HEATH, O.V.S.; M.A. HOLLIES (1965): Studies in the physiology of the onion plant VI. A sensitive morphological test for
bulbing and its use in detecting bulb development in sterile culture. Journal of Experimental Botany, 16: 128-144.
HE C.; N ZHAO; C. SHI; X. DU; J. LI; L. CUI; F. HE (2006) Carbon onion growth enhanced by nitrogen incorporation.
Scripta Materialia 54: 1739–1743.
HEGARTY, T.W. (1974): Seed quality and field emergence in calabrese and leeks. Journal of Horticultural Science, 49:
189-196.
HEGARTY, T.W. (1976): Effects of fertilizer on the seedling emergence of vegetable crops. Journal of the Science of
Food and Agriculture, 27: 962-968.
HETTERSCHEID, W.L.A.; c. van ETTEKOVEN; R.G. van den BERG and W.A. BRANDENBURG (1999): Cultonomy in
statutory registration exemplified by Allium L. crops. Plant Varieties and Seeds, 12: 149–160.
HOLE, C.C.; J. DEARMAN (1993): The effect of photon flux density on distribution of assimilate between shoot and
storage root of carrot, red beet and radish. Scientia Horticulturae, 55: 213-25.
HOLE, C.C.; R.A. SUTHERLAND (1990): The effect of photon flux density and duration of the photosynthetic period on
growth and dry matter distribution in carrot. Annals of Botany, 65: 63-9.
HOLE, C.C.; T.H. THOMAS; J.M.T. McKEE (1984): Sink development and dry matter distribution in storage root crops.
Plant Growth Regulation, 2: 347-58.
HOLE, C.C.; G.E.L. MORRIS; A.S. COWPER (1987): Distribution of dry matter between shoot and storage root of field
grown carrots. II. Relationship between initiation of leaves and storage roots in different cultivars. Journal of Horticultural
Science, 62: 343-9.
JACKSON SD (1999) Multiple signaling pathways control tuber induction in potato. Plant Physiology, 119: 1-8.
JACKSON, S.D.; A. HEYER; J. DIETZE; S. PRAT (1996): Phytochrome B mediates the photoperiodic control of tuber
formation in potato. Plant Journal, 9: 159-66.
JAGGARD, J.W.; R. WICKENS; D.J. WEBB; R.K. SCOTT (1983): Effects of sowing date on plant establishment and
bolting and the influence of these factors on yields of sugar beet. Journal of Agricultural Science, 101: 147-61.
JAGGARD, K. W.; A. QI; E.S. OBER (2009): Capture and use of solar radiation, water, and nitrogen by sugar beet (Beta
vulgaris L.). Journal of Experimental Botany, 60: 1919-1925.
JANSKY, S.H.; D.M. THOMPSON (1990): The effect of flower removal on potato tuber yield. Canadian Journal of Plant
Science, 70: 1223-5.
JONGSCHAAP, R.E.E.; R. BOOIJ (2004): Spectral measurements at different spatial scales in potato: relating leaf, plant
and canopy nitrogen status. International Journal of Applied Earth Observation and Geoinformation, 5: 205–218.
KADAJA J.; H. TOOMING (2004): Potato production model based on principle of maximum plant productivity. Agricultural
and Forest Meteorology, 127: 17-33.
KANE, C.D.; R.L. JASONI; E.P. PEFFLEY; L.D. THOMPSON; C.J. GREEN; P. PARE; D. TISSUE (2006): Nutrient
solution and solution pH influences on onion growth and mineral content. Journal of Plant Nutrition, 29: 375-390.
KANG; Y.; F.X. WANG, H.J. LIU; B.Z. YUAN (2004): Potato evapotranspiration and yield under different drip irrigation
regimes. Irrigation Science, 23: 133–143.
KHAN, B.A.; E.E. EWING (1983): Factors controlling the basipetal patterns of tuberization in induced potato ( Solanum
tuberosum L.) cuttings. Annals of Botany, 52: 861-74.
KHAN, B.A.; E.E. EWING; A.H. SENESAC (1983): Effects of leaf age, leaf area, and other factors on tuberization of
cuttings from induced potato (Solanum tuberosum) shoots. Canadian Journal of Botany, 61: 3193-201.
KIRK, W.W.; B. MARSHALL (1992): The influence of temperature on leaf development and growth in potatoes in
controlled environments. Annals of Applied Biology, 120: 511-25.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 17
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 18
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
KLOOSTERMAN, B.; D. DE KOEYER; R. GRIFFITHS; B. FLINN; B. STEUERNAGEL; U. SCHOLZ; S. SONNEWALD; U.
SONNEWALD; G.J. BRYAN; S. PRAT; Z. BÁNFALVI; J.P. HAMMOND; P. GEIGENBERGER; K.L. NIELSEN; R.G.F.
VISSER; C.W.B. BACHEM (2008): Genes driving potato tuber initiation and growth: identification based on transcriptional
changes using the POCI array. Functional Integration Genomics, 8:329-340.
KOLOMIETS, M.V.; D.J. HANNAPEL; H. CHEN; M. TYMESON; R.J. GLADON (2001): Lipoxygenase is involved in the
control of potato tuber development. The Plant Cell, 13: 613-26.
KOUWENHOVEN, J.K. (1970): Yield, grading and distribution of potatoes in ridges in relation to planting depth and ridge
size. Potato Research, 13: 59-77.
KRAUSS, A.; H. MARSCHNER (1982): Influence of nitrogen nutrition, daylength and temperature on contents of
gibberellic and abscisic acid and on tuberization in potato plants. Potato Research, 25: 13-21.
KUZYAKOV, Y., J. RUHLMANN; B. GUTEZEIT and B.GEYER (1996): Modelling on the growth and N uptake of leek and
broccoli. Acta Horticulturae, 428: 181–191.
LADA, R.R.; A. STILES; T.J. BLAKE (2005): The effects of natural and synthetic seed preconditioning agents (SPAs) in
hastening seedling emergence and enhancing yield and quality of processing carrots. Scientia Horticulturae, 106: 25–37.
LANCASTER, J.E.; J. FARRANT; M.L. SHAW (2001): Sulfur nutrition affects cellular sulfur, dry weight distribution, and
bulb quality in onion. Journal of the American Society for Horticultural Science, 126: 164-8.
LEVENT, A.; S. POLAT; M. DEVECI; A. SALK (2011): Effects of different osmotic solutions on onion seed emergence.
African Journal of Agricultural Research, 6: 986-991.
LEVY, D.; Z. BEN-HERUT; N. ALBASEL; F. KAISI; I. MANASRA (1981): Growing onion seeds in an arid region: drought
tolerance and the effect of bulb weight, spacing and fertilization. Scientia Horticulturae, 14: 1-7.
LI, H.; L.E. PARENT; A. KARAM (2006): Simulation modeling of soil and plant nitrogen use in a potato cropping system in
the humid and cool environment. Agriculture, Ecosystems and Environment, 115: 248-260.
LI, J.; L. CUI; F. HE; C. HE; N. ZHAO; C. SHI; X. DU (2006): Carbon onion growth enhanced by nitrogen incorporation.
Scripta Materialia, 54: 1739–1743.
LIU, F; A. SHAHNAZARI; M.N. ANDERSEN; S.E. JACOBSEN; C.R. JENSEN (2006): Physiological responses of potato
(Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Journal of
Experimental Botany, 14: 3727-3735.
LIU, F.; A. SHAHAHNAZARI, M.N. ANDERSEN; S.E. JACOBSEN; C.R. JENSEN (2006): Effects of deficit irrigation (DI)
and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia
Horticulturae, 109: 113–117.
LOME, E.; S. HANEKLAUS; E. SCHUNG (2004): Influence of nitrogen and sulfur fertilization on the Alliin content of
onions and garlic. Journal of Plant Nutrition, 27: 1827–1839.
LOMMEN, W.J.M. (1994): Effect of weight of potato minitubers on sprout growth, emergence and plant characteristics at
emergence. Potato Research, 37: 315-22.
LOWELL, P.H.; A. BOOTH (1969): Stolon initiation and development in Solanum tuberosum L. New Phytology, 68: 117585.
LUGT, C.; K.B.A. BODLAENDER; G. GOODIJK (1964): Observations on the induction of second-growth in potato tubers.
European Potato Journal, 7: 219-27.
LULAI, E.C.; J.C. SUTTLE (2004): The involvement of ethylene in wound-induced suberization of potato tuber (Solanum
tuberosum L.): a critical assessment. Postharvest Biology and Technology, 34: 105–112.
MADEC, P. (1978): Some effects of physiological age of the tuber upon sprouting and upon plant development. Potato
Research, 21: 57-9.
MAHMOODI, R.; H. MARALIAN; A. AGHABARATI (2008): Effects of limited irrigation on root yield and quality of sugar
beet (Beta vulgaris L.). African Journal of Biotechnology, 7: 4475-4478.
MANDERSCHEIDA, R.; A. PACHOLSKIB; H.J. WWIGELA (2010): Effect of free air carbon dioxide enrichment combined
with two nitrogen levels on growth, yield and yield quality of sugar beet: Evidence for a sink limitation of beet growth under
elevated CO2. European Journal of Agronomy, 32: 228-239.
MARINUS, J.; K.B.A. BODLAENDER (1975): Response of some potato varieties to temperature. Potato Research, 18:
189-204.
MAZURCZYK, W.; B. LUTOMIRSKA; A. WIERZCICKA (2003): Relation between air temperature and length of vegetation
period of potato crops. Agricultural and Forest Meteorology, 118: 169-172.
MAW, B.W.; B.G. MULLINIX (2005): Moisture loss of sweet onions during curing. Postharvest Biology and Technology,
35: 223–227.
Mc CALLUM, J.; N. PORTER; B. SEARLE; M. SHAW; B. BETTJERMAN; M. Mc MANUS (2005): Sulfur and nitrogen
fertility affects flavour of field-grown onions. Plant and Soil: 269: 151–158.
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 18
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 19
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
MERMOUD, A.; T.D. TAMINI; H. YACOUBA (2005): Impacts of different irrigation schedules on the water balance
components of an onion crop in a semi-arid zone. Agricultural Water Management, 77: 282–295.
MIDMORE, D.J.; R.K. PRANGE (1991): Sources of heat tolerance amongst potato cultivars, breeding lines, and Solanum
species. Euphytica, 55: 235-45.
MIDMORE, D.J.; R.K. PRANGE (1992): Growth response of two Solanum species to contrasting temperatures and
irradiance levels: Relations to photosynthesis, dark respiration and chlorophyll fluorescence. Annals of Botany, 69: 13-20.
MILFORD, G.F.J. (1973): Growth and development of the storage organ of sugar beet. Annals of Applied Biology, 75:
427-38.
MILFORD, G.F.J. (1976): Effect of photoperiod on growth of sugar beet. Annals of Botany, 40: 1309-15.
MILFOR, G.F.J.; T.O. POCOCK; K.W. JAGGARD; P.V. BISCOE; M.J. ARMSTRONG; P.J. LAST; P.J. GOODMAN
(1985): An analysis of leaf growth in sugar beet. IV. The expansion of the leaf canopy in relation to temperature and nitrogen.
Annals of Applied Biology, 335-47.
MILFORD, G.F.J.; K.Z. TRAVIS; T.O. POCOCK; K.W. JAGGARD; W. DAY (1988): Growth and dry-matter partitioning in
sugar beet. Journal of Agricultural Science, 110: 301-8.
MILLARD, P.; D.K.L. Mac KERRON (1986): The effects of nitrogen application on growth and nitrogen distribution within
the potato canopy. Annals of Applied Biology, 109: 427-37.
MILLAR, A.A.; W.R. GARDNER; S.M. GOLTZ (1971): Internal water status and water transport in seed onion plants.
Agronomy Journal, 63: 779-784.
MONDAL, M.F.; J.L. BREWSTER; G.E.L. MORRIS; H.A. BUTLER (1986a): Bulb development in onion (Allium cepa L.). I:
Effects of plant density and sowing date in field conditions. Annals of Botany, 58: 187-195.
MONDAL, M.F.; J.L. BREWSTER; G.E.L. MORRIS; H.A. BUTLER (1986b): Bulb development in onion (Allium cepa L.).
II: The influence of red:far red spectral ratio and of photon flux density. Annals of Botany, 58: 197-206.
MONDAL, M.F.; J.L. BREWSTER; G.E.L. MORRIS; H.A. BUTLER (1986c): Bulb development in onion (Allium cepa L.).
III: Effects of the size adjacent plants, shading by neutral and leaf filters, irrigation and nitrogen regime and the relationship
between the red:far-red spectral ratio in the canopy and leaf area index. Annals of Botany, 58: 207-19.
MONTI, A.; E. BRUGNOLI; A. SCARTAZZA; M.T. AMADUCCI (2006): The effect of transient and continuous drought on
yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). Journal of Experimental Botany, 57:
1253-1262.
MORRIS, J.; K.M. HAWTHORNE; T. HOTZET; S.A. ABRAMS; K.D. HIRSCHI (2008): Nutritional impact of elevated
calcium transport activity in carrots. Proceedings National Academy of Science, 105: 1431-1435.
NYENDE, A.B.; S. SCHITTENHELM; G. MIX-WAGNER; J.M. GREEF (2005): Yield and canopy development of field
grown potato plants derived from synthetic seeds. European Journal of Agronomy, 22: 175–184.
OPARKA, K.J.; H.V. DAVIES; D.A.M. PRIOR (1987): The influence of applied nitrogen on export and partitioning of
current assimilate by field-grown potato plants. Annals of Botany, 59: 311-23.
PEJIC, B.; J. GVOZDANOVIC-VARGA; S. MILIC; A. IGNJATOV-CIUPINA; D. KRSTIC; B. CUPINA (2011): Effect of
irrigation schedules on yield and water use of onion (Allium cepa L.). African Journal of Biotechnology, 10: 2644-2652.
PELTER, G.Q.; R. MITTELSTADT; B.G. LEIB; C.A. REDULLA (2004): Effects of water stress at specific growth stages on
onion bulb yield and quality. Agricultural Water Management, 68: 107–115.
PHILLIPS, N. (2010): Seed and bulb dormancy characteristics in New World Allium L. (Amaryllidaceae): A review. (2010):
International Journal of Botany, 6: 228-234.
PICCINNI, G.; K. JONGHAN; T. MAREK; D.I. LESKOVAR (2009): Crop coefficients specific to multiple phenological
stages for evapotranspiration-based irrigation management of onion and spinach. HortScience, 44: 421-425.
PIETOLA, L. (2000): Response of P, K, Mg and NO 3-N contents of carrots to irrigation, soil compaction, and nitrogen
fertilization. Agricultural and Food Science in Finland, 9: 319-31.
PITCHER, L.; J. DAIE (1991): Growth and sink to source transition in developing leaves of sugarbeet. Plant Cell
Physiology, 32: 335-42.
RAIPUT, T.B.S.; N. PATEL (2006): Water and nitrate movement in drip-irrigated onion under fertigation and irrigation
treatments. Agricultural Water Management, 79: 293–311.
RASCO, E.T. Jr.; R.L. PLAISTED; E.E. EWING (1980): Photoperiod response and earliness of S. tuberosum spp.
andigena after six cycles of recurrent selection for adaptation to long days. American Potato Journal, 57: 435-48. American
Potato Journal, 58: 50.
REYNOLDS, P.M.; E.E. EWING (1989): Effects of high air and soil temperature stress on growth and tuberization in
Solanum tuberosum. Annals of Botany, 64: 241-7.
ROSENFELD, H.J. (1998): Maturity and development of the carrot root (Daucus carota L.). Gartenbauwissenschaft, 63:
87-94.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 20
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
ROSENFELD, H.J.; R.T. SAMUELSEN; P.LEA (1998): The effect of temperature on sensory quality, chemical
composition and growth of carrots (Daucus carota L.). I: Constant diurnal temperature. Journal of Horticultural Science &
Biotechnology, 73: 275-288.
ROWSE, H.R.; W.W. FINCH-SAVAGE (2003): Hydrothermal threshold models can describe the germination response of
carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New
Phytologist, 158: 101-8.
ROWELL, A.B.; E.E. EWING; R.L. PLAISTED (1986): Comparative field performance of potatoes from seedlings and
tubers. American Potato Journal, 63: 219-27.
RUSSO, V.M. (2005): Organic vegetable transplant production. HortScience, 40: 623-628.
EL- SAIDI, M.T.; O.M. KASSAB; E.M. OKASHA; A.R.E. ABDELGHANY (2010): Effect of drip irrigation systems, water
regimes and irrigation frequency on growth and quality of potato under organic agriculture in sandy soils. Australian Journal of
Basic and Applied Sciences, 4: 4131-4141.
SALO, T. (1999): Effects of band placement and nitrogen rate on dry matter accumulation, yield and nitrogen uptake of
cabbage, carrot and onion. Agricultural and Food Science, 2: 157-232.
SALTER, P.J. (1976): Comparative studies of different production systems for early crops of bulb onions. Journal of
Horticultural Science, 51: 329-39.
SALTER, P.J.; I.E. CURRAH and J.R. FELLOWS (1979): The effects of plant density, spatial arrangement and time of
harvest on yield and root size in carrots. Journal of Agricultural Science, 93: 431-40.
SCAIFE, A.; E.F. COX; G.E.L. MORRIS (1987): The relationship between shoot weight, plant density and time during the
propagation of four vegetable species. Annals of Botany, 59: 325-34.
SCHMIDHALTER, U.; J.J. OERTLI (1991): Transpiration/biomass ratio for carrots as affected by salinity, nutrient supply
and soil aeration. Plant and Soil, 135: 125-32.
SENGUL, M.; F. KELES; M.S. KELES (2004): The effect of storage conditions (temperature, light, time) and variety on
the glycoalkaloid content of potato tubers and sprouts. Food Control, 15: 281–286.
SHAHEEN, A.M.; F.A. RIZK; S.M. SINGER (2007): Growing onion plants without chemical fertilization. Research Journal
of Agriculture and Biological Sciences, 3: 95-104.
SHANHEEN, A.M.; M.M. ABDEL-MOUTY; A.H. ALI; F. A. RIZK (2007): Natural and chemical phosphorus fertilizers
as affected onion plant growth, bulbs yield and its some physical and chemical properties. Australian Journal of Basic and
Applied Sciences, 1: 519-524.
SHISHIDO, Y.; T. SAITO (1977): Studies on the flower bud formation in onion plants. III. Effects of physiological
conditions on the low temperature induction of flower buds in bulbs. Journal of the Japanese Society for Horticultural Science,
46: 310-16.
SHOJAEI, T.R.; N.A. SEPAHVAND; M. OMIDI; H.R. ABDI; S.M. NARAGHI (2009): The effect of plant growth regulators,
cultivars and substrate combination on production of virus free potato minitubers. African Journal of Biotechnology, 8: 48644871.
SHRESTHA, N.; S. GEERTS; D. RAES; S. HOREMANS; S. SOENTJENS; F. MAUPAS; P. CLOUET (2010): Yield
response of sugar beets to water stress under Western European conditions. Agricultural Water Management, 97: 346-350.
SMITTLE, D.A. (1988): Evaluation of storage methods for ‘Granex’ onions. Journal of the American Society for
Horticultural Science, 113: 877-80.
SNYDER, R.G.; E.E. EWING (1989): Interactive effects of temperature, photoperiod, and cultivar on tuberization of potato
cuttings. HortScience, 24: 336-8.
SOBEIH, W.Y.; C.J. WRIGHT (1986): The photoperiodic regulation of bulbing in onions (Allium cepa L.) II. Effects of plant
age and size. Journal of Horticultural Science, 61: 337-341.
SOHRABI, Y.; G. HEIDARI (2008): Influence of withholding irrigation and harvest times on yield and quality of sugar beet
(Beta vulgaris). International Journal of Agricultural Biology, 10: 427–31.
SØLTOFT, M.; J. NIELSEN; K.H. LAURSEN; S. HUSTED; U. HALEKOH; P. KNUTHSEN (2010): Effects of organic and
conventional growth systems on the content of flavonoids in onions and phenolic acids in carrots and potatoes. Journal of
Agricultural Food Chemistry, 58; 10323-10329.
SORENSEN, J.N.; K. GREVSEN (2001): Sprouting in bulb onions (Allium cepa L.) as influenced by nitrogen and water
stress. Journal of Horticultural Science & Biotechnology, 76: 501-6.
SPICER, R.; A. GROOVER (2010): Evolution of development of vascular cambia and secondary growth. New Phytologist,
186: 577-592.
STALHAM, M.A.; E.J. ALLEN (2001): Effect of variety, irrigation regime and planting date on depth, rate, duration and
density of root growth in the potato (Solanum tuberosum) crop. Journal of Agricultural Science, 137: 251-70.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 21
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
STEVENS, W.B.; A.D. BLAYLOCK; J.M. KRALL; B.G. HOPKINS; J.W. ELLSWORTH (2007): Sugarbeet yield and
nitrogen use efficiency with preplant broadcast, banded, or point-injected nitrogen application. Agronomy Journal, 99: 12521259.
STEWARD, F.C.; V. MORENO; W.M. ROCA (1981): Growth, form and composition of potato plants as affected by
environment. Annals of Botany, 48: 1-45.
STONE, D.A. (1998): The effects of “starter” fertilizer injection on the growth and yield of drilled vegetable crops in relation
to soil nutrient status. Journal of Horticultural Science and Biotechnology, 73: 441-451.
STRUIK, P.C.; E. van HEUSDEN; K. BURGER-MEIJER (1988): Effects of short periods of long days on the development,
yield and size distribution of potato tubers. Netherlands Journal of Agricultural Science, 36: 11-22.
STRUIK, P.C.; A.J. HAVERKORT; D. VREUGDENHIL; C.B. BUS; R. DANKERT (1990): Manipulation of tuber-size
distribution of a potato crop. Potato Research, 417-432.
STRUIK, P.C.; W.J.M. LOMMEN (1999): Improving the field performance of micro- and minitubers. Potato Research, 42:
559-68.
SUOJALA, T. (2000): Variation in sugar content and composition of carrot storage roots at harvest and during storage.
Scientia Horticulturae, 85: 1-19.
SUOJALA, T. (2000): Growth and partitioning between shoot and storage root of carrot in a northern climate. Agricultural
and Food Science in Finland, 9: 49-59.
TAIVALMAA, S.L.; H. TALVITIE (1997): The effects of ridging, row-spacing and seeding rate on carrot yield. Agricultural
and Food Science in Finland, 6: 363-9.
TAMINI, T.; A. MERMOUD (2002): Water and nitrate dynamics under irrigated onion in a semi-arid area. Irrigation and
Drainage, 51: 77-86.
TAYLOR, A.G.; C.J. ECKENRODE; R.W. STRAUB (2001): Seed coating technologies and treatments for onion:
Challenges and Progress. HortScience, 36: 199-205.
TEKALIGN, T.; P.S. HAMMES (2005): Growth and productivity of potato as influenced by cultivar and reproductive
growth I. Stomatal conductance, rate of transpiration, net photosynthesis, and dry matter production and allocation. Scientia
Horticulturae, 105: 13–27.
TEKALIGN, T.; P.S. HAMMES (2005): Growth and productivity of potato as influenced by cultivar and reproductive growth
II. Growth analysis, tuber yield and quality. Scientia Horticulturae, 105: 29–44.
TERABUN, M (1971): Studies on the bulb formation in onion plants. VIII. Internal factors in reference to bulb formation.
Journal of the Japanese Society of Horticultural Science, 40: 50-6.
TIMLIN, D.; S.M.L. RAHMAN; J. BAKER; V.R. REDDY; D. FLEISHER; B. QUEBEDEAUX (2006): Whole plant
photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agronomy Journal, 98:11951203.
van der BERG, J.H.; E.E., EWING; R.L. PLAISTED; S. Mc MURRY; M.W. BONIERBALE (1996): QLT analysis of potato
tuberization. Theoretical Applied Genetics, 93: 307-316.
van DELDEN, A.; J.J. SCHRÖDER; M.J. KROPFF; C. GRASHOFF; R. BOOIJ (2003): Simulated potato yield, and crop
and soil nitrogen dynamics under different organic nitrogen management strategies in The Netherlands. Agriculture,
Ecosystems and Environment, 96: 77–95.
VANDER ZAAG, P.; A.K. DEMAGANTE; E.E. EWING (1990): Influence of plant spacing on potato (Solanum tuberosum
L.) morphology, growth and yield under two contrasting environments. Potato Research, 33: 313-24.
VASQUEZ-ROBINET, C.; S.P. MANE; A.V. ULANOV; J.I. WATKINSON; V.K. STROMBERG; D. De KOEYER; R.
SCHAFLEITNER; D.B. WILLMOT; M. BONIERBALE; H.J. BOHNERT; R. GRENE (2008):
Physiological and molecular adaptations to drought in Andean potato genotypes. Journal of Experimental Botany, 59:
2109-2123.
VILLALOBOS, F.J.; L. TESTI; R. RIZALLI; F. ORGAZ (2004): Evapotranspiration and crop coefficients of irrigated garlic
(Allium sativum L.) in a semi-arid climate. Agricultural Water Management 64: 233-249.
VINTAL, H; E. BEN-NOON; E. SHLEVIN; U. YERMIYAHU; D. SHTIENBERG; A. DINOOR (1999): Influence of rate of soil
fertilization on Alternaria leaf blight (Alternaria dauci) in carrots. Phytoparasitica, 27: 193-200.
VISSER, C.L.M de (1994a): ALCEPAS, an onion growth model based on SUCROS87. I. Development of the model.
Journal of Horticultural Science, 69: 501-18.
VISSER, C.L.M. de (1994b): ALCEPAS, an onion growth model based on SUCROS87. II. Validation of the model. Journal
of Horticultural Science, 69: 519-25.
VOS, J. (1995): The effects of nitrogen supply and stem density on leaf attributes and stem branching in potato. Potato
Research, 38: 271-279.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 22
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
VOS, J.; H. BIEMOND (1992): Effects of nitrogen on the development and growth of the potato plant. 1. Leaf appearance,
expansion growth, life spans of leaves and stem branching. Annals of Botany, 70: 27-35.
VREUGDENHIL, D.; P.C. STRUIK (1989): An integrated view of the hormonal regulation of tuber formation in potato
(Solanum tuberosum). Physiologia Plantarum, 75: 525-31.
WHALLEY, W.R.; L.J. CLARK, W.E. FINCH-SAVAGE; R.E. COPE (2004): The impact of mechanical impedance on the
emergence of carrot and onion seedlings. Plant and Soil, 265: 315–323.
WANG, X.L.; F.M. LI; Y. JIA; W.Q. SHI (2005): Increasing potato yields with additional water and increased soil
temperature. Agricultural Water Management, 78: 181–194.
WANNAMAKER, M.J.; L.M. PIKE (1987): Onion responses to various salinity levels. Journal of the American Society for
Horticultural Science, 112: 49-52.
WARD, C.M. (1976): The influence of temperature on weight loss from stored onion bulbs due to desiccation, respiration
and sprouting. Annals of Applied Biology, 83: 149-155.
WHALLEY, W.R.; W.E. FINCH-SAVAGE; R.E. COPE; H.R. ROWSE; N.R.A. BIRD (1999): The response of carrot
(Daucus carota L.) and onion (Allium cepa L.) seedlings to mechanical impedance and water stress at sub-optimal
temperatures. Plant Cell and Environment, 22: 229-42.
WHEELER, T.R.; R.H. ELLIS (1991): Seed quality, cotyledon elongation at suboptimal temperatures, and the yield of
onion. Seed Science Research, 1: 57-67.
WHEELER, T.R.; R.H. ELLIS (1992): Seed quality and emergence in onion. Journal of Horticultural Science, 67: 319-32.
WHEELER, R.M.; T.W. TIBBITTS; A.H. FITZPATRICK (1991): Carbon dioxide effects on potato growth under different
photoperiods and irradiance. Crop Science, 31: 1209-13.
WHITE, J.M. (1992): Carrot yield when grown under three soil water concentrations. HortScience, 27: 105-6.
WIEBE, H.J. (1994): Effects of temperature and daylength on bolting of leek. Scientia Horticulturae, 59: 177–185.
WILLEY, R.; S.B. HEALTH (1969): The quantitative relationship between plant population and crop yield. Advances in
Agronomy, 21: 281-321.
WOLF, S.; A. MARANI; J. RUDICH (1990): Effects of temperature and photoperiod on assimilate partitioning in potato
plants. Annals of Botany, 66: 515-20.
WURR, D.C.E.; J.R. FELLOWS; A.J. HAMBIDGE and M.P. FULLER (1999): Growth, development and bolting of early
leeks in the UK. Journal of Horticultural Science and Biotechnology, 74: 140–146.
YAMASAKI, A.; K. TANAKA; M.YOSHIDA; H. MIURA (2000a): Effect of day and night temperatures on flower-bud
formation and bolting of Japanese bunching onion (Allium fistulosum L.). Journal of the Japanese Society for Horticultural
Science, 69: 40-6.
YAMASAKI, A.; K. TANAKA; M.YOSHIDA; H. MIURA (2000b): Induction of devernalization in mid-season flowering
cultivars of japanese bunching onion (Allium fistulosum L.) by high day temperature. Journal of the Japanese Society for
Horticultural Science, 69: 611-3.
YAMASAKI, A.; H. MIURA; K. TANAKA (2000c): Effect of photoperiod before, during and after vernalization on flower
initiation and development and its varietal difference in Japanese bunching onion (Allium fistulosum L.). Journal of
Horticultural Science & Biotechnology, 75: 645-50.
YAMASAKI, A.; K. TANAKA; N. NAKASHIMA (2003): Effect of photoperiod on the induction of devernalization by high
day temperature in field-grown Japanese bunching onion (Allium fistulosum L.). Journal of the Japanese Society for
Horticultural Science, 72: 18-23.
5. III. IV. Cultivos para producción de inflorescencias: brócoli, coliflor.
ABOUEL-MAG, M.M.; A.A.A. EL-FATTAH; E.M. SELIM (2009): Influence of mineral and organic fertilization methods on
growth, yield and nutrient uptake by broccoli crop. (2009): World Journal of Agricultural Sciences, 5: 582-589.
ABDUL-BAKI, A.A. (1997): Nitrogen requirements of broccoli in cover crop mulches and clean cultivation. Journal of
Vegetable Crop Production, 3: 85-100.
ALT, C.; H. STUTZEL and H. KAGE (2000a): Optimal nitrogen content and photosynthesis in cauliflower (Brassica
oleracea L. botrytis). Scaling up from a leaf to the whole plant. Annals of Botany, 85: 779-87.
ALT, C.; H. KAGE; H. STUTZEL (2000b): Modeling nitrogen content and distribution in cauliflower (Brassica oleracea L.
botrytis). Annals of Botany, 86: 963-73.
BAGGETT, J.R.; H.J. MACK (1970): Premature heading of broccoli cultivars as affected by transplant size. Journal of the
American Society for Horticultural Science, 95: 403-7.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 23
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
BOOIJ, R. (1987): Environmental factors in curd initiation and curd growth of cauliflower in the field. Netherland Journal of
Agricultural Science, 35: 435-445.
BOOIJ, R. (1990a): Cauliflower curd initiation and maturity: variability within a crop. Journal of Horticultural Science, 65:
167-75.
BOOIJ, R. (1990b): Effects of gibberellic acids on time of maturity and on yield and quality of cauliflower. Netherlands
Journal of Agricultural Science, 38: 641-51.
BOOIJ, R. (1990c): Influence of transplant size and raising temperature on cauliflower curd weight.
Gartenbauwissenschaft, 55: 103-109.
BOWEN, P.A.; B.J. ZEBARTH; P.M.A. TOIVONEN (1999): Dynamics of nitrogen and dry-matter partitioning and
accumulation in broccoli (Brassica oleracea L. var. italica) in relation to extractable soil inorganic nitrogen. Canadian Journal
of Plant Science, 79: 277-286.
BREWSTER, J.L.; R.A. SUTHERLAND (1993): The rapid determination in controlled environments of parameters for
predicting seedling growth rates in natural conditions. Annals of Applied Biology, 122: 123-133.
CUTCLIFFE, J.A. (1975): Effect of plant spacing on single-harvest yields of several broccoli cultivars. HortScience, 10:
417-9.
CHUNG, B. (1982): Effects of plant density on the maturity and once-over harvest yields of broccoli. Journal of
Horticultural Science, 57: 365-72.
DROST, D.T.; J.W. MacADAM; L.M. DUDLEY; N. SOLTANI (1997): Response of bean and broccoli to high-sulfate
irrigation water. HortTechnology, 7: 429-34.
DUFAULT, R.J.; L. WATERS Jr. (1985): Container size influences broccoli and cauliflower transplant growth but not yield.
HortScience, 20: 682-4.
EL- MAGD, M.M.A.; A.M, EL-BASSIONY; Z.F. FAWZY (2006): Effect of organic manure with or without chemical fertilizers
on growth, yield and quality of some varieties of broccoli plants. Journal of Applied Sciences Research, 2: 791-798.
EL-MAGD, M.M.A.; O.M. SAWAN; Z.M.F. FATEN; S.A. ELALL (2010): Productivity and quality of two broccoli cultivars as
affected by different levels of nitrogen fertilizers. Australian Journal of Basic and Applied Sciences, 4: 6125-6133.
EVERAARTS, A.P. (1999): Harvest date prediction for field vegetables. A review. Gartenbauwissenschaft, 64: 20-25.
EVERAARTS, A.P. (2000): Nitrogen balance during growth of cauliflower. Scientia Horticulturae, 83: 173-186.
EVERAARTS, A.P.; P. DE WILLIGEN (1999a): The effect of nitrogen and the method of application on yield and quality of
broccoli. Netherlands Journal of Agricultural Science, 47: 123-133.
EVERAARTS, A.P.; P. DE WILLIGEN (1999b): The effect of the rate and method of nitrogen application on nitrogen
uptake and utilization by broccoli (Brassica oleracea var. italica). Netherlands Journal of Agricultural Science, 47: 123-133.
FARNHAM, M.W.; M.A. GRUSAK; M. WANG (2000): Calcium and magnesium concentration of inbreed and hybrid
broccoli heads. Journal of the American Society for Horticultural Science, 125: 344-349.
GREVSEN, K. (1998): Effects of temperature on head growth of broccoli (Brassica oleracea L. var. italica) from
transplanting to head initiation. Journal of Horticultural Science & Biotechnology, 74: 698-705.
GREVSEN, K.; J.E. OLESEN (1994): Modelling cauliflower development from transplanting to curd initiation. Journal of
Horticultural Science, 69: 755-66.
GREVSEN, K.; J.E.OLESEN (1999): Modelling development of broccoli (Brassica oleracea L. var. italica): Parameter
estimates for a predictive model. Journal of Horticultural Science & Biotechnology, 73: 235-244.
GRIEVE, C.M. ; J.A. POSS; S.R. GRATTAN; D.L. SUAREZ; T.E. SMITH (2010): The combined effects of salinity and
excess boron on mineral ion relations in broccoli. Scientia Horticulturae, 125: 179-187.
GUTEZEIT, B. (2004) Yield and nitrogen balance of broccoli at different soil moisture levels. Irrigation Science, 23: 21-27.
HAND, D.J.; J.G. ATHERTON (1987): Cur initiation in the cauliflower, I. Juvenility. Journal of Experimental Botany, 38:
2050-2058.
HOOKS, C.R.R.; M.W. JOHNSON (2001): Broccoli growth parameters and level of head infestation in simple and mixed
plantings: Impact of increased flora diversification. Annals of Applied Biology, 138: 269-80.
ISLAM, M.H.; M.R. SHAHEB; S. RAHMAN; B. AHMED; A.T.M.T. ISLAM; P.C. SARKER (2010): Curd yield and
profitability of broccoli as affected by phosphorus and potassium. International Journal of Sustained Crop Production, 5: 1-7.
KAGE, H.; M. KOCHLER; H. STÜTZEL (2000) Root growth of cauliflower (Brassica oleracea L. botrytis) under unstressed
conditions: Measurement and modeling. Plant and Soil, 223: 131-145.
KAGE, H.; C. ALT; H. STÜTZEL (2001a): Predicting dry matter production of cauliflower (Brassica oleracea L. botrytis)
under unstressed conditions. I. Photosynthetic parameters of cauliflower leaves and their implications for calculations of dry
matter production. Scientia Horticulturae, 87: 155-70.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 24
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
KAGE, H.; C. ALT; H. STÜTZEL (2001b): Predicting dry matter production of cauliflower (Brassica oleracea L. botrytis)
under unstressed conditions. II. Comparison of light use efficiency and photosynthesis-respiration based modules. Scientia
Horticulturae, 87: 171-90.
KAGE, H.; M. KOCHLER; H. STÜTZEL (2004) Root growth and dry matter partitioning of cauliflower under drought stress
conditions: measurement and simulation. European Journal of Agronomy 20: 379-394.
KANISZEWSKI, S.; J. RUMPEL (1998): Effects of irrigation, nitrogen fertilization and soil type on yield and quality of
cauliflower. Journal of Vegetable Crop Production, 4: 67-75.
KOCHLER, M.; H. KAGE; H. STÜTZEL (2007): Modelling the effects of soil water limitations on transpiration and stomatal
regulation of cauliflower. European Journal of Agronomy, 26: 375-383.
LATIMER, J.C. (1990): Drought or mechanical stress affects broccoli transplant growth and establishment but not yield.
HortScience, 25: 1233-5.
LESHEM, Y.; S. STEINER (1968): Effect of gibberellic acid and cold treatment on flower differentiation and stem
elongation of cauliflower (Brassica oleracea var. botrytis). Israel Journal of Agricultural Research, 18: 133-4.
LOPEZ-PEREZ, L.; N. FERNANDEZ-GARCIA; E. OLMOS; M. CARVAJAL (2007): The phi thickening in roots of broccoli
plants: an acclimation mechanism to salinity? International Journal of Plant Science, 168:1141–1149.
LOPEZ-PEREZ, L.; M.C. MARTINEZ-BALLESTA; C. MAURE; M. CARVAJAL (2009): Changes in plasma membrane
lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry, 70: 492-500.
MARSHALL, B.; R. THOMPSON (1987): A model of the influence of air temperature and solar radiation on the time to
maturity of calabrese Brassica oleracea var. italica. Annals of Botany, 60: 513-9.
NKOA, R.; Y. DESJARDINS; N. TREMBLAY; L. QUERREC; M. BAANA; B. NKOA (2003) A mathematical model for
nitrogen demand quantification and a link to broccoli (Brassica oleracea var. italica) glutamine synthetase activity. Plant
Science 165: 483-/496.
OUDA, B.A.; A.Y. MAHADEEN (2008): Effect of fertilizers on growth, yield, yield components, quality and certain nutrient
contents in broccoli (Brassica oleracea). International Journal of Agricultural Biology, 10: 627-32.
PASCHOLD, P.J.; K.H. ZENGERLE; J. KLEBER (2000): Influence of irrigation on the yield and the nitrogen balance in
broccoli (Brassica oleracea L. convar. botrytis) ALEF. var Italica Plenck).
RATHER, K.; M.K. SCHENK; A.P. EVERAARTS; S. VETHMAN (2000): Rooting pattern and nitrogen uptake of three
cauliflower (Vrassica oleracea var. botrytis) F1 hybrids. Journal of Plant Nutrition and Soil Science, 163: 467-474.
SADIK, S. (1962): Morphology of the curd of cauliflower. American Journal of Botany, 49: 290-7.
SALTER, P.J.; D.J. ANDREWS; J.M. AKEHURST (1984): The effects of plant density, spatial arrangement and sowing
date on yield and head characteristics of a new form of broccoli. Journal of Horticultural Science, 59: 79-85.
SALTER, P.J.; J.M. JAMES (1975): The effect of plant density on the initiation, growth and maturity of curds of two
cauliflower varieties. Journal of Horticultural Science, 50: 239-48.
SCAIFE, A.; E.F. COX; G.E.L. MORRIS (1987): The relationship between shoot weight, plant density and time during the
propagation of four vegetable species. Annals of Botany, 59: 325-34.
SPASKI, H.; E.B. OYER (1964): The influence of pre-transplanting variables on the growth and development of cauliflower
plants. Proceedings of the American Society for Horticultural Science, 85: 374-85.
TAN, D.K.Y.; C.J. BIRCH; A.H. WEARING; K.G. RICKERT (2000a): Predicting broccoli development. I. Development is
predominantly determined by temperature rather than photoperiod. Scientia Horticulturae, 84: 227-243.
TAN, D.K.Y.; C.J. BIRCH; A.H. WEARING; K.G. RICKERT (2000b): Predicting broccoli development. II. Comparison and
validation of thermal time models. Scientia Horticulturae, 86: 89-101.
THOMPSON, R.; H. TAYLOR (1976): Plant competition for cultural methods in calabrese. Journal of Horticultural Science,
51: 230-231.
THOMPSON, T.L.; T.A. DOERGE and R.E. GODIN (2002): Subsurface drip irrigation and fertigation of broccoli: I. Yield,
quality and nitrogen uptake. Soil Science Society American Journal, 66: 86-92.
TREMBLAY, N.; M. SENECAL (1988): Nitrogen and potassium in nutrient solution influence seedling growth of four
vegetable species. HortScience, 23: 1018-20.
Van den BOOGAARD, R.; K. THORUP-KRISTENSEN (1997): Effects of nitrogen fertilization on growth and soil nitrogen
depletion in cauliflower. Acta Agriculturae Scandinavica, 47: 149-155.
WIEBE, H.J. (1975): The morphological development of cauliflower and broccoli cultivars depending on temperature.
Scientia Horticulturae, 3: 95-101.
WIEN, H.C.; D.C.E. WURR (1998): Cauliflower, Broccoli, Cabbage and Brussels Sprouts. En: The Physiology of
Vegetable Crops (ed. A, Wien), Cap. 15: 511-552. CAB Publishing.
WURR, D.C.E.; J.R. FELLOWS (1984): Cauliflower buttoning - the role of transplant size. Journal of Horticultural Science,
59: 419-429.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 25
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
WURR, D.C.E.; J.R. FELLOWS; P. CRISP (1982): Leaf and curd production in cauliflower varieties cold-treated before
transplanting. Journal of Agricultural Science, 99: 425-32.
WURR, D.C.E.; J.R. FELLOWS; R.W.P. HIRON (1990): Relationship between the time of transplanting, curd initiation and
maturity in caulifower. Journal of Agricultural Science, 114: 193-9.
WURR, D.C.E.; J.R. FELLOWS; A.J. HAMBIDGE (1991): The influence of field environmental conditions on calabrese
growth and development. Journal of Horticultural Science, 66: 495-504.
WURR, D.C.E.; J.R. FELLOWS; K. PHELPS; R.J. READER (1993): Vernalization in summer/autumn cauliflower (Brassica
oleracea var. botrytis L.). Journal of Experimental Botany, 44: 1507-14.
WURR, D.C.E.; J.R. FELLOWS; K. PHELPS; R.J. READER (1994): Testing a vernalization model on field-grown crops of
four cauliflower cultivars. Journal of Horticultural Science, 69: 251-5.
5. III. V. Cultivos para la producción de frutos: tomate, pimiento, zapallo, zapallito.
ADAMS, S.R; V.M. VALDES; C.R.J. CAVE; J.S. FENLON (2001): The impact of changing light levels and fruit load on the
pattern of tomato yield. Journal of Horticultural Science & Biotechnology, 76: 368-373.
ALBACETE, A.; M.E. GHANEM; C. MARTINEZ-ANDUJAR; M. ACOSTA; J. SANCHEZ-BRAVO; V. MARTINEZ; S.
LUTTS; I.C. DODD; F. PEREZ-ALFONCEA (2008): Hormonal changes in relation to biomass partitioning and shoot growth
impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany, 59: 4119-4131.
ALCANTAR, G.G.; M.R. VILLARREAL; A.S. AGUILAR (1999): Tomato growth (Lycopersicon esculentum Mill), and
nutrient utilization in response to varying fertigation programs. Acta Horticulturae, 481: 385-391.
ALEXANDER, S.E.; G.H. CLOUGH (1998): Spunbonded rowcover and calcium fertilization improve quality and yield in
bell pepper. HortScience, 33: 1150-1152.
ALI, A.M.; W.C. KELLY (1993): Effect of pre-anthesis temperature on the size and shape of sweet pepper (Capsicum
annuum L.) fruit. Scientia Horticulturae, 54: 97-105.
ALIYU, L. (2000): Effect of organic and mineral fertilizers on growth, yield and composition of pepper (Capsicum annuum
L.). Biological Agriculture and Horticulture, 18: 29-36.
AL-KARAKI, G.N. (2000): Growth, sodium, and potassium uptake and translocation in salt stressed tomato. Journal of
Plant Nutrition, 23: 369-79.
ALONI, B.; L. KARNI; Z. ZAIDMAN; A.A. SCHAFFER (1997): The relationship between sucrose supply, sucrose-cleaving
enzymes and flower abortion in pepper. Annals of Botany, 79: 601-5.
AMOR, F.M. del; M.C. RUIZ-SANCHEZ; V. MARTINEZ; A. CERDA (2000): Gas exchange, water relations, and ion
concentrations of salt-stressed tomato and melon plants. Journal of Plant Nutrition, 23: 1315-1325.
AN, P.; S. INANAGA; X.J. LI; A.E. ENEJI; N.W. ZHU (2005) Interactive effects of salinity and air humidity on two tomato
cultivars differing in salt tolerance. Journal of Plant Nutrition, 28: 459-473.
ANDERSEN, P.C.; F.M. RHOADS; S.M. OLSON; B.V. BRODBECK (1999a): Relationships of nitrogenous compounds in
petiole sap of tomato to nitrogen fertilization and the value of these compounds as a predictor to yield. HortScience, 34: 254258.
ANDERSEN, P.C.; F.M. RHOADS; S.T. OLSON; K. D. HILL (1999b): Carbon and nitrogen budgets in spring and fall
tomato crops. HortScience, 34: 648-52.
ANDERSON, J.A. (2002) Catalase activity, hydrogen peroxide content and thermotolerance of pepper leaves. Scientia
Horticulturae 1815: 1-8.
ARCHBOLD, D.D.; F.G. DENIS Jr.; J.A. FLORE (1982): Accumulation of 14C-labelled material from foliar-applied 14C
sucrose by tomato ovaries during fruit set and initial development. Journal of the American Society for Horticultural Science,
107: 19-23.
ATHERTON, J.G.; J. RUDICH (1986): The Tomato Crop. A Scientific Basis for Improvement. Chapman & Hall. London,
661 pp.
AVILA-SAKAR, G.; G.A. KRUPNICK; A.G. STEPHENSON (2001): Growth and resource allocation in Cucurbita pepo spp.
TEXANA: effects of fruit removal. International Journal Plant Science, 162: 1089-95.
AYARI, O.; G. SAMSON; M. DORAIS; R. BOULANGER; A. GOSSELIN (2000): Stomatal initiation of photosynthesis in
winter production of greenhouse tomato plants. Physiologia Plantarum, 110: 558-64.
BAKKER, J.C.; J.A.M. Van UFFELEN (1988): The effects of diurnal temperature regimes on growth and yield of sweet
pepper. Netherlands Journal of Agricultural Science, 36: 201-208.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 26
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
BALANDRAN-QUINTANA; R.R.A.M. MENDOZA-WILSON; A.A. GARDEA-BEJAR; I. VARGAS-ARISPURO; M.A.
MARTÍNEZ-TELLEZ (2003) Irreversibility of chilling injury in zucchini squash (Cucurbita pepo L.) could be a programmed
event long before the visible symptoms are evident. Biochemical and Biophysical Research Communications 307: 553–557
BALIBREA, M.E.; J. DELL’AMICO; M.C. BOLARIN; F. PEREZ-ALFOCEA (2000): Carbon partitioning and sucrose
metabolism in tomato plants growing under salinity. Physiologia Plantarum, 110: 503-511.
BEHBOUDIAN, M.H. (1977): Water relations of cucumber, tomato and sweet pepper. Meddelingen Landbouwhogeschool,
77-6: 1-84.
BEN-GAL, A.; L. KARLBERG; P.E. JANSSON; U. SHANI (2003): Temporal robustness of linear relationships between
production and transpiration. Plant and Soil, 251: 211-218.
BEN-GAL; U.Y.S.COHEN (2009): Fertilization and blending alternatives for irrigation with desalinated water. Journal of
Environmental Quality, 38: 529-536.
BERTIN, N. (2005): Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell
division, cell expansion and DNA endoreduplication. Annals of Botany, 95: 439–447.
BERTIN, N.; S. GUICHARD; CL LEONARDI; J.J. LONGUENESSE; D. LANGLOISS; B. NAVEZ (2000): Seasonal
evolution of the quality of fresh glasshouse tomatoes under Mediterranean conditions, as affected by air vapour pressure
deficit and plant fruit load. Annals of Botany, 85: 741-750.
BERTRAM, L.; P. KARLSEN (1994): A comparison study on stem elongation of several greenhouse plants. Scientia
Horticulturae, 59: 265-274.
BLOOM, A.J.; M.A. ZWIENIECKI; J.B. PASSIOURA; L.B. RANDALL; N.M. HOLBROOK; D.A. St. CLAIR (2004): Water
relations under root chilling in a sensitive and tolerant tomato species. Plant, Cell and Environment, 27: 971-979.
BOONEN, C.; J.M. AERTS; D. BERCKMANS; H. PIEN; R. LEMEUR; P.C. YOUNG (2002): Mathematical modelling of the
fast dynamic response of tomato leaves to sudden changes in microclimate. Acta Horticulturae, 633: 221-8.
BOULARD, T.; H. FATNASSI; J.C. ROY; J. LAGIER; J. FARGUES; N. SMITS; M. ROUGIER; B. JEANNEQUIN (2004):
Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer. Agricultural and Forest Meteorology, 125:
225-239.
BRUGGINK, G.T. (1987): Influence of light on the growth of young tomato, cucumber and sweet pepper plants in the
greenhouse: Calculating the effect of differences in light integral.
CALVERT, A. (1964): The effects of air temperature on growth of young tomato plants in natural light conditions. Journal
of Horticultural Science, 39: 194-211.
CALVERT, A. (1965): Flower initiation and development in the tomato. National Agricultural Advisory Service Quarterly
Review, 70: 79-88.
CARRERA, L.M.; J.S. BUYER; B. VINYARD; A.A. ABDUL-BAKI; L.J. SIKORA; J.R. TEADSLE (2007): Effects of cover
crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Applied Soil
Ecology, 37: 247-255.
CEBULA, S.; A. KALISZ; E. KUNICKI (1998): Canopy formation of sweet pepper plants pruned to one main shoot in
greenhouse production. Folia Horticulturae, 10: 35-44.
CHARLES, W.B.; R.E. HARRIS (1972): Tomato fruit-set at high and low temperatures. Canadian Journal of Plant Science,
52: 497-506.
CHARTZOULAKIS, K.; G. KLAPAKI (2000): Response of two greenhouse pepper hybrids to NaCl salinity during different
growth stages. Scientia Horticulturae, 86: 247-260.
CHENICLET, C.; W.Y. RONG; M. CAUSSE; N. FRANGNE; L. BOLLING; J.P. CARDE; J.P. RENAUDIN (2005): Cell
expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth.
Plant Physiology, 139: 1984-1994.
CHOI, J.H.; G.C. CHUNG; S.H. LEE (1999): Influence of night humidity on the distribution of calcium and sap flow in
tomato plants. Journal of Plant Nutrition, 22: 281-290.
CHRETIEN, S.; A. GOSSELIN; M. DORAIS (2000): High electrical conductivity and radiation-based water management
improve fruit quality of greenhouse tomatoes grown in rockwool. HortScience, 35: 627-31.
CHROMINSKI, A.; J. KOPCEWICZ (1972): Auxin and gibberellins in 2-chloroethyl phosphonic acid-induced femaleness in
Cucurbita pepo L. Zeitschrift der Pflanzenphysiologie, 68: 184-9.
CIARDI, J.A.; C.S. VAVRINA; M.D. ORZOLEK (1998): Evaluation of tomato transplant production methods for improving
establishment rates. HortScience, 33: 229-232.
COCKSHULL, K.E.; C.J. GRAVES; C.R.J. CAVE (1992): The influence of shading on yield of glasshouse tomatoes.
Journal of Horticultural Science, 67: 11-24.
CUARTERO, J.; M.C. BOLARI; M.J. ASINS; V. MORENO (2006): Increasing salt tolerance in the tomato. Journal of
Experimental Botany, 5: 1045-1058.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 27
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
DARAWSHEH, M.K.; D.L. BOURANIS (2006) Season vs. Nutrition-Dependent Fruit Loading: Effects on pigment dynamics
of tomato leaves. Journal of Plant Nutrition, 29: 699-715.
DARAWSHEH, M.K.; D.L. BOURANIS (2006b) Season-dependent fruit loading: effect on dry mass, water, and nitrogen
allocation in tomato plants. Journal of Plant Nutrition, 29: 347-359.
DAVIES, J.N.; G.E. HOBSON (1981): The constituents of tomato fruit: the influence of environment, nutrition, and
genotype. CRC Critical Reviews in Food Science and Nutrition, 15: 205-80.
De JONG, M.; C. MARIANI; W.H. VRIEZEN (2009): The role of auxin and gibberellin in tomato fruit set. Journal of
Experimental Botany, 60: 1523-1532.
De FREITAS, S.T.; K.A. SHACKEL; E.J. MITCHAM (2011): Abscisic acid triggers whole-plant and fruit-specific
mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. Journal of
Experimental Botany, 62: 2645-2656.
Del AMOR, F.M.; L.F.M. MARCELIS (2004) Regulation of K uptake, water uptake, and growth of tomato during K
starvation and recovery. Scientia Horticulturae 100: 83-101.
Del AMOR, F.M. (2006): Growth, photosynthesis and chlorophyll fluorescence of sweet pepper plants as affected by the
cultivation method. Annals Applied Biology, 148: 133-139.
DIELEMAN, J.A.; E. HEUVELINK (1992): Factors affecting the number of leaves preceding the first inflorescence in the
tomato. Journal of Horticultural Science, 67: 1-10.
DORJIA, K.; M.H. BENHOUDIANA; J.A. ZEGBE-DOMINGUEZ (2005): Water relations, growth, yield, and fruit quality of
hot pepper under deficit irrigation and partial rootzone drying. Scientia Horticulturae, 104: 137-149.
EL-AAL, A.F.S.; A.M. S.A.A. AHMED; A.R. MAHMOUD (2010): Effect of foliar application of urea and amino acids
mixtures as antioxidants on growth, yield and characteristics of squash. Research Journal of Agriculture and Biological
Sciences, 6: 583-588.
EL-IKLIL, Y; M. KARROU; M. BENICHOU (2000): Salt stress effect on epinasty in relation to ethylene production and
water relations in tomato. Agronomie, 20: 399-406.
EL-KEBLAWY, A.; J. LOVETT-DOUST (1996): Resource re-allocation following fruit removal in cucurbits: patterns in two
varieties of squash. New Phytologist, 133: 583-93.
EL-TOHAMY, W.A.; A.A. GHONAME; S.D. ABOU-HUSSEIN (2006): Improvement of pepper growth and productivity in
sandy soil by different fertilization treatments under protected cultivation. Journal of Applied Sciences Research, 2: 8-12.
FATNASSI, H.; T. BOULARD; J. LAGIER (2004): Simple indirect estimation of ventilation and crop transpiration rates in a
greenhouse. Biosystems Engineering 88: 467-478.
FAUROBERT, M.; C. MIHR; N. BERTIN; T. PAWLOWSKI; L. NEGRONI; N. SOMMERER; M. CAUSSE (2007): Major
proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiology, 143: 1327-1346.
FLORES, P.; M. CARVAJAL; A. CERDA; V. MARTINEZ (2001): Salinity and ammonium/nitrate interactions on tomato
plant development, nutrition, and metabolites. Journal of Plant Nutrition, 24: 1561-73.
FLOWERS, T.J.; S.A. FLOWERS (2005): Why does salinity pose such a difficult problem for plant breeders? Agricultural
Water Management 78: 15-24.
FULLER, G.L.; A.C. LEOPOLD (1975): Pollination and the timing of fruit-set in cucumbers. HortScience, 10: 617-9.
GHANEM, M.E.; A. ALBACETE; C. MARTINEZ-ANDUJAR; M. ACOSTA; R. ROMERO-ARANDA; I.C. DODDS; S. LUTTS;
F. PEREZ-ALFOCEA (2008): Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum
L.). Journal of Experimental Botany, 59: 3039-3050.
GHANEM, M.E.; A. ALBACETE; A.C. SMIGOCKI; I. FREBORT; H. POPSILOVA; C. MARTINEZ-ANDUJAR; M. ACOSTA;
J. SANCHEZ-BRAVO; S. LUTTS; I.C. DODD; F. PEREZ-ALFOCEA (2011): Root-synthesized cytokinins improve shoot
growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany, 62: 125-140.
GAREDAL, L.; B. LUNDEGARDH (1998): Ecological cultivation of greenhouse tomatoes (Lycopersicon esculentum Mill.)
in limited beds fertilized with locally produced mulches: Effects on growth and yield. Biological Agriculture and Horticulture, 16:
173-189.
GARY, C.; N. BERTIN; J.S. FROSSARD; J. LE BOT (1998): High mineral contents explain the low construction cost of
leaves, stems and fruits of tomato plants. Journal of Experimental Botany, 49: 49-57.
GAYE, M.M.; G.W. EATON; P.A. JOLIFFE (1992): Rowcovers and plant architecture influence development and spatial
distribution of bell pepper fruit. HortScience, 27: 397-399.
GENT, M.P.N.; Y.Z. MA (2000): Mineral nutrition of tomato under diurnal temperature variation of root and shoot. Crop
Science, 40: 1629-1636.
GIOVANNONI, J.J. (2004): Genetic regulation of fruit development and ripening. The Plant Cell, 16: S170–S180.
GIBERT, C.; F. LESCOURRET; M. GENARD; G. VERCAMBRE; A. PEREZ PASTOR (2005): Modelling the effect of fruit
growth on surface conductance to water vapour diffusion. Annals of Botany, 95: 673-683.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 28
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
GHONAME, A.; M.R. SHAFEEK (2005): Growth and productivity of sweet pepper (Capsicum annum L.) grown in plastic
house as affected by organic, mineral and bio-N-fertilizers. Journal of Agronomy, 4: 369-372.
GHONAME, A.A; M.G. DAWOOD; G.S. RIAD; W.A. EL-TOHAMY (2009): Effect of nitrogen forms and biostimulants foliar
application on the growth, yield and chemical composition of hot pepper grown under sandy soil conditions. Research Journal
of Agriculture and Biological Sciences, 5: 840-852.
GOVINDAJARAN, V.S. (1985): Capsicum - production, technology, chemistry, and quality. Part I: History, botany,
cultivation and primary processing. CRC Critical Review in Food Science and Nutrition, 22: 109-76.
GRAY, J.; S. PICTON; J.J. GIOVANNONI; D. GRIERSON (1994): The use of transgenic and naturally occurring mutants
to understand and manipulate tomato fruit ripening. Plant, Cell and Environment, 17: 557-71.
GREY, T.L.; D.C. BRIDGES; D.S. Ne SMITH (2000): Tolerance of cucurbits to the herbicides Clomazone, Ethalfluoralin,
and Pendimenthalin. I. Summer squash. HortScience, 35: 632-6.
GUAN, H.P., H.W. JANES (1991): Light regulation of sink metabolism in tomato fruit. II. Carbohydrate metabolizig
enzymes. Plant Physiology, 96: 922-7.
GWANAMA, C.; A.M. BOTHA; M.T. LABUSCHAGNE (2001): Genetic effects and heterosis of flowering and fruit
characteristics of tropical pumpkin. Plant Breeding 120: 271-2.
GUICHARD, S.; N. BERTIN; C. LEONARDI; C. GARY (2001): Tomato fruit quality in relation to water and carbon fluxes.
Agronomie, 21: 385-92.
HAMMAMOTO, H.; Y. SHISHIDO; S. FURUYA; K. YASUDA (1998): Growth and development of tomato fruit as affected
by 2, 3, 5-triiodobenzoic acid (TIBA) applied to the peduncle. Journal Japanese Society for Horticultural Science, 67: 210-2.
HANNA, H.Y.; E.P. MILLHOLLON; J.K. HERRICK; C.L. FLETCHER (1997): Increased yield of heat-tolerant tomatoes with
deep transplanting, morning irrigation, and white mulch. HortScience, 32: 224-226.
HALL, A.J. (1977): Assimilate source-sink relationship in Capsicum annuum L. I: The dynamics of growth in fruiting and
deflorated plants. Australian Journal of Plant Physiology, 4: 623-636.
HARTZ, T.K.; M. Le STRANGE; D.M. DAY (1993): Nitrogen requirements of drip-irrigated peppers. HortScience, 28:
1097-1099.
HEUVELINK, E. (1999): Evaluation of a dynamic simulation model for tomato crop growth and development. Annals of
Botany, 83: 413-422.
HEUVELINK, E.; O. KÖRNER (2001): Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet
pepper. Annals of Botany, 88: 69-74.
HO, L.C.; D.J. HAND; M. FUSSELL (1999): Improvement of tomato fruit quality by calcium nutrition. Acta Horticulturae,
481: 463-8.
HOYER, L. (1998): Silver thiosulphate can considerably reduce leaf and fruit abscission caused by ethylene in Capsicum
annuum “Janne”. Journal of Horticultural Science & Biotechnology, 73: 29-34.
HURD, R.G.; A.J. COOPER (1970): The effect of early low temperature treatment on the yield of single-inflorescence
tomatoes. Journal of Horticultural Science, 45; 19-27.
JANES, H.W.; R.J. Mac AVOY (1991): Environmental control of a single-cluster greenhouse tomato crop. HortTechnology,
1: 110-114.
JEONG, B.R.; E.J. LEE (1999): Growth of plug seedlings of Capsicum annuum as affected by ion concentration and
NH4:NO3 ratio of nutrient solution. Acta Horticulturae, 481: 425-31.
KAYA, C.; H. KIRNAK; D. HIGGS (2001): Effects of supplementary potassium and phosphorus on physiological
development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). Journal of Plant Nutrition,
24: 1457-71.
KEMP, G.A. (1968): Low-temperature growth responses of the tomato. Canadian Journal of Plant Science, 48: 281-6.
KHAVARI-NEJAD, R.A.; F. NAJAFI; C. TOFIGHI (2009): Diverse responses of tomato to N and P deficiency. International
Journal of Agricultural Biology, 11: 209-213.
KHAYAT, E.; D. RAVAD; N. ZIESLIN (1985): The effects of various night-temperature regimes on the vegetative growth
and fruit production of tomato plants. Scientia Horticulturae, 27: 9-13.
KINET, J.M. (1977): Effect of light conditions on the development of the inflorescence in tomato. Scientia Horticulturae, 6:
15-26.
KINET, J.M.; M.M. PEET (1989): Tomato. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 6: 207-258. CAB
Publishing.
KIRDA, C.; M. CETIN; Y. DASGAN; S. TOPCU; H. KAMAN; B. EKICI; M.R. DERICI; A.I. OZGUYEN (2004) Yield
response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management
69: 191-201.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 29
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
KLARING, H.P.; D. SCHWARZ; A. HEINER (1997): Control of nutrient solution concentration in tomato crop using
models of photosynthesis and transpiration: a simulation study. Acta Horticulturae, 450: 329-334.
KOTSIRAS, A.; C.M. OLYMPIOS; J. DROSOPOULOS; H.C. PASSAM (2002): Effects of nitrogen form and concentration
on the distribution of ions within cucumber fruits. Scientia Horticulturae, 95: 175-183.
LAROUCHE, R.; A. GOSSELIN; L.P. VEZINA (1989): Nitrogen concentration and photosynthetic photon flux in
greenhouse tomato production: I. Growth and development. Journal of the American Society for Horticultural Science, 114:
458-61.
LEONARDI, C.; A. BAILLE; S. GUICHARD (1999): Effects of fruit characteristics and climatic conditions on tomato
transpiration in a greenhouse. Journal of Horticultural Science & Biotechnology, 74: 748-756.
LESKOVAR, D.I.; R.R. HEINEMAN (1994): Greenhouse irrigation systems affect growth of ‘TAM-Mild Jalapeño-1’ pepper
seedlings. HortScience, 29: 1470-4.
LI, S.; N.C. RAJAPAKSE; R.E. YOUNG; R. OI (2000): Growth response of chrysanthemum and bell pepper transplants to
photoselective plastic films. Scientia Horticulturae, 84: 215-225.
LI, Y.L.; C. STANGHELLINI; J. CHALLA (2000): Effect of electrical conductivity and transpiration on production of
greenhouse tomato (Lycopersicon esculentum L.). Scientia Horticulturae, 88:11-29.
LIU, H.F.; M. GENARD; S. GUICHARD; N. BERTIN (2007): Model-assisted analysis of tomato fruit growth in relation to
carbon and water fluxes. Journal of Experimental Botany, 58: 3567-3580.
LLOP-TOUS, Y; C.S. BARRY; D. GRIERSON (2000): Regulation of ethylene biosynthesis in response to pollination in
tomato flowers. Plant Physiology, 123: 971-978.
LOGENDRA, S.; J.D. PUTMAN; H.W. JANES (1990): The influence of light period on carbon partitioning, translocation
and growth in tomato. Scientia Horticulturae, 42: 75-83.
LOPEZ-CASAD0, G.; A.J. MATAS; E. DOMINGUEZ; J. CARTERO; A. HEREDIA (2007): Biomechanics of isolated tomato
(Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides. Journal of Experimental Botany, 58:
3875-3883.
LOY, J.B. (2004): Morpho-physiological aspects of productivity and quality in squash and pumpkins Cucurbita spp.).
Critical Reviews in Plant Sciences, 23:337-363.
MACHADO, R.M.A.; M. do ROSARIO; G. OLIVEIRA; C.A.M. PORTAS (2003): Tomato root distribution, yield and fruit
quality under subsurface drip Irrigation. Plant and Soil, 255: 333-341.
MACHADO, R.M.A.; M. do ROSARIO; G. OLIVEIRA (2005): Tomato root distribution, yield and fruit quality under different
subsurface drip irrigation regimes and depths. Irrigation Science, 24: 15-24.
MACHADO, R.M.A.; P. BUSSIERES; T.V. KOUTSOS; M.H. PRIETO; L.C. HO (2004): Prediction of optimal harvest date
for processing tomato based on the accumulation of daily heat units over the fruit ripening period. J. Horticultural Science and
Biotechnology, 79: 452-457.
MAGGIO, A.; S. De PASCALE; G. ANGELINO; C. RUGGIERO; G. BARBIERI (2004) Physiological response of tomato to
saline irrigation in long-term salinized soils. European Journal of Agronomy 21: 149-159.
MALASH, N.; T.J. FLOWERS; R. RAGAB (2005): Effect of irrigation systems and water management practices using
saline and non-saline water on tomato production. Agricultural Water Management, 78: 25-38.
MALASH, N.M.; F.A. ALIA; M.A. FATAHALLA; E.A. KHATA; M.K. HATEM; S. TAWFI (2008): Response of tomato to
irrigation with saline water applied by different irrigation methods and water management strategies. International Journal of
Plant Production, 2: 101-116.
MANCINELLI, A.L.; H.A. BORTHWICK and S.B. HENDRICKS (1966): Phytochrome action in tomato-seed germination.
Botanical Gazette, 127: 1-5.
MARTI, E.; C. GISBERT; G.J. BISHOP; M.S. DIXON; J.L. GARCIA-MARTINEZ (2006): Genetic and physiological
characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57: 2037-2047.
MARTINELLI, F.; S.L. URASTU; R.L. REAGAN; Y. CHEN; D. TRICOLI; O. FIEHN; D.M. ROCKE; C.S. GASSER; A.M.
DANDEKAR (2009): Gene regulation in parthenocarpic tomato fruit. Journal of Experimental Botany, 60: 3873-3890.
MARTINIA, E.A.; J.S. BUYER; D.C. BRYANT; T.K. HARTZ; R.F. DENISON (2004) Yield increases during the organic
transition: improving soil quality or increasing experience? Field Crops Research 86: 255-266.
MATAS, A.J.; D. COBB; D.J. PAOLILLO; K.J. NIKLAS (2004): Crack resistance in cherry tomato fruit correlates with
membrane thickness. HortScience, 39: 1354-1358.
MAYFIELD, J.L.; E.H. SIMONNE; C.C. MITCHELL; J.L. SIBLEY; R.T. BOOZER; E.L. VINSON III (2002): Effect of current
fertilization practices on nutritional status of double-cropped tomato and cucumber produced with plasticulture. Journal of
Plant Nutrition, 25: 1-15.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 30
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
MOCO; S.; E. CAPANOGLU; Y. TIKUNOV; R.J. BINO; D. BOYACIOGLU; R.D. HALL; J. VERVOORT; R.C.H. De VOS
(2007): Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of
Experimental Botany, 58: 4131-4146.
MÖLLER, M.; J. TANNY; Y. LI; S. COHEN (2004): Measuring and predicting evapotranspiration in an insect-proof
screenhouse. Agricultural and Forest Meteorology, 127: 35-51.
MONSELISE, S.P.; A. VARGA; J. BRUINSMA (1978): Growth analysis of the tomato fruit, Lycopersicon esculentum Mill.
Annals of Botany, 42: 1245-1247.
MORENO, M.M.; A. MORENO; I. MANCEBO (2009): Comparison of different mulch materials in a tomato (Solanum
lycopersicum L.) crop. Spanish Journal of Agricultural Research, 7: 454-464.
MORIONDO, M.; M. BINDI; T. SINCLAIR (2005): Analysis of Solanaceae species harvest-organ grown by linear increase
in harvest index and harvest-organ growth rate. Journal of the American Society for Horticultural Science, 130: 799-805.
MUNTING, A.J. (1974): Development of flower and fruit of Capsicum annuum L. Acta Botanica Neerlandica, 23: 415-32.
NAVARRETE, M.; B. JEANNEQUIN; M. SEBILLOTTE (1997): Vigour of greenhouse tomato plants (Lycopersicon
esculentum Mill.): Analysis of the criteria used by growers and search for objective criteria. Journal of Horticultural Science,
72: 821-829.
NAVARRETE, M.; B. JEANNEQUIN (2000): Effect of frequency of axillary bud pruning on vegetative growth and fruit yield
in greenhouse tomato crops. Scientia Horticulturae, 86: 197-210.
NEDERHOFF, E.M.; J.G. VEGTER (1994): Canopy photosynthesis of tomato, cucumber and sweet pepper in
greenhouses: measurements compared to models. Annals of Botany, 73: 421-427.
NICOLA, S.; L. BASOCCU (2000): Timing of nitrogen application influences tomato (Lycopersicon esculentum Mill.)
seedling nitrogen content, growth rates and biomass partitioning, and field fruit earliness. Acta Horticulturae, 533: 127-134.
NIELSEN, T.H.; H.C. SKJAERBAEK; P. KARLSEN (1991): Carbohydrate metabolism during fruit development in sweet
pepper (Capsicum annuum L.) plants. Physiologia Plantarum, 82: 311-319.
NILWIK, H.J.M. (1981): Growth analysis of sweet pepper (Capsicum annuum L.) 2. Interacting effects of irradiance,
temperature, and plant age in controlled conditions. Annals of Botany, 48: 137-45.
NITSCH, J.P.; E.B. KURTZ; J.L. LIVERMAN; F.W. WENT (1952): The development of sex expression in cucurbit flowers.
American Journal of Botany, 39: 32-43.
OBIADALLA-ALI, H.; A.R. FERNIE; J. KOSSMANN; J.R. LLOYD (2004) Developmental analysis of carbohydrate
metabolism in tomato (Lycopersicon esculentum cv. Micro-Tom) fruits. Physiologia Plantarum, 129: 196-204.
OLANIYI, J.O; A.T. AJIBOLA (2008): Effects of inorganic and organic fertilizers application on the growth, fruit yield and
quality of tomato (Lycopersicon lycopersicum). Journal of Applied Biosciences, 8: 236-242.
OLANIYI, J. O.; W. B. AKANBI; T.A. ADEJUMO; O.G. AKANDE (2010): Growth, fruit yield and nutritional quality of tomato
varieties. African Journal of Food Science, 4: 398-402.
ORGAZA, F.; M.D. FERNÁNDEZ; S. BONACHELAC; M. GALLARDOC; E. FERERES (2005) Evapotranspiration of
horticultural crops in an unheated plastic greenhouse. Agricultural Water Management 72: 81-96.
PAPADOPOULUS, A.P.; S. PARARAJASINGHAM (1997): The influence of plant spacing on light interception and use in
greenhouse tomato (Lycopersicon esculentum Mill.): A review. Scientia Horticulturae, 69: 1-29.
PARAN, I.; E. van der KNAAP (2007): Genetic and molecular regulation of fruit and plant domestication traits in tomato
and pepper. Journal of Experimental Botany, 58: 3841-3852.
PEET, M.M.; M. BARTHOLEMEW (1996): Effect of night temperature on pollen characteristics, growth, and fruit set in
tomato. Journal of the American Society for Horticultural Science, 12: 514-519.
PEET, M.M.; S. SATO; R.G. GARDNER (1998): Comparing heat stress effects on male-fertile and male-sterile tomatoes.
Plant, Cell and Environment, 21: 225-31.
PETERSEN, K.K.; J. WILLUMSEN; K. KAACK (1998): Composition and taste of tomatoes as affects by increased salinity
and different salinity sources. Journal of Horticultural Science & Biotechnology, 73: 205-215.
PICKEN, A.J.F. (1984): A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of
Horticultural Science, 59: 1-3.
PICKEN, A.J.F.; K. STEWART; D. KLAPWIJK (1986): Germination and vegetative development. En: The Tomato Crop. A
Scientific Basis for Improvement. (Atherton, J.G. and J. Rudich, eds.). Chapman and Hall, London, 111-166.
QI, H.; L. HUA; L. ZHAO; L. ZHOU (2011): Carbohydrate metabolism in tomato (Lycopersicon esculentum Mill.) seedlings
and yield and fruit quality as affected by low night temperature and subsequent recovery. African Journal of Biotechnology,
10: 5743-5749.
POLOWICK, P.L.; V.K. SAWHNEY (1985): Temperature effects on male fertility and flower and fruit development in
Capsicum annuum L. Scientia Horticulturae, 25: 117-27.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 31
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
RAJIC, M.; M. SKORIC; D. STOJILJKOVIC (1997): Calculation of irrigation water requirements for sweet pepper and
beans. Acta Horticulturae, 449: 193-8.
REINA-SÁNCHEZ, A.; R. ROMERO-ARANDA; J. CUARTERO (2005) Plant water uptake and water use efficiency of
greenhouse tomato cultivars irrigated with saline water. Agricultural Water Management 78: 54-66.
ROMERO-ARANDA, R.; T. SORIA; J. CUARTERO (2001): Tomato plant-water uptake and plant-water relationships under
saline growth conditions. Plant Science, 160: 265-272.
RYLSKI, I. (1972): Effect of the early environment on flowering in pepper (Capsicum annuum L.). Journal of the American
Society for Horticultural Science, 97: 648-51.
RYLSKI, I (1973): Effect of night temperature on shape and size of sweet pepper (Capsicum annuum L.). Journal of the
American Society for Horticultural Science, 98: 149-152.
SAITO, T.; N. FUDUDA; T. LIKUBO; S. INAI; T. FUJII; C. KONISHI; H. EZURA (2008) Effects of root-volume restriction
and salinity on the fruit yield and quality of processing tomato. Journal of the Japanese Society for Horticultural Science, 77:
165-172.
SAMACH, A.; H. LOTAN (2007): The transition to flowering in tomato. Plant Biotechnology, 24: 71–82.
SATO, S.; M.M. PEET; J.F. THOMAS (2000): Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.)
under chronic, mild heat stress. Plant, Cell and Environment, 23: 719-726.
SATO, S.; M.M. PEET; R.G. GARDNER (2004) Altered flower retention and developmental patterns in nine tomato
cultivars under elevated temperature. Scientia Horticulturae 101: 95-101.
SAWHNEY, V.K. (1983): The role of temperature and its relationship with gibberellic acid in the development of floral
organs of tomato (Lycopersicon esculentum). Canadian Journal of Botany, 61: 1258-65.
SCHAUER, N.; Y. SEMEL; I. BALBO; M. STEINFATH; D. REPSILBER; J. SELBIG; T. PLEBAN; D. ZAMIR; A.R.
FERNJEA (2008): Mode of inheritance of primary metabolic traits in tomato. The Plant Cell, 20: 509-523.
SCHMALSTIG, J.G.; H.J. Mc AUSLANE (2001): Developmental anatomy of zucchini leaves with squash silverleaf
disorder caused by the silverleaf whitefly. Journal of the American Society for Horticultural Science, 126: 544-54.
SCHOLBERG, J.; B.L. Mc NEAL; K.J. BOOTE; J.W. JONES; S.J. LOCASCIO; S.M. OLSON (2000): Nitrogen stress
effects on growth and nitrogen accumulation by field-grown tomato. Agronomy Journal, 92: 159-167.
SCHON, M.K.; M. P. COMPTON; E. BELL; I. BURNS (1994): Nitrogen concentration affect pepper yield and leachate
nitrate-nitrogen from rockwool culture. HortScience, 29: 1139-42.
SCHWARZ, D.; H.P. KLÄRING; M.W. van IERSEL; K.T. INGRAM (2002): Growth and photosynthetic response of tomato
to nutrient solution concentration at two light levels. Journal of the American Society for Horticultural Science, 127: 984-990.
SEGINER, Y., C.GARY; M. TCHAMITCHIAN (1994): Optimal temperature regimes for a greenhouse crop with a
carbohydrate pool: a modelling study.
SERRANI, J.C.; R. SANJUAN; O. RUIZ-RIVERO; M. FOS; J.L. GARCIA-MARTINEZ (2007): Gibberellin regulation of fruit
set and growth in tomato. Plant Physiology, 145: 246-257.
SERRANI, J.C.; E. CARRERA; O. RUIZ-RIVERO; L. GALLEGO-GIRALDO; L.E. PEREIRA PERES; J.L. GARCIAMARTINEZ (2010): Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in
tomato mediated by gibberellins. Plant Physiology, 153: 851-862.
SHAWNEY, V.K.; R.I. GREYSON (1972): On the initiation of the inflorescence and floral organs in tomato (Lycopersicon
esculentum). Canadian Journal of Botany, 50: 1493-5.
SHIPP, J.L.; G.H. WHITFIELD; A.P. PAPADOPOULOS (1994): Effectiveness of the bumblebee, Bombus impatiens Cr.
(Hymenopera; Apidae) as a pollinator of glasshouse sweet pepper. Scientia Horticulturae, 57: 29-39.
SHIPP, J.L.; M.R. BINNS; X. HAO; K. WANG (1998a): Economic injury levels for Western flower thrips (Thysanoptera:
Thripidae) on greenhouse sweet pepper. Journal Economic Entomology, 91: 671-7.
SHIPP, J.L.; X. HAO; A.P. PAPADOPOULOS; M.R. BINNS (1998b): Impact of western flower thrips (Thysanoptera:
Thripidae) on growth, photosynthesis and productivity of greenhouse sweet pepper. Scientia Horticulturae, 72: 87-102.
SILBER, A.; M. BRUNER; E. KENIG; G. RESHEF; H. ZOHAR; I. POSALSKI; H. YEHEZKEL; D. SHMUEL; S. COHEN; M.
DINAR; E. MATAN; I. DINKIN; Y. COHEN; L. KARNI; B. ALONI; S. ASSOULINE (2005): High fertigation frequency and
phosphorus level: Effects on summer-grown bell pepper growth and blossom-end rot incidence. Plant and Soil, 270: 135-146.
SIMONNE, E.H.; D.J. EAKES; C.E. HARRIS (1998): Effects of irrigation and nitrogen rates on foliar mineral composition of
bell pepper. Journal of Plant Nutrition, 21: 2545-2555.
SINNOTT, E.W. (1939): A developmental analysis of the relation between cell size and fruit size in cucurbits. American
Journal of Botany, 26: 179-189.
SINNOTT, E.W. (1939): The relation of growth to size in cucurbits fruits. American Journal of Botany, 32: 439-446.
TABUCIHI, T. (1999): Comparison on the development of abscission zones in the pedicels between two tomato cultivars.
Journal of the Japanese Society for Horticultural Science, 68: 993-999.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 32
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
TABUCIHI, T. (2000): Formation of the secondary cell division zone in tomato pedicels at different fruit growing stages.
Journal of the Japanese Society for Horticultural Science, 69: 156-160.
TADESSE, T.; E.W. HEWETT; M.A. NICHOLS; K.J. FISHER (2002) Changes in physicochemical attributes of sweet
pepper cv. Domino during fruit growth and development. Scientia Horticulturae, 93: 91-103.
TEI, F.; P. BENINCASA; M. GUIDUCCI (2002): Critical nitrogen concentration in processing tomato. European Journal of
Agronomy, 18: 45-55.
TRAKA-MAYRONA, E.; F. BLETSOS, M. GRAFIADELLIS; G. SPANOMITSIOS (1995): The effect of greenhouse heating
on tomato fruit quality. Acta Horticulturae, 379: 289-296.
TREMBLAY, N.; M. SENECAL (1988): Nitrogen and potassium in nutrient solution influence seedling growth of four
vegetable species. HortScience, 23: 1018-20.
TRIPP, K.E.; M.M. PEET; D.M. PHARR; D.H. WILLITS; P.V. NELSON (1991): CO 2-enhanced yield and foliar deformation
among tomato genotypes in elevated CO2 environments. Plant Physiology, 96: 713-9.
URRESTARAZU, M; M. GUZMAN; A. SANCHEZ; M.C. SALAS; S. QUERO; G. CARRASCO (1999): A comparison of
qualitative and quantitative productivity parameters between a sweet pepper crop growing on “enarenado almeriense” and on
rockwool. Acta Horticulturae, 481: 63-69.
Van der PLOEG, A.; E. HEUVELINK (2005): Influence of sub-optimal temperature on tomato growth and yield: a Review.
Journal of Horticultural Science & Biotechnology, 80: 652-659.
VIKTOR, A.; M.D. CRAMER (2005): The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation
and carbon partitioning. New Phytologist, 165: 157-169.
WARREN WILSON, J.; D.W. HAND; M.A. HANNAH (1992): Light interception and photosynthetic efficiency in some
glasshouse crops. Journal of Experimental Botany, 43: 363-373.
WATKINS, J.T.; D.J. CANTLIFFE (1983): Mechanical resistance of the seed coat and endosperm during germination of
Capsicum annuum at low temperature. Plant Physiology, 72: 146-50.
WELSH, C.E.; E.A. GUERTAL; C.W. WOOD (1998): Effects of soil fumigation and N source on soil inorganic N and
tomato growth. Nutrient Cycling in Agroecosystems, 52: 37-44.
WILLITS, D.H.; M.M. PEET (1998): The effect of night temperature on greenhouse grown tomato yields in warm climates.
Agricultural and Forest Meterorology, 92: 191-202.
WIEN, H.C. (1998a): Peppers. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 7: 259-293. CAB Publishing.
WIEN, H.C. (1998b): The Cucurbits: Cucumber, Melon, Squash and Pumpkin. En: The Physiology of Vegetable Crops
(ed. A, Wien), Cap. 9: 345-386. CAB Publishing.
WITTER, S.H.; L.H. AUNG (1969): Lycopersicon esculentum Mill. En: The Induction of Flowering. Some Case Histories
(Evans, L.T., ed.). MacMillan, Melbourne, 409-23.
WUBS, A.M.; Y. MA; E. HEUVELINK; L.F.M. MARCELIS (2009): Genetic differences in fruit-set patterns are determined
by differences in fruit sink strength and a source: sink threshold for fruit set. Annals of Botany, 104: 957-964.
WUDIRI, B.B.; D.W. HENDERSON (1985): Effects of water stress on flowering and fruit set in processing-tomatoes.
Scientia Horticulturae, 27: 189-98.
XU, H.L.; L. GAUTHIER; Y. DESJARDINS; A. GOSSELIN (1997): Photosynthesis in leaves, fruits, stem and petioles of
greenhouse-grown tomato plants. Photosynthetica, 33: 113-123.
YAN, C.L.; J.B. WANG; R.Q. LI (2002): Effect of heat stress on calcium ultrastructural distribution in pepper anther.
Environmental and Experimental Botany, 48: 161-168.
YILDIRIM, A.; A.G. TAYLOR; T.D. SPITTLER (2006): Ameliorative effects of biological treatments on growth of squash
plants under salt stress. Scientia Horticulturae, 111: 1-6.
ZOTARELLI, L.; J.M. SCHOLBERG; M.D. DUKES; R. MUÑOZ-CARPENA; J. ICERMAN (2009): Tomato yield, biomass
accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation
scheduling. Agricultural Water Management, 96; 23-34.
5. III. VI. Cultivos para la producción de granos: poroto, arveja, maíz dulce.
ADAMS, M.W.; J.V. WIERMSA; J. SALAZAR (1978): Differences in starch accumulation among dry bean cultivars. Crop
Science, 18: 155-7.
AGUILAR, M.I.; R.A. FISHER; S.J. KOHASHI (1977): Effects of plant density and thinning on high yielding dry beans
Phaseolus vulgaris L. Experimental Agriculture, 13: 325-35.
AUSTIN, R.B.; M.S.M. Mac LEAN (1972): A method for screening Phaseolus genotypes for tolerance to low temperatures.
Journal of Horticultural Science, 47: 279-90.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 33
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
BOROWSKI, A.M.; A.F. FRITZ; L. WATERS (1991): Seed maturity influences germination and vigor of two shrunken2
sweet corn hybrids. Journal of the American Society for Horticultural Science, 116: 401-4.
CAREY, E.E.; A.M. RHODES; D.B. DICKINSON (1982): Post-harvest levels of sugars and sorbitol in sugary enhancer
(su1se1) and sugary (su1se1) maize. HortScience, 17: 241-2.
CLINE, G.R.; A.F. SILVERNAIL (2002): Effects of cover crops, nitrogen, and tillage on sweet corn. Hortechnology, 12:
118-125.
CROSS, H.Z.; M.S. ZUBER (1972): Prediction of flowering dates in maize based on different methods of estimating
thermal units. Agronomy Journal, 64: 51-5.
DAVIS, J.H.C. (1998): Phaseolus Beans. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 11: 409-428. CAB
Publishing.
DI BENEDETTO, A.; J. MOLINARI; J. RATTIN (2006): The effect of transplant in sweet maize (Zea mays L.). II. Container
root restriction. International Journal of Agricultural Research, 1: 555-563.
DI BENEDETTO, A.; J. RATTIN (2008): Transplant in Sweet Maize: A Tool for Improving Productivity. The Americas
Journal of Plant Science and Biotechnology, 2: 96-108.
DOEHLERT, D.C.; T.M. KUO; J.A. JUBIK; E.P. BEERS; S.H. DUKE (1993): Characteristics of carbohydrate metabolism in
sweet corn (sugary1) endosperms. Journal of the American Society for Horticultural Science, 118: 661-6.
DOUGLASS, S.K.; J.A. JUVIK; W.E. SPLITTSTOESSER (1993): Sweet corn seedling emergence and variation in kernel
carbohydrate reserves. Seed Science and Technology, 21: 433-45.
DUN, E.A.; J. HANAN; C.A. BEVERIDGE (2009): Computational modeling and molecular physiology. Experiments reveal
new insights into shoot branching in pea. The Plant Cell, 21: 3459-3472.
DURE, L.S. (1975): Seed formation. Annual Review of Plant Physiology, 26: 259-78.
EFTHIMIDAOU, A.; D. BILALIS; A. KARKANIS; B. FROUD-WILLIAMS (2010): Combined organic/inorganic fertilization
enhances soil quality and increased yield, photosynthesis and sustainability of sweet maize crop. Australian Journal of Crop
Science, 4: 722-729.
EL-HENDAWY, S.E.; E.M. HOKAM; U. SCHKIDHALTER (2008): Drip irrigation frequency: the effects and their interaction
with nitrogen fertilization on sandy soil water distribution, maize yield and water use efficiency under Egyptian conditions.
Journal of Agronomy & Crop Science, 194: 180-192.
EVERAARTS, A.P. (1999): Harvest date prediction for field vegetables. A review. Gartenbauwissenschaft, 64: 20-25.
FERGUSON, J.E. ; D.B. DICKINSON; A.M. RHODES (1978): The genetics of sugary enhancer (se1), an independent
modifier of sweet corn (su1). Journal of Heredity, 69: 377-380.
FLETCHER, H.F.; D.P. ORMROD; A.R. MAURER; B. STANFIELD (1966): Response of peas to environment. I. Planting
date and location. Canadian Journal of Plant Science, 46: 77-85.
GARCIA-GARCIA, A.; L.C. GUERRA; G. HOOGENBOOM (2009): Impact of planting date and hybrid on early growth of
sweet corn. Agronomy Journal, 101:193-200.
HALDIMANN, P.; U. FELLER (2005): Growth at moderately elevated temperature alters the physiological response of the
photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant, Cell and Environment, 28: 302-317.
HALTERLEIN, A.J.; C.D. CLAYBERG; I.D. TEARE (1980): Influence of high temperature on pollen grain viability and
pollen tube growth in the styles of Phaseolus vulgaris L. Journal of the American Society of Horticultural Science, 105: 12-4.
HARRIS, M.J.; D.A. De MASON (1989): Comparative kernel structure of three endosperm mutants of Zea mays L. relating
to seed viability and seedling vigor. Botanical Gazette, 150: 50-62.
HEADRICK, J.M.; J.K. PATAKY; J.A. JUVIK (1990): Relationships among carbohydrate of kernels, condition of silks after
pollination, and the response of sweet corn inbread lines to infection of kernels by Fusarium moniliforme. Phytopathology, 80:
487-494.
HARVEY, D.M. (1978): The photosynthetic and respiratory potential of the fruit in relation to seed yield of leafless and
sem-leafless mutants of Pisum sativum L. Annals of Botany, 42: 331-6.
HARVEY, D.M.; J. GOODWIN (1978): The photosynthetic net carbon dioxide exchange potential in conventional and
‘leafless’ phenotypes of Pisum sativum L. in relation to foliage area, dry matter production and seed yield. Annals of Botany,
46: 1091-8.
HEDLEY, C.L.; M.J. AMBROSE (1981): An analysis of seed development in Pisum sativum L. Annals of Botany, 46: 89105.
HOLE, C.C.; P.A. SCOTT (1984): Pea fruit extension rate. I: effect of light, dark and temperature in controlled
environment. Journal of Experimental Botany, 35: 790-802.
JENNI, S.; G. BURGEOIS; H. LAURENCE; G. ROY; N. TREMBLAY (2000): Improving the prediction of processing bean
maturity based on the growing-degree day approach. HortScience, 35: 1234-7.
Ciclo lectivo
VIGENCIA
Form. Prog. 4
Inicial Resp.
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 34
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
JEUFFROY, M.H.; F.R. WAREMBOURG (1991): Carbon transfer and partitioning between vegetative and reproductive
organs in Pisum sativum L. Plant Physiology, 97: 440-8.
JONES, L.H. (1971): Adaptive responses to temperature in dwarf French beans, Phaseolus vulgaris L. Annals of Botany,
35: 581-96.
KNOTT, C.M. (1985): A description for stages of development of the pea (Pisum sativum L.). Aspects of Applied Biology,
10: 379-93.
KWABIAH, A.B. (2004): Growth and yield of sweet corn (Zea mays L.) cultivars in response to planting date and plastic
mulch in a short-season environment. Scientia Horticulturae, 102: 147-166.
LARMUREA, A.; N.G. MUNIER-JOLAIN (2004) A crop model component simulating N partitioning during seed filling in
pea. Field Crops Research 85: 135-148.
LECOEUR, J.; .B NEY (2003) Change with time in potential radiation-use efficiency in field pea. European J. Agronomy
19: 91-105.
Le DEUNFF, Y.; Z. RACHIDIAN (1988): Interruption of water delivery at physiological maturity is essential for seed
development, germination and seedling growth in pea (Pisum sativum L.). Journal of Experimental Botany, 39: 1221-30.
LIZASO, J.I.; K.J. BOOTE; C.M. CHERR; J.M.S. SCHOLBERG; J.W. JONES; G. HOOGENBOOM (2007): Developing a
sweet corn simulation model to predict fresh market yield and quality of ears. Journal of the American Society of Horticultural
Science, 132: 415-422.
MEICENEIMER, R.D.; F.J. MUEHLBAUER (1982): Growth and developmental stages of Alaska peas. Experimental
Agriculture, 18: 17-27.
MUEHLBAUER, E.J.; K.E. Mc PHEE (1998): Peas. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap. 12: 429459. CAB Publishing.
MUÑOZ-PEREZA, C.G.; R.G. ALLEN; D.T. WESTERMANN; J.L. WRIGHT; S.P. SINGH (2007): Water use efficiency
among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica, 155: 393-402.
NAGESH BABU, R; V.R. DEVARAJ (2008): High temperature and salt stress response in French bean (Phaseolus
vulgaris). Australian Journal of Crop Science, 2:40-48.
OFIR, M.; Y. GROSS; F. BANGERTH; J. KIGEL (1993): High temperature effects on pod and seed production as related
to hormone levels and abscission of reproductive structures in common bean (Phaseolus vulgaris L.). Scientia Horticulturae,
55: 201-11.
OJEHOMON, O.O. (1966): The development of flower primordia of Phaseolus vulgaris. Annals of Botany, 30: 487-92.
OKTEM, A.; M. SIMSEK; A.G OKTEM (2003): Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip
irrigation system in a semi-arid region. I. Water-yield relationship. Agricultural Water Management 61: 63-74.
ONGARO, V.; O. LEYSER (2008): Hormonal control of shoot branching. Journal of Experimental Botany, 59: 67-74.
PARERA, C.A.; D.J. CANTLIFFE (1994): Presowing seed treatments to enhance supersweet corn seed and seedling
quality. HortScience, 29: 277-278.
RATTIN, J.; A.H. DI BENEDETTO; T. GORNATTI (2006): The effect of transplant in sweet maize (Zea mays L.). I: Growth
and Yield. International Journal of Agricultural Research, 1: 58-67.
REVILLA, P.; V.M. RODRIGUEZ; R.A. MALVAR; A. BUTRÓN; A. ORDÁS (2006) Comparison among sweet corn heterotic
patterns. J. Amer. Soc. Hort. Sci. 131: 388-392.
SANCHEZ-CHAVEZ, E.; E. MUÑOZ-MARQUEZ; M.L. GARCIA-BAÑUELOS; A. ANCHONDO-NAJERA; V.M.
GUERRERO-PRIETO; A. NUÑEZ-BARRIOS; J.M. RUIZ-SAEZ; L.M. ROMERO-MONREAL (2010): Influence of nitrogen
fertilization on K+, Mg2+ and Ca2+ concentrations and on its bioindicators in roots and leaves of green bean plants. Spanish
Journal of Agricultural Research, 8: 1137-1146.
SCHULTZ, J.A.; J.A. JUVIK (2004): Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea
mays. Plant Physiology and Biochemistry 42: 457-464.
SHENKER, M.; A. BEN-GAL; U. SHANI (2003): Sweet corn response to combined nitrogen and salinity environmental
stresses. Plant and Soil 256: 139-147.
SINCLAIR, T.R.; C.T. de WIT (1976): Analysis of the carbon and nitrogen limitations to soybean yield. Agronomy Journal,
68: 319-24.
SNOAD, B. (1981): Plant form, growth rate and relative growth rate compared in conventional, semi-leafless and leafless
peas. Scientia Horticulturae, 14:9-18.
SOON, Y.K.; K.N. HARKER; G.W. CLAYTON (2004): Plant competition effects on the nitrogen economy of field pea and
the subsequent crop. Soil Science Society American Journal, 68: 552-557.
STYER, R.C.; D.J. CANTLIFFE (1983): Changes in seed structure and composition during development and their effects
on leakage in two endosperm mutants of sweet corn. Journal of the American Society for Horticultural Science, 108: 721-8.
Ciclo lectivo
VIGENCIA
Form. Prog.
Inicial Resp.
4
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
DEPARTAMENTO
Producción Vegetal
Facultad de
Ciencias Agrarias
AREA
Uso
Interno
Folio Nº 35
Posgrado Ciencias de las Plantas y
Recursos Naturales
PROGRAMA DE Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
5- BIBLIOGRAFÍA:
TRACY, W.F.; J.A. JUVIK (1988): Electrolyte leakage and seed quality in a shrunken2 population selected for improved
field emergence. HortScience, 23: 391-2.
VOISIN, A.S.; V. BOURION; G. DUC; C. SALON (2007): Using an ecophysiological analysis to dissect genetic variability
and to propose an ideotype for nitrogen nutrition in pea. Annals of Botany, 100: 1525-1536.
WATERS, L.J.; R.L. BURROWS; M.A. BENNETT; J. SCHOENECKER (1990): Seed moisture and transplant management
techniques influence sweet corn stand establishment, growth, development and yield. Journal of the American Society for
Horticultural Science, 115: 888-892.
WELLBAUM, G.E.; J.M. FRANTZ; M.K. GUNATILAKA; Z. SHEN (2001): A comparison of the growth, establishment, and
maturity of direct-seeded and transplanted sh2 sweet corn. HortScience, 36: 687-690.
WIEN, H.C.; D.H. WALLACE (1973): Light-induced leaflet orientation in Phaseolus vulgaris L. Crop Science, 13: 721-4.
WILKINS, D.E.; J.M. KRAFT; B.L. KLEPPER (1991): Influence of plant spacing on pea yield. Transactions of the
American Society of Agricultural Engineers, 34: 1957-61.
WILLIAMS II, M.M. (2008): Sweet corn growth and yield responses to planting dates of the north central United States.
HortScience, 43:1775-1779.
WOLFE, D.W.; F. AZANZA; J.A. JUVIK (1998): Sweet Corn. En: The Physiology of Vegetable Crops (ed. A, Wien), Cap.
13: 461-478. CAB Publishing.
ZOTARELLI, L.; J.M. SCHOLBERG; M.D. DUKES; R. MUÑOZ-CARPERNA (2008): Fertilizer Residence time affects
nitrogen uptake efficiency and growth of sweet corn. Journal of Environmental Quality, 37:1271-1278.
Ciclo lectivo
VIGENCIA
Form. Prog.
Inicial Resp.
35
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
Producción Vegetal
DEPARTAMENTO
PROGRAMA DE
Uso
Interno
Facultad de
Ciencias Agrarias
AREA
Folio Nº 36
Posgrado Ciencias de las Plantas y
Recursos Naturales
Ecofisiología de Cultivos en Sistemas de Producción Intensivos
CÓDIGO
662
6- INFORMACIÓN ADICIONAL :
6. I. CARACTERÍSTICAS
Este curso está dirigido a graduados universitarios interesados en la producción de especies hortícolas y al
mismo tiempo se propone como una materia optativa de grado para la currícula de Ingeniero Agrónomo y la de
Licenciado en Producción vegetal.
Como materia optativa de grado se requiere como correlativas a Horticultura (406).
6. II. JUSTIFICACIÓN
La producción agrícola intensiva en el cinturón verde de la Ciudad de Mar del Plata-Balcarce se caracteriza
por la presencia de explotaciones de tamaño variable entre 2 y 300 hectáreas, dedicadas a la producción
hortícola. Aunque existen productores especializados en pocas especies (lechuga, tomate, pimiento, crucíferas),
la tendencia es a una diversificación importante durante el ciclo anual y una reducción de la producción a campo
a favor de la implementación de sistemas de semi-forzado o forzado (invernaderos).
Dada la necesidad de optimizar la productividad para productos con una marcada sobreoferta estacional,
este curso sería una alternativa de capacitación que permitiría ampliar la oferta profesional para los egresados de
nuestra Facultad así como la iniciación de grupos de trabajo en investigación tecnológica y científica de cultivos
conducidos bajo condiciones ambientales controladas.
6. III. METODOLOGÍA DE ENSEÑANZA
Para cada clase se contará con un texto en castellano y lecturas complementarias en idioma inglés. Durante
las clases se discutirá la problemática científico-tecnológica y las alternativas posibles con lecturas adicionales
(3-5) en idioma preferentemente inglés.
Se trabajará individual y grupalmente en una tarea de intercambio y síntesis de los conceptos fundamentales
de cada tema. Se requiere la elaboración previa de la información escrita.
6. IV. SISTEMA DE EVALACIÓN
La nota final surge de la integración de diversas actividades:
.- Participación en las clases teóricas
.- Participación en el seminario final
.- Examen escrito
Ciclo lectivo
VIGENCIA
Inicial Resp.
Form. Prog. 36
2016
UNIVERSIDAD NACIONAL
DE MAR DEL PLATA
Producción Vegetal
DEPARTAMENTO
PROGRAMA DE
AREA
TOTAL U.V.AC.
48
Teóricas
Folio Nº 37
Posgrado Ciencias de las Plantas y
Recursos Naturales
Ecofisiología de Cultivos en Sistemas de Producción Intensivos
Horas semanales (-) o totales ( ) de Clases:
Uso
Interno
Facultad de
Ciencias Agrarias
Prácticas
CÓDIGO
------
662
Teórico/prácticas
15
3,5
VIGENCIA DE ESTE PROGRAMA
Ciclo Lectivo*
Firma y aclaración del Docente responsable
Septiembre
(bianual)
Dr. Adalberto Di Benedetto
* si es un curso no curricular, indicar período en que se dictará.
VºBº Area:
VºBº Departamento:
Firma y aclaración Coordinador
FECHA DE ENTRADA
NÚMERO DE MESA DE ENTRADAS
Firma y aclaración Director
NÚMERO DE FOLIOS
DESPACHO COMISION DE ENSEÑANZA DE GRADO Y POST-GRADO
Firma Secretario Comisión
APROBADO CONSEJO ACADÉMICO
Firma Secretario Consejo Académico
FECHA
Número de O.C.A. de aprobación:
Form. Prog. 37
Fecha:

Documentos relacionados