sondas1968

Transcripción

sondas1968
Cronología del lanzamiento de misiones espaciales
Cronología de
Lanzamientos
Espaciales
Año 1968
Copyright © 2009 by Eladio Miranda Batlle. All rights reserved.
Los textos, imágenes y tablas que se encuentran en esta cronología cuentan con la autorización
de sus propietarios para ser publicadas o se hace referencia a la fuente de donde se obtuvieron los
mismos.
Eladio Miranda Batlle
[email protected]
1
Cronología del lanzamiento de misiones espaciales
Contenido
1968
Enero
07.01.68
11.01.68
16.01.68
17.01.68
18.01.68
19.01.68
22.01.68
24.01.68
Surveyor 7
Explorer 36 (GEOS B)
Kosmos 199 (Zenit-2 #51)
Samos-F3 8
KH-8 11
Kosmos 200 (Tselina-O #2)
LEM 1 (Apollo 5)
KH-4A 45
SSF-B 10
Febrero
06.02.68
07.02.68
20.02.68
20.02.68
Kosmos 201 (Zenit-4 #35)
Luna (14)
Kosmos 203 (Sfera #1)
Kosmos 202 (DS-U2-V #4)
Marzo
02.03.68
02.03.68
04.03.68
05.03.68
05.03.68
05.03.68
06.03.68
13.03.68
14.03.68
14.03.68
Transit-O 18
Zond 4 (L1 6)
OGO 5
Kosmos 205 (Zenit-2 #52)
Kosmos 204 (DS-P1-I #3)
Explorer 37 (SE B, Solrad 9)
Kosmos (206) (DS-U1-Ya #1)
KH-8 12
Kosmos 206 (Meteor-1 #7)
KH-4A 46
SSF-B 11
16.03.68 Kosmos 207 (Zenit-4 #36)
21.03.68 Kosmos 208 (Zenit-2M #1, Gektor
#1) & Nauka
22.03.68 Kosmos 209 (US-A Test #4)
Abril
03.04.68 Kosmos 210 (Zenit-2 #53)
04.04.68 Apollo 6 (CM 020 / SM 014)
LTA 2R
06.04.68 OV1 13
OV1 14
07.04.68 Luna 14
09.04.68 Kosmos 211 (DS-P1-Yu #12)
14.04.68 Kosmos 212 (Soyuz-Test #5)
15.04.68 Kosmos 213 (Soyuz-Test #6)
17.04.68 KH-8 13
18.04.68 Kosmos 214 (Zenit-4 #37)
18.04.68 Kosmos 215 (DS-U1-A #1)
20.04.68 Kosmos 216 (Zenit-2 #54)
21.04.68 Molniya-1 8
22.04.68 Zond (5a) (L1 7)
24.04.68 Kosmos 217 (I2M #1)
25.04.68 Kosmos 218 (OGCh #17)
26.04.68 Kosmos 219 (DS-U2-D #2)
Mayo
01.05.68
06.05.68
07.05.68
16.05.68
18.05.68
KH-4B 3
Kosmos (220)
Kosmos 220 (Tsiklon #2)
ESRO 2B (Iris 2)
Nimbus B
SECOR 10 (EGRS 10, S68-2)
23.05.68 DMSP-4B F1
24.05.68 Kosmos 221 (DS-P1-Yu #13)
30.05.68 Kosmos 222 (DS-P1-Yu #14)
Junio
01.06.68
04.06.68
04.06.68
05.06.68
11.06.68
12.06.68
13.06.68
Kosmos 223 (Zenit-2 #55)
Kosmos 224 (Zenit-4 #38)
Kosmos (225) (Sfera #2)
KH-8 14
Kosmos 225 (DS-U1-Ya #2)
Kosmos 226 (Meteor-1 #8)
IDCSP 20
IDCSP 21
IDCSP 22
IDCSP 23
IDCSP 24
Eladio Miranda Batlle
[email protected]
2
Cronología del lanzamiento de misiones espaciales
IDCSP 25
IDCSP 26
IDCSP 27
15.06.68 Kosmos (227) (Strela-2 #4)
18.06.68 Kosmos 227 (Zenit-4 #39)
20.06.68 KH-4A 47
SSF-B 12
21.06.68 Kosmos 228 (Zenit-2M #2 Gektor #2)
26.06.68 Kosmos 229 (Zenit-4 #40)
Julio
04.07.68
05.07.68
05.07.68
10.07.68
11.07.68
Explorer 38 (RAE A)
Kosmos 230 (DS-U3-S #2)
Molniya-1 9
Kosmos 231 (Zenit-2 #56)
OV1 15 (SPADES)
LOADS 1 (Cannonball 1, OV1 16)
16.07.68 Kosmos 232 (Zenit-4 #41)
18.07.68 Kosmos 233 (DS-P1-Yu #15)
30.07.68 Kosmos 234 (Zenit-4 #42)
Agosto
06.08.68
06.08.68
07.08.68
08.08.68
09.08.68
10.08.68
16.08.68
16.08.68
27.08.68
27.08.68
28.08.68
KH-8 15
Canyon 1
KH-4B 4
Explorer 39 (AD C)
Explorer 40 (IE C, Injun 5)
Kosmos 235 (Zenit-2 #57)
ATS 4
ESSA 7
Orbiscal 1
OV5 8
Gridsphere 1
Gridsphere 2
MylarBalloon
Rigidsphere
LCS 3
LIDOS
SECOR 11
SECOR 12
Radcat
RM18
UVR (P68-1(a-j)
Kosmos 236 (Strela-2 #5)
Kosmos 237 (Zenit-4 #43)
Kosmos 238 (Soyuz-Test #7)
Septiembre
05.09.68 Kosmos 239 (Zenit-4 #44)
10.09.68 KH-8 16
14.09.68
14.09.68
16.09.68
18.09.68
18.09.68
Zond 5 (L1 9)
Kosmos 240 (Zenit-2 #58)
Kosmos 241 (Zenit-4 #45)
Intelsat-3 1
KH-4A 48
SSF-B 13
20.09.68 Kosmos 242 (DS-P1-I #4)
23.09.68 Kosmos 243 (Zenit-2M #3, Gektor #3)
26.09.68 LES 6 (P67-2(a))
OV2 5 (P67-2(b))
OV5 2 (ERS 21, P67-2(c))
OV5 4 (ERS 28, P67-2(d))
Octubre
02.10.68
03.10.68
03.10.68
05.10.68
05.10.68
07.10.68
11.10.68
11.10.68
19.10.68
20.10.68
23.10.68
25.10.68
26.10.68
30.10.68
31.10.68
Kosmos 244 (OGCh #20)
ESRO 1A (Aurorae)
Kosmos 245 (DS-P1-Yu #16)
Ferret 13
Molniya-1 10
Kosmos 246 (Zenit-4 #46)
Apollo 7 (CSM 101)
Kosmos 247 (Zenit-2 #59)
Kosmos 248 (I2M #2)
Kosmos 249 (I2P #1)
DMSP-4B F2
Soyuz 2
Soyuz 3
Kosmos 250 (Tselina-O #3)
Kosmos 251 (Zenit-4M #1, Rotor #1)
Noviembre
01.11.68
03.11.68
06.11.68
08.11.68
10.11.68
13.11.68
16.11.68
21.11.68
29.11.68
30.11.68
30.11.68
Kosmos 252 (I2P #2)
KH-4B 5
KH-8 17
Pioneer 9
TTS 2
Zond 6 (L1 10)
Kosmos 253 (Zenit-2 #60)
Proton 4
Kosmos 254 (Zenit-4 #47)
Kosmos 255 (Zenit-2 #61)
Kosmos 256 (Sfera #3)
STV 1
Diciembre
03.12.68
04.12.68
05.12.68
07.12.68
10.12.68
Kosmos 257 (DS-P1-Yu #17)
KH-8 18
HEOS 1
OAO 2
Kosmos 258 (Zenit-2 #62)
Eladio Miranda Batlle
[email protected]
3
Cronología del lanzamiento de misiones espaciales
12.12.68 KH-4A 49
SSF-C 1
14.12.68 Kosmos 259 (DS-U2-I #3)
15.12.68 ESSA 8
16.12.68 Kosmos 260 (Molniya-1 (11a))
18.12.68 Intelsat-3 3
20.12.68 Kosmos 261 (DS-U2-GK #1)
21.12.68 Apollo 8 (CSM 103)
LTA B
26.12.68 Kosmos 262 (DS-U2-GF #1)
Eladio Miranda Batlle
[email protected]
4
Cronología del lanzamiento de misiones espaciales
Enero 1968
Surveyor 7
Surveyor 7 was the fifth and final spacecraft
of the Surveyor series to achieve a lunar soft
landing. The primary objectives of the
Surveyor program, a series of seven robotic
lunar softlanding flights, were to support the
coming crewed Apollo landings by: (1)
developing and validating the technology for
landing softly on the Moon; (2) providing data
on the compatibility of the Apollo design with
conditions encountered on the lunar surface;
and (3) adding to the scientific knowledge of
the Moon. The specific objectives for this
mission were to: (1) perform a lunar soft
landing (in a highland area well removed from
the maria to provide a type of terrain
photography and lunar sample significantly
different from those of other Surveyor
missions); (2) obtain postlanding TV pictures;
(3) determine the relative abundances of
chemical elements; (4) manipulate the lunar
material; (5) obtain touchdown dynamics
data; and, (6) obtain thermal and radar
reflectivity data. Surveyor 7 was the only
Surveyor craft to land in the lunar highland
region.
Spacecraft and Subsystems
The basic Surveyor spacecraft structure
consisted of a tripod of thin-walled aluminum
tubing and interconnecting braces providing
mounting surfaces and attachments for the
power, communications, propulsion, flight
control, and payload systems. A central mast
extended about one meter above the apex of
the tripod. Three hinged landing legs were
attached to the lower corners of the structure.
The legs held shock absorbers, crushable,
honeycomb aluminum blocks, and the
deployment
locking
mechanism
and
terminated in footpads with crushable
bottoms. The three footpads extended out 4.3
meters from the center of the Surveyor. The
spacecraft was about 3 meters tall. The legs
folded to fit into a nose shroud for launch.
A 0.855 square meter array of 792 solar cells
was mounted on a positioner on top of the
mast and generated up to 85 Watts of power
which was stored in rechargeable silver-zinc
batteries. Communications were achieved
via a movable large planar array high gain
antenna mounted near the top of the central
mast to transmit television images, two
omnidirectional conical antennas mounted on
the ends of folding booms for uplink and
downlink, two receivers and two transmitters.
Thermal control was achieved by a
combination of white paint, high IR-emittance
thermal finish, polished aluminum underside.
Two thermally controlled compartments,
equipped with superinsulating blankets,
conductive heat paths, thermal switches and
small electric heaters, were mounted on the
spacecraft structure. One compartment, held
at 5 - 50 degrees C, housed communications
and power supply electronics. The other, held
between -20 and 50 degrees C, housed the
command
and
signal
processing
components. The TV survey camera was
mounted near the top of the tripod and strain
gauges, temperature sensors, and other
engineering instruments are incorporated
throughout the spacecraft. One photometric
targets was mounted near the end of a
landing leg and one on a short boom
extending from the bottom of the structure.
Other payload packages, which differed from
mission to mission, were mounted on various
parts of the structure depending on their
function.
A Sun sensor, Canopus tracker and rate
gyros on three axes provided attitude
knowledge. Propulsion and attitude control
were provided by cold-gas (nitrogen) attitude
control jets during cruise phases, three
throttlable vernier rocket engines during
powered phases, including the landing, and
the solid-propellant retrorocket engine during
terminal descent. The retrorocket was a
spherical steel case mounted in the bottom
center of the spacecraft. The vernier engines
used monomethyl hydrazine hydrate fuel and
MON-10 (90% N2O2, 10% NO) oxidizer.
Each thrust chamber could produce 130 N to
460 N of thrust on cammand, one engine
could swivel for roll control. The fuel was
stored in spherical tanks mounted to the
tripod structure. For the landing sequence, an
altitude marking radar initiated the firing of the
main retrorocket for primary braking. After
Eladio Miranda Batlle
[email protected]
5
Cronología del lanzamiento de misiones espaciales
firing was complete, the retrorocket and radar
were jettisoned and the doppler and altimeter
radars were activated. These provided
information to the autopilot which controlled
the vernier propulsion system to touchdown.
Surveyor 7 was similar in design to Surveyor
6, but the payload was the most extensive
flown during the Surveyor program. It carried
a television camera with polarizing filters, an
alpha-scattering instrument, a surface
sampler similar to that flown on Surveyor 3,
bar magnets on two footpads, two horseshoe
magnets on the surface scoop, and auxiliary
mirrors. Of the auxiliary mirrors, three were
used to observe areas below the spacecraft,
one to provide stereoscopic views of the
surface sampler area, and seven to show
lunar material deposited on the spacecraft. It
also carried over 100 items to monitor
engineering
aspects
of
spacecraft
performance. Surveyor 7 had a mass of 1039
kg at launch and 306 kg at landing.
Mission Profile
Surveyor 7 was launched at 06:30:00.54 UT
(1:30 a.m. EST) on 7 January 1968 on an
Atlas-Centaur from launch complex 36A of
the Eastern Test Range at Cape Kennedy.
The spacecraft was put into an Earth parking
orbit and then transferred to a lunar trajectory
by a second burn of the Centaur upper stage.
Surveyor 7 separated from the Centaur at
07:05:16 UT. A midcourse maneuver was
performed at 23:30:10 UT on 7 January 1968.
Touchdown occurred at 01:05:36.3 UT on 10
January 1968 (8:05:36 p.m. EST 9 January)
at 40.86 S, 348.53 E (selenographic) on an
ejecta blanket about 29 miles north of the rim
of Tycho crater in the lunar highlands.
Science operations commenced shortly after
landing. The TV camera returned 20,993
pictures on the first lunar day. The alphascattering instrument failed to deploy fully, but
the surface sampler was used to force it to
the ground. The sampler was later used to
set the alpha-scattering instrument on a rock
and then into a trench it had dug.
Approximately 66 hours of alpha-scattering
data were obtained during the first lunar day
on the three sites. Operations were continued
after sunset and included pictures of the
Earth, stars, and the solar corona. Operation
was terminated at 14:12 UT on 26 January,
80 hours after sunset. Second lunar day
operations began at 19:01 UT on 12 February
1968 and included an additional 45 pictures
for a total of 21,038 and 34 hours of alphascattering data from inside the trench.
Operations were terminated on 21 February
at 12:24 UT (7:24 a.m. EST). The lunar
surface sampler operated flawlessly for a
total of 36 hours, 21 minutes, digging
trenches and moving and manipulating four
rocks.
Results were generally consistent with earlier
missions except that the chemical analysis of
the highland crust showed it to be poorer in
iron group elements than the previous
samples, all from the lunar maria. The
magnet experiments showed the presence of
magnetic
constituents
in
amounts
comparable to those at the Surveyor 5 and 6
sites. The lander also successfully detected
laser beams transmitted from Earth. The
mission objectives were fully satisfied by the
spacecraft operations. The Surveyor program
involved building and launching 7 Surveyor
spacecraft to the Moon at a total cost of $469
million.
Explorer 36 (GEOS B)
The GEOS 2 (Geodetic Earth Orbiting
Satellite) was a gravity-gradient-stabilized,
solar-cell-powered spacecraft that carried
electronic and geodetic instrumentation. The
geodetic instrumentation systems included
(1) four optical beacons, (2) two C-band radar
transponders, (3) a passive radar reflector,
(4) a sequential collation of range radio range
transponder, (5) a Goddard range and range
rate transponder, (6) laser reflectors, and (7)
Doppler beacons. Non-geodetic systems
included a laser detector and a Minitrack
interferometer beacon. The objectives of the
spacecraft were to optimize optical station
visibility
periods
and
to
provide
complementary data for inclination-dependent
terms established by the Explorer 29 (GEOS
1) gravimetric studies. The spacecraft was
placed into a retrograde orbit to accomplish
these objectives. Operational problems
Eladio Miranda Batlle
[email protected]
6
Cronología del lanzamiento de misiones espaciales
occurred in the main power system, optical
beacon flash system, and the spacecraft
clock, and adjustments in scheduling resulted
in nominal operations.
Launch Date: 1968-01-18
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Launch Date: 1968-01-11
Launch Vehicle: Delta
Launch Site: Vandenberg AFB, United States
Mass: 469.0 kg
Kosmos 199 (Zenit-2 #51)
Cosmos 199 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The mission was
unsuccessful. The spacecraft failed to
separate from Block I stage. An attempt was
made to conduct mission without orientation.
APO self destruct system destroyed
spacecraft on 126th revolution over Sea of
Okhotsk
Launch Date: 1968-01-16
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Samos-F3 8
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. The Ferrets
catalogued Soviet air defence radars,
eavesdropped on voice communications, and
taped missile and satellite telemetry
Launch Date: 1968-01-17
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 1500.0 kg
KH-8 11
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft
KH-8 48 [USAF]
Kosmos 200 (Tselina-O #2)
Cosmos 200 was a Soviet ELINT (Electronic
and Signals Intelligence) satellite launched
from the Plesetsk cosmodrome.
From 1965 to 1967 two dedicated ELINT
systems were tested: the Tselina and the
Navy's US. Both reached service, since the
Ministry of Defence could not force a single
system on the military services.
Tselina was developed by Yuzhnoye and
consisted of two satellites: Tselina-O for
general observations and Tselina-D for
detailed observations. ELINT systems for
Tselina were first tested under the Cosmos
designation in 1962 to 1965. The first TselinaO was launched in 1970. The Tselina-D took
a long time to enter service due to delays in
payload development and weight growth. The
whole Tselina system was not operational
until 1976. Constant improvement resulted in
Tselina-O being abandoned in 1984 and all
systems being put on TselinaEladio Miranda Batlle
[email protected]
7
Cronología del lanzamiento de misiones espaciales
Launch Date: 1968-01-20
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Tselina-O [Yuzhnoye]
LEM 1 (Apollo 5)
Launch Date/Time: 1968-01-22 at 22:48:09
UTC
On-orbit Dry Mass: 14360 kg
spacecraft structure, LM staging, 2nd stage
(S-IVB) and instrument unit (Iu) orbital
performance.
After launch, the S-IVB 2nd stage ignited to
insert the spacecraft into a 163 x 222 km
Earth orbit with a period of 88.3 minutes and
an inclination of 31.63 degrees. The nose
cone was jettisoned and after a coast of 43
min 52 sec the LM was separated from the
LM adapter. The LM entered a 167 x 222 km
orbit with a period of 88.4 min and an
inclination of 31.63 degrees. A planned
descent propulsion system (DPS) of 39
seconds was cut short after only 4 seconds.
The burn was designed to simulate
deceleration for descent to the lunar surface,
but was stopped prematurely due to overly
conservative programming of the flight
software. An alternate flight plan was put into
effect, in which the DPS fired for 26 seconds
at 10% thrust and then for 7 seconds at
maximum thrust. A third DPS firing was
performed 32 seconds later, consisting of a
26 second burn at 10% thrust and 2 seconds
at maximum thrust, followed by a burn to
simulate an abort during the landing phase, in
which the ascent propulsion system (APS)
was ignited simultaneously with the DPS
being shut down. The APS burn lasted 60
seconds, followed by a 6 min 23 sec firing
which depleted APS fuel. At the end of the 11
hr, 10 min test period, both LM stages were
left in orbit eventually to reenter and
disintegrate. Despite the initial premature
DPS shutdown, the mission was deemed a
success and operation of all LM systems was
confirmed.
KH-4A 45 1968-008B
SSF-B 10
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. All cameras
operated satisfactorily.
Description
The unmanned Saturn/Apollo 5 was the first
test flight of the Lunar Module (LM). Mission
objectives were to verify the ascent and
descent stages, the propulsion systems, and
the restart operations, and to evaluate the
Launch Date: 1968-01-24
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 60.0 kg
Eladio Miranda Batlle
[email protected]
8
Cronología del lanzamiento de misiones espaciales
Febrero 1968
Kosmos 201 (Zenit-4 #35)
Cosmos 201 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket
Launch Date: 1968-02-06
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
Ye S Shchapov was in charge of Sfera
development. Sfera used the basic KAUR-1
bus, consisting of a 2.035 m diameter
cylindrical spacecraft body, with solar cells
and radiators of the thermostatic temperature
regulating system mounted on the exterior.
Orientation was by a single-axis magnetogravitational (gravity gradient boom) passive
system.
The
hermetically
sealed
compartment had the equipment mounted in
cruciform bays, with the chemical batteries
protecting the radio and guidance equipment
mounted at the centre.
Launch Date: 1968-02-20
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 600.0 kg
Luna (14)/1968A
· Fecha de lanzamiento: 7 de febrero de
1.968 a las 10:43:54 GMT
· Masa seca en órbita: 1.700 kg
Se trató de un nuevo intento de la Unión
Soviética por alcanzar la órbita lunar. El
lanzador, un cohete SL-6 / A-2-e (Molniya)
falló en el despegue y la nave no llegó a
alcanzar la órbita terrestre cayendo en el
Océano Pacífico. La sonda era similar a la
posterior Luna 14 en aspecto y equipamiento.
Kosmos 203 (Sfera #1)
Cosmos 203 was a Soviet geodetic satellite
launched from the Plesetsk cosmodrome
aboard a Cosmos 11 rocket.
The Sfera geodetic system covered a broad
development for solving problems in
geodetics, continental drift, and precise
location of cartographic points. The
spacecraft was equipped with measurement
and
signalling
apparatus,
providing
assistance in measuring astronomicalgeodetic points of military topographical
research for the Red Army General Staff. The
satellite allowed improved accuracy for long
range weapons. Reshetnev was the Chief
Designer. Flight tests were from 1968 to
1972. Series flights were from 1973 to 1980.
The Kosmos 3M launcher was used. Colonel
Kosmos 202 (DS-U2-V #4)
Cosmos 202 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-02-20
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Marzo 1968
Transit-O 18
Transit 18 was a US Navy navigation satellite
launched by a Scout A rocket. Transit, one of
the first operational satellite systems, was
also known as the Navy Navigation Satellite
(NNS).
The Transit spacecraft were developed for
updating the inertial navigation systems on
board US Navy Polaris submarines, and later
Eladio Miranda Batlle
[email protected]
9
Cronología del lanzamiento de misiones espaciales
for civilian use. Transit receivers used the
known characteristics of the satellite's orbit,
measured the Doppler shift of the satellite's
radio signal, and thereby calculated the
receivers position on the earth. As a single
spacecraft travelled overhead, the user
measured the Doppler shift over a 15 minute
period by receiving timing marks and satellite
orbital
information on two
separate
frequencies, 149.99 and 399.97 MHz. These
signals were corrected for ionospheric
refraction and the information was then fed
into the users navigation system.
Individual Transit satellites operated for over
10 years. Technical break- throughs during
the program included gravity gradient
stabilization, the use of radio-isotope
thermoelectic
generators
(RTG),
and
navigation satellite technologies later used in
the GPS system. Transit was superseded by
the Navstar global positioning system. The
use of the satellites for navigation was
discontinued at the end of 1996 but the
satellites continued transmitting and became
the Navy Ionospheric Monitoring System
(NIMS
Launch Date: 1968-03-02
Launch Vehicle: Scout
Launch Site: Vandenberg AFB, United States
Mass: 60.0 kg
Zond 4 (L1 6)
Zond 4 was launched to a distance of
300,000 km from Earth. The purpose of the
mission was to explore circumterrestrial
space and to flight test new systems and
equipment. The launch was made in a
direction away from the Moon. Zond 4 was a
7K-l1 spacecraft comprising a propulsion
module, service module, and re-entry
module. Designed for a two astronaut crew, it
was similar to the later Zond 5 in design, a
cylindrical capsule approximately 4.5 meters
in length and 2.2 to 2.72 meters in diameter,
with two solar panels attached on opposite
sides of the body spanning a total of about 9
meters. The spacecraft carried proton
detectors and radio test relays among its
instrumentation. Unlike the earlier Zond
spacecraft, this was designed ot hold a crew.
This mission was an uncrewed test of the
capsule and a planned precursor to crewed
missions.
Zond 4 was launched into Earth parking orbit
as part of a Tyazheliy Sputnik (68-013B)
station by the SL-12/D-1-e UR-500K Proton
launcher. A Block D fourth stage put the
probe out to 300,000 km distance. Its return
to Earth was supposed to be made by a skip
re-entry, but apparently the re-entry capsule
failed to separate from the service module
and the angle of attack was too steep. The
spacecraft entered at high speed over West
Africa. Ground control set off the self-destruct
mechanism over the Gulf of Guinea at an
altitude of 10 km.
The trajectory away from the Moon was
probably unintentional (although some claims
were made that it was aimed away from the
Moon to avoid complications of lunar gravity).
The spacecraft supposedly could not be sent
towards the Moon because of a malfunction
in the attitude control system. On Earth,
cosmonauts Popovich and Sevastyanov
communicated from an isolated bunker with
Yevpatoriya Flight Control Center in the
Ukraine via a relay on board the spacecraft to
simulate
communications
between
cosmonauts in space and the ground
controllers on Earth.
Alternate Names
03134
Facts in Brief
Launch Date: 1968-03-02
Launch Vehicle: Proton Booster Plus Upper
Stage and Escape Stages
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5140.0 kg
1968-012C/1968-012D
Launch Date: 1968-03-02
Launch Vehicle: Scout
Launch Site: Vandenberg AFB, United States
Mass: 60.0 kg
OGO 5
The objectives of the OGO 5 spacecraft, the
fifth of a series of six Orbiting Geophysical
Eladio Miranda Batlle
[email protected]
10
Cronología del lanzamiento de misiones espaciales
Observatories, were to conduct many
diversified geophysical experiments for a
better understanding of the earth as a planet
and to develop and operate a standardized
observatory-type
spacecraft.
OGO
5
consisted of a main body that was
parallelepipedal in form, two solar panels,
each with a solar-oriented experiment
package (SOEP), and two orbital plane
experiment packages (OPEP). One face of
the main body was earth pointing (Z-axis),
and the line connecting the two solar panels
(X-axis) was perpendicular to the earth-sunspacecraft plane. The solar panels were able
to rotate about the X-axis. The OPEPs were
mounted on and could rotate about an axis
that was parallel to the Z-axis that was
attached to the main body. At launch, the
initial local time of apogee was 0944 h. OGO
5 carried 25 experiments, 17 of which were
particle studies, and two were magnetic field
studies. In addition, there was one each of
the following types of experiments: radio
astronomy, UV spectrum, Lyman-alpha, solar
X ray, plasma waves, and electric field. Realtime data were transmitted at 1, 8, and 64 kbs
depending on the distance from the
spacecraft to the earth. Playback data were
tape recorded at 1 kbs and transmitted at 64
kbs. Two wide-band transmitters, one feeding
into an omnidirectional antenna and the other
feeding into a directional antenna, were used
to transmit data. A special purpose telemetry
system, feeding into either antenna, was also
used to transmit wide-band data in real time
only. Tracking was accomplished by using
radio beacons and a range and range-rate, Sband transponder. The spacecraft attitude
control failed on August 6, 1971, after 41
months of normal operation. The spacecraft
was placed in a standby status on October 8,
1971. Four experiments (Meyer, Blamont,
Thomas, and Simpson) were reactivated for
the period from June 1 to July 13, 1972, after
which all operational support terminated.
Spacecraft
orbit
parameters
changed
significantly over the spacecraft life. By April
1971, spacecraft perigee had increased to
26,400 km and inclination had increased to
54 deg
Launch Date: 1968-03-04
Launch Vehicle: Atlas-Agena D
Launch Site: Cape Canaveral, United States
Mass: 611.0 kg
Kosmos 205 (Zenit-2 #52)
Cosmos 205 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days
Launch Date: 1968-03-05
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4000.0 kg
Kosmos 204 (DS-P1-I #3)
Cosmos 204 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests
Launch Date: 1968-03-05
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 400.0 kg
Explorer 37 (SE B, Solrad 9)
This NRL satellite was one of the SOLRAD
series that began in 1960 to provide
continuous coverage of solar radiation with a
set of standard photometers. SOLRAD 9 was
a spin-stabilized satellite oriented with its spin
axis perpendicular to the sun-satellite line so
that the 14 solar X-ray and UV photometers
pointing radially outward from its equatorial
belt viewed the sun with each revolution.
Data were simultaneously transmitted via
FM/AM telemetry and recorded in a core
Eladio Miranda Batlle
[email protected]
11
Cronología del lanzamiento de misiones espaciales
memory that read out its contents on
command.
Individual
scientists
and
institutions were invited to receive and use
the data transmitted on the 136-MHz
telemetry band on the standard IRIG
channels 3 through 8. For the period July
1971 to June 1973, the core memory data of
SOLRAD 10 were used rather than those
from SOLRAD 9. The SOLRAD 10 core
memory failed June 11, 1973, and SOLRAD
9 was heavily used until February 25, 1974,
when the gas supply of the attitude control
system was exhausted. Lacking attitude
control, SOLRAD 9 was operationally useless
and was turned off. For more details, see R.
W. Kreplin and D. M. Horan, "The NRL
SOLRAD 9 Satellite Solar Explorer B 196817A," NRL Report 6800, 1969
Mass:
DS-U2-Ya (Kosmos 225) [Yuzhnoye]
Launch Date: 1968-03-05
Launch Vehicle: Scout
Launch Site: Wallops Island, United States
Mass: 198.0 kg
KH-8 12
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1968-03-13
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Kosmos 206 (Meteor-1 #7)
Explorer 37 (Solrad 9) [NASA]
Kosmos (206) (DS-U1-Ya #1)
Nation:
U.S.S.R.
Type
/ Astronomy, Magnetosphere
Application:
Operator:
Contractors:
Yuzhnoye
Equipment:
Configuration: DS Bus
Propulsion:
Lifetime:
Cosmos 206 was the sixth announced
Russian meteorological satellite and the
fourth interim operational weather satellite in
the experimental 'Meteor' system. It was also
the fourth launch of a semi-operational
weather satellite from the Plesetsk site into a
near-polar, near-circular orbit. Unlike U.S.
weather satellites, however, the orbit was
prograde (not sun-synchronous) because, as
a result of geographic limitations, a
retrograde orbit was not possible. Cosmos
206 was orbited to test, in a semi-operational
mode, meteorological instruments designed
for obtaining images of cloud cover, snow
cover, and ice fields on the day and night
Eladio Miranda Batlle
[email protected]
12
Cronología del lanzamiento de misiones espaciales
sides of the earth and for measuring fluxes of
outgoing radiation reflected and radiated by
the
earth-atmosphere
system.
This
instrumentation consisted of (1) two vidicon
cameras for daytime cloudcover pictures, (2)
a high-resolution scanning IR radiometer for
nighttime and daytime imaging of the earth
and clouds, and (3) an array of narrow- and
wide-angle radiometers covering the 0.3- to
3, 8- to 12-, and 3- to 30-micron channels for
measuring the intensity of radiation reflected
from the clouds and oceans, the surface
temperatures of the earth and cloud tops, and
the total flux of thermal energy from the earthatmosphere system into space, respectively.
The satellite was in the form of a large
cylindrical capsule, 5 m long and 1.5 m in
diameter. Two large solar cell panels of four
segments each were deployed from opposite
sides of the cylinder after satellite separation
from the launch vehicle. The solar panels
were rotated to constantly face the sun during
satellite daytime by means of a sun sensorcontrolled drive mechanism fitted in the top
end of the center body. The meteorological
instruments, a magnetometer, 465-MHz radio
antennas, and orbital control devices were
housed in a complex, smaller, hermetically
sealed cylinder located on the earthwardfacing end of the cylindrical satellite body.
The satellite was triaxially stabilized by a
series of inertial flywheels, driven by electric
motors, whose kinetic energy was dampened
by torques produced by electromagnets
interacting with the earth's magnetic field.
Cosmos 206 was oriented by earth sensors
with one of its axes directed earthward along
the local vertical, a second oriented along the
orbital velocity vector, and a third oriented
perpendicular to the orbital plane. This
orientation ensured that the optical axes of
the instruments were constantly directed
earthward. When two of the 'Meteor' system
satellites were in operation at the same time
in near-polar orbits and with suitable
differences in the longitudes of the ascending
nodes, data could be received from one-half
the earth's surface in a 24-hr period. Cosmos
206 had a brief useful lifetime. It is believed to
have ceased operations on May 6, 1968, as
indicated by the termination of data
transmissions to the United States via the
'cold line' with Moscow
Launch Date: 1968-03-14
Launch Vehicle: Modified SS-6 (Sapwood)
with 1st Generation Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
KH-4A 46/1968-020B
SSF-B 11
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. Image quality
good for 1046-1 and fair for 1046
Launch Date: 1968-03-14
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Kosmos 207 (Zenit-4 #36)
Cosmos 207 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome aboard a
Soyuz rocket
Launch
Date: 1968-03-16
Launch Vehicle: Modified SS-6 (Sapwood) with
2nd
Generation
(Longer)
Upper
Stage
Launch
Site: Plesetsk,
U.S.S.R
Mass: 4000.0 kg
Kosmos 208 (Zenit-2M #1,
Gektor #1) & Nauka
Cosmos 208 was a third generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The satellite deployed
a high energy gamma ray experiment capsule
Launch Date: 1968-03-21
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
Eladio Miranda Batlle
[email protected]
13
Cronología del lanzamiento de misiones espaciales
Kosmos 209 (US-A Test #4)
Cosmos 209 was a Soviet nuclear powered
Radar Ocean Reconnaissance Satellite
(RORSAT) launched from the Baikonur
cosmodrome aboard a Tsyklon 2 rocket. The
RORSATs searched the oceans for US Navy
task forces and other shipping. Cosmos 209,
a maneuverable satellite, orbited the earth on
a low orbit. The nuclear power source was
boosted to a higher orbit (apogee 944,
perigee 891) by a small solid rocket when the
satellites mission was.
Launch Date: 1968-03-22
Launch Vehicle: Tsiklon-2
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4540.0 kg
Abril 1968
Kosmos 210 (Zenit-2 #53)
Cosmos 210 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1968-04-03
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Apollo 6 (CM 020 / SM 014)
LTA 2R
Launch Date/Time: 1968-04-04 at 12:00:01
UTC
On-orbit Dry Mass: 36806 kg
Description
The unmanned Saturn/Apollo 6 mission was
designed as the final qualification of the
Saturn V launch vehicle and Apollo
spacecraft for manned Apollo missions. The
spacecraft consisted of the three stage
Saturn V, the Apollo Command and Service
Module (CSM) and a boilerplate Lunar
Module (LM). The primary objectives of the
mission were to demonstrate structural and
thermal integrity and compatibility of the
launch vehicle and spacecraft, confirm launch
loads and dynamic characteristics, and verify
stage separations, propulsion, guidance and
control, electrical systems, emergency
detection system, and mission support
facilities and operations, including Command
Module recovery.
Three major problems occurred during the
mission. Two minutes and five seconds after
launch, the Saturn V structure underwent a
severe pogo oscillation, without damage to
the spacecraft structure. Due to a
manufacturing flaw and unrelated to the pogo
oscillations, structural panels were lost from
the lunar module adapter. Finally, after the
completion of first stage firing and part way
through the second stage burn, two of the five
second stage J-2 engines shut down
prematurely. The planned 175 km circular
Earth orbit was not achieved, instead, after
completion of the third stage burn, the
spacecraft was in a 172.1 x 223.1 km, 89.8
min orbit. After two orbits, the third stage
failed to reignite as planned, so the Service
Module propulsion system was used to boost
the spacecraft to an apogee of 22,225.4 km,
from which the planned lunar reentry
Eladio Miranda Batlle
[email protected]
14
Cronología del lanzamiento de misiones espaciales
simulation took place at 36,025 km/hr, slightly
less than the planned velocity of 40,000
km/hr. The Command Module splashed down
80 km off target 9 hr 50 min after launch and
was recovered in good condition.
Launch Date: 1968-04-06
Launch Vehicle: Atlas
Launch Site: Vandenberg AFB, United States
OV1 13 / OV1 14
· Otros nombres: 1968-027A, Lunik 14,
03178
· Fecha de lanzamiento: 7 de abril de 1.968 a
las 10:09:32 GMT
· Masa seca en órbita: 1.700 kg
The OV1-13 spacecraft was placed into a
polar orbit to study energetic particle
phenomena along its orbit. The spacecraft
was spin-stabilized, with a spin period of
about 7.5 s and a spin axis direction normal
to the orbit plane. The spacecraft provided
useful data from its launch until November 3,
1969.
OV1-14 (Orbiting Vehicle series 1, number
14) was a U. S. Air Force Office of Aerospace
Research vehicle launched from Vandenberg
AFB into a polar elliptical orbit for
magnetospheric radiation experiments by an
Atlas E/F rocket along with OV1-13. The
satellite was spin-stabilized at approximately
eight
rpm for directional
anisotropy
measurements. It remained operable for only
four days until a power system failure. Due to
telemetry recording problems on the ground a
total of only 84000 seconds of useful data
were returned to experimenters for the entire
period of operation.
Launch Date: 1968-04-06
Launch Vehicle: Atlas
Launch Site: Vandenberg AFB, United States
Mass: 107.0 kg
Luna 14
Luna 14 fue lanzada hacia el espacio en un
cohete Molniya 8K78M (un cohete de 4
etapas R-7/SS-6) y tras quedarse en órbita
de aparcamiento terrestre durante unos
minutos, fue lanzada con rumbo lunar usando
la última etapa. La nave entró en una órbita
lunar de 160 x 870 kilómetros con una
inclinación de 42º a las 19:25 GMT del 10 de
abril de 1968, con un periodo orbital de 160
minutos.
La nave era similar a la Luna 12 y la
instrumentación idéntica a la portada por
Luna 10. La sonda proporcionó datos para el
estudio de la interacción de las masas de la
Tierra y la Luna, el campo gravitatorio lunar,
la propagación y estabilidad de las
comunicaciones de radio con la nave en
diferentes posiciones orbitales, las partículas
solares cargadas, los rayos cósmicos y el
movimiento de la Luna.
1968-026C
Sonda Luna 14, similar a las Luna 11 y 12
Eladio Miranda Batlle
[email protected]
15
Cronología del lanzamiento de misiones espaciales
.
De todos los objetivos anteriores el primario
fue la realización de pruebas de
comunicación para practicar y mejorar los
sistemas de comunicación con las naves N1L3 del proyecto de naves tripuladas
soviéticas a la Luna. El seguimiento preciso
de los movimientos de la sonda realizado
desde la Tierra permitía conocer con
exactitud el variable campo gravitatorio lunar
para predecir las trayectorias de las futuras
misiones tripuladas de los vehículos LOK y
LK de aterrizaje. Este vuelo fue el último de
la segunda generación de sondas.
Kosmos 211 (DS-P1-Yu #12)
Cosmos 211 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-04-09
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 400.0 kg
Kosmos 212 (Soyuz-Test #5)
Cosmos 212 was one of a series of Soviet
earth satellites whose purpose was to study
outer space, the upper layers of the
atmosphere, and the earth. Scientific data
and measurements were relayed to earth by
multichannel telemetry systems equipped
with space-borne memory units. Cosmos 212
and Cosmos 213 automatically docked in
orbit on April 15, 1968. Both satellites landed
on Soviet territory.
Launch Date: 1968-04-14
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6000.0 kg
Kosmos 213 (Soyuz-Test #6)
Cosmos 213 was one of a series of Soviet
earth satellites whose purpose was to study
outer space, the upper layers of the
atmosphere, and the earth. Scientific data
and measurements were relayed to earth by
multichannel telemetry systems equipped
with space-borne memory units. Cosmos 212
and Cosmos 213 automatically docked in
orbit on April 15, 1968. Both satellites landed
on Soviet territory.
Launch Date: 1968-04-15
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6000.0 kg
KH-8 13
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1968-04-17
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Kosmos 214 (Zenit-4 #37)
Cosmos 214 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-04-18
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4000.0 kg
Eladio Miranda Batlle
[email protected]
16
Cronología del lanzamiento de misiones espaciales
Kosmos 215 (DS-U1-A #1)
Cosmos 215 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
This
mission
studied
the
optical
characteristics of the atmosphere.
Launch Date: 1968-04-18
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Kosmos 216 (Zenit-2 #54)
Cosmos 216 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days. The mission was
unsuccessful. The spacecraft landed in River
Volga 1 km from shore and sank after 42
minutes. Eighty-five percent of the data was
ruined.
Launch Date: 1968-04-20
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
Molniya-1 8
Molniya 1/ 8 was a first-generation Russian
communications satellite (COMSAT) orbited
to test and perfect a system of radio
communications and television broadcasting
using earth satellites as active transponders
and to experiment with the system in practical
use. The basic function of the satellite was to
relay television programs and long-distance
two-way
multichannel
telephone,
phototelephone, and telegraph links from
Moscow to the various standard ground
receiving stations in the 'Orbita' system. The
satellite was in the form of a hermetically
sealed cylinder with conical ends -- one end
contained the orbital correcting engine and a
system of microjets, and the other end
contained externally mounted solar and earth
sensors. Inside the cylinder were (1) a highsensitivity receiver and three 800-MHz 40-w
transmitters (one operational and two in
reserve), (2) telemetering devices that
monitored equipment operation, (3) chemical
batteries that were constantly recharged by
solar cells, and (4) an electronic computer
that controlled all equipment on board.
Mounted around the central cylinder were six
large solar battery panels and two directional,
high-gain parabolic aerials, 180 deg apart.
One of the aerials was directed continually
toward the earth by the highly sensitive earth
sensors. The second aerial was held in
reserve. Signals were transmitted in a fairly
narrow beam ensuring a strong reception at
the earth's surface. The satellite received
telemetry at 1000 MHz. Television service
was provided in a frequency range of 3.4 to
4.1 GHz at 40 w. Molniya 1/ 8, whose
cylindrical body was 3.4 m long and 1.6 m in
diameter,
was
much
heavier
than
corresponding U.S. COMSATs, and it had
about 10 times the power output of the Early
Bird COMSAT. In addition, it did not employ a
geosynchronous equatorial orbit as have
most U.S. COMSATs because such an orbit
would not provide coverage for areas north of
70 deg n latitude. Instead, the satellite was
boosted from a low-altitude parking orbit into
a highly elliptical orbit with two high apogees
daily over the northern hemisphere -- one
over Russia and one over North America -and relatively low perigees over the southern
hemisphere. During its apogee, Molniya 1/ 8
remained relatively stationary with respect to
the earth below for nearly 8 of every 12 hr. By
placing three or more Molniya 1 satellites in
this type of orbit, spacing them suitably, and
shifting their orbital planes relative to each
other by 120 deg, a 24-hr/day communication
system could be obtained. In addition,
Molniya 1/ 8 carried an externally mounted
television camera equipped with various
filters and interchangeable wide- and narrowangle lenses to send back detailed pictures of
Eladio Miranda Batlle
[email protected]
17
Cronología del lanzamiento de misiones espaciales
large cloud systems. From its high apogees
over the northern hemisphere, the satellite
transmitted pictures of the earth's entire disc
that were similar to the ATS pictures. These
pictures from Molniya 1/ 8 were used in
conjunction with cloudcover pictures taken by
the lower orbiting satellites of the 'Meteor'
weather satellite system to obtain a
comprehensive and detailed view of global
weather systems. The satellite probably
ceased transmitting in August, 1969.
Launch
Date: 1968-04-21
Launch Vehicle: Modified SS-6 (Sapwood) with
2nd Generation Upper Stage + Escape Stage
Launch Site: Tyuratam (Baikonur Cosmodrome),
U.S.S.R
Mass: 998.0 kg
Zond (5a) (L1 7)
Nation:
U.S.S.R.
Type
/ Lunar flyby and return
Application:
Operator:
Contractors:
Equipment:
Configuration: 7K-L1
Propulsion:
KTDU-53
because the satellite did not separate from
the last rocket stage.
Launch Date: 1968-04-24
Launch Vehicle: Modified SS-9 (SCARP) or
SS-13 (SCRAG) with Orbital and
Maneuverable
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
Kosmos 218 (OGCh #17)
Cosmos 218 was a Soviet Fractional Orbital
Bombardment System (FOBS) system test
satellite launched from the Baikonur
Cosmodrome aboard a R-36-0 rocket. It
contained a nuclear warhead launched into
orbit, where it could remain until deorbited
onto target with little warning.
Launch Date: 1968-04-25
Launch Vehicle: Modified SS-9 (SCARP) or
SS-13 (SCRAG) with Orbital & Reentry
Stages
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5000.0 kg
Kosmos 219 (DS-U2-D #2)
Zond (L1)
Kosmos 217 (I2M #1)
Cosmos 217 was a Soviet military antisatellite (ASAT) target launched from the
Baikonur cosmodrome aboard a tsyklon
rocket. It was an unsuccessful launch
Cosmos 219 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-04-26
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Mayo1968
Eladio Miranda Batlle
[email protected]
18
Cronología del lanzamiento de misiones espaciales
KH-4B 3
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Thor Agena D rocket. It was a KH-4B (Key
Hole-4B) type spacecraft. Out-of-focus
imagery is present on both main camera
records.
Launch Date: 1968-05-01
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
day period. Further improvement required a
better mapping of the earth's gravitational
anomalies. Testing of Tsiklon would continue
through 1972 before an adequate operational
system
could
be
designed.
The
Parus/Tsiklon-B production system began
flight tests in 1974.
Tsiklon used the basic KAUR-1 bus,
consisting of a 2.035 m diameter cylindrical
spacecraft body, with solar cells and radiators
of the thermostatic temperature regulating
system mounted on the exterior. Orientation
was by a single-axis magneto-gravitational
(gravity gradient boom) passive system. The
hermetically sealed compartment had the
equipment mounted in cruciform bays, with
the chemical batteries protecting the radio
and guidance equipment mounted at the
centre).
Launch Date: 1968-05-07
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 775.0 k g
Kosmos (220)
Intento fallido
Kosmos 220 (Tsiklon #2)
Cosmos 220 was a prototype Soviet
navigation satellite. The shipboard installation
consisted of the Tsunami system, composed
of the Sirius radio station, the Signal antenna
stabilisation
platform,
the
Konus-4
omnidirectional antenna, and the Kvant-L
antenna. First trial were conducted with a
Project 680 vessel of the Black Sea fleet and
showed a position error of 3 km, which was
intolerable. A large part of the problem was
with inaccuracies in the software models
available for predicting the spacecraft
ephemerides. Work by the KIK Centre
resulted in a 10 to 30 times improvement in
this accuracy, incorporating new information
on the gravitational anomalies and geoid of
the earth. Use of the revised software in 1969
showed an average error of 100 m over a five
ESRO 2B (Iris 2)
ESRO 2 was a 75-kg spin-stabilized
spacecraft that was launched on May 16,
1968, into a near polar orbit. The main
objective of ESRO 2 was to conduct a study
of solar astronomy and cosmic rays. The
ESRO 2 experiments had their counterparts
in the NASA-OSO series. The purpose of the
spacecraft was to provide continuity to the
solar radiation observations carried out by
OSO D launched October 18, 1967. The
particle experiments were designed to
continue similar measurements carried out by
the Ariel 1 (UK 1) satellite. The satellite had a
spin rate of about 40 rpm and had completed
16,282 orbits of the earth before reentry on
May 8, 1971, shortly after 0300 UT. No
playback data has been available since
December 10, 1968, following a mechanical
failure of the onboard tape recorder. The
failure reduced the data flow by about 80
percent, although a combination of Estrack
(ESRO) and STADAAN (NASA) tracking
stations were used.
Eladio Miranda Batlle
[email protected]
19
Cronología del lanzamiento de misiones espaciales
Launch Date: 1968-05-17
Launch Vehicle: Scout
Launch Site: Vandenberg AFB, United States
Mass: 89.8 kg
ESRO 2B (Iris 2) [ESA]
Nimbus B / SECOR 10 (EGRS
10, S68-2)
The Nimbus-B meteorological R and D
satellite was designed to serve as a
stabilized, earth-oriented platform for the
testing of advanced systems for sensing and
collecting
meteorological
data.
The
spacecraft consisted of three major structures
-- (1) a sensor mount, (2) solar paddles, and
(3) the control housing unit, which was
connected to the sensor mount by a truss
structure. Shaped somewhat like an ocean
buoy, Nimbus-B was nearly 3.7 m tall, 1.5 m
in diameter at the base, and about 3 m
across with solar paddles extended. The
torus-shaped sensor mount, which formed
the satellite base, housed the electronics
equipment and battery modules. The lower
surface of the torus provided a mounting
space for sensors and telemetry antennas.
An H-frame structure mounted within the
center of the torus provided support for the
larger experiments and tape recorders.
Mounted on the control housing unit, which
was located on top of the spacecraft, were
sun sensors, horizon scanners, gas nozzles
for attitude control, and a command antenna.
Use of the attitude control subsystem (ACS)
permitted the spacecraft's orientation to be
controlled to within plus or minus 1 deg for all
three axes (pitch, roll, and yaw). Primary
experiment
subsystems on
Nimbus-B
consisted of (1) a satellite infrared
spectrometer (SIRS) for determining the
verticle
temperature
profiles
of
the
atmosphere, (2) an infrared interferometer
spectrometer (IRIS) for measuring the
emission spectra of the earth-atmosphere
system, (3) both high- and medium-resolution
infrared radiometers (HRIR and MRIR) for
yielding information on the distribution and
intensity of infrared radiation emitted and
reflected by the earth and its atmosphere, (4)
a monitor of ultraviolet solar energy (MUSE)
for detecting solar UV radiation, (5) an image
dissector camera system (IDCS) for providing
daytime cloudcover pictures in both real-time
mode, using the real-time transmission
system (RTTS), and tape recorder mode,
using the high data rate storage system
(DHRSS), (6) a radioisotope thermoelectric
generator (RTG), SNAP-19, to assess the
operational capability of radioisotope power
for space applications, and (7) an
interrogation, recording, and location system
(IRLS) designed to locate, interrogate, record,
and retransmit meteorological data from
remote collection stations. The spacecraft
never achieved orbit because of a
malfunction in the booster guidance system
forced the destruction of the spacecraft and
its payload during launch. Less than 1 yr
later, an identical payload was successfully
flown on Nimbus 3.
SECOR (Sequential Collation of Range),
EGRS (Electronic & Geodetic Ranging
Satellite) were small geodetic spacecraft
used to precisely determine points on the
earth
Launch Date: 1968-05-18
Launch Vehicle: Thrust Augmented ThorAgena B
Launch Site: Vandenberg AFB, United States
Mass: 571.5 kg
Eladio Miranda Batlle
[email protected]
20
Cronología del lanzamiento de misiones espaciales
of USAF weather satellites, the spacecraft
mission was not revealed until March 1973.
Launch Date: 1968-05-22
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 150.0 kg
Nimbus B [NASA]
DMSP-4B F1
The cylindrically shaped Block 4 satellites
incorporated two new one-inch diameter
vidicon cameras, video (2), a large capacity
tape recorder, and an all-digital command
subsystem with magnetic core memory,
giving fully progammable coverage of either
direct readout or readout of recorded data
without interference. Nominal satellite spin
rate was decreased to reduce smear,
permitting a higher resolution TV system for
improved picture quality. Dual cameras and a
high capacity recorder provided complete
daily coverage of the entire northern
hemisphere and tactical coverage anywhere
on the earth. An improved IR 'C' system was
incorporated on this spacecraft. The Defence
Meteorological Satellite Program's Block 4
space segment consisted of satellites in 450
nautical mile sun-synchronous polar orbits
each carrying a payload of meteorological
sensors. Primary cloud imaging sensors
capable of globally viewing the earth in the
visible and infrared spectrums were carried
by every satellite. The ascending node of the
satellites was either in the early morning time
period or at mid-day. THe final data product
was a film product directly usable for imagery
analysis. Originally part of a classified system
DMSP-4B
1968-042B
Launch Date: 1968-05-23
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Kosmos 221 (DS-P1-Yu #13)
Cosmos 221 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-05-24
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Eladio Miranda Batlle
[email protected]
21
Cronología del lanzamiento de misiones espaciales
Kosmos 222 (DS-P1-Yu #14)
Cosmos 222 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-05-30
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Kosmos (225) (Sfera #2)
Cosmos 225 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-06-11
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Junio 1968
KH-8 14
Kosmos 223 (Zenit-2 #55)
Cosmos 223 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1968-06-01
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 224 (Zenit-4 #38)
Cosmos 224 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The spacecraft also
measured atmospheric composition.
Launch Date: 1968-06-04
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1968-06-05
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Kosmos 225 (DS-U1-Ya #2)
Cosmos 225 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-06-11
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Eladio Miranda Batlle
[email protected]
22
Cronología del lanzamiento de misiones espaciales
Kosmos 226 (Meteor-1 #8)
Cosmos 226 was the seventh announced
Russian meterological satellite and the fifth
and last interim operational weather satellite
in the experimental 'Meteor' system. It was
also the fifth launch of a semi-operational
weather satellite from the Plesetsk site into a
near-polar, near-circular orbit. Unlike U.S.
weather satellites, however, the orbit was
prograde (not sun-synchronous) because, as
a result of geographic limitations, a
retrograde orbit was not possible. Cosmos
226 was orbited to test, in a semi-operational
mode, meteorological instruments designed
for obtaining images of cloud cover, snow
cover, and ice fields on the day and night
sides of the earth and for measuring fluxes of
outgoing radiation reflected and radiated by
the
earth-atmosphere
system.
This
instrumentation consisted of (1) two vidicon
cameras for daytime cloudcover pictures, (2)
a high-resolution scanning IR radiometer for
nighttime and daytime imaging of the earth
and clouds, and (3) an array of narrow- and
wide-angle radiometers covering the 0.3- to
3-, 8- to 12-, and 3- to 30-micron channels for
measuring the intensity of radiation reflected
from the clouds and oceans, the surface
temperatures of the earth and cloud tops, and
the total flux of thermal energy from the earthatmosphere system into space, respectively.
The satellite was in the form of a large
cylindrical capsule, 5 m long and 1.5 m in
diameter. Two large solar cell panels of four
segments each were deployed from opposite
sides of the cylinder after satellite separation
from the launch vehicle. The solar panels
were rotated to constantly face the sun during
satellite daytime by means of a sun sensorcontrolled drive mechanism fitted in the top
end of the center body. The meteorological
instruments, a magnetometer, 465-MHz radio
antennas, and orbital control devices were
housed in a hermetically sealed cylinder
located on the earthward-facing end of the
cylindrical satellite body. The satellite was
triaxially stabilized by a series of inertial
flywheels, driven by electric motors, whose
kinetic energy was dampened by torques
produced by electromagnets interacting with
the earth's magnetic field. Cosmos 226 was
oriented by earth sensors with one of its axes
directed earthward along the local vertical, a
second oriented along the orbital velocity
vector, and a third oriented perpendicular to
the orbital plane. This orientation ensured
that the optical axes of the instruments were
constantly directed earthward. When two of
the 'Meteor' system satellites were in
operation at the same time in near-polar
orbits and with suitable differences in the
longitudes of the ascending nodes, data
could be received from one-half the earth's
surface in a 24-hr period. Cosmos 226
operated for 8 months after launch and
terminated operations in mid-February 1969.
Launch Date: 1968-06-12
Launch Vehicle: Modified SS-6 (Sapwood)
with 1st Generation Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
IDCSP 20 / IDCSP 21
IDCSP 22 / IDCSP 23
IDCSP 24 / IDCSP 25
IDCSP 26 / IDCSP 27
The Initial Defense Communications Satellite
Program provided the Pentagon with its first
geosynchronous communications system.
IDCSP satellites were spin-stabilized 26
sided polygons, 86 cm in diameter, covered
with solar panels, and had a mass of 45 kg.
Eight were dispersed on a single Titan 3C
rocket into slightly sub-synchronous orbit
where they would drift about thirty degrees
per day. The idea was that a backup was
always visible to the earth station if one
failed.
IDCSP
satellites
transmitted
reconnaisance photos and other data during
the Vietnam war. They were succeeded by
NATO and DSCS true geosynchronous
satellites.
Launch Date: 1968-06-13
Launch Vehicle: Titan III-C
Launch Site: Cape Canaveral, United States
Mass: 45.0 kg
Eladio Miranda Batlle
[email protected]
23
Cronología del lanzamiento de misiones espaciales
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. Out-of-focus
imagery is present on both main camera
records.
Launch Date: 1968-06-20
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 60.0 kg
Kosmos 228
Gektor #2)
(Zenit-2M
#2
IDCSP [USAF]
1968-050I / 1968-050J
Launch Date: 1968-06-13
Launch Vehicle: Titan
Launch Site: Cape Canaveral, United States
Mass: 45.0 kg
Cosmos 228 was a third generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-06-21
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5900.0 kg
Kosmos (227) (Strela-2 #4)
Kosmos 229 (Zenit-4 #40)
Intento fallido
Kosmos 227 (Zenit-4 #39)
Cosmos 227 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-06-18
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
KH-4A 47 1968-052B / SSF-B
12
Cosmos 229 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-06-26
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Julio 1968
Explorer 38 (RAE A)
The RAE-1 spacecraft measured the intensity
of celestial radio sources, particularly the sun,
as a function of time, direction, and frequency
(0.2 to 20 MHz). The spacecraft was gravity
gradient oriented. The spacecraft weight was
Eladio Miranda Batlle
[email protected]
24
Cronología del lanzamiento de misiones espaciales
193 kg, and average power consumption was
25 W. It carried two 750-ft-long V-antennas,
one facing toward the earth and one facing
away from the earth. A 120-ft-long dipole
antenna was oriented tangentially with
respect to the earth's surface. The spacecraft
was also equipped with one 136-MHz
telemetry turnstile. The onboard experiments
consisted of four step-frequency RyleVonberg radiometers operating from 0.45 to
9.18 MHz, two multichannel total power
radiometers operating from 0.2 to 5.4 MHz,
one step frequency V-antenna impedance
probe operating from 0.24 to 7.86 MHz, and
one dipole antenna capacitance probe
operating from 0.25 to 2.2 MHz. RAE-1 was
designed for a 1-year minimum operating
lifetime. The spaecraft tape recorder
performance began to deteriorate after 2
months in orbit. In spite of several cases of
instrument malfunction, good data were
obtained on all three antenna systems. For
more details, see R. R. Weber, J. K.
Alexander, and R. G. Stone, Radio Sci., v. 6,
p. 1085, 1971
Launch Date: 1968-07-04
Launch Vehicle: Delta
Launch Site: Vandenberg AFB, United States
Mass: 602.0 kg
Explorer 38 (RAE A)
Kosmos 230 (DS-U3-S #2)
Cosmos 230 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-07-05
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Molniya-1 9
Molniya 1/ 9 was a first-generation Russian
communications satellite (COMSAT) orbited
to test and perfect a system of radio
communications and television broadcasting
using earth satellites as active transponders
and to experiment with the system in practical
use. The basic function of the satellite was to
relay television programs and long-distance
two-way
multichannel
telephone,
phototelephone, and telegraph links from
Moscow to the various standard ground
receiving stations in the 'Orbita' system. The
satellite was in the form of a hermetically
sealed cylinder with conical ends -- one end
contained the orbital correcting engine and a
system of microjets, and the other end
contained externally mounted solar and earth
sensors. Inside the cylinder were (1) a highsensitivity receiver and three 800-MHz 40-w
transmitters (one operational and two in
reserve), (2) telemetering devices that
monitored equipment operation, (3) chemical
batteries that were constantly recharged by
solar cells, and (4) an electronic computer
that controlled all equipment on board.
Mounted around the central cylinder were six
large solar battery panels and two directional,
high-gain parabolic aerials, 180 deg apart.
One of the aerials was directed continually
toward the earth by the highly sensitive earth
sensors. The second aerial was held in
reserve. Signals were transmitted in a fairly
narrow beam ensuring a strong reception at
the earth's surface. The satellite received
Eladio Miranda Batlle
[email protected]
25
Cronología del lanzamiento de misiones espaciales
telemetry at 1000 MHz. Television service
was provided in a frequency range of 3.4 to
4.1 GHz at 40 w. Molniya 1/ 9, whose
cylindrical body was 3.4 m long and 1.6 m in
diameter,
was
much
heavier
than
corresponding U.S. COMSATs, and it had
about 10 times the power output of the Early
Bird COMSAT. In addition, it did not employ a
geosynchronous equatorial orbit as have
most U.S. COMSATs because such an orbit
would not provide coverage for areas north of
70 deg n latitude. Instead, the satellite was
boosted from a low-altitude parking orbit into
a highly elliptical orbit with two high apogees
daily over the northern hemisphere -- one
over Russia and one over North America -and relatively low perigees over the southern
hemisphere. During its apogee, Molniya 1/ 9
remained relatively stationary with respect to
the earth below for nearly 8 of every 12 hr. By
placing three or more Molniya 1 satellites in
this type of orbit, spacing them suitably, and
shifting their orbital planes relative to each
other by 120 deg, a 24-hr/day communication
system could be obtained. In addition,
Molniya 1/ 9 carried an externally mounted
television camera equipped with various
filters and interchangeable wide- and narrowangle lenses to send back detailed pictures of
large cloud systems. From its high apogees
over the northern hemisphere, the satellite
transmitted pictures of the earth's entire disc
that were similar to the ATS pictures. These
pictures from Molniya 1/ 9 were used in
conjunction with cloudcover pictures taken by
the lower orbiting satellites of the 'Meteor'
weather satellite system to obtain a
comprehensive and detailed view of global
weather systems. The satellite reentered the
atmosphere on May 15, 1971, after 1044
days in orbit.
Launch Date: 1968-07-05
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation Upper Stage + Escape
Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 998.0 kg
Kosmos 231 (Zenit-2 #56)
Cosmos 231 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1968-07-10
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
OV1 15 (SPADES) / OV1-16
LOADS 1 (Cannonball 1, OV1
16)
V1-15, also referred to as SPADES (Solar
Perturbation
of
Atmospheric
Density
Experimental Satellite), was designed to
study synoptically the fluctuations of
atmospheric density, composition, and
temperature as a function of solar
magnetospheric disturbances. The cylindrical
spacecraft, 69 cm in diameter, was 1.4 m
long. Electrical power was supplied by solar
cells mounted on multifaced domes on each
end of the spacecraft. OV1-15 was spin
stabilized. The instrumentation consisted of a
microphone density gauge, an ion gauge,
mass spectrometers, energetic particle
detectors, solar X ray and UV flux monitors,
an ionospheric monitor, and a triaxial
accelerometer. The spacecraft performed
normally after launch, and re-entered the
earth's atmosphere on November 6, 1968,
after successfully completing the mission
objectives.
The OV1-16 satellite was a high-density, 63cm in diamspherical spacecraft specifically
designed to obtain accurate density data at
very low altitudes (100 km). The principal
active
experiment
was
a
triaxial
accelerometer that measured satellite
acceleration near perigee. Atmospheric
densities were then computed from these
data. The sphere also contained a c-band
tracking
beacon
for
drag
density
determination. Batteries and appropriate
logic, timing, telemetry, and command and
control equipment were also aboard. There
was no onboard tape recorder, but real-time
Eladio Miranda Batlle
[email protected]
26
Cronología del lanzamiento de misiones espaciales
telemetry data were obtained during 199
passes over 12 stations.
Launch Date: 1968-07-11
Launch Vehicle: Atlas
Launch Site: Vandenberg AFB, United States
Mass: 215.0 kg
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-07-18
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 250.0 kg
Kosmos 234 (Zenit-4 #42)
Cosmos 234 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-07-30
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Agosto 1968
LOADS 2 (OAR 901) [USAF]
Kosmos 232 (Zenit-4 #41)
Cosmos 232 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The spacecraft also
performed weather experiments.
Launch Date: 1968-07-16
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4000.0 kg
Kosmos 233 (DS-P1-Yu #15)
Cosmos 233 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
KH-8 15
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1968-08-06
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Canyon 1
Canyon 1 was the first in a series of US
signals intelligence satellites launched by the
US Air Force from Cape Canaveral aboard an
Atlas Agena-D rocket.
Launch Date: 1968-08-06
Launch Vehicle: Atlas-Agena D
Launch Site: Cape Canaveral, United States
Mass: 700.0 kg
Eladio Miranda Batlle
[email protected]
27
Cronología del lanzamiento de misiones espaciales
KH-4B 4
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Thor Agena D rocket. It was a KH-4B (Key
Hole-4B) type spacecraft. The spacecraft had
the best imagery to date on any KH-4
systems.
Bicolor and color infrared
experiments were conducted on this mission
Launch Date: 1968-08-07
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Explorer 39 (AD C) / Explorer
40 (IE C, Injun 5)
Explorer 39 was an inflatable sphere, 3.6 m in
diameter. It was orbited to make atmospheric
density determinations. The spacecraft was
successfully launched into a nearly polar,
highly elliptical orbit. It was folded and carried
into orbit, together with ejection and inflation
equipment, as part of the payload of Explorer
40. Two density experiments were performed.
One involved the study of systematic density
variation, and the other was concerned with
nonsystematic density changes. The upper
atmospheric densities were derived from
sequential observations of the sphere by use
of an attached 136.620-MHz radio tracking
beacon and by optical tracking. The radio
beacon ceased transmitting in June 1971.
Since that time it has been necessary to rely
solely on the SAO Baker-Nunn camera
network for tracking. Explorer 39 has an
expected orbital lifetime of 50 years.
Injun 5 (Explorer 40) was a 71-kg magnetically
oriented spacecraft and was launched by a Scout
rocket, together with a 3.65-m inflatable balloon
(Explorer 39) used for air density measurements.
Injun 5 was designed to accomplish the following
objectives: (1) comprehensive study of the
downward flux of charged particles, (2) study of
very low frequency (VLF) radio emission in the
ionosphere associated with the downward flux, (3)
study of geomagnetically trapped protons, alpha
particles, and electrons, (4) observation of solar
cosmic rays, (5) observation of the continuing
decay of the Starfish artificial radiation belt, and (6)
study of the temperature and density of electrons
and positive ions of thermal and near thermal
energy. The spacecraft systems performed
normally except for the malfunction of the solar cell
power dump device (shortly after launch) which
caused the solar cells to deliver a lower power
level to the experiments and reduced the time
during which the onboard tape recorder could be
run. The passive magnetic alignment became
effective in mid-December 1968. The spacecraft
was turned off from May 31, 1970, to February 18,
1971, after this period it was turned on again. The
spacecraft was put in an operational off-mode in
early June 1971, and became inoperable shortly
thereafter.
Launch Date: 1968-08-08
Launch Vehicle: Scout
Launch Site: Vandenberg AFB, United States
Mass: 9.4 kg
Eladio Miranda Batlle
[email protected]
28
Cronología del lanzamiento de misiones espaciales
Explorer 40 (IE C, Injun 5) [NASA]
Kosmos 235 (Zenit-2 #57)
Cosmos 235 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days. The mission was
partially successful. There was hard landing
due to parachute system failure. Thirty
percent of the film was damaged.
earth-synchronous orbit. The cylindricallyshaped spacecraft measured 142 cm in
diameter and 183 cm in length. The
spacecraft structure consisted primarily of a
corrugated thrust tube with honeycombed
bulkheads secured to each end. Equipment
components and payload were externally
mounted on the outer surface of the thrust
tube as well as on a structure that slid into the
interior of the thrust tube. Electric power was
provided by two solar arrays mounted on
either end of the spacecraft's outer shell and
by
two
rechargeable
nickel-cadmium
batteries. Extending radially outward from the
side of the spacecraft were four 28.2-m-long
adjustable gravity-gradient booms. The
spacecraft telemetry system consisted of four
2.1-W transmitters, (two at 136.47 MHz and
two at 137.35 MHz), in addition to a
microwave communications experiment. The
second stage of the launch vehicle failed to
ignite, and the planned synchronous orbit
was not achieved. The spacecraft and its
Centaur booster rocket were left attached
together in a parking orbit. In spite of an
anomalistic attitude, some of the experiments
did perform successfully before the satellite
and its attached booster reentered the earth's
atmosphere on October 17, 1968. The
primary objective of inserting a gravitygradient-stabilized
spacecraft
into
a
geosynchronous orbit was not accomplished.
Launch Date: 1968-08-09
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
ATS 4
ATS 4 (Applications Technology Satellite)
was a gravity-gradient-stabilized spacecraft
designed to (1) test new concepts in
spacecraft
design,
propulsion,
and
stabilization, (2) take high-quality cloudcover
pictures, (3) provide in situ measurements of
the aerospace environment, and (4) test
improved communication systems while in an
Eladio Miranda Batlle
[email protected]
29
Cronología del lanzamiento de misiones espaciales
Launch Date: 1968-08-10
Launch Vehicle: Atlas-Centaur
Launch Site: Cape Canaveral, United States
Mass: 305.0 kg
ESSA 7
ESSA 7 was a sun-synchronous operational
meteorological satellite designed to take and
record daytime earth-cloud pictures on a
global basis for subsequent playback to a
ground acquisition facility. The spacecraft
was also capable of providing worldwide
measurements of reflected solar and longrange radiation leaving the earth. The
spacecraft has essentially the same
configuration as that of a TIROS spacecraft,
i.e., an 18-sided right prism, 107 cm across
opposite corners and 56 cm high, with a
reinforced baseplate carrying most of the
subsystems and a cover assembly (hat).
Electric power was provided by approximately
10,000 solar cells 1 by 2 cm that were
mounted on the cover assembly and by 21
nickel-cadmium batteries. Two redundant
Advanced Vidicon Camera System (AVCS)
cameras were mounted on opposite sides of
the spacecraft, with their optical axes
perpendicular to the spin axis. Two sets of flat
plate radiometers were also suspended on
opposite sides of the satellite, beneath the
edge of the baseplate. A pair of crosseddipole command receiver antennas projected
out and down from the baseplate. A
monopole telemetry and tracking antenna
extended out from the top of the cover
assembly. The satellite spin rate was
controlled by means of a Magnetic Attitude
Spin Coil (MASC), with the spin axis
maintained normal to the orbital plane
(cartwheel orbit mode) to within plus or minus
1 deg. The MASC was a current-carrying coil
mounted in the cover assembly. The internal
magnetic field induced by the current
interacted with the earth's magnetic field to
provide the torque necessary to maintain a
desired spin rate of 9.225 rpm. One AVCS
camera failed almost immediately after
launch. The radiometer experiment failed on
June 23, 1969, and the remaining camera
system failed on July 19, 1969. The
spacecraft was deactivated on March 10,
1970, after being left on for an additional time
period for engineering purposes.
Launch Date: 1968-08-16
Launch Vehicle: Delta
Launch Site: Vandenberg AFB, United States
Mass: 145.0 kg
Orbiscal 1/ OV5 8
Gridsphere 1/ Gridsphere 2
MylarBalloon /Rigidsphere
LCS 3 / LIDOS
SECOR 11 /SECOR 12
Radcat/ RM18
UVR (P68-1(a-j)
Launch Date: 1968-08-16
Launch Vehicle: Atlas-Burner 2
Launch Site: Vandenberg AFB, United States
Mass: 37.0 kg
OV5 8: Vacuum friction experiments
OV5 4 [USAF]
The Gridspheres were experimental passive
communication satellites (part of the AVL-802
experiment), which were to overcome the
drag problems of balloon satellites. They
were a follow on to the OV1 8 / PasComSat
experiment. The Gridspheres consisted of
wire mesh, whish was embedded in a a
photolyzable balloon. After inflation in space,
the UV radiation causes the ballon to
vaporize, leaving a wire frame in spherical
shape. This gridsphere reflects radio waves
as good as a aluminized balloon, but has
much less atmospherical drag and a longer
Eladio Miranda Batlle
[email protected]
30
Cronología del lanzamiento de misiones espaciales
orbital life. The pairs Gridspheres differed in
having different spaced wire mesh.
The AVL-802 experiment contained also an
aluminized Mylar Balloon of the same size to
compare the reflection properties and the
drag of the Gridspheres with a real balloon.
Also included was Rigidsphere, a passive
spherical satellite for atmospheric drag
measurements.
The first attempt to orbit the AVL-802
experiment failed, but it was successfully
repeated 3 years later
Gridsphere 1, 2 (left and right) [USAF]
The AVL-802 experiment contained also an
aluminized Mylar Balloon of the same size to
compare the reflection properties and the
drag of the Gridspheres with a real balloon. Also
included was Rigidsphere, a passive spherical
satellite for atmospheric drag measurements.
The first attempt to orbit the AVL-802
experiment failed, but it was successfully
repeated 3 years later
The
AVL-802
experiment
contained
Rigidsphere, a passive spherical satellite for
atmospheric drag measurements.
Also included was an aluminized Mylar Balloon
of the same size to compare the reflection
properties and the drag of the Gridspheres with
a real balloon.
The first attempt to orbit the AVL-802
experiment failed, but it was successfully
repeated 3 years later.
LCS (Lincoln Calibration Sphere) were hollow
metal spheres with a precicely defined radar
cross-section to calibrate ground based
radars.
LIDOS (Large Inclination Doppler Only
Satellite), also known as STP P68-1(j), was a
geodesy mission carrying a Doppler radio
beacon without a navigation signal.
In the late 1960s, the Navy asked APL to
build a geodetic-research satellite called Lowinclination Doppler-only Satellite (LIDOS)
"Doppler only" meaning that it was intended
to be tracked by the Doppler method, similar
to Transit. It was decided later to place the
LIDOS satellite in a high-altitude, near-polar
orbit; its name was changed to "Large"
inclination Doppler-only Satellite" to keep the
same acronym. LIDOS was launched on 16
August 1968, with nine other satellites, on an
Atlas-SLV3 Burner-2 vehicle, but the heat shield
failed to open and all the satellites were lost.
The spacecraft was built on a Transit-O
navigational satellite bus. LIDOS was gravity
gradient stabilized by deployable boom with
tip mass an was powered by 4 small
deployable
solar
arrays.
SECOR (Sequential Collation of Range),
EGRS (Electronic & Geodetic Ranging
Satellite) were small geodetic spacecraft
used to precisely determine points on the
earth. Geodetic SECOR (Sequential Collation
of Range) was an all-weather geodetic survey
system which was in operational use for
several years, establishing a global survey
network. It used the successive positions of
artificial satellites in space to determine
locations on the earth's surface with
exactness over long distances. The system
consisted of a satellite and 4 ground stations.
3 at geographical points where the coordinates had been surveyed accurately and
the fourth at an unknown location. Radio
waves were flashed from the ground stations
to the satellite and returned. The position of
the satellite at any time was fixed by the
measured ranges from the 3 known stations.
Using these precisely established satellite
positions as a base, ranges from the satellite
to the unknown station were used to compute
the position of the unknown station. Geodetic
SECOR allows continents and islands to be
brought within the same geodetic global grid.
Each ground station was entirely portable and
contained 3 units: a radio frequency shelter, a
data handling shelter and a storage shelter.
Lighter weight, solid-state equipment was
developed to replace the initial units. The
satellite had a mass of 18 kg and contained a
transponder, a telemetry system to monitor
temperature and operating voltages, and a
Eladio Miranda Batlle
[email protected]
31
Cronología del lanzamiento de misiones espaciales
power unit comprised of solar panels and
batteries.
The objectives of the Radcat (Radar
Calibration Target) spacecraft were to provide
a passive optical and radar calibration target
of about 5 sq m cross section.
Kosmos 237 (Zenit-4 #43)
Cosmos 237 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket
Launch Date: 1968-08-27
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 238 (Soyuz-Test #7)
Cosmos 238 was one of a series of Soviet
earth satellites whose purpose was to study
outer space, the upper layers of the
atmosphere, and the earth. Scientific data
and measurements were relayed to earth by
multichannel telemetry systems equipped
with space-borne memory units. Cosmos 238
was a precursor to the Soyuz series.
Radcat (C) on Radsat
[USAF]
Kosmos 236 (Strela-2 #5)
Cosmos 236 was a Soviet military
communications satellite launched from the
Baikonur cosmodrome aboard a Kosmos 11
rocket.
It was a prototype of the large satellite
element of the Strela system, which consisted
of a large constellation of medium orbit storedump satellites that provided survivable
communictions for Soviet military and
intelligence forces. The system was
developed experimentally in the 1960's, with
flight tests of 3 of the Strela-2 model from
1965 to 1968.
Launch Date: 1968-08-27
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 875.0 kg
Launch Date: 1968-08-28
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6520.0 kg
Septiembre 1968
Kosmos 239 (Zenit-4 #44)
Cosmos 239 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-09-05
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Eladio Miranda Batlle
[email protected]
32
Cronología del lanzamiento de misiones espaciales
KH-8 16
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1968-09-10
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kgLaunch Date: 1968-09-10
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Zond 5 (L1 9)
La Zond 5 fue la quinta misión del programa
espacial Zond y es considerada la precursora
de
los
vuelos
lunares
tripulados,
principalmente porque fue la primera sonda
en dar una vuelta en torno a la Luna y
regresar a la Tierra.
La sonda de la misión fue lanzada desde una
plataforma Sputnik Tyazheliy estacionada en
órbita terrestre para hacer investigaciones
científicas durante un vuelo lunar y regresar.
El lanzamiento tuvo lugar el 14 de septiembre
de 1968 desde el Cosmódromo de Baikonur.
El 18 de septiembre, la nave espacial dio una
vuelta alrededor de la Luna. La mayor
aproximación a la superficie selenita fue de
1.950 kilómetros.
A lo largo del vuelo fueron obtenidas
fotografías de alta calidad de la Tierra a una
distancia de 90.000 quilómetros. Fueron
incluídas en la nave varias tortugas, moscas
del vino, lombrices, plantas, semillas y
bacterias. El 21 de septiembre de 1968, la
cápsula de reentrada reentró en la atmósfera
terrestre, abriendo unos paracaídas a 7
kilómetros de altura. La cápsula cayó en el
Océano Índico y fue recuperada en el mismo
día.
Launch Date: 1968-09-14
Launch Vehicle: Proton Booster Plus Upper
Stage and Escape Stages
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5375.0 kg
Kosmos 240 (Zenit-2 #58)
Cosmos 240 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1968-09-14
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4730.0 kg
Kosmos 241 (Zenit-4 #45)
Cosmos 241 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-09-16
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Intelsat-3 1
Intelsat 3 F-1 was a COMSAT Corporation
commercial communications satellite. There
was a vehicle failure at launch and the
satellite did not achieve orbit.
Eladio Miranda Batlle
[email protected]
33
Cronología del lanzamiento de misiones espaciales
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-09-20
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Kosmos 243
Gektor #3)
Intelsat-3 [Intelsat]
Launch Date: 1968-09-19
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 641.0 kgLaunch Date: 1968-09-19
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 641.0 kg
KH-4A 48 1968-078B / SSF-B
13
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. Film in the
forward camera separated and camera failed
on mission 1048-2, also the stellar/index
camera unit failed.
Launch Date: 1968-09-18
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 60.0 kg
(Zenit-2M
#3,
Cosmos 243 was a third generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The spacecraft
deployed a passive microwave radio
telescope capsule.
Launch Date: 1968-09-23
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 5900.0 kg
LES 6 (P67-2(a))
OV2 5 (P67-2(b))
OV5 2 (ERS 21, P67-2(c))
OV5 4 (ERS 28, P67-2(d))
LES 6 was part of a series of Lincoln
Experimental Satellies launched by the US
Air Force from Cape Canaveral aboard a
Titan rocket. It was designed by MIT's Lincoln
Laboratory.
Kosmos 242 (DS-P1-I #4)
Cosmos 242 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
Eladio Miranda Batlle
[email protected]
34
Cronología del lanzamiento de misiones espaciales
OV5 6: Solid state detectors, Faraday cup,
magnetic
spectrometer,
fluxgate
magnetometer
OV5 7: Solar X-ray detectors
OV5 8: Vacuum friction experiments
OV5 9: VLF receiver, solar X-ray detector, 4
particle detectors
OV5 7 lost its launch slot on OV1 17 for a
relaunch of Orbiscal and was never launched
LES 6
OV2-5 was an environmental research
satellite launched by the US Air Force from
Cape Canaveral aboard a Titan 3C rocket. It
was designed for solar, magnetic, and cosmic
ray research in space.
OV5 4 [USAF]
Launch Date: 1968-09-26
Launch Vehicle: Titan III-C
Launch Site: Cape Canaveral, United States
Mass: 163.0 kg
1968-081E
Launch Date: 1968-09-26
Launch Vehicle: Titan III-C
Launch Site: Cape Canaveral, United State
OV2 5 [USAF]
OV5 (Orbiting Vehicle 5) was a series of
standardized, simple experimental satellites
based on earlier ERS satellites. Each carried
different experiments
OV5 1: Beryllium-window proportinal counter,
solid state detectors, photomultipliers, 6
directional Geiger-counters
OV5 2: Omnidirectional spectrometers,
Geiger counters, directional proton and
electron detectors
OV5 3: Friction tests (wipers and material
samples)
OV5 4: Boiling fluids experiment
OV5 5: Boom mounted magnetometer, 7
particle detectors, LVF receiver
Octubre 1968
Kosmos 244 (OGCh #20)
Cosmos 244 was a Soviet Fractional Orbital
Bombardment System (FOBS) system test
satellite launched from the Baikonur
Cosmodrome aboard a R-36-0 rocket. It
contained a nuclear warhead launched into
orbit, where it could remain until deorbited
onto target with little warning.
Launch Date: 1968-10-02
Launch Vehicle: Modified SS-9 (SCARP) or
Eladio Miranda Batlle
[email protected]
35
Cronología del lanzamiento de misiones espaciales
SS-13 (SCRAG) with Orbital & Reentry
Stages
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5000.0 kg
ESRO 1A (Aurorae)
ESRO-1/Aurorae was a 80-kg, cylindricallly
shaped,
solar-cell-powered
spacecraft
instrumented
with
seven
scientific
experimetnt
chosen
to
measure
a
comprehensive range of auroral effects. The
measurements include auroral luminosity,
ionospheric composition and temperature,
and the flux, type and energy spectra of
trapped and precipitated energetic particles
(electrons of energies 1 to 30,000 KeV). The
spacecraft was placed in a low polar orbit
with its axis of symmetry magnetically aligned
along the earth's field. It had operated
satisfactorily for 18 months, except for the
tape recorder which failed after 7 months.
Aurorae was expected to reenter the earth's
atmosphere in June 1970.
Kosmos 245 (DS-P1-Yu #16)
Cosmos 245 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests
Launch Date: 1968-10-03
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 325.0 kg
Ferret 12
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. The Ferrets
catalogued Soviet air defence radars,
eavesdropped on voice communications, and
taped missile and satellite telemetry.
Launch Date: 1968-10-05
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
Molniya-1 10
ESRO 1A (Aurorae) [ESA]
Launch Date: 1968-10-03
Launch Vehicle: Scout
Launch Site: Vandenberg AFB, United States
Mass: 85.8 kg
Molniya 1/10 was a first-generation Russian
communications satellite (COMSAT) orbited
to test and perfect a system of radio
communications and television broadcasting
using earth satellites as active transponders
and to experiment with the system in practical
use. The basic function of the satellite was to
relay television programs and long-distance
two-way
multichannel
telephone,
phototelephone, and telegraph links from
Moscow to the various standard ground
receiving stations in the 'Orbita' system. The
satellite was in the form of a hermetically
sealed cylinder with conical ends -- one end
contained the orbital correcting engine and a
system of microjets, and the other end
Eladio Miranda Batlle
[email protected]
36
Cronología del lanzamiento de misiones espaciales
contained externally mounted solar and earth
sensors. Inside the cylinder were (1) a highsensitivity receiver and three 800-MHz 40-w
transmitters (one operational and two in
reserve), (2) telemetering devices that
monitored equipment operation, (3) chemical
batteries that were constantly recharged by
solar cells, and (4) an electronic computer
that controlled all equipment on board.
Mounted around the central cylinder were six
large solar battery panels and two directional,
high-gain parabolic aerials, 180 deg apart.
One of the aerials was directed continually
toward the earth by the highly sensitive earth
sensors. The second aerial was held in
reserve. Signals were transmitted in a fairly
narrow beam ensuring a strong reception at
the earth's surface. The satellite received
telemetry at 1000 MHz. Television service
was provided in a frequency range of 3.4 to
4.1 GHz at 40 w. Molniya 1/10, whose
cylindrical body was 3.4 m long and 1.6 m in
diameter,
was
much
heavier
than
corresponding U.S. COMSATs, and it had
about 10 times the power output of the Early
Bird COMSAT. In addition, it did not employ a
geosynchronous equatorial orbit as have
most U.S. COMSATs because such an orbit
would not provide coverage for areas north of
70 deg n latitude. Instead, the satellite was
boosted from a low-altitude parking orbit into
a highly elliptical orbit with two high apogees
daily over the northern hemisphere -- one
over Russia and one over North America -and relatively low perigees over the southern
hemisphere. During its apogee, Molniya 1/10
remained relatively stationary with respect to
the earth below for nearly 8 of every 12 hr. By
placing three or more Molniya 1 satellites in
this type of orbit, spacing them suitably, and
shifting their orbital planes relative to each
other by 120 deg, a 24-hr/day communication
system could be obtained. In addition,
Molniya 1/10 carried an externally mounted
television camera equipped with various
filters and interchangeable wide- and narrowangle lenses to send back detailed pictures of
large cloud systems. From its high apogees
over the northern hemisphere, the satellite
transmitted pictures of the earth's entire disc
that were similar to the ATS pictures. These
pictures from Molniya 1/10 were used in
conjunction with cloudcover pictures taken by
the lower orbiting satellites of the 'Meteor'
weather satellite system to obtain a
comprehensive and detailed view of global
weather systems. The satellite probably
ceased transmitting in February
Launch Date: 1968-10-05
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation Upper Stage + Escape
Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 998.0 kg
Kosmos 246 (Zenit-4 #46)
Cosmos 246 was a second generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-10-07
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Apollo 7 (CSM 101)
Tripulantes: Walter M. Schirra (CDR), R.
Walter Cunningham (LMP) y Donn F. Eisele
(CMP).
Lanzamiento: 11 de octubre de 1968.
Aterrizaje: 22 de octubre de 1968.
Lugar de alunizaje: Alunizaje: Estancia en la superficie: Número de paseos lunares: - Duración total: Eladio Miranda Batlle
[email protected]
37
Cronología del lanzamiento de misiones espaciales
Distancia recorrida: Material recogido: Anotaciones:
Primera misión tripulada del programa Apollo
que salió al espacio. Orbitó únicamente
alrededor de la Tierra, para probar el módulo
de comando y servicio.
El Apollo 7 (AS-205), el primer vuelo tripulado
del programa Apollo, despegó del complejo
de lanzamiento 34 de Cabo Kennedy, el 11
de octubre, llevando a bordo a Walter M.
Schirra, Jr., Donn F. Eisele y R. Walter
Cunningham. La cuenta atrás discurrió sin
incidentes reseñables, con sólo un pequeño
retraso debido a la necesidad de tiempo
adicional para enfriar el sistema de hidrógeno
en la etapa S-IVB (tercera) del vehículo de
lanzamiento Saturn. El despegue se produjo
a las 11:03 a.m. EDT (Eastern Daylight
Time). Poco después de la inserción de la
nave en órbita, se separó del CSM la etapa
S-IVB, y el comandante Schirra y su
tripulación llevaron a cabo un acoplamiento
simulado con esta etapa, maniobrando
incluso a menos de 1'2 metros del cohete. A
pesar de que la separación de la nave fue
normal, los astronautas informaron de que
uno de los paneles no se había desplegado
completamente (ver última fotografía de esta
página). Dos impulsos realizados con el
sistema de control a reacción separaron la
nave y la etapa del cohete, y prepararon al
módulo de comando y servicio para realizar
la maniobra de acoplamiento orbital, que la
tripulación realizó en el segundo día del
vuelo, usando el motor principal del CSM.
Tanto la tripulación como la nave trabajaron
bien durante el vuelo. Durante las ocho
igniciones del sistema de propulsión del
módulo de servicio en la misión, el motor
funcionó normalmente. El 14 de octubre,
tercer día de la misión, se produjo la primera
retransmisión de televisión en directo desde
una nave tripulada norteamericana. Se
usaron los motores SPS para sacar a la nave
de órbita, a las 259 horas y 39 minutos del
vuelo. La separación del módulo de comando
(CM) del módulo de servicio (SM) y las
operaciones del sistema de aterrizaje fueron
normales, y la cápsula amerizó a unos 13
kilómetros del barco de rescate (situado en
27'32 N 64'04 W), el U.S.S. Essex, a las 7:11
a.m. EDT del 22 de octubre. Aunque el
vehículo se posó boca abajo (posición "stable
2"), las bolsas de posición vertical
funcionaron completamente y pusieron el
módulo derecho en el agua. Schirra, Eisele y
Cunningham fueron rápidamente recogidos
por un helicóptero de rescate y llevados a
bordo del barco de rescate menos de una
hora después del amerizaje.
Todos los objetivos principales de la misión
Apollo 7 fueron logrados, así como todos los
objetivos secundarios planeados (y tres
objetivos de prueba no planeados en
principio). Las consecuciones del vuelo
Apollo 7, además de la retransmisión en
directo desde el espacio, incluyeron aspectos
como la bebida de agua producida como
residuo por las células de combustible. Entre
las proezas de pilotaje y navegación
figuraron un atraque óptico, realineamiento
de la plataforma realizado en la parte
iluminada de la órbita y la determinación de
la órbita mediante sextante (siguiendo a otro
satélite). Todos los sistemas de la nave
funcionaron
satisfactoriamente.
Se
detectaron pequeñas anomalías de los
sistemas de respaldo y también cambios en
los procedimientos a seguir. Con la
finalización exitosa de la misión Apollo 7, que
puso a prueba el diseño del CSM tipo Block II
(CSM 101), la NASA y Estados Unidos
habían dado el primer paso hacia la Luna.
Aunque los sistemas funcionaron, la
tripulación se volvió gruñona y respondió al
control de Tierra debido a los resfriados que
desarrollaron en el espacio. Debido a ello, la
Eladio Miranda Batlle
[email protected]
38
Cronología del lanzamiento de misiones espaciales
dirección de la NASA decidió que ninguno de
los tres volviese a volar al espacio de nuevo.
Fragmento traducido del relato de la misión
Apollo 7 proveniente del libro Chariots for
Apollo: A History of Manned Lunar
Spacecraft, de Courtney G Brooks, James M.
Grimwood, Loyd S. Swenson, publicado
como NASA SP-4205 en NASA History
Series, 1979.
El primer vuelo tripulado del programa Apollo,
el Apollo 7, ascendió hacia el cielo desde el
complejo de lanzamiento 34 unos minutos
después de las 11:00 de la mañana del 11 de
octubre. Una vez que el cohete Saturn IB 205
con el CSM-101 en la punta (el primer CSM
de tipo Block II) despejó la torre de
lanzamiento en Florida, el equipo de control
de misión (liderado por los directores de
vuelo Glynn Lunney, Eugene Kranz y Gerald
D. Griffin, establecidos en tres turnos), en
Houston, tomó el mando de la misión.
Schirra, Eisele y Cunningham, en el interior
del módulo de comando, habían oído el
sonido del combustible fluyendo hacia las
cámaras de combustión y notaron cómo el
cohete se tambaleó y vibró ligeramente
durante la ignición. Diez minutos y medio
después, con pocos tumbos y cargas de
aceleración no excesivamente fuertes, el
Apollo 7 alcanzó la primera etapa de su viaje,
una órbita de 227 por 285 kilómetros
alrededor de la Tierra.
Unas pocas horas después, mientras la nave
se separaba de la etapa S-IVB y después
giraba para realizar un acercamiento de
acople simulado, Cunningham describió el SIVB, que sería usado de nuevo al día
siguiente como objetivo para practicar un
acoplamiento. Los paneles que cubrían el
hueco donde en posteriores vuelos se
alojaría el módulo lunar, dijo Cunningham, no
se habían desplegado del todo... lo que
naturalmente recordó a Stafford, que era el
encargado de comunicarse con el vuelo
Apollo desde la consola de comunicaciones
(CapCom) en ese momento, el objetivo de
acoplamiento (apodado por él como "caimán
enfadado") que se había encontrado en su
misión Gemini IX. Este percance podría
haber sido incómodo en una misión que
llevase el módulo lunar, pero los paneles se
abrirían
mediante
pequeñas
cargas
explosivas en los futuros vuelos.
Después de este pequeño problema, el
comportamiento del motor del módulo de
servicio fue estupendo. El motor era algo que
no podía ser sustituido por un segundo
sistema o motor de emergencia; en
momentos cruciales durante el viaje a la
Luna, el motor simplemente debía funcionar,
o si no los astronautas no podrían regresar a
la Tierra. En la misión Apollo 7, se produjeron
ocho encendidos casi perfectos en otros
tantos intentos. En el primero de ellos, la
tripulación se llevó una verdadera sorpresa.
A diferencia del suave despegue del cohete
Saturn, la ignición del motor del módulo de
servicio sacudió a los astronautas, haciendo
que Schirra gritase "Yabadabadoo", como
Pedro Picapiedra. Posteriormente, Eisele
dijo, "No sabíamos exactamente qué nos
íbamos a encontrar, pero nos dieron más de
lo
que
esperábamos."
Añadió más
gráficamente que fue una verdadera patada
en la parte trasera que los empotró en sus
asientos. Pero el motor hizo lo que se
suponía que debía hacer cada vez que se
encendió.
Con unas pocas excepciones, el resto de
sistemas de la nave funcionó según lo
planeado. De vez en cuando, una de las tres
células de combustible que proporcionaba
electricidad a la nave se calentó demasiado,
pero las conexiones de compartimiento de
carga entre las células evitaron cualquier
escasez de energía. La tripulación se quejó
de los ruidos producidos por los ventiladores
de los sistemas ambientales, y apagó uno de
ellos. De todas formas, eso no ayudó mucho,
así que apagaron el otro. La cabina del
módulo permaneció cómoda durante la
misión, aunque las tuberías de refrigerante
goteaban y el agua se acumuló en pequeños
charcos en la cubierta, algo que los
astronautas esperaban después de la prueba
del equipo de Kerwin en la cámara de altitud.
La tripulación recogió el exceso de agua y lo
arrojó al espacio por la manguera de vertido
de orina.
Eladio Miranda Batlle
[email protected]
39
Cronología del lanzamiento de misiones espaciales
La visibilidad de las ventanas de la nave
varió de escasa a buena durante la misión.
Poco después de que la torre de escape se
separara del cohete, dos de las ventanas
tenían restos de hollín y otras dos tenían
acumulación de agua condensada. Dos días
después, de todas formas, Cunningham
informó de que la mayoría de las ventanas
estaban en bastante buen estado, a pesar de
que la humedad se estaba acumulando en
los cristales interiores de una de las
ventanas. En el séptimo día, Schirra
describió fundamentalmente las mismas
condiciones.
A pesar de estos obstáculos, el estado de
las ventanas era adecuado. Las utilizadas
para observación durante el acoplamiento y
el
vuelo
en
formación
(llamado
"stationkeeping")
con
el
S-IVB
permanecieron
casi
limpias.
Las
observaciones de navegación con un
telescopio y un sextante de cualquiera de las
37 estrellas Apollo preseleccionadas se
hacía difícil nada más expulsar los desechos
de agua de la nave. A veces tenían que
esperar varios minutos hasta que las
partículas congeladas se dispersaran. Eisele
dijo que, a no ser que pudiera ver al menos
40 o 50 estrellas a la vez, era difícil saber
qué parte del cielo estaba viendo. En
general, no obstante, las ventanas estaban
en buenas condiciones para realizar
observaciones de la Tierra o sacar
fotografías de ella.
La mayoría de los componentes soportaron
según lo planeado las operaciones y
actividades de los astronautas y el bienestar
de la nave y de la tripulación, a pesar de
pequeños problemas como la suciedad de
las ventanas y el agua acumulado. Por
ejemplo, el sistema de tratamiento de
residuos para recoger los desechos sólidos
del cuerpo era apropiado, aunque un poco
molesto. Las bolsas para defecación, que
contenían un germicida para evitar la
formación de gas y bacterias, eran selladas
fácilmente y colocadas en contenedores de
comida vacíos,
en el
módulo de
equipamiento. Pero las bolsas no eran las
oportunas, y normalmente había olores
desagradables en la nave. Cada vez que
eran usadas, el astronauta tardaba entre 45 y
60 minutos, lo que hacía que estos
retrasaran su utilización lo máximo posible,
esperando hasta cuando no había ningún
trabajo que realizar. La tripulación sólo
realizó un total de 12 defecaciones durante
un período de casi 11 días. Orinar era mucho
más sencillo, ya que los astronautas no
necesitaban quitarse la ropa. Había un
sistema de recogida en los trajes
presurizados y en los monos utilizados
durante el vuelo. Ambos sistemas podían ser
conectados a la manguera de vertido de
orina, que se encargaba de lanzarla al
exterior de la nave. Los astronautas
pensaron en la posibilidad de que la
manguera se helara en el vacío, pero no
ocurrió.
Con los vuelos Apollo, los astronautas por fin
tenían una nave lo suficientemente grande
como para moverse dentro de ella. Durante
las misiones Gemini, los astronautas habían
salido al exterior de su nave, en un ejercicio
llamado extravehicular activity, o EVA. En las
misiones Apollo, naturalmente, la abreviatura
fue IVA, intravehicular activity. La tripulación
se adaptó fácilmente a este nuevo mundo
flotante. Schirra dijo, "Todos los problemas
que nos tenían preocupados sobre que la
nave adquiriera movimiento debido a la
actividad interior de la tripulación, nada de
eso... Consigues ser un gimnasta." Y
Cunningham posteriormente añadió, "No hay
que realizar casi ningún trabajo, y uno se
puede mover a cualquier lugar con bastante
libertad, y ciertamente no se necesita ningún
pasamanos fuerte para hacerlo con cuidado."
Eladio Miranda Batlle
[email protected]
40
Cronología del lanzamiento de misiones espaciales
Aunque la tripulación tenía más de 60 tipos
de comida diferentes para elegir, que les
proporcionaban unas 2.500 calorías por día,
no estaban del todo contentos con ella. La
comida se desmenuzaba y flotaba por la
cabina. Casi llegaron a odiar las pastillas
energéticas, y trataban de hablar de tipos de
desayuno más satisfactorios. Después de su
vuelo en el Gemini, Schirra había dicho que
si volaba en el Apollo iba a llevar algo de café
con él. Y así hizo. Durante y después del
vuelo, la tripulación hizo hincapié en que a la
comida espacial todavía le quedaba un largo
camino hasta satisfacer sus hábitos
alimenticios.
Los astronautas se dieron cuenta de que
hacer ejercicio era importante. Al principio,
cuando dormían en sus asientos, sus
cuerpos se curvaban y se colocaban en
posición fetal, lo que les provocó dolores de
espalda. Así que casi corrían para realizar
ejercicio en un aparato elástico llamado ExerGenie, que relajaba sus doloridos músculos.
Los
tres
tripulantes
durmieron
lo
suficientemente bien, aunque Schirra se
quejó de las operaciones que transtornaban
la rutina normal terrestre. Los períodos de
descanso podían empezar tan pronto como a
las 4:00 de la tarde o tan tarde como a las
4:00 de la mañana. Slayton sugirió que los
tres astronautas durmieran al mismo tiempo,
pero Schirra dijo que la nave estaba volando
bien y que no quería realizar ningún cambio.
Así que Eisele se quedó vigilando mientras
los otros dos dormían, y después al revés.
Había un saco de dormir debajo de cada
asiento lateral (el asiento central podía ser
retirado), así que los astronautas podían
meterse en ellos, con los monos puestos. De
todas formas, los sacos no eran populares
entre la tripulación porque, según decían, las
sujeciones estaban colocadas en lugares
erróneos. Cunningham prefirió dormir en su
asiento, sujetándose con correas y un
cinturón. De todas formas, si dos astronautas
dormían al mismo tiempo en los asientos,
uno de ellos estaba a cargo de las
operaciones de vuelo. A partir del tercer día,
los astronautas habían ideado una rutina que
les permitía dormir lo suficiente a los tres.
Los astronautas usaron la controvertida
cámara de televisión para mostrar a sus
colegas de Houston y al público qué tal les
iba en su nave espacial, cómo manejaban la
nave y cómo comían y nadaban en la
ingravidez del espacio. Cuando los planes de
vuelo llenaron su horario, Schirra canceló la
primera de varias retransmisiones planeadas.
Slayton trató de hacerle cambiar de opinión,
pero el comandante de la nave le dijo con
aspereza que no habría espectáculo ese día.
No obstante, realizaron varios programas, y
los astronautas parecían disfrutarlos, usando
carteles del estilo "Seguid mandando esas
cartas y tarjetas, amigos" y "Hola desde la
encantadora habitación Apollo a lo alto de
todo", proporcionadas por Michael Kapp, que
también proporcionó cintas para su disfrute
musical.
Parte de la actitud gruñona de los
astronautas durante la misión se puede
atribuir a las incomodidades físicas. Unas 15
horas después del despegue, Schirra cogió
un resfriado fuerte, y Cunningham y Eisele
también se contagiaron un poco más tarde.
Un resfriado es bastante molesto en tierra; en
la ingravidez supone un problema diferente.
La mucosidad se acumula, obstruyendo los
conductos nasales, y no escurre hacia abajo.
El único alivio posible es sonarse fuerte, lo
que es doloroso para los tímpanos. Por tanto,
la tripulación del Apollo 7 orbitó soportando el
taponamiento de los oídos y la nariz.
Tomaron
aspirinas
y
pastillas
descongestionantes, y discutieron sus
síntomas con los médicos.
Eladio Miranda Batlle
[email protected]
41
Cronología del lanzamiento de misiones espaciales
Varios días antes del final de la misión, los
astronautas empezaron a preocuparse por
llevar puesto el casco del traje durante la
reentrada, lo que les impediría sonarse la
nariz. El aumento de presión podría reventar
sus tímpanos. Slayton, en el centro de control
de la misión, trató de persuadirlos para que
llevaran los cascos puestos de todas
maneras, pero Schirra se negaba en
redondo. Cada uno tomó una pastilla para
descongestionarse una hora antes de la
reentrada, y pasaron por la zona de
aceleración durante la reentrada sin
problemas para sus oídos.
Esa "magnífica máquina voladora", como
Cunningham la llamó, orbitó la Tierra durante
más de 260 horas. El 22 de octubre, la
tripulación hizo regresar la nave al sureste de
las Bermudas, en el Océano Atlántico, a
menos de dos kilómetros del lugar planeado
para el amerizaje. Durante la maniobra, la
nave se dio la vuelta, pero la tripulación
accionó rápidamente el inflado de las bolsas
de aire y el módulo giró por sí mismo. Los
cansados, pero felices, viajeros fueron
recogidos por un helicóptero y llevados a la
cubierta del U.S.S. Essex.
Kosmos 247 (Zenit-2 #59)
Cosmos 247 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film was
recovered after 8 days.
Launch Date: 1968-10-11
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 248 (I2M #2)
Cosmos 248 was a Soviet military antisatellite (ASAT) target launched from the
Baikonur cosmodrome aboard a Tsyklon
rocket. It was intercepted repeatedly by
Cosmos 249 on 20 October; and destroyed
by Cosmos 252 on 1 November.
Launch Date: 1968-10-19
Launch Vehicle: Modified SS-9 (SCARP) or
SS-13 (SCRAG) with Orbital and
Maneuverable
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
Kosmos 249 (I2P #1)
Cosmos 249, launched a day after Cosmos
248, left staging debris in the same kind of
low orbit as Cosmos 248 and then
maneuvered to a much higher eccentric orbit.
The perigee of Cosmos 249 was similar in
altitude to the circular orbit of Cosmos 248
and allowed the two satellites to pass within
fairly close proximity. After Cosmos 249 had
moved away from the passive Cosmos 248, it
was exploded into a cloud of debris.
Launch Date: 1968-10-20
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 3320.0 kg
DMSP-4B F2
The cylindrically shaped Block 4 satellites
incorporated two new one-inch diameter
vidicon cameras, video (2), a large capacity
tape recorder, and an all-digital command
subsystem with magnetic core memory,
giving fully progammable coverage of either
direct readout or readout of recorded data
without interference. Nominal satellite spin
rate was decreased to reduce smear,
permitting a higher resolution TV system for
improved picture quality. Dual cameras and a
high capacity recorder provided complete
daily coverage of the entire northern
hemisphere and tactical coverage anywhere
on the earth. An improved IR 'C' system was
incorporated on this spacecraft. The Defence
Meteorological Satellite Program's Block 4
space segment consisted of satellites in 450
nautical mile sun-synchronous polar orbits
each carrying a payload of meteorological
Eladio Miranda Batlle
[email protected]
42
Cronología del lanzamiento de misiones espaciales
sensors. Primary cloud imaging sensors
capable of globally viewing the earth in the
visible and infrared spectrums were carried
by every satellite. The ascending node of the
satellites was either in the early morning time
period or at mid-day. THe final data product
was a film product directly usable for imagery
analysis. Originally part of a classified system
of USAF weather satellites, the spacecraft
mission was not revealed until March 1973.
the manned Soyuz 3. Soyuz 2 soft landed in
a predetermined area of the U.S.S.R.
Launch Date: 1968-10-25
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6520.0 kg
Soyuz 2
Soyuz 3
DMSP-4B
Launch Date: 1968-10-22
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 150.0 kg
1968-092B
Launch Date: 1968-10-23
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Soyuz 2
Launch, orbit and landing data
Launch date:
26.10.1968
Launch time:
08:34 UT
Launch site:
Baikonur
Launch pad:
31
Altitude:
183,5 - 222,2 km
Inclination:
51,69°
Landing date: 30.10.1968
Landing time: 07:25 UT
Landing site:
70 km N of Karaganda
Although this spacecraft was designated
Soyuz 2, it was unmanned. It flew in the
typical low parking orbit of the Cosmos
precursor flights and subsequently, on
October 23 or 27, served as a target vehicle
for the radio search and attempted docking of
Eladio Miranda Batlle
[email protected]
43
Cronología del lanzamiento de misiones espaciales
failure was blamed on Beregovoy's piloting.
Beregovoy stayed several more days in
space and performed complex testing of the
spaceship systems. Some systems failed.
TV-broadcasting was also performed.
The landing was only 10 km far from the
target point.
Photos
Crew
N
o.
1
Surna
Given name
Job
me
Berego Georgi
Comma
voy
Timofeyevich nder
Crew seating arrangement
Flight
Launch from Baikonur; landing 70 km north of
Karaganda.
Main objectives of this flight were a complex
testing of all spacecraft systems, which was
necessary after the Soyuz 1 accident and
again a docking maneuver with an unmanned
spacecraft (Soyuz 2). The closest distance of
both spacecrafts in space was about 180 m,
when Beregovoy turned over from automatic
docking system to a manual docking.
Unfortunately, while he was able to close the
gap to only one metre, three following
attempts to dock failed. Eventually, almost all
of the maneuvering fuel was expended and
the objective had to be abandoned.
Telemetry analysis has shown Soyuz 3 used
30 kg of propellant during 20 minutes of
maneuvering in the automatic regime during
docking, followed by 40 kg consumed in two
minutes of manual maneuvering. Essentially
Beregovoy was trying to dock the spacecraft
upside down. This was either due to incorrect
configuration of the running lights or
cosmonaut error. Soyuz 2 had two
continuously illuminated lights on its upper
side and two blinking lights on the lower side.
Evidently Beregovoy didn't identify these
correctly in weightlessness. Later on, the
Kosmos 250 (Tselina-O #3)
Cosmos 250 was a Soviet ELINT (Electronic
and Signals Intelligence) satellite launched
from the Plesetsk cosmodrome.
From 1965 to 1967 two dedicated ELINT
systems were tested: the Tselina and the
Navy's US. Both reached service, since the
Eladio Miranda Batlle
[email protected]
44
Cronología del lanzamiento de misiones espaciales
Ministry of Defence could not force a single
system on the military services.
Tselina was developed by Yuzhnoye and
consisted of two satellites: Tselina-O for
general observations and Tselina-D for
detailed observations. ELINT systems for
Tselina were first tested under the Cosmos
designation in 1962 to 1965. The first TselinaO was launched in 1970. The Tselina-D took
a long time to enter service due to delays in
payload development and weight growth. The
whole Tselina system was not operational
until 1976. Constant improvement resulted in
Tselina-O being abandoned in 1984 and all
systems being put on Tselina-D.
(Zenit-4M
Launch Date: 1968-11-01
Launch Vehicle: Modified SS-9 (SCARP) or
SS-13 (SCRAG) with Orbital and
Maneuverable
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 3320.0 kg
KH-4B 5
Launch Date: 1968-10-31
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 875.0 kg
Kosmos 251
Rotor #1)
of Cosmos 248 and allowed the two satellites
to pass within close proximity to one another.
After Cosmos 252 had moved away from the
the passive Cosmos 248, it was exploded into
a cloud of debris.
#1,
Cosmos 251 was a third generation, high
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The spacecraft
deployed a radio astronomy and gamma ray
experiment capsule. It was maneuverable
Launch Date: 1968-10-31
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 6300.0 kg
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Thor Agena D rocket. It was a KH-4B (Key
Hole-4B) type spacecraft. The image quality
is variable and displays areas of soft focus
and image smear
Launch Date: 1968-11-03
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
KH-8 17
This US Air force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Noviembre 1968
Launch Date: 1968-11-06
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
Kosmos 252 (I2P #2)
Pioneer 9 / TTS 2 TETR 2
Cosmos 252 went through virtually the same
maneuvers and exercises with Cosmos 248
as did Cosmos 249. Cosmos 252 left staging
debris in the same kind of low orbit as
Cosmos 248 and then maneuvered to a much
higher eccentric orbit. The perigee of Cosmos
252 was similar in altitude to the circular orbit
Otros nombres: 1968-100A, Pioneer-D,
03533
Fecha de lanzamiento: 8 de noviembre de
1.968 a las 09:46:00 GMT
Masa seca en orbita: 147 kg
La nave
Eladio Miranda Batlle
[email protected]
45
Cronología del lanzamiento de misiones espaciales
Estaba estabilizada por giro a un ritmo de 60
revoluciones por minuto con el eje de giro
perpendicular al plano de la eclíptica y
apuntando al polo sur de la eclíptica. Sobre el
cuerpo cilíndrico de la sonda estaban
colocadas
las
células
solares
que
proporcionaban hasta 79 vatios de
electricidad.
Las comunicaciones las establecían por una
antena direccional de alta ganancia. Usando
comandos enviados desde la Tierra, la nave
podía funcionar con cinco ritmos de
transmisión de datos diferentes, cuatro
formatos de datos y cuatro modos de
operación. Los ritmos de transmisión de
datos eran de 512, 256, 64, 16 y 8 bits por
segundo y emitían a una potencia de 8
vatios.
Estas sondas portaban un total de cuatro
instrumentos cada una:
- Analizador de plasma del viento solar
- Detector de rayos cósmicos
- Analizadores electrostáticos
- Magnetómetros
Sus vidas máximas estaban estimadas en 6
meses, realizando una orbita que las
llevaban hasta 0.8 Unidades Astronómicas
del Sol y las alejaban hasta las 1.2 UA. El
diámetro de estas naves era de 94
centímetros y el peso total de unos 63
kilogramos. Para sus lanzamientos se
utilizaron los cohetes Delta E y Delta L.
TTS, TETR, TATS (Test And Training
Satellite) were four very small magnetically
stabilized satellite instrumented with a s-band
transponder to provide training to Apollo
ground stations. Its external configuration
was an octahedron, 12 in. on each side. It
was powered by solar cells mounted on the
octahedron surfaces and nickel cadmium
batteries. The instrumentation included the
9.5 watt s-band transponder, a PAM/FM/PM
telemeter encoder and 100 milliwatt VHF
transmitter. The spacecraft was built by
Thompson Ramo Wooldridge, Inc. (TRW).
TTS [NASA]
Zond 6 (L1 10)
Zond 6 was launched on a lunar flyby mission
from a parent satellite (68-101B) in earth
parking orbit. The spacecraft, which carried
scientific probes including cosmic-ray and
micrometeoroid
detectors,
photography
equipment, and a biological payload, was a
precursor to manned spaceflight. Zond 6 flew
around the moon on November 14, 1968, at a
minimum distance of 2420 km. Photographs
of the lunar near and farside were obtained
with panchromatic film. Each photo was
12.70 by 17.78 cm. Some of the views
allowed for stereo pictures. The photos were
taken from distances of approximately 11,000
km and 3300 km. Controlled reentry of the
spacecraft occurred on November 17, 1968,
and Zond 6 landed in a predetermined region
of the Soviet Union.
Launch Date: 1968-11-10
Launch Vehicle: Proton Booster Plus Upper
Stage and Escape Stages
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 5375.0 kg
Kosmos 253 (Zenit-2 #60)
Eladio Miranda Batlle
[email protected]
46
Cronología del lanzamiento de misiones espaciales
Cosmos 253 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days. The mission was
unsuccessful. On the 13th orbit the SA-20-1
camera's
shutter
responded
to
an
uncommanded order to open. Radiation
levels inside reached three times normal
levels. Fifty-three percent of the data was
lost.
Launch Date: 1968-11-13
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Proton 4
Kosmos 254 (Zenit-4 #47)
Cosmos 254 was a second generation, high
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket.
Launch Date: 1968-11-21
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 255 (Zenit-2 #61)
Proton 4
Proton 4 was the last in a series of spacecraft
designed to study the energy spectrum and
the chemical composition of cosmic rays. The
spacecraft was cylindrical in form and had
extended solar panels and antennas. Proton
4 also studied the possible collisions of
cosmic ray particles with the nuclei of
hydrogen, carbon, and iron. It was hoped that
the postulated fundamental particle, the
quark, might be discovered during this flight.
The spacecraft was in orbit for 250 days.
Launch Date: 1968-11-16
Launch Vehicle: Proton Booster Plus Upper
Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 17000.0 kg
Cosmos 255 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Plesetsk cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1968-11-29
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 4730.0 kg
Kosmos 256 (Sfera #3)
Cosmos 256 was a Soviet geodetic satellite
launched from the Plesetsk cosmodrome
aboard a Cosmos 11 rocket.
The Sfera geodetic system covered a broad
development for solving problems in
geodetics, continental drift, and precise
location of cartographic points. The
spacecraft was equipped with measurement
and
signalling
apparatus,
providing
assistance in measuring astronomicalgeodetic points of military topographical
research for the Red Army General Staff. The
satellite allowed improved accuracy for long
range weapons. Reshetnev was the Chief
Designer. Flight tests were from 1968 to
1972. Series flights were from 1973 to 1980.
The Kosmos 3M launcher was used. Colonel
Ye S Shchapov was in charge of Sfera
development. Sfera used the basic KAUR-1
Eladio Miranda Batlle
[email protected]
47
Cronología del lanzamiento de misiones espaciales
bus, consisting of a 2.035 m diameter
cylindrical spacecraft body, with solar cells
and radiators of the thermostatic temperature
regulating system mounted on the exterior.
Orientation was by a single-axis magnetogravitational (gravity gradient boom) passive
system.
The
hermetically
sealed
compartment had the equipment mounted in
cruciform bays, with the chemical batteries
protecting the radio and guidance equipment
mounted at the centre. .
Launch Date: 1968-11-30
Launch Vehicle: Modified SS-5 (SKean
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 600.0 kg
Diciembre 1968
Kosmos 257 (DS-P1-Yu #17)
Cosmos 257 was a Soviet DS type military
satellite launched from the Plesetsk
cosmodrome.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
Launch Date: 1968-12-03
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 400.0 kg
STV 1
Lanzamiento fallido
Europe
Type
/ Vehicle evaluation
Application:
Operator:
ELDO
Contractors: Fiat Aviazione
Equipment:
Configuration:
Propulsion:
Lifetime:
Mass:
Orbit:
KH-8 18
This US Air Force photo surveillance satellite
was launched from Vandenberg AFB aboard
a Titan 3B rocket. It was a KH-8 (Key Hole-8)
type spacecraft.
Launch Date: 1968-12-04
Launch Vehicle: Titan
Launch Site: Vandenberg AFB, United States
Mass: 3000.0 kg
HEOS 1
STV 1
HEOS 1 was an earth-orbiting, spin-stabilized
satellite that was launched by ESA. It was
basically cylindrical with an axial boom
supporting
the
antennas
and
the
magnetometers. The spin-axis attitude and
spin rate were changed by onboard gas jets.
The spacecraft objectives were to study
interplanetary magnetic fields, cosmic rays,
the solar wind, and the magnetosheath. The
spacecraft operation was fully satisfactory for
16 months, after which intermittent loss of
some solar gate pulses (attitude reference)
occurred. By 1974, spacecraft telemetry
coverage was 50% and only the magnetic
Eladio Miranda Batlle
[email protected]
48
Cronología del lanzamiento de misiones espaciales
field experiment was operational. The
spacecraft reentered the earth's atmosphere
on October 28, 1975.
Launch Date: 1968-12-05
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 105.0 kg
and thermal environment, and by the
constraints of the orbit for ground-station
contacts. Six two-gimbal star trackers were
programmed by the onboard memory to
acquire and track appropriate guide stars.
Error signals were generated that drove the
reaction wheels to obtain stellar stabilization.
Coarse momentum wheels were used for
slewing the spaecraft. Memories permitted
storage of 200,000 bits of experimental data.
All information was relayed to the central
control station in Greenbelt, MD. For more
details, see J. Sargent, IEEE Trans. Geosci.
Elec., GE-8, p. 215, 1970.
HEOS 1 [ESA]
OAO 2
This spacecraft was one of a series of
automated astronomical observatories that
was ground controllable in orientation and
was placed in a low-earth orbit. This
spacecraft carried two experiment packages,
which were located centrally within the
spacecraft, each viewing space from opposite
ends. One experiment, the Wisconsin
experiment package (WEP), consisted of four
stellar photometers (1000 to 4250 A), two
scanning spectrometers (1000 to 4000 A),
and one nebular photometer (2000 to 3300
A). The other package, Celescope, consisted
of four independent telescopic Schwarzchild
cameras (1200 to 2900 A). Built in an
octahedron shape, 10 ft by 7 ft, the satellite
weighed 4400 pounds. The design was
dictated by the stringent requirement of the
experiments for pointing accuracy, pointing
stability, command capability, data handling,
OAO 2 [NASA]
Kosmos 258 (Zenit-2 #62)
Cosmos 258 was a first generation, low
resolution Soviet photo surveillance satellite
launched from the Baikonur cosmodrome
aboard a Soyuz rocket. The film capsule was
recovered after 8 days.
Launch Date: 1968-12-10
Launch Vehicle: Modified SS-6 (Sapwood)
with 2nd Generation (Longer) Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 4000.0 kg
KH-4A 49 / SSF-C 1
Eladio Miranda Batlle
[email protected]
49
Cronología del lanzamiento de misiones espaciales
This US Air Force electronics intelligence
satellite was launched from Vandenberg AFB
aboard a Thor Agena D rocket. The film was
degraded.
Launch Date: 1968-12-12
Launch Vehicle: Thor
Launch Site: Vandenberg AFB, United States
Mass: 2000.0 kg
SSF
This ABM monitoring electronic intelligence
satellite was launched by the US Air Force
from Vandenberg AFB aboard a Thor AgenaD rocket.
Kosmos 259 (DS-U2-I #3)
Cosmos 259 was a Soviet DS type military
satellite launched from Kapustin Yar.
DS (Dnepropetrovsk Sputnik) were small
satellites built by Yangel's OKB-586 / KB
Yuzhnoye in the Ukraine for launch by the
same KB's Kosmos launch vehicles. They
were used for a wide range of military and
scientific research and component proving
tests.
This mission studied the influence of the
ionosphere on passing VLF radio waves.
Launch Date: 1968-12-14
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
ESSA 8
ESSA 8 was a sun-synchronous operational
meteorological satellite designed to provide
real-time earth cloudcover TV pictures to
properly equipped ground receiving stations
for use in weather analysis and forecasting.
The satellite had essentially the same
configuration as that of a TIROS spacecraft,
i.e., an 18-sided right prism, 107 cm across
opposite corners and 56 cm high, with a
reinforced baseplate carrying most of the
subsystems and a cover assembly (hat).
Electrical
power
was
provided
by
approximately 10,000 1- by 2-cm solar cells
that were mounted on the cover assembly
and by 21 mickel-cadmium batteries. Two
redundant wide-angle Automatic Picture
Transmission (APT) cameras were mounted
on opposite sides of the spacecraft with their
optical axes perpendicular to the spin axis.
Projecting downward from the baseplate were
a pair of crossed-dipole command reception
antennas. A monopole telemetry (136.500
MHz) and tracking (136.770 MHz) antenna
extended outward from the top of the cover
assembly. The satellite spin rate was
controlled by means of a Magnetic Attitude
Spin Coil (MASC), with the spin axis
maintained normal to the orbital plane
(cartwheel orbit mode) to within plus or minus
1 deg. The MASC was a current-carrying coil
mounted in the cover assembly. The
magnetic field induced by the current
interacted with the earth's magnetic field to
provide the torque necessary to amintain a
desired spin rate of 10.9 rpm.
Launch Date: 1968-12-15
Launch Vehicle: Delta
Launch Site: Vandenberg AFB, United States
Mass: 297.0 kg
Kosmos 260 (Molniya-1 (11a))
Cosmos 260 was probably a Soviet
communications satellite launched from the
Baikonur cosmodrome aboard a Molniya
rocket. It was part of a system of long range
telephone-telegraph
radiocommunications,
and transmission of USSR Central Television
programs to me stations of the Orbita
network.
Launch Date: 1968-12-16
Launch Vehicle: Modified SS-6 (Sapwood)
with 1st or 2nd Generation Upper Stage
Launch Site: Tyuratam (Baikonur
Cosmodrome), U.S.S.R
Mass: 1750.0 kg
Intelsat-3 3
Intelsat 3 F-2 was a COMSAT Corporation
commercial
communications
satellite
Eladio Miranda Batlle
[email protected]
50
Cronología del lanzamiento de misiones espaciales
launched from Cape Canaveral using a Delta
63 rocket. The was the initial increment of
first commercial communications satellite
system for COMSAT.
Launch Date: 1968-12-19
Launch Vehicle: Delta
Launch Site: Cape Canaveral, United States
Mass: 642.0 kg
Kosmos 261 (DS-U2-GK #1)
Cosmos 261 carried an experiment to study
(1) geoactive corpuscles-electrons and
protons that are the cause of the northern
lights, (2) electrons of super-thermal energy,
and (3) changes in the density of the upper
layers of the earth's atmosphere during
northern lights. This experiment was a joint
effort
of
research
institutions
and
observations of the People's Republic of
Bulgaria, the Hungarian People's Republic,
the German Democratic Republic, the Polish
People's Republic, the Romainian Socialist
Republic, The Soviet Union, and the
Czechoslovak Socialist Republic.
Lanzamiento: 21 de diciembre de 1968.
Aterrizaje: 27 de diciembre de 1968.
Lugar de alunizaje: Alunizaje: Estancia en la superficie: Número de paseos lunares: - Duración total: Distancia recorrida: Material recogido:
Anotaciones:
Primer viaje tripulado de circunvalación de la
Luna realizado por el ser humano, 103 años
después de que Julio Verne publicara su
novela De la Tierra a la Luna. No iba
equipado con el módulo lunar, que se
encontraba en la última fase de su desarrollo.
Los astronautas pasaron la Navidad en
órbita.
Launch Date: 1968-12-20
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Plesetsk, U.S.S.R
Mass: 400.0 kg
Apollo 8 (CSM 103) / LTA B
Tripulantes: Frank Borman (CDR), William A.
Anders (LMP) y James A. Lovell (CMP).
El Apollo 8 (AS-503) fue lanzado desde la
plataforma A del complejo de lanzamiento 39
del Kennedy Space Center (KSC), a las 7:51
a.m. EST (Eastern Standard Time, Hora
Estándar de la Costa Este) del 21 de
diciembre con un cohete Saturn V. La
tripulación de la nave estaba formada por
Frank Borman, James A. Lovell, Jr. y William
A. Anders. El Apollo 8 fue la primera nave
espacial tripulada en ser lanzada mediante
un cohete Saturn V, siendo también la
primera tripulación en sobrevolar y orbitar la
Luna.
Todas las fases del lanzamiento fueron
normales, y tanto la nave como la etapa SIVB fue colocada en una órbita provisional de
190'6 por 183'2 kilómetros alrededor de la
Tierra. Después del chequeo inmediato de
los sistemas de la nave, la etapa S-IVB fue
Eladio Miranda Batlle
[email protected]
51
Cronología del lanzamiento de misiones espaciales
encendida de nuevo durante 5 minutos y 9
segundos para colocar a la nave en una
trayectoria hacia la Luna y, de esta manera,
los astronautas del Apollo 8 se convirtieron
en los primeros hombres en escapar del
campo gravitatorio terrestre. La ignición de la
etapa S-IVB fue visible en el cielo nocturno
por los habitantes de las islas Hawai.
La nave se separó del S-IVB 3 horas y 20
minutos después del lanzamiento, y los
astronautas realizaron dos maniobras de
separación usando el sistema de control a
reacción del módulo de servicio (SM). Once
horas después del despegue, la primera
corrección de trayectoria incrementó la
velocidad de la nave en 26'4 km/h. El vuelo
hacia la Luna fue dedicado a observaciones
de navegación, dos transmisiones de
televisión y comprobaciones de la nave. La
segunda corrección de la trayectoria, que
tuvo lugar unas 61 horas después del inicio
del vuelo, modificó la velocidad en 1'5
kilómetros por hora.
La maniobra de inserción en órbita lunar, con
una duración de 4 minutos y 15 segundos,
fue realizada a las 69 horas del lanzamiento,
colocando a la nave en una órbita lunar inicial
de 310'6 por 111'2 kilómetros de la superficie
lunar (después fue "circularizada" a 112'4 por
110'6 kilómetros. Durante el sobrevuelo de la
Luna, los astronautas realizaron muchas
observaciones de la superficie y de posibles
lugares de alunizaje, tomaron fotografías y se
prepararon para la posterior maniobra de
regreso a la Tierra.
En el cuarto día, Nochebuena, la
comunicación quedó interrumpida mientras el
Apollo 8 pasaba por detrás de la Luna, y los
astronautas se convirtieron en los primeros
en ver directamente la cara oculta de la Luna.
Posteriormente, ese mismo día, durante la
tarde en Estados Unidos, los tripulantes
leyeron los primeros diez versos del Génesis
por televisión a la Tierra, y desearon a los
espectadores "buenas noches, buena suerte,
feliz navidad y que Dios os bendiga a todos...
a todos vosotros en la buena Tierra."
Posteriormente, la revista TV Guide de 10-16
de mayo de 1969, afirmó que una de cada
cuatro personas en la Tierra (casi 1.000
millones de personas en 64 países)
escucharon la lectura y las felicitaciones de
los astronautas, en la radio o en televisión; y
las retransmisiones en diferido de ese mismo
día llegaron a 30 países más.
El día de Navidad, mientras el CSM
completaba su décima vuelta alrededor de la
Luna, el motor principal del CSM fue
encendido durante 3 minutos y 24 segundos,
incrementando la velocidad en 3'875 km/h, y
propulsando al Apollo 8 de vuelta a la Tierra,
después de 20 horas y 11 minutos en órbita
lunar. Durante el viaje de regreso los
astronautas realizaron más retransmisiones
de televisión y, el sexto día, la tripulación se
preparó para la reentrada y separaron en el
momento previsto el módulo de servicio (SM)
del módulo de comando (CM).
El funcionamiento de los paracaídas y el
resto de sucesos de la reentrada fueron
normales. El módulo de comando del Apollo
8 amerizó en el Océano Pacífico, boca abajo,
a las 10:51 a.m. EST del 27 de diciembre,
147 horas y 42 segundos después del
despegue. Según lo previsto, varios
helicópteros y aviones sobrevolaron el lugar
donde se encontraba la nave, y el personal
de rescate no se desplegó hasta que
amaneció en la zona, 50 minutos después
del amerizaje. La tripulación fue recogida y
llevada a bordo del barco de rescate U.S.S.
Yorktown a las 12:20 p.m. EST. Todos los
objetivos de la misión fueron logrados, así
como todos los objetivos secundarios (y
cinco objetivos de prueba no planeados en
principio).
La tripulación estaba en excelente condición,
y otro importante paso hacia el primer
alunizaje había sido completado.
Fragmento traducido del relato de la misión
Apollo 8 proveniente del libro Chariots for
Apollo: A History of Manned Lunar
Spacecraft, de Courtney G Brooks, James M.
Grimwood, Loyd S. Swenson, publicado
como NASA SP-4205 en NASA History
Series, 1979.
Eladio Miranda Batlle
[email protected]
52
Cronología del lanzamiento de misiones espaciales
Tan pronto como la tripulación de Borman
conoció, el 10 de agosto, que volaría en una
misión hacia la Luna, los tres astronautas
empezaron a entrenarse para el vuelo. El 9
de septiembre comenzaron las sesiones en
el simulador de Cabo Cañaveral. Seis
semanas antes del lanzamiento, las sesiones
eran diarias, incluso de diez horas de
duración. Con la ayuda del equipo de apoyo
(Mattingly, Carr y Brand), que seguían la
preparación de todos los dispositivos,
coordinaban la preparación de las listas de
procedimientos y calculaban la carga de la
nave, la tripulación estuvo lista a tiempo.
Poco después de las 2:30 de la mañana del
21 de diciembre, Borman, Lovell y Anders se
levantaron y se vistieron para el desayuno
previo al lanzamiento con, entre otros,
George Low, el hombre que había realizado
este plan para mandarlos a la órbita lunar en
el segundo vuelo tripulado del programa
Apollo.
Había muchos invitados en Florida para ver
el lanzamiento, miles más de los que la
tripulación había invitado formalmente. En las
frías horas previas al amanecer, los visitantes
atascaban las carreteras, encendiendo y
apagando los faros, buscando las mejores
posiciones. Autocares enteros de periodistas
pasaron lentamente las puertas hacia el zona
de la prensa, y grupos VIP llevados en
helicóptero aterrizaron en un tribuna especial.
Toda la atención estaba centrada en el
Apollo 8, bañado en el brillo de los focos que
lo hacían visible a varios kilómetros de
distancia. Los locutores de radio y televisión,
y los portavoces de la megafonía narraban a
millones de personas en todo el mundo y a
los miles que se encontraban en Cabo
Cañaveral que pronto tres astronautas
dejarían este mundo para visitar otro. A las
7:51, Borman, Lovell y Anders, tumbados en
sus asientos 100 metros por encima de la
plataforma de lanzamiento, comenzaron ese
viaje.
El despegue del impresionante Saturn V,
propulsado por la mayor fuerza que el ser
humano jamás había sentido empujándole
hasta entonces (33'4 millones de Newtons, o
7'5 millones de libras de empuje), causó a la
tripulación variadas impresiones. Borman
pensó que era muy parecido al despegue del
Gemini Titan II. Lovell estaba de acuerdo,
pero añadió que pareció frenarse un poco
tras dejar atrás la rampa de lanzamiento. El
astronauta novato Anders prefirió compararlo
con "un viejo tren de mercancías
traqueteando por una vía en mal estado." La
etapa S-IC sacudió a la tripulación, pero no
de forma intolerable. A pesar de toda la
potencia, la aceleración sólo alcanzó 4 g.
Cuando el motor se cortó, cayó a 1 g.
Durante la aceleración de la etapa S-II, el
pogo (un tipo de oscilación latitudinal) se
mantuvo dentro de los límites aceptables y
no causó ninguna molestia a los astronautas.
Estaban felices, de todas maneras, de que
los motores se hubieran apagado y de que la
segunda etapa quedara ya por debajo. Una
docena de minutos después del lanzamiento,
la tercera etapa S-IVB se encendió para
colocar el complejo en órbita terrestre.
Borman, Lovell, Anders y los controladores
del vuelo realizaron, durante una órbita y
media, la comprobación de todos los
sistemas de la nave y de la tercera etapa, en
preparación para el siguiente paso de la
misión. A las 10:17, el ex miembro de la
tripulación Collins (ya recuperado de una
enfermedad ósea que le había mantenido
temporalmente apartado, y ahora en la
consola de comunicación en vez de en el
asiento central del Apollo 8) abrió una nueva
era en los vuelos tripulados cuando dijo,
"Muy bien, tenéis permiso para TLI
[translunar injection, inyección hacia la
Eladio Miranda Batlle
[email protected]
53
Cronología del lanzamiento de misiones espaciales
Luna]". Muchos espectadores en Hawai, que
habían visto el lanzamiento en directo por la
televisión por primera vez, corrieron fuera
para ver el encendido del motor en el cielo.
Durante cinco minutos, la etapa S-IVB se
encendió, aumentando la velocidad de la
nave de 7.600 a 10.800 metros por segundo.
Borman, Lovell y Anders viajaban ahora a
mayor velocidad que cualquier otro ser
humano hubiera tenido jamás, lo suficiente
como para escapar de la influencia
gravitatoria terrestre. Al ser preguntados
posteriormente sobre sus impresiones sobre
la inyección hacia la Luna, Borman
respondió:
"Psicológicamente fue un vuelo mucho más
sencillo que el Gemini 7. Adoptas un
acercamiento filosófico después de la TLI, y
en realidad yo no estaba preocupado por
nada. Cuando uno está en órbita terrestre,
siempre se es consciente de que si algo
ocurre hay que reaccionar rápidamente para
bajar de nuevo. Una vez que se produce la
TLI,... realmente no estás preocupado de
reaccionar rápidamente porque te va a llevar
[al menos] dos o tres días regresar a casa de
cualquier manera".
El CSM se separó del S-IVB y giró para que
la tripulación pudiera fotografiar el adaptador,
donde estaría colocado el módulo lunar en
los futuros vuelos. Borman comentó que el
vuelo en formación con la etapa S-IVB no era
más complicado que con el Agena de las
misiones Gemini, y que el acoplamiento con
el LM no debería plantear problemas. Dado
que no había módulo lunar en esta misión,
prefirieron no acercarse demasiado al S-IVB.
La tripulación usó los pequeños motores de
control a reacción del módulo de servicio
para empezar la maniobra de separación con
un cambio de velocidad de menos de un
metro por segundo. Pero Borman pronto se
dio cuenta que el S-IVB se estaba
acercando, en vez de separarse. Tanto los
astronautas como los controladores de vuelo
estaban perplejos. Las comunicaciones entre
ellos se sucedieron continuamente. Kraft y
Bill Tindall hablaron con Carl R. Huss, que
estaba atendiendo el análisis y el
planeamiento de la misión en el área de
soporte de vuelo, preguntando qué debían
hacer. Huss los hizo esperar hasta que su
grupo tuvo tiempo de explicarse que la
tripulación no había realizado la maniobra
exactamente como debería haberlo hecho.
Estudiando las posiciones relativas de los
dos vehículos, Huss dio pronto a los
controladores nueva información para
mandar a la nave. Los tripulantes
encendieron de nuevo los pequeños motores,
esta vez para un cambio de dos metros por
segundo, variando la trayectoria y alejándose
de la demasiado cariñosa tercera etapa.
Poco después de iniciado el vuelo, los
astronautas se vieron cautivados por la vista
de la Tierra desde el espacio, especialmente
por los detalles que se revelaban con una
única mirada. Borman comentó, "Vemos la
Tierra ahora, casi como un disco". Después
pidió a Collins que "le dijera a Conrad que
había perdido su récord". La misión de
Conrad y Gordon durante el programa
Gemini había alcanzado una altura récord
por entonces. Lovell, mirando a través de la
ventana central, empezó a decir nombres
como si fuera un locutor en un tren: Florida,
Cuba, Gibraltar, África (Este y Oeste),
América Central y América del Sur. Borman
aconsejó que Collins avisara a "la gente en
Tierra del Fuego [Argentina] que se pusiera
sus impermeables; parece que hay una
tormenta... ahí afuera".
A una distancia prudencial del S-IVB, los tres
tripulantes dejaron sus asientos para quitarse
sus trajes presurizados y encontrarse una
sorpresa: los mareos. Realizar movimientos
rápidos con el cuerpo producía náusea en los
astronautas. Borman fue el más afectado.
Eladio Miranda Batlle
[email protected]
54
Cronología del lanzamiento de misiones espaciales
Había habido una serie de casos de
gastroenteritis en Cabo Cañaveral justo antes
del lanzamiento. Esta "gripe intestinal de 24
horas" podría haber causado la enfermedad
de Borman, pero también había otra
posibilidad. Debido a que había llevado más
tiempo de lo previsto el alejarse de la etapa
S-IVB, Borman había llegado con retraso a
su período de descanso. Para asegurarse de
caer dormido pronto, había tomado un
comprimido Seconal. Durante las pruebas
anteriores al vuelo del material médico,
Borman había tenido una ligera reacción a
estas pastillas para dormir, así que echó la
culpa a la medicación de al menos parte de
su complicación. Cuando se despertó,
después de un descanso intermitente,
Borman tuvo arcadas y vomitó dos veces, y
tenía diarrea. El sistema de tratamiento de
residuos apenas funcionó. La tripulación
informó de sus problemas al cirujano de
vuelo y, como Collins dijo después en
Carrying the Fire, "los primeros humanos en
abandonar la cuna habían llamado a su
pediatra". Al día siguiente, no obstante,
Borman dijo felizmente al control de vuelo,
"Nadie está enfermo".
Durante las primeras seis horas de vuelo, la
escotilla redonda por la cual Lovell observaba
retroceder a la Tierra había permanecido
limpia. Después se había ido empañando
hasta que se hizo casi inútil para la
observación. Este empañamiento era debido,
al igual que durante al vuelo de Schirra, a un
gas de la silicona usada como componente
de sellado. Las dos escotillas de los lados
también se empañaron, aunque en menor
medida. Sólo las ventanas utilizadas durante
el acoplamiento permanecieron claras
durante la misión. En una ocasión, los
tripulantes se quejaron de que las fotografías
del Sol tomadas desde las ventanillas
laterales no tendrían mucho valor, e incluso
no podían ver el Sol a través de las
ventanillas de acoplamiento. No podían ver la
Luna por ninguna de las ventanas. Lovell,
encargado de la navegación, recordó
después que "durante el viaje nunca vimos
realmente la Luna. Estaba en fase creciente,
y la mayor parte de ella estaba oscura. Yo la
ví varias veces en el aparato óptico mientras
hacía algunas observaciones. En general, no
vimos al cuerpo celeste con el que nos
encontraríamos, que venía en una dirección
mientras
nosotros
íbamos
en
otra.
Confiábamos en que la Luna estaría allí, lo
que dice bastante del control de tierra en
Houston."
A unos 223.000 kilómetros de la Tierra, 31
horas después de abandonar el planeta y 40
antes de llegar a la Luna, la tripulación
realizó la primera retransmisión de televisión.
Mostraron el interior de la nave, con Borman
como director y narrador, Lovell como actor
(preparando una comida), y los tres
astronautas como cámaras. Anders instaló
un teleobjetivo para conseguir una mejor
vista de la Tierra, pero la lente no funcionó.
Cuando cambiaron de nuevo el objetivo por
la lente interior, la Tierra parecía como una
gota de color blanco. Lovell remarcó que la
Tierra era muy brillante y que estaban
usando una lente de bajo nivel. Borman
añadió que la cámara estaba apuntando por
una
ventana
empañada.
Estaba
decepcionado por no poder enseñar a los
telespectadores la "preciosa, preciosa vista,
con [predominantemente] un color azul de
fondo con sólo enormes capas de nubes
blancas."
Más de 100.000 kilómetros más lejos y un
día después, los astronautas sacaron de
nuevo la cámara de televisión. Esta vez el
teleobjetivo funcionó mejor. Lovell describió
lo que la audiencia estaba viendo; se veía
claramente el hemisferio oeste, y de nuevo
nombró los lugares: el Polo Norte, América
del Sur entera hasta el Cabo de Hornos, Baja
California y la zona suroeste de Estados
Unidos. Una vez, en un momento pensativo,
se volvió a su comandante:
"Frank, lo que sigo imaginándome es, si yo
fuera un viajero solitario de otro planeta, qué
pensaría de la Tierra a esta altitud, si
pensaría que está habitada o no... Tendría
curiosidad sobre si aterrizaría en la zona azul
de la Tierra o en la marrón."
Anders interrumpió, "Mejor
aterricemos en la parte azul."
desea
que
Después de la segunda retransmisión de
vídeo, la tripulación se acercaba a una nueva
Eladio Miranda Batlle
[email protected]
55
Cronología del lanzamiento de misiones espaciales
etapa en la exploración espacial tripulada:
viajar a un lugar donde el tirón gravitatorio de
la Tierra es menor que el de otro cuerpo
celeste. Ese histórico paso se produjo a las
3:29 de la tarde del lunes 23 de diciembre.
En este punto, la nave se encontraba a unos
326.400 kilómetros de la Tierra y a 62.600
km de la Luna, y su velocidad había
disminuido a 1.218 metros por segundo.
Gradualmente, mientras la nave se
desplazaba hacia el interior del campo
gravitatorio de la Luna, aumentó ligeramente
su velocidad.
Ahora la tripulación se preparaba para otro
evento, de nuevo indicado por una de esas
abreviaturas en las que abunda la jerga de
los vuelos espaciales, LOI (lunar-orbit
insertion, inserción en órbita lunar). Dado que
la nave se encontraba en una trayectoria de
retorno libre (una órbita con forma de ocho
alargado que hacía pasar a la nave por
detrás de la Luna y la traía de vuelta a la
Tierra sin necesidad de maniobras), Borman
quería "una nave perfecta antes de poder
considerar la maniobra LOI". Habría
lamentado
abandonar
esa
excelente
trayectoria y después descubrir algún
problema. Hasta entonces, el motor principal
del módulo de servicio había funcionado
perfectamente todas las veces, pero la órbita
seguida hacia la Luna había sido tan precisa
que sólo habían sido necesarias dos de las
cuatro correcciones de vuelo intermedias. El
control de tierra les aseguró que todo estaba
en orden. A las 68 horas y 4 minutos de la
misión, Carr, en la consola de comunicación,
dijo a la tripulación, "Tenéis permiso para la
LOI". También informó a los astronautas de
que su punto de acercamiento más cercano
debería estar a unos 119 kilómetros sobre la
superficie de la Luna. Minutos antes de esta
transmisión, cuando Borman comentó que
todavía no habían visto la Luna, Carr
preguntó qué era lo que podían ver. Anders
replicó, "Nada. Es como estar en el interior
de un submarino".
Durante las misiones Mercury, Gemini y
Apollo previas, existían períodos de silencio
en la comunicación, especialmente en el
hemisferio sur, debido a que la red de
seguimiento mundial no cubría todas las
áreas. Hasta ahora, Borman y su tripulación
habían estado en contacto continuo durante
su viaje hacia la Luna, pero cuando la nave
pasara por detrás de la Luna, ninguna
comunicación sería posible. Justo antes de la
pérdida de la señal, en las primeras horas del
día 24 de diciembre (a las 4:49), Carr les
deseó una travesía segura, y Lovell
respondió, "Os veremos en el otro lado [de la
Luna]". Once minutos después, viajando a
2.600 metros por segundo bocabajo, para
que pudieran ver la superficie lunar,
encendieron el motor del módulo de servicio
durante cuatro minutos para reducir su
velocidad en 915 metros por segundo y
conseguir
así
una
órbita
de
aproximadamente 111 por 312 kilómetros.
Aunque el motor funcionó perfectamente,
Lovell los llamó "los cuatro minutos más
largos que he pasado nunca". Mientras el
motor estaba encendido, Lovell y Anders
exclamaron sobre su fantástica vista de la
Luna.
Borman, Lovell y Anders sabían que el motor
había realizado su misión con éxito, pero casi
1.000 millones de personas en 64 países
(según TV Guide) no lo sabían. Si la nave no
había entrado en órbita, volvería a entrar en
contacto con la Tierra unos 10 minutos antes
de lo planeado. Después de lo que pareció
una interminable espera, Paul Haney, en la
consola de información al público en el
control de vuelo, anunció con regocijo, "¡Lo
tenemos! ¡Lo tenemos! El Apollo 8 está ahora
en órbita lunar".
Después de 15 minutos de descripción del
primer encendido del motor, y de cálculos
sobre el segundo encendido previsto (para
hacer circular la órbita a unos 112 kilómetros
Eladio Miranda Batlle
[email protected]
56
Cronología del lanzamiento de misiones espaciales
por encima de la superficie lunar), los
astronautas contaron a sus compañeros en el
centro de control cómo era la Luna desde
una distancia tan corta. Lovell dijo:
"Okey, Houston, la Luna es esencialmente
gris, sin color; parece yeso o escayola, o
algún tipo de arena grisácea. Podemos ver
bastantes detalles. El Mar de la Fertilidad no
destaca tanto desde aquí a como lo hace
desde la Tierra. No hay tanto contraste entre
él y los cráteres de alrededor. La mayoría de
los cráteres están redondeados. Hay
muchos, algunos de los cuales son más
jóvenes. Muchos de ellos... - especialmente
los redondeados - parecen impactos de
meteoritos o proyectiles de algún tipo".
(Posteriormente, durante los informes
técnicos de la misión, Lovell añadió que
"las fotografías de la sonda Lunar Orbiter que
teníamos a bordo eran muy apropiadas. No
tuvimos problemas para determinar los
accidentes geológicos, particularmente en la
cara visible de la Luna. Hay sitios de
alunizaje
idóneos.
Son
fácilmente
reconocibles. Podíamos elegirlos. Nos
podíamos abrir camino... Las imágenes de la
sonda Lunar Orbiter fueron de nuevo de gran
ayuda... para comprobar los cráteres de la
cara oculta). "
Después de observar la cara oculta de la
Luna (que presenta una superficie muy
abrupta, es decir, sin mares como los de la
cara visible, y alberga muchos más impactos
de cráteres) durante varias órbitas, Anders
comentó:
"Ciertamente estamos eligiendo los lugares
más interesantes para realizar alunizajes. La
cara oculta parece un cajón de arena donde
mis niños juegan. Está toda aporreada, sin
definición. Sólo un montón de golpes y
hoyos."
Mientras el Apollo 8 daba sus diez vueltas de
dos horas alrededor de la Luna, la
localización de la nave pareció extraña al
principio para las personas que veían el
mapa en el centro de control de la misión. En
órbita terrestre, la nave se había desplazado
en los paneles siempre de izquierda a
derecha; en el mapa lunar, sin embargo, la
nave se movía de derecha a izquierda.
Y mientras viajaba, la tripulación continuaba
hablando sobre lo que veían. Anders expresó
la opinión generalizada de que la Luna era un
"lugar poco apetitoso para la observación";
no obstante, tenía una cierta belleza
desolada. Los astronautas comentaron el
color de las regiones iluminadas y oscuras,
causado por el brillo del Sol y de la Tierra.
Bautizaron
provisionalmente
algunos
cráteres: nombres como (Harrison) Schmitt,
(George) Low, (Robert) Gilruth, (Joseph)
Shea, (Theodore) Freeman, (Gus) Grissom,
(Ed) White, (James) Webb, (Thomas) Paine,
(Elliot) See, (Alan) Shepard, (Donald)
Slayton, (Samuel) Phillips, (Christopher)
Kraft, (Roger) Chaffee, (Charles) Bassett y
(Gerald) Carr. Una vez, cuando el controlador
de vuelo John W. Aaron fue el único en darse
cuenta, en medio del entusiasmo general, de
que el sistema ambiental necesitaba un
ajuste, el cráter Aaron fue bautizado en el
mapa por los astronautas.
Algunos habían pedido a la NASA el
aplazamiento de esta misión, para que
ningún accidente desluciera la celebración de
la Navidad en la Tierra. Pero ahora, mientras
el Apollo 8 daba vueltas alrededor de la Luna
el día de Nochebuena, existía un júbilo
adicional. A principios de diciembre, Borman
y un amigo habían elegido una oración para
la ocasión. Durante la tercera vuelta
alrededor de la Luna, Borman preguntó,
"¿Está Rod Rose ahí? Tengo un mensaje
para él," y envió la siguiente transmisión:
"To Rod Rose and the people of St.
Christopher's, actually to people everywhere "Give us, O God, the vision which can see thy
love in the world in spite of human failure.
"Give us the faith to trust thy goodness in
spite of our ignorance and weakness.
"Give us the knowledge that we may continue
to
pray
with
understanding
hearts.
And show us what each one of us can do to
set forward the coming of the day of universal
peace. Amen."
Los astronautas habían consultado con otros
amigos sobre un posible tema para su
misión, algo que representase a la sociedad,
para contar a todo el mundo en la Tierra. Una
Eladio Miranda Batlle
[email protected]
57
Cronología del lanzamiento de misiones espaciales
de las sugerencias fue que leyeran la historia
de la Creación, en los diez primeros versos
del libro del Génesis en la Biblia. Lo leyeron
durante la novena órbita, terminando con
"Buenas noches, buena suerte, feliz navidad
y que Dios os bendiga a todos... a todos
vosotros en la buena Tierra."
Borman después admitió que él y su
tripulación no habían querido en realidad
llevar
una
cámara
de
televisión;
afortunadamente la decisión no dependía de
ellos. Las retransmisiones desde la Luna
tuvieron una gran audiencia. Durante el
vuelo, la tripulación fue notificada de que los
programas eran vistos en toda Europa,
incluso en Moscú y Berlín Este; en Japón; en
América del Norte, Central y del Sur; y quizá
en África. Lovell, usando los aparatos ópticos
para obtener una mejor vista, describió lo que
iba siendo fotografiado. Anders iba de
ventana en ventana para conseguir el mejor
lugar para fotografiar la superficie lunar,
especialmente los lugares considerados
como posibles lugares de alunizaje. En la
séptima órbita, todos ellos estaban tan
cansados que Borman hizo un alto en las
observaciones. Sabía que pronto tendría que
empezar a pensar en la inyección hacia la
Tierra (transearth injection, TEI, otra de esas
importantes abreviaturas).
Durante la décima revolución, en la mañana
de Navidad, 3 días, 17 horas y 17 segundos
después del lanzamiento, el motor del
módulo de servicio se encendió para
incrementar su velocidad en 1.070 metros
por segundo. En el centro de control de la
misión, el día fue muy festivo. Pusieron un
árbol de Navidad debajo de la pantalla de
vuelo, que de nuevo mostraba un mapa de la
Tierra con luces rojas y verdes, los colores
tradicionales de la estación invernal. Schmitt,
que había preparado a la tripulación para las
observaciones geológicas, leyó una parodia
del poema de Clement C. Moore, "T'was the
Night before Christmas."
Tras dejar atrás la Luna, los astronautas
estaban agotados. Descansaron, dejando
hacer a "Isaac Newton" la mayor parte de la
conducción. Después de sus siestas, el
CapCom Carr les daba las últimas noticias de
la Tierra, poniendo énfasis en la impresión
que su viaje había tenido en el mundo. En
general, el viaje del Apollo 8 fue aclamado de
forma entusiasta por las multitudes que
observaban por primera vez su planeta
desde cientos de kilómetros de distancia, y a
su luna desde poco más que cien.
El viaje de vuelta a la Tierra no tuvo
incidentes destacados. Durante todo el viaje,
el CSM-103 sólo registró irregularidades
esperadas (y ya mencionadas), tales como
ventanas empañadas, acumulación de agua,
y ventiladores de cabina ruidosos. Ahora los
astronautas pudieron descansar, dormir,
Eladio Miranda Batlle
[email protected]
58
Cronología del lanzamiento de misiones espaciales
retransmitir imágenes y disfrutar del viaje de
regreso. Lovell continuó sus observaciones
de navegación, y el control de misión realizó
el seguimiento. Sólo pudo encontrar un
mínimo error en el rumbo en las horas
previas al amerizaje en el Océano Pacífico;
realizaron una corrección (de menos de dos
metros por segundo). En las primeras horas
del viernes, a unos 14.500 kilómetros por
encima de la Tierra, la tripulación activó los
dispositivos pirotécnicos para separar el
módulo de comando del módulo de servicio,
que había funcionado perfectamente siempre
que había sido empleado. Quince minutos
después, la nave atravesó los límites de la
atmósfera, a 120 kilómetros de altura sobre
la Tierra. Borman le dijo a Mattingly que
tenían una verdadera bola de fuego, pero
estaban bien. La velocidad de la nave se
incrementó hasta los 9.700 metros por
segundo, sometiendo a la tripulación a una
carga de casi 7 g.
La nave siguió una trayectoria de entrada
cercana al noreste de China, se inclinó al
sureste y amerizó en el punto previsto en
medio del Océano Pacífico. La precisión del
amerizaje fue tan perfecta que incluso llegó a
preocupar a unos de los jefes de la misión y
a los controladores de Houston. Bill Tindall
escribió a Jerome B. Hammack, jefe de la
división de amerizaje y recuperación:
"Jerry, he hecho un montón de bromas sobre
un posible choque de la nave con el
portaaviones, pero cuanto más pienso en
ello, cada vez me entran menos ganas de
reír. Hay informes de que el módulo de
comando pasó sobre el portaaviones [situado
a 165 grados 02.1' de longitud oeste y 8
grados 09.3' de latitud norte] y se fue
distanciando con los paracaídas hasta
amerizar [en 165 grados 1.02' oeste y 8
grados 07.5' norte, sólo a 4.572 metros]. Me
parece que es muy poca distancia... Las
consecuencias de que la nave golpeara el
barco serían verdaderamente catastróficas...
Recomiendo seriamente el traslado de los
equipos de recuperación al menos de 8 a 16
kilómetros del punto de amerizaje previsto."
La nave amerizó en la oscuridad el viernes
27 de diciembre (6 días, 3 horas y 42
segundos tras el despegue), dándose la
vuelta mientras amerizaba. Hasta que
Borman apretó el botón de inflado de las
bolsas de aire para enderezar el módulo, el
faro intermitente no pudo ser visto por los
helicópteros de rescate. Las normas de
control en tierra requerían una recuperación
a la luz del día, por lo que Borman y su
tripulación tuvieron que esperar 45 minutos
para que los buceadores abrieran la escotilla.
Unos minutos más tarde, el helicóptero
depositaba a los astronautas en la cubierta
del U.S.S. Yorktown, en la última etapa de
(en palabras de Borman) "un viaje
fantástico".
Kosmos 262 (DS-U2-GF #1)
Cosmos 262 was a Soviet military spacecraft,
placed into a 259 x 798 km, 48 degree orbit.
It was known to have also carried a scientific
x-ray monitor.
Launch Date: 1968-12-26
Launch Vehicle: Modified SS-4 (Sandal
IRBM) plus Upper Stage
Launch Site: Kapustin Yar, U.S.S.R
Mass: 400.0 kg
Eladio Miranda Batlle
[email protected]
59
Cronología del lanzamiento de misiones espaciales
Referencias
(1) http://Sondasespaciales.com
(2) http://notesp.blogspot.com/
(3) http://space.skyrocket.de/home.htm
(4) http://es.wikipedia.org/wiki/Wikipedia:Portada
(5) http://www.nasa.gov/
Bibliogafia







The Complete Book of Spaceflight / David Darling / John Wiley & Sons, Inc.
http://www.nasa.gov/centers/kennedy/shuttleoperations/archives/2005.html
http://www.planet4589.org/space/jsr/jsr.html
http://www.spacefacts.de/english/flights.htm
http://es.wikipedia.org/wiki/Misiones_del_Programa_STS
http://claudelafleur.qc.ca/Spacecrafts-2008.html
http://spaceflightnow.com/news/n0812/25glonass/
Eladio Miranda Batlle
[email protected]
60

Documentos relacionados