curriculum - Supercomp - Universidad de Carabobo

Transcripción

curriculum - Supercomp - Universidad de Carabobo
CURRICULUM VITAE.
MAYO 2010.
JOSE JESUS RODRIGUEZ-NÚÑEZ.
I.D. V-3.442.264.
Universidad de Carabobo.
Departamento de Fı́sica - FACYT.
Campo de Bárbula.
Teléfonos: 58-241-867.41.68; 0416–547.59.40
.
FAX: 867.44.55; 842.28.78.
e-m: [email protected].
VENEZUELA.
1
DATA PERSONAL DEL DR. JOSE JESUS
RODRIGUEZ-NUÑEZ.
1)
2)
3)
4)
Lugar de Nacimiento: El Tigre. Anzoátegui. VENEZUELA.
Fecha de Nacimiento: 14 de Octubre de 1950.
Ciudadanı́a: Venezolana.
Status: Casado. Tres hijos.
1- Idiomas.
1. Español. (Lengua materna.)
2. Inglés.
3. Francés.
4. Portugués.
2- Habilidades Computacionales.
Esperiencia en Programación en FORTRAN.
3- Historial Académico.
Grados Cientı́ficos.
1.- Magister Scientarium I.V.I.C..
Fecha de Graduación: Mayo 1977.
Tutor de Tesis: Dr. Andrés Kálnay.
2.- Master en Ciencia. Purdue University.
Fecha de Graduación: Mayo 1982.
2
3.- Doctor en Filosofı́a. Universidad: Purdue University.
Fecha de Graduación: Diciembre 18, 1982.
Tı́tulo de la Tesis: Niveles de Energı́a de Impurezas Donoras en la
Presencia de un Campo Magnético.
Otros Cursos.
1. Second Plan Keller Workshop. IUPC. Year: 1974.
2. Abstract Algebra. IUPC. Year: 1974. Instructor: Dr. Mauricio
Orellana(UCV).
3. Group Theory Applied to Solid State Physics. IVIC. Year: 1974.
Instructor: Prof. Dr. Gene Dresselhauss(M.I.T.).
4. FS 5611. Plasma Physics. USB. Quarter: September-December,
1986. Instructor: Prof. Dr. Pablo Martı́n. (USB).
5. Hubbard Model in Metallic Systems. FEC-LUZ. Date: 15-31 July,
1988. 14 Hours. Instructor: Dr. Félix Próspero Marı́n. (UCV).
6. Superconductivity in the Hubbard Model. FEC-LUZ. Date: October 9-23, 1989. 12 Hours. Instructor: Dr. Rodrigo Medina. (IVIC).
7. Fractals and Aggregate Configurations in Lattices. FEC-LUZ.
Date: July 27-29, 1990. 06 Hours. Instructor: Dr. Humberto La Roche,
Jr. (IVIC).
8. Chaos and Fractals in Dynamical Systems. FEC-LUZ. Date: March
04-15, 1991. 12 Hours. Instructor: Dr. Rafael Rangel. (IVIC).
9. College on Superconductivity. ICTP-Trieste (ITALY). Date: April
27-June 19, 1992. Directors: Profs. C. Balseiro, G. Baskaran and Yu
Lu.
10. L’Integrale Functionnelle et ses applications. Les Diablarets (Switzerland). Date: September 21-25, 1993.
Profs. Ph. Martin, C. Becchi, X. Zotos and O. Piguet. 22,5 hours.
11. 16th International School of Theoretical Physics: Strongly Correlated Electron Systems and Narrow Band Phenomena in Solids.
Ustroń - Jaszowiec, Poland. 16 - 22 September 1992.
12. Molecular Physics. Dr. Olivier Dulieu. (CNRS - France). July 1996.
14 hours. Universidade Federal Fluminense. Instituto de Fı́sica. Niterói.
Brazil.
3
Cargos Universitarios.
1. La Universidad del Zulia. Maracaibo. VENEZUELA. Abril 1989 hasta
Junio 1994. Profesor Titular.
2. CENAMEC. Caracas. VENEZUELA. Abril 1985 hasta Abril 1989. Profesor Agregado.
3. Universidad Simón Bolı́var. Caracas. VENEZUELA. Enero 1985 hasta
Febrero 1987. Agregado.
4. Universidad de Purdue. Indiana. U.S.A. Teaching Assistent. Septiembre 1980 hasta December 1982.
5. Instituto Universitario Pedagógico IP C). Caracas. VENEZUELA. Septiembre 1972 hasta Agosto 1977. Instructor.
6. Universidade Federal de Santa Maria. Departamento de Fı́sica. Profesor Visitante. Agosto 1997–Julio 1999.
7. Universidad de Carabobo. Profesor Titular. Septiembre 04, 2000
hasta el presente.
Cargos de Investigación.
1. Post-Doctorado. Enero 1992–May0 1993. Université Paris-Sud. Laboratoire de Physique des Solides. Orsay. FRANCE.
2. Post-Doctorado. 01 Junio 1993 hasta 30 Junio 1995. Université de
Neuchâtel. Institut de Physique. CH-2000 Neuchâtel. Suiza and IBM
Research Division, Zürich Research Laboratory, Ch-8803 Rüschlikon,
SWITZERLAND.
3. Investigador Visitante. 01 de Noviembre de 1995 - Julio de 1997.
Universidade Federal Fluminense, Instituto de Fisica; Av. Gal. Milton
Tavares de Souza, Gragoata S/N; 24210-340 Niteroi RJ, Brazil.
4. Post-Doctorate. 01 de Agosto de 1999 hasta el 30 de Agosto de 2000.
Fundação Universidade Federal do Rio Grande. Departamento de Fı́sica.
Av. Itália, Km. 08. Rio Grande–RS. Brazil.
5. Profesor Titular. University of Carabobo. Departamento de Fı́sica FACYT. 04 de Septiembre de 2000 hasta el presente.
6. Senior Research Associate. ICTP–Trieste (2003–2008).
4
Cargos en la Administración Pública.
1. Alcaldı́a de Valencia, Edo. Carabobo, en Comisión de Servicios. Actividades desarrolladas:
• Asesor de la Dirección de Desarrollo Económico (DIDE).
• Colaborador de la Fundación de Estudios Estratégicos Comunales
de Valencia (CEECOVAL).
• Coordinador por la Alcaldı́a del Proyecto Universarium de Valencia, cuyo formulador es el Lic. Edison Durán.
4- Actividad de Investigación.
1. Hamiltonianos Efectivos. Universidad del Zulia. Maracaibo - Venezuela.
Proyecto: CONDES - LUZ.
2. Approximantes de Padé of Dos Puntos. Universidad del Zulia. Maracaibo–
Venezuela. Project: CONDES–LUZ.
3. Superconductor Fluctuations in the Attractive Hubbard Model. IBM Zürich and Université de Neuchâtel. Switzerland. Fonds Nationale de la
Reserche Scientifique.
4. Magnetic and Superconducting Transitions in Hubbard Superlattices. IFUFF and DF-UFSM.
5. IF-UFF and DF-UFSM. Electronic Correlations in the Hubbard Model in
Two Dimensions.
6. FAPERGS. Electronic Correlations in in the One Band Hubbard Model:
Moment Approach. No.: 97/1093–7.
7. Pseudogap and Phenomelogy of High Temperature Superconductors. With
Dr. Cecilia Ventura of Centro Atómico de Bariloche, Argentina. Prof.
Dr. Hab. Roman Micnas and Dr. Morten Holm Pedersen are collaborators.
8. Correlações Eletrônicas no Método dos Momentos e Fenomelogia dos
Supercondutores de Altas Temperaturas Crı́ticas. Project 002 CNQP–
FURG–PIBIC.
9. Problems in Condensed Matter Physics and New Materials. Proyect
5
CDCH-UC 2001-013. May 2001.
10. Electronic Correlations and Fluctuations of the Superconducting Order
Parameter. Proyect S1–2002000448 (FONACIT–VENEZUELA). February 13, 2003. For three years.
11. Superconducting fluctuations and Coexistence of Magnetism and Superconductivity. Project CDCH–UC (2004). Three years.
12. Fortalecimiento del Grupo de Fı́sica de Materia Condensada y Nuevos
Materiales. FACYT–UC. Partida 407. Anual.
.
5- Becas:
1. CONICIT - Venezuela. Master from IVIC: 1975 - 1977.
2. CONICIT - Venezuela. Master and Ph. D from Purdue University: 1977
- 1982.
3. CONICIT - Venezuela. Post–Doctorate from Université Paris–Sud. 1992–
1993.
4. Fonds Nationale de la Reserche Scientifique - Switzerland. Post–Doctor
from IBM–Zürich and Université de Neuchâtel, Switzerland. 1993 - 1995.
5. CNPq - Brazil. Visiting Scientist. November 01, 1995 - July 31, 1997.
6. Ministerio de Educación y Cultura - España. Visiting Professor of date
1997-06-18. Non accepted
7. PIBIC–CNPq. October 1998–Agosto 1999
8. BIC–FAPERGS.Process N o 98/50351.0. April 1999
9. FAPERGS–Brasil. Visiting Scientist Fellowship, in Fundação Universidade de Rio Grande/RS. August 1999 - July 2000
10. Fellow of the Venezuelan Research Program (PPI), Forth Level (2004)
to the present.
6- Publicaciones.
1. Int. J. Theor. Phys. 16, 659–661 (1977). Remarks on Gauge Variables
and Singular Lagrangians. Autores: J. Chela–Flores, R. Jánica de La
6
Torre, A. J. Kálnay, J. R. Rodrı́guez–Gómez, J. J. Rodrı́guez–Núñez
and R. Tascón.
2. Physics Letters A 104, 106–108 (1984). Superconductivity and the Existence of Nambu’s Three-Dimensional Phase Space Mechanics. Autores: R. Angulo, S. Codriansky, C. González–Bernardo, A. J. Kálnay,
F. Pérez–M., J. R. Rodrı́guez–Gómez, J. J. Rodrı́guez–Núñez and R.
A. Tello–LLanos.
3. Int. Journal of Modern Phys. B 2, 1079-1084(1988). Autores: J. Chela–
Flores, P. Martı́n and J. J. Rodrı́guez–Núñez. A New Effect on the
Critical Temperature in Non Rare Earth Ceramic Superconductors.
4. Int. J. Theor. Phys. 29, 467 (1990). Singular Lagrangian for the Polaron.
Author: J. J. Rodrı́guez–Núñez.
5. Inter. J. Theor. Phys. 30, 857 (1991). Singular Mechanics and the Landau Two–Fluid Model of Superfluidity. Autores: J. J. Rodrı́guez–
Núñez and R. Tello–LLanos.
6. Phys. Rev. B 45, 8359-8362 (1992). Autores: Pablo Martı́n, J. J.
Rodrı́guez–Núñez and J. L. Márquez. Two Dimensional Energy Levels
of Hydrogen–Like Atoms in the Presence of a Magnetic Field: Quasi–
Fractional Approximation.
7. Transport Properties of Superconductors 25, 681–686 (1990). World
Scientific. Autores: J. J. Rodrı́guez–Núñez and R. Medina. Resonant
Superexchange in a 3–D Anisotropic Hubbard Model.
8. Quasi–Fractional Approximant For F3/2 (X) In Fermi Gases. Autores:
J. J. Rodrı́guez–Núñez, F. P. Marı́n and P. Martı́n. Physica Status
Solidi (b) 174 K5-K9, (1992).
9. Effect Of Cu And O Orbital Mixing In The Cuprate Superconductors.
Physica Status Solidi (b) 179 167-175,(1993). Autores: J. J. Rodrı́guez–
Núñez.
10. Effective Single Band Hamiltonian For The Three Dimensional Hubbard
Model. Autores: J. J. Rodrı́guez–Núñez, R. Medina and P. Silva.
Physica Status Solidi (b) 176 441-450, (1993).
11. Superexchange Interaction By Direct Oxygen Hopping: Two Dimensions.
Autores: J. J. Rodrı́guez–Núñez, B. Coqblin, H. Beck and J. Konior.
Acta Physica Polonica A 85, 317-322 (1994).
12. Effective t-J Hamiltonian for the Copper Oxides. Autores: J. J. Rodrı́guez–Núñez and H. Beck. Journal of Physics: Condens. Matter 5,
L163–L168 (1993).
7
13. Pairs Formation Above Tc . Autores: J. J. Rodrı́guez–Núñez, S. Schafroth, T. Schneider, R. Micnas, H. Beck and M.H. Pedersen. Physica C
235-240, 2341 (1995).
14. Tc and pseudogap in the 2-d attractive Hubbard model. Autores: J. J.
Rodrı́guez– Núñez, S. Schafroth, R. Micnas, T. Schneider, H. Beck
and M.H. Pedersen. Physica B 206-207, 654-656 (1995).
15. Effect of Pair Fluctuations on the Electronic Properties of the Negative
Hubbard Model. Autores: J. J. Rodrı́guez–Núñez, S. Schafroth, R.
Micnas, T. Schneider, H. Beck and M.H. Pedersen. J. Low Temp. Phys.,
98, 315 (1995).
16. Effective RKKY Interaction In the Cooper Oxides. Autores: J. J. Rodrı́–
guez - Núñez, H. Beck, B. Coqblin, J. Konior and A.M. Oleś. Phys.
Letters A 197, 173 (1995).
17. Normal State Properties of the Attractive Hubbard Model: Moment Approach. Autores: T. Schneider, M. H. Pedersen, and J. J. Rodrı́guez–
Núñez. Z. Phys. B 100, 263 - 276 (1996).
18. Excitation Spectrum of the Attractive Hubbard Model. Autores: R. Micnas, M.H. Pedersen, S. Schafroth, T. Schneider, José Jesús Rodrı́guez–Núñez and H. Beck. Phys. Rev. B 52, 16223-16232 (1995).
19. Superconducting Properties of the Attractive Hubbard Model. Autores:
M.H. Pedersen, J. J. Rodrı́guez–Núñez, H. Beck, T. Schneider and
S. Schafroth. Z. Physik B 103, 21-28 (1997).
20. Moment Approach for the 2D Attractive Hubbard Model. Autores: J. J.
Rodrı́guez–Núñez, C.E. Cordeiro, and A. Delfino. Physica A, 232,
408 (1996).
21. Double Fluctuations on the Attractive Hubbard Model: Ladder Approximation. Autores: S. Schafroth and J. J. Rodrı́guez–Núñez. Z. Physik
B 102, 493 (1997).
22. Some Global Properties of the Attractive Hubbard Model in the Superconducting Phase: T-Matrix Approximation. Autores: S. Schafroth, J.
J. Rodrı́guez–Núñez and H. Beck. J. Phys.: Condens. Matter 9,
L111-L118 (1997).
23. Anomalous Superconductivity in the traditional t-J Model: Moment Approach. Autores: M.P. Sørensen and J. J. Rodrı́guez-Núñez. Physica
C 274, 323 - 330 (1997).
24. Self-consistent calculation of particle-hole diagrams on the Matsubara frequency: FLEX approximation. Autores: J. J. Rodrı́guez–Núñez and
8
S. Schafroth. Int. J. Modern Physics C 8 1145 - 1158 (1997).
25. Beyond the Hubbard-I Solution with a One-Pole Self-Energy at Half–
Filling within the Moment Approach: Non-Linear Effects. Autores: J.
J. Rodrı́guez–Núñez and M.A. de Menezes. Physica A 257, 501–508
(1998)
26. Metal-Insulator Transition in the Two-Dimensional Hubbard Model at
Half–Filling with Lifetime Effects within the Moment Approach. Autores:
J. J. Rodrı́guez–Núñez and S. Schafroth. J. Phys.: Condens. Matter
10, L391–L400 (1998).
27. Erratum: Excitation Spectrum of the Attractive Hubbard Model. Autores:
R. Micnas, M.H. Pedersen, S. Schafroth, T. Schneider, J. J. Rodrı́guez–
Núñez and H. Beck, Phys. Rev. B 54, 3662 (1996).
28. Tı́tulo: Evolution of Single–Particle Green Functions with Correlation in
the Hubbard Model at Half–Filling: Sum Rules for the Spectral Density.
Autores: J. J. Rodrı́guez–Núñez, S. Schafroth e H. Beck. Physica C
259, 775 (1999).
29. Tı́tulo: One-Electron Green Function for the Hubbard Model Including
Next Nearest Neighbor Hopping. Autores: R. Kirchhofer, R. Frésard, H.
Beck e J. J. Rodrı́guez–Núñez. Physica C 259, 773 (1999).
30. Tı́tulo: Superconductivity in the Attractive Hubbard Model in Two Dimensions: The Double Hubbard–I Approximation. Autores: J. J. Rodrı́guez–
Núñez and H. Ghosh. Helvetica Physica Acta 71, 658–566 (1998)
31. Tı́tulo: Evolution of the One–Particle and Double Occupied Particle
Green Functions in the Hubbard Moment with Lifetime Effects at Half
Filling within the Moment Approach. Autores: S. Schafroth and J. J.
Rodrı́guez-Núñez. Phys. Rev. B 60, 5366–5374 (1999).
32. Tı́tulo: Some sum rules for non-Fermi Liquids: new applications taking
into account the mass renormalization. Autores: J. J. Rodrı́guez–
Núñez, I. Ţifrea and S. G. Magalhães. Phys. Rev. B 62, 4026 (2000).
33. Tı́tulo: Superconducting Critical Temperature, for s–wave Symmetry Order Parameter, for Intermediate Correlated Electron Systems. Autores:
J. J. Rodrı́guez–Núñez and A. A. Schmidt. Physica C xxx, xxx
(2000).
34. Tı́tulo: Effect of local correlations on s–wave Symmetry Superconductivity. Autores: A. A. Schmidt e J. J. Rodrı́guez–Núñez. Int. J. Mod.
Phys. C 11, 1149 (2000).
35. Tı́tulo: Theory of isotope exponent for high critical temperature super9
conductors. Autores: E. V. L. de Mello and J. J. Rodrı́guez–Núñez.
Physica C 364–365, 144–146 (2001).
36. Tı́tulo: Metal–Insulator transition driven by short–range ferromagnetic
correlations. Autores: J. J. Rodrı́guez–Núñez, M. S. Figueira, E. V.
Anda, C. I. Ventura and J. Calegari, Physics Letters A 288, 220–226
(2001).
37. Tı́tulo: The role of the chemical potential in the Bose–Einstein condensation and for a d-wave superconductor. Published in the Einstein
Simposium. University of Carabobo (2001). Editor: Nelson Falcón.
38. Tı́tulo: BCS to Bose–Einstein crossover phase diagram at zero temperature for a dx2 −y order parameter superconductor: dependence on the
tight binding structure. Autores: M. B. Soares, F. Kokubun, J. J.
Rodrı́guez–Núñez and O. Rendón. Phys. Rev. B 65, 174506 (2002).
39. Tı́tulo: On the Derivation of the Ginzburg–Landau Functional for Non–
Fermi Liquids: The Role of the Renormalization Mass Factor. Autores:
I. Ţifrea, J. Budagosky M. and J. J. Rodrı́guez–Núñez. Phys. Rev.
B 66, 104507 (2002).
40. Tı́tulo: Derivation of the Ginzburg–Landau Functional for Non–Fermi
Liquids: Renormalization of the Mass. Autores: J. J. Rodrı́guez–
Núñez, J. Budagosky M. and I. Ţifrea. Acta Physica Polonica B 34,
383 (2003).
41. Tı́tulo: Replay to Comment on ”BCS to Bose–Einstein crossover phase
diagram at zero temperature for a dx2 −y2 order parameter superconductor:
Dependence on the tight–binding structure”. Autores: J. J. Rodrǵuez–
Núñez, O. Álvarez–Llamoza, E. Orozco, O. Rendón, M. E. Soares and
F. Kokubun. Phys. Rev. B 68, 066502 (2003).
42. Tı́tulo: Tc and ∆o in a phenomenological ”pseudogap” model Autores:
D. Romero, L. Sánchez and J. J. Rodrı́guez-Núñez. Braz. J. Phys.
33, 750–753 (2003). (Proceedings of the International Workshop on Unconventional Superconductivity). Campinas–SP, May 20–24, 2003.
43. Tı́tulo: Superconducting critical temperature vs total electron concentration: two band superconductors. Autores: J. J. Rodrı́guez–Núñez and
A. A. Schmidt. Phys. Rev. B 68, 224512 (2003).
44. Tı́tulo: The BCS-BE crossover phase diagram at T = 0 K for a d–
wave superconductor: the importance of the Debye frequency and the
tight binding band structure.. Autores: J. J. Rodrı́guez–Núñez, A. A.
Schmidt, O. Alvarez–Llamoza and E. Orozco. J. Phys.: Condens. Matter
16, 4495–4504 (2004).
10
45. Tı́tulo: Effect of a pseudogap on the superconducting critical temperature
and on the superconducting order parameter of the same symmetry. Autores: J. J. Rodrı́guez–Nuñez. A. A. Schmidt and H. Beck, J. Phys.:
Conden. Matter 17, 323–340 (2005).
46. Tı́tulo: Evidence for a metallic–like state in the T = 0K phase diagram
of a high temperature superconductor. Autores: A. A. Schmidt, J. J.
Rodrı́guez–Nuñez y I. Ţifrea, European Physics Journal B 46, 187–
191 (2005).
47. Tı́tulo: A d–wave pseudogap model beyond BCS for the cuprates. Autores: J. J. Rodrı́guez–Nuñez, A. A. Schmidt, H. Beck y M. Valera,
Physica B 378–380, 461–462 (2006).
48. Tı́tulo: Erratum: Superconducting critical temperature and the isotope
exponent versus total electron concentration for two–band superconductors: Effect of the band structure. Autores: J. J. Rodrı́guez–Nuñez y
A. A. Schmidt, Phys. Rev. B 73, 139903 (2006).
49. Autores: J. J. Rodrı́guez–Nuñez, A. A. Schmidt, H. Beck y M. Valera,
J. Phys. : Condens. Phys. xxx, yyy (2006). Tı́tulo: A pseudogap model
beyond BCS for the cuprates: the effect of order parameter symmetry,
cutoff frequency and band structure.
50. J. J. Rodrı́guez - Núñez, A. A. Schmidt, A. Bianconi y A. Perali,
Physica C, 468, 2299–2304 (2008). Tı́tulo: ”Two–band superconductivity
in (AlM g)B2 ): critical temperature and isotope exponent as function of
carrier ”.
51. V. K. Giménez, J. J. Rodrı́guez - Núñez y A. A. Schmidt. F ARAU T E
3, 31–39 (2008).
52. S. Rafeh, J. J. Rodrı́guez - Núñez y Roba Ezzedin. Revista EDU CERE, 46, Trimestre: Julio - Agosto - Septiembre. Ao: 2009.
Tı́tulo: ”Efecto del Enfoque Constructivista en Estudiantes Universitarios”. Trimestre: Julio-Agosto-Septiembre
53. J. J. Rodrı́guez - Núñez, A. A. Schmidt, R. Citro and C. Noce, Journal of Superconductivity and Novel Magnetism 22, 539 - 540 (2009).
Tı́tulo: Critical Temperature and Isotope Exponent in a Two band
Model for Superconducting F e - picnitides.
54. J. J. Rodrı́guez-Nuñez, A. A. Schmidt y V. K. Giménez. Tı́tulo: Superconductivity and the isotope exponent versus the number of carriers
in a changing triangular lattice”. Revista: Superconductivity and
Science Technology 22, 1–8 (2009).
55. Autores: Castor L. Maduro - Maytı́n, Marı́a Inés Morales, Marina Maduro
11
- Maytı́n y J. J. Rodrı́guez - Núñez. Tı́tulo: ”How to rehabilitate a vascular patient?”. Journal of Phlebology and Lymphology. (2009). Versión electrónica. Siete (7) páginas.
56. Autores: A. A. Schmidt y J. J. Rodrı́guez - Núñez. Tı́tulo: ”Non Coexistence of superconductivity and ferromagnetism at mean field level: Closing the Dilema?”. Revista: Faraute, xxx, yyy
(2010).
57. Autores: J. J. Rodrı́guez - Núñez. Tı́tulo: ”Geopolı́tica del imperio estadounidense contra la unión latinoamericana y mundial”.
Revista: Estudios Culturales 5, enero - junio (2010).
7- Pre-Prints.
1. Tı́tulo: Effective Hamiltonian Derived From The Hubbard Model With
Several Orbitals Per Site. Autores: J. J. Rodrı́guez–Núñez and Rodrigo Medina.
2. Tı́tulo: Constrainted Motion In The Presence Of Gravitational And Magnetic Fields. Autores: J. J. Rodrı́guez–Núñez.
3. Tı́tulo: Particle - Particle Susceptibility from Higher Moments for the
Attractive Hubbard Model: Two Dimensions and Dilute Limite. Autores:
J. J. Rodrı́guez–Núñez, T. Schneider, H. Beck, R. Micnas and S.
Schafroth.
4. Tı́tulo: Superconductivity Beyond BCS. Autores: J. J. Rodrı́guez–
Núñez, S. Schafroth, T. Schneider, R. Micnas, H. Beck and M. Pedersen.
5. Tı́tulo: Comments to Evolution from BCS to Bose condensation: Role
of the parameter kF ξ by F. Pistolesi and G.C. Strinati, Phys. Rev. B
49, 6356 (1994). Autores: J. J. Rodrı́guez–Núñez, S. Schafroth, T.
Schneider, M. H. Pedersen and C. Rossel.
6. Tı́tulo: The Macroscopic Wave Equation for the Condensate and the
Crossover Problem in Superconductivity. Autores: J. J. Rodrı́guez–
Núñez and T. Schneider.
7. Tı́tulo: Self-Energy Due to T–Matrix Corrections: 2-D Continuum Attractive Hubbard Model. Autores: J. J. Rodrı́guez–Núñez, H. Beck,
T. Schneider and M.H. Pedersen.
8. Tı́tulo: Effective t − J Hamiltonian from the Emery model with strong
12
correlated electrons on the oxygen sites. Autores: J. J. Rodrı́guez–
Núñez, H. Beck, T. Schneider and M.H. Pedersen.
9. Tı́tulo: Effective Action for A Small Superfluid Particle Under Local
Correlations. Autores: J. J. Rodrı́guez–Núñez. In preparation.
10. Tı́tulo: Sum Rules for the Generalized Hubbard Model. Author: J. J.
Rodrı́guez–Núñez.
11. Tı́tulo: T-Matrix Equations in the Normal State for the Nearest-Neighbor
Hubbard Hamiltonian. Author: J. J. Rodrı́guez–Núñez.
12. Tı́tulo: On the Kondo Peak in the Hubbard Model. Autores: J. J.
Rodrı́guez–Núñez, E. Anda and M.S. Figueira.
13. Tı́tulo: Comment on “Superconducting phases in the presence of Coulomb
interaction: From weak to strong correlations. Autores: J. J. Rodrı́guez–Núñez and A. Schmidt
14. Tı́tulo: Ginzburg–Landau Expansion for a Two–Band Superconductor:
Thermodynamic Properties. Autores: J. J. Rodrı́guez–Núñez and J.
A. Budagosky–Marcilla.
15. Tı́tulo: Isotope effect in High Temperature Superconductors described
by an effective two dimensional tight binding band: dependence on the
neighbors. Autores: A. A. Schmidt, R. Micnas and J. J. Rodrı́guezNúñez.
16. J. J. Rodrı́guez - Núñez, A. A. Schmidt y V. K. Giménez. Tı́tulo:
”s–wave Superconductivity and the Isotope Exponent, IE, vs the number
of carriers in a triangular lattice: applied pressure.” Este pre–impreso
está en la base de datos del ICT P –Italia.
17. J. J. Rodrı́guez - Núñez, R. Romero y A. A. Schmidt. Tı́tulo: ”Towards a Phase Diagram of La1−x Srx CuO4 High–Tc Superconductor with
Two Competing Order Parameters”. Este pre–impreso está en la base
de datos del ICT P –Italia.
18. .Autores: J. J. Rodriguez-Nuez, A. A. Schmidt, R. Citro y C. Noce. Titulo: ”Critical Temperature and Isotope Exponent in a Two-band Model
for Superconducting Fe-pnictides”. Revista: Journal of Superconductivity
and Novel Magnetismo 22, 539–542 (2009).
19. J. J. Rodrı́guez-Nuñez, A. A. Schmidt y V. K. Giménez. Tı́tulo: Superconductivity and the isotope exponent versus the number of carriers
in a changing triangular lattice”. Revista: Superconductivity and
Science Technology 22, 1–8 (2009)
20. A. A. Schmidt y J. J. Rodrı́guez - Núñez. Tı́tulo: ”Non--coexistence
13
of superconductivity and ferromagnetism at mean--field level:
closing the dilema?”. Enviado para publicación.
8- Teaching Experience
1. Solid State Physics I. Master of Physics. Federal University of Santa
Maria. Santa Maria/RS. August–December 1997.
2. Solid State Physics I. Master of Physics. Venezuelan Institute of
Scientific Research (I.V.I.C.). Caracas–Venezuela. 1983.
3. Physics IV Laboratory. Undergraduate Level. Federal University of
Santa Maria. Santa Maria/RS. August–December 1997.
4. Physics IV. Federal University of Santa Maria. Santa Maria/RS. February–July 1998.
5. Physics II. Federal University of Santa Maria. Santa Maria/RS. February–Julho 1998.
6. Grader of Physics I. Instituto Universitario Pedagógico de Caracas
(IUPC). Two (2) years: 72–73.
7. Mathematical Methods I: Once (1); Mechanics: Twice (2); Statistical Physics: Once (1); Waves: Twice (2). Instituto Universitario
Pedagógico de Caracas (IUPC). Caracas–Venezuela. Anos 1974–1977.
8. Teaching Assistent de Eletrodiámica Clássica I (Jackson): Three
(3) times; Teaching Assistent of Solid State Theory I: Twice (2);
Teaching Assistent of Sound: Once (1). Purdue University. 1980–
1982. Classical Eletrodynamics I and Solid State Theory I are Ph. D.
courses.
9. Logic: Once (1); Mathematics: Once (1). Instituto Universitario Tecnológico do Estado Trujillo. 1983. Venezuela.
10. Physics I: Three (3) times. Instituto Universitario Tecnológico Região
Capital. 1984–1985. Caracas. Venezuela.
11. Electromagnetism: Four (4) times; Wave guides: Twice (2); Solid
State Electronics: Once (1). Simón Bolı́var University. Department
of Eletronics. 1985–1989. Caracas. Venezuela.
12. Statistical Physics: Once (1); Quantum Physics: Once (1); Classical Mechanics: Three (3) times; Solid State Physics: Once (1);
14
Electromagnetism: Once (1). 1989–1992. Zulia University. Physics
Departament. Maracaibo. Venezuela.
13. Solid State Physics. Université de Neuchâtel. Switzerland, 1994. Undergraduate level.
14. Biofı́sica: Twice. Universidade Federal de Santa Maria–RS. Dezembro
1998 - March 1999.
15. Experimental Physics I. Civil Engeneering. Fundação Universidade
Federal do Rio Grande. Twice. August 1999 and March 2000.
16. Fı́sica Cuántica. Universidad de Carabobo. Departamento de Fı́sica.
FACYT. Septiembre 2004 a Julio 2005.
9- Estudiantes entrenados
1. Eddy Debel. Bachelor in Physics. Zulia University. Maracaibo. Venezuela.
1990. Thesis: Padé Approximants for Quantum Wells in Electric
and Magnetic Fields
2. Jorge Budagosky. Departamento de Fı́sica. FACYT. Universidad de
Carabobo. Graduated on December 2001. Tı́tulo of his work: Ginzburg–
Landau functional for non–Fermi liquid near the superconducting critical
temperature.
3. Liliana Sánchez. Departamento de Fı́sica. FACYT. Universidad de
Carabobo. Graduated in December 2003. Tı́tulo of her Thesis: Effect
of the ’Pseudogap’ on the Thermodynamical Properties in the Superconducting Phase. Graduated with Honors.
4. João Ferreira. Departamento de Fı́sica. FACYT. Universidad de
Carabobo. Graduated in December 2003. Tı́tulo of his Thesis: Effect of
the Coulomb Repulsion on Tc in M gB2 .
5. Gavino José Sánchez. Tesis de Maestrı́a en Enseñanza de la Fı́sica
con tı́tulo Propuesta de Laboratorio en Termodinámica para Alumnos de
9no Grado. Fecha de Defensa: Enero de 2004.
10: Estudiantes bajo mi dirección
1. Jean Lucas Lopes de Lopes. Physics Department. Federal University
15
of Santa Maria/RS. Beginer research student. Fellowship from CNPq–
Brasil. September 1998–Julho 1999
2. Eleonir João Calegari. Physics Department. Universidade Federal de
Santa Maria/RS. Mr. Calegari replaces Lopes de Lopes due to health
problems of the the latter
3. Fábio Mallmann Zimmer. Mathematics Department. Federal University of Santa Maria/RS. Beginer research student. Fellowship from
FAPERGS–Brasil. From April 1999 to August 1999.
4. Marcello Borgetto. Computer Department. Federal University of Rio
Grande–RS. Beginer Research student. From June 2001 to September
2001. Fellowship from CNPq–Brasil.
5. Alexandre Braga d’Avila. Physics Department. Federal University of
Rio Grande–RS. Beginer Research student. Fellowship from FAPERGS–
Brasil. From March 2001 until September 2001.
6. Cástor L. Maduro Maytı́n. Profesor Asociado de la Facultad de
Ciencias de la Salud - UC. Esta realizando su Doctorado con el tı́tulo
Necesidad de incluir el Rango de Movilización (RDM) de la articulación
del tobillo, para mejorar el estudio de pacientes afectos de Insuficiencia
Venosa Crónica (IVC).
7. Reimer Romero. Licenciado de Fı́sica - FACYT - UC e Instructor
del Departamento de Fı́ısica de la Facultad de Ingenierı́a de la UC. El
Prof. Romero está realizando su maestrı́a, bajo mi orientación, en el Programa Ingenier’ıa y Computación con el tı́tulo Caracterización Teórico–
Cuantitativa del Efecto del Pseudogap sobre la Temperatura Crı́tica Superconductora de los Cupratos Cerámicos.
11- Asistencia a Congresos y Tı́tulos de
las Charlas.
1. APS Meeting. March 21-25, 1983. Energy Levels Of Donor Impurities In The Presence Of A Magnetic Field.
2. 33rd National Convention of ASOVAC. 1983. Caracas. Cálculos De
Energı́as Donoras En Semicondctores De Brecha Directa.
3. Workshop on Condensed Matter, Atomic and Molecular Physics. ICTP.
ITALY. September 06, 1985. Quantization Of The Landau Two16
Fluid Model Of Superfluidity.
4. 37th National Convention of ASOVAC. 1987. Venezuela. Aproximación Quasi-Fraccional Al Atomo De Hidrógeno En 2-D En
Un Campo Magnético Externo.
5. 38th National Convention of ASOVAC. 1988. The Mercerau Effect As
A Guide For High Temperature Superconductivity. Co-authored
with J. Chela–Flores and P. Martı́n.
6. 38th National Convention of ASOVAC. 1988. A New Effect On The
Critical Temperature Of Ceramic Superconductors With No
Earth Rares. Co-authored as previously.
7. Workshop of Superconductivity and Thin Films. Barbados. December,
1988. A Phenomenological Approach To High Temperature Superconductivity. Co-authored with J. Chela–Flores.
8. International Conference on Transport Properties of Superconductors.
Rio de Janeiro. 1990. Resonant Superexchange In An Anisotropic
Hubbard Model. Co-authored with Rodrigo Medina.
9. Simposio Latinoamericano de Fı́sica del Estado Sólido. (SLAFES). Caracas. Venezuela. Resonant Superexchange Pairing In Ba1−x Kx BiO3 .
Co-authored with Rodrigo Medina.
10. Research Workshop in Random Processes. Barbados. 1990. Effective
Hamiltonian For A Hubbard Model With Several Orbitals Per
Site. Co-authored with Rodrigo Medina-Arocha.
11. PHYSICS OF MAGNETISM 93. Strongly Correlated Electron Systems.
Poznań, Poland. June 21 - 24, 1993. Superexchange Inter action
by Direct Oxygen Hopping: Two and Three Dimensions. Coauthored with B. Coqblin, Hans Beck and Jerzy Konior.
12. Spring College on Superconductivity. April 27 - June 19, 1992. Effective
Hamiltonian For A Multi Band Hubbard Model.
13. Tı́tulo: Effective tJ-model for copper oxydes. Speaker: José Jesús
Rodrı́guez - Núñez. January 06, 1994. Institute of Solid State Physics.
Budapest (Hungary).
14. Workshop NFP 30 ”Hochtemperatur-Supraleitung”. Baden - Dättwill,
Switzerland. February 17 - 18, 1994. Superconductivity Beyond
BCS. Speaker: J. J. Rodrı́guez–Núñez together with S. Schafroth,
R. Micnas, T. Schneider, H. Beck and M. Pedersen.
15. Miniconférence Sur Les Systèmes Èlectroniques Fortement Corrélés. Vendredi, le 4 février 1994. Université de Fribourg, Institut de Physique, salle
17
0.51. Tı́tulo: Pairs Above Tc in the negative U Hubbard model.
Speaker: José Jesús Rodrı́guez–Núñez.
16. Tı́tulo: Existencia de Pares por Encima de Tc en el Modelo de
Hubbard Atractivo. Speaker: José Jesús Rodrı́guez–Núñez. Universität de Barcelona. Divisió de Ciències Experimentals i Matemàtiques.
Facultad de Fı́sica. Departamento de Fı́sica Fonamental. April 05, 1994.
17. Tı́tulo: Existencia de Pares para T > Tc en el Modelo de
Hubbard Negativo. Speaker: J. J. Rodrı́guez–Núñez. Universidad Autónoma de Madrid (U.A.M.), Instituto Universitario de Ciencias
de Materiales. C-XII. April 07, 1994.
18. Systèmes électroniques fortement corrélés. Université de Neuchâtel. Tı́tulo:
Tc and Pseudogap in the 2D Attractive Hubbard Model. Speaker:
J. J. Rodrı́guez–Núñez together with S. Schafroth, R. Micnas, T.
Schneider, H. Beck and M. Pedersen.
19. Tı́tulo: Evidence for the Existence of Pseudogap and Tc in the
Attractive Hubbard Model. Speaker: J. J. Rodrı́guez - Núñez.
Miniworkshop on Strong Correlations and Quantum Critical Phenomena,
ICTP (Trieste)-Italy, 4-22 July 1994.
20. Tı́tulo: Effect of Pair Fluctuations on the Electronic Properties
of the Negative Hubbard Model. Presented by: J. J. Rodrı́guez–
Núñez. In collaboration with S. Schafroth, R. Micnas, T. Schneider, H.
Beck and M. Pedersen. Poster at International Conference on Magnetic
Correlations, Metal - Insulator - Transitions, and Superconductivity in
Novel Materials, Wurzburg, 26-30 September 1994.
21. Tı́tulo: Effect of Pair Fluctuations on the Electronic Properties
of the Negative Hubbard Model. IBM-Rüschlikon, September 06,
1994. Internal talk.
22. Tı́tulo: The Effect of Microscopic Superconducting Fluctuations
above Tc in the U < 0 Hubbard Model. Technical University of
Denmark, Institute of Mathematical Modeling. September 1994. Invited
talk.
23. Tı́tulo: Pair Fluctuations and the Electronic Properties of the
Negative Hubbard Model. École Federal Polytecnique de Lussanne,
Department of Physics. November 15, 1994. Invited talk.
24. Tı́tulo: Pairs Formation Above Tc . Fourth International Conference
on Materials and Mechanism of Superconductivity, High - Temperature
Superconductors (M 2 S − HT SCIV ). Grenoble (France), July 5 - 9,
1994. Poster.
18
25. Tı́tulo: Tc and pseudogap in the 2-d attractive Hubbard model.
International Conference on Strongly Correlated Electron Systems
(SCES’94). Amsterdam, The Netherlands, August 15 - 18, 1994.
26. Tı́tulo: An effective Hubbard interaction: Between 2 and 3 dimensions. December 10, 1992. Université de Neuchâtel. Invited talk.
27. Tı́tulo: Superconducting Fluctuations above Tc . Zürich University.
Arbeitskreis: Computergestützte Physik. June 2, 1994.
28. Tı́tulo: Derivada Funcional para la Autoenergia del Modelo de
Hubbard. Universidad de La Laguna. Departamento de Fı́sica Fundamental y Experimental. October 13, 1995.
29. Tı́tulo: What are the effects of Correlations on the Self-Energy?.
Instituto de Fı́sica, Universidad Federal Fluminense. December 08, 1995.
30. Tı́tulo: Fluctuações Duplas e Superconductividade no Modelo
de Hubbard Atrativo: Além de BCS. Departamento de Fı́sica. Universidade Federal da Santa Maria. September 25, 1996.
31. Tı́tulo: Fluctuações Duplas e Superconductividade no Modelo
de Hubbard Atrativo: Além de BCS?. Departamento de Fı́sica.
Universidade Federal de Rio Grande do Sul. September 27, 1996.
32. Tı́tulo: Correlações nos Modelos t–J e Hubbard. Departamento de
Fı́sica, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.
September 1997
33. Tı́tulo: Não Lı́quido de Fermi no Modelo de Hubbard em Duas
Dimensões: Método dos Momentos. Departamento de Fı́sica. Universidade Federal de Santa Maria. November 12, 1997.
34. Tı́tulo: On the Kondo Peak in the Hubbard Model: Sum Rules and Equation of Motion Approach. Poster in collaboration with E.V. Anda and
M.S. Figueira. XX Encontro Nacional de Fı́sica da Materia Condensada.
June 10–14, 1997. Caxambu, MG (Brazil)
35. Tı́tulo: Métodos dos Momentos para o Estudo de Sistemas Fortemente Correlacionados. Seminar given at the Condensed Matter
Group. Centro de Ciências Tecnológicas da Universidade do Estado de
Santa Catarina. December 04, 1997. Invited talk.
36. Tı́tulo: Superconductivity in the Attractive Hubbard Model in Two Dimensions: Double Hubbard– Approximation. International Conference
on Strongly Correlated Electronic Systems (SCES’98). Paris, France,
14–18 July 1998. Poster by J. J. Rodrı́guez–Núñez and H. Ghost.
37. Tı́tulo: Evolution of Single–Particle Green Functions with Correlation
19
in the Hubbard Model at Half–Filling: Sum Rules for the Spectral Density. International Conference on Strongly Correlated Electronic Systems
(SCES’98). Paris, France, 14–18 July 1998. Speaker: J. J. Rodrı́guez–
Núñez in collaboration with Stefan Schafroth.
38. Tı́tulo: One-Electron Green Function for the Hubbard Model Including
Next Nearest Neighbor Hopping. International Conference on Strongly
Correlated Electronic Systems (SCES’98). Paris, France, 14–18 July
1998. Poster by R. Kirchhofer, R. Frésard, H. Beck and J. J. Rodrı́guez–
Núñez.
39. Tı́tulo: Hubbard–III like Mott Metal–Insulator for the Hubbard Model.
Universidade Federal de Santa Maria–RS. February 24, 1999 (Brazil)
40. Tı́tulo: Hubbard–III like Mott Metal–Insulator for the Hubbard Model.
Universidade Federal de Santa Maria–RS. February 24, 1999
41. Tı́tulo: Cálculo dos parâmetros de Não Lı́quido de Fermi usando o Método
dos Momentos de Nolting. Autores: Autores: J. J. Rodrı́guez–Núñez
and S. Garcia Magalhães. ENFMC–São Lorenzo, May 1999. Panel
42. Tı́tulo: Conceitos Básicos de Supercondutividade Correlacionada. Autores: J. J. Rodrı́guez–Núñez and A. A. Schmidt. Fundação Universidade de Rio Grande. Departamento de Fı́sica. July 09, 1999.
43. Workshop on Correlation Effects in Electronic Structure Calculations.
ICTP–Itália, 12–23 June, 2000. Invited, but I could not attend it.
44. XII Workshop on Strongly Correlated Electron Systems. ICTP–Italy,
17–28, 2000. Invited, but I could not attend it. Ref. 301–1232.
45. Tı́tulo: Efecto de Correlación Larga sobre Superconductividad. Centro
de Fı́sica - IVIC. 02 de Noviembre de 2000.
46. Gordon Research Conference on Superconductivity. Oxford, England.
September 09–14, 2001. Tı́tulo: BCS–BEC crossover phase diagram for
a d–wave superconductor: effect of the band structure.
47. Instituto Venezolano de Investigaciones Cientı̀ficas–IVIC, June 2002. Tı́tulo:
Spin–charge separation for non–Fermi liquid metals. Invited speaker.
48. Strongly Correlated Electron Systems–SCES’02. Krakow, Poland. July
10–13, 2002. Poster: On the derivation of the Ginzburg–Landau Functional for spin–charge separation metals: the effect of mass renormalization.
49. Institut de Physique, Université de Neuchatel, Switzerland. July 16,
2002. On the derivation of the Ginzburg–Landau Functional for spin–
charge separation metals: the effect of mass renormalization. Invited to
20
the Group of Prof. Dr. Hans Beck.
50. Strongly Correlated Electron Systems–SCES’04. Karlsruhe, Germany.
July 26–30 (2004). Poster: Metallic–BCS, Metallic–BEC and BCS–BEC
phase transitions at T = 0 K for a superconductor in the presence of
a pseudogap of the same symmetry. Autores: A. A. Schmidt, J. J.
Rodrı́guez–Nuñez and I. Ţifrea.
51. Dipartimento di Fisica ”E. E. Caianiello”. Salerno–Italy. July 24, 2004.
Invited talk. Tı́tulo: Effect of a Phenomelogical Pseudogap on Tc and
the superconducting order parameter of the same symmetry.
52. Seminario Interno del Departamento de Fı́sica, FACYT–UC. Valencia,
03 de Noviembre de 2006. Tı́tulo: SUPERCONDUCTIVIDAD DE
2D A 3D.
53. Talk: Superconductivity and the isotope exponent vs the number of carriers in a changing hopping triangular lattice. Autores: J. J. Rodrı́guez–
Nuñez, A. A. Schmidt y V. K. Giménez. ”Spin and Charge Properties
of Low Dimensional Systems”. Advance Workshop. 29 June - 4 July
2009. Sibiu - Romania.
54. Talk: The band superconductivity for (AlM g)B2 : Tc and isotope
exponent, as a function of the carrier density, n. Seminario del
Centro de Fı́sica (IVIC). December 10, 2009.
12- Distinciones.
1. Member of the International Advisory Committee of the Workshop of the
Miami University High - Temperature Superconductivity: Physical
Properties and Mechanisms. January 5 - 11, 1995. Coral Gables, Florida.
U.S.A.
2. Fellowship from the Venezuelan Scientific Council. January 1992 - December 1993. Post Doctorate
3. Fellowship from the Swiss National Foundation for a Post Doctorate.
January 1994–June 1995
4. Visiting Scientist from the CNPq (Brazil). November 01, 1995 to July
1997
5. Coordinator of the Project: F-139, Infra–Structure of Computation. Granted by CONICIT–Venezuela. 1991–1992.
21
6. Winner of the Project FAPERGS–Brazil (1997–1998).
7. Best Published Scientific Paper in Physics (1991). Zulia University–
FEC–Venezuela.
8. Fellowship by Ministerio de Educación y Cultura (Spain) with date 199706-18 as a Visiting Professor. Non accepted.
9. Visiting Professor. Departamento de Fı́sica, Universidade Federal de
Juiz de Fora. (1999). First place among 20 candidates. Position non
assumed
10. Runner Up Professor in the Opening for Professor (Theoretical Physics
and Physics Teaching) in the Department of Physics of the Physics Institute, Universidade Federal de Rio Grande do Sul (UFRGS). November
10–16, 1998. 9th Place out of 27 candidates (7.65 points)
11. Runner Up Professor in the Opening for Professor (Mathematical
Analysis) in the Mathematics Department, Fundação Universidade Federal de Rio Grande (FURG). November 17–18, 1999. 2nd Place out of 4
candidates (7.93 points)
12. Senior Member at International Centre for Theoretical Physics. Trieste–
Italy. From 2003 to 2008.
13. Co–Chairman of the oral session Multigap superconductivity at ”Seventh
International Conference on Materials and Mechanisms of Superconductivity and High Temperature Superconductors”. Rio de Janeiro, May
25–30, 2003.
14. Oral presentation at the ”International Workshop on Unconventional
Superconductivity”. Campinas–SP, May 20–24, 2003.
13- Membrecı́as.
1. Swiss Physical Society (SPS). Since 1993.
2. Brasilian Physical Society (SBF). Since February 1996.
3. American Physical Society (APS). Since April 01, 2002.
22
14- Artı́culos publicados desde 1995
1. Excitation Spectrum of the Attractive Hubbard Model. Autores: R. Micnas, M. H. Pedersen, S. Schafroth, T. Schneider, J. J. Rodrı́guez–
Núñez and H. Beck, Physical Review B 52, 16223 (1995).
2. Moment Approach for the 2D Attractive Hubbard Model. Autores: J.
J. Rodrı́guez–Núñez, C. E. Cordeiro and A. Delfino, Physica A, 232,
408 (1996).
3. Normal State Properties of the Attractive Hubbard Model: Moment Approach. Autores: T. Schneider, M. H. Pedersen and J. J. Rodrı́guez–
Núñez, Z. fur Physik B 100, 263 (1996).
4. Some Global Properties of the Attractive Hubbard Model in the Superconducting Phase: T–Matrix Approximation. Autores: S. Schafroth, J. J.
Rodrı́guez–Núñez and H. Beck, Journal of Physics: Condensed Matter
9, L111 (1997).
5. Double Fluctuations in the Attractive Hubbard Model: Ladder Approximation. Autores: S. Schafroth and J. J. Rodrı́guez–Núñez.
6. Superconducting Properties of the Attractive Hubbard Model. Autores:
M. H. Pedersen, J. J. Rodrı́guez–Núñez, H. Beck, T. Schneider and
S. Schafroth, Z. fur Physik B 103, 21 (1997).
7. Anomalous Superconductivity in the tJ Model: Moment Approach. Autores: M. P. Sorensen and J. J. Rodrı́guez–Núñez, Physica C 274,
323 (1997).
8. Self-Consistent Calculation of Particle–Hole Diagrams on the Matsubara
Frequency: FLEX Approximation. Autores: J. J. Rodrı́guez–Núñez
and S. Schafroth, International Journal of Modern Physics C 8, 1145
(1997).
9. Beyond the Hubbard–I Solution with a One–Pole Self–Energy at Half–
Filling Within the Moment Approach: Non–Linear Effects. Autores: J.
J. Rodrı́guez–Núñez and M. A. de Menezes, Physica A 257, 501–508
(1998)
10. Mott Metal-Insulator Transition in the Two–Dimensional Hubbard Model
at Half–Filling with Lifetime Effects Within the Moment Approach. Autores: J. J. Rodrı́guez–Núñez and S. Schafroth, Journal of Physics:
Consensed Matter (1998, Letters).
11. Erratum: Excitation Spectrum of the Attractive Hubbard Model. Au23
tores: R. Micnas, M. H. Pedersen, S. Schafroth, T. Schneider, J. J.
Rodrı́guez–Núñez y H. Beck, Phys. Rev. B 54, 3662 (1996).
12. Tı́tulo: Evolution of Single-Particle Green Functions with Correlation in
the Hubbard Model at Half–Filling: Sum Rules for the Spectral Density.
Autores: J. J. Rodrı́guez–Núñez, S. Schafroth e H. Beck. Physica B
(1998)
13. Tı́tulo: One-Electron Green Function for the Hubbard Model Including
Next Nearest Neighbor Hopping. Autores: R. Kirchhofer, R. Frésard, H.
Beck e J. J. Rodrı́guez–Núñez.
14. Tı́tulo: Superconductivity in the Attractive Hubbard Model in Two Dimensions: The Double Hubbard–I Approximation. Autores: J. J. Rodrı́guez–
Núñez and H. Ghosh. Helvetica Physica Acta 71, 658–566 (1998)
15. Tı́tulo: One- and Two–Particle Green Functions in the Hubbard Model
with Lifetime Effects at Half Filling within the Moment Approach. Autores: S. Schafroth and J. J. Rodrı́guez–Núñez. Phys. Rev. B 60,
5366 (1999).
16. Tı́tulo: Some sum rules for non-Fermi Liquids: new applications taking
into account the mass renormalization. Autores: J. J. Rodrı́guez–
Núñez, I. Ţifrea and S. G. Magalhães. Phys. Rev. B 62, 4026 (2000).
17. Tı́tulo: Superconducting Critical Temperature, for s–wave Symmetry Order Parameter, for Intermediate Correlated Electron Systems. Autores:
J. J. Rodrı́guez–Núñez and A. A. Schmidt. Physica C xxx, xxx
(2000).
18. Tı́tulo: Effect of local correlations on s–wave Symmetry Superconductivity. Autores: A. A. Schmidt e J. J. Rodrı́guez–Núñez. Int. J. Mod.
Phys. C 11, 1149 (2000).
19. Tı́tulo: Theory of isotope exponent for high critical temperature superconductors. Autores: E. V. L. de Mello and J. J. Rodrı́guez–Núñez,
Physica C 364–365, 144-146 (2001).
20. Tı́tulo: Metal–Insulator transition driven by short–range ferromagnetic
correlations. Autores: J. J. Rodrı́guez–Núñez, M. S. Figueira, E. V.
Anda, C. I. Ventura and J. Calegari, Physics Letters A 288, 220-226
(2001).
21. Tı́tulo: The role of the chemical potential in the Bose–Einstein condensation and for a d-wave superconductor. Published in the Einstein
Simposium. University of Carabobo (2001). Editor: Nelson Falcón.
22. Tı́tulo: BCS to Bose–Einstein crossover phase diagram at zero temper24
ature for a dx2 −y order parameter superconductor: dependence on the
tight binding structure. Autores: M. B. Soares, F. Kokubun, J. J.
Rodrı́guez–Núñez and O. Rendón. Phys. Rev. B 65, 174506 (2002).
23. Tı́tulo: On the Derivation of the Ginzburg–Landau Functional for Non–
Fermi Liquids: The Role of the Renormalization Mass Factor. Autores:
I. Ţifrea, J. Budagosky M. and J. J. Rodrı́guez–Núñez. Phys. Rev.
B 66, 104507 (2002).
24. Tı́tulo: Derivation of the Ginzburg–Landau Functional for Non–Fermi
Liquids: Renormalization of the Mass. Autores: J. J. Rodrı́guez–
Núñez, J. Budagosky M. and I. Ţifrea. Acta Physica Polonica B 34,
383 (2003).
25. Tı́tulo: Replay to Comment on ”BCS to Bose–Einstein crossover phase
diagram at zero temperature for a dx2 −y2 order parameter superconductor:
Dependence on the tight–binding structure”. Autores: J. J. Rodrı́guezNúñez, O. Álvarez–Llamoza, E. Orozco, O. Rendón, M. E. Soares and
F. Kokubun. Phys. Rev. B 68, 066502 (2003).
26. Tı́tulo: Tc and ∆o in a phenomenological ”pseudogap” model Autores:
D. Romero, L. Sánchez and J. J. Rodrı́guez-Núñez. Braz. J. Phys.
33, 750 (2003). (Proceedings of the International Workshop on Unconventional Superconductivity). Campinas–SP, May 20–24, 2003.
27. Tı́tulo: Superconducting critical temperature vs total electron concentration: two band superconductors. Autores: J. J. Rodrı́guez–Núñez and
A. A. Schmidt. Phys. Rev. B 68, 224512 (2003).
28. Tı́tulo: The BCS–BE crossover phase diagram at T = 0 K for a d–
wave superconductor: the importance of the Debye frequency and the
tight binding band structure.. Autores: J. J. Rodrı́guez–Núñez, A. A.
Schmidt, O. Alvarez–Llamoza and E. Orozco. J. Phys.: Condens. Matter
16, 4495–4504 (2004).
29. Tı́tulo: Effect of a pseudogap on the superconducting critical temperature
and on the superconducting order parameter of the same symmetry. Autores: J. J. Rodrı́guez–Nuñez. A. A. Schmidt and H. Beck, J. Phys.:
Conden. Matter 17, 323–340 (2005).
30. Tı́tulo: Evidence for a metallic–like state in the T = 0K phase diagram
of a high temperature superconductor. Autores: A. A. Schmidt, J. J.
Rodrı́guez–Nuñez y I. Ţifrea, European Physics Journal B 46, 187–
191 (2005).
31. Tı́tulo: A d–wave pseudogap model beyond BCS for the cuprates. Autores: J. J. Rodrı́guez–Nuñez, A. A. Schmidt, H. Beck y M. Valera,
25
Physica B 378–380, 461–462 (2006).
32. Tı́tulo: Erratum: Superconducting critical temperature and the isotope
exponent versus total electron concentration for two–band superconductors: Effect of the band structure. Autores: J. J. Rodrı́guez–Nuñez y
A. A. Schmidt, Phys. Rev. B 73, 139903 (2006). Dos páginas.
33. Autores: J. J. Rodrı́guez–Nuñez, A. A. Schmidt, H. Beck y M. Valera,
J. Phys. : Condens. Phys. xxx, yyy (2006). Tı́tulo: A pseudogap model
beyond BCS for the cuprates: the effect of order parameter symmetry,
cutoff frequency and band structure.
34. J. J. Rodrı́guez - Núñez, A. A. Schmidt, A. Bianconi y A. Perali,
Physica C, 468, 2299–2304 (2008).
35. V. K. Giménez, J. J. Rodrı́guez - Núñez y A. A. Schmidt. F ARAU T E
3, 31–39 (2008).
36. S. Rafeh, J. J. Rodrı́guez - Núñez y Roba Ezzedin. EDU CERE
46, Trimestre: Julio–Agosto–Septiembre (2009) Tı́tulo: ”’Efecto del
Enfoque Constructivista en Estudiantes Universitarios”..
37. J. J. Rodrı́guez-Nuñez, A. A. Schmidt y V. K. Giménez. Tı́tulo: Superconductivity and the isotope exponent versus the number of carriers
in a changing triangular lattice”. Revista: Superconductivity and
Science Technology 22, 1–8 (2009)
38. .Autores: J. J. Rodriguez-Nuez, A. A. Schmidt, R. Citro y C. Noce. Titulo: ”Critical Temperature and Isotope Exponent in a Two-band
Model for Superconducting Fe-pnictides”. Revista: Journal of
Superconductivity and Novel Magnetismo 22, 539–542 (2009).
39. Autores: Castor L. Maduro - Maytı́n, Marı́a Inés Morales, Marina Maduro
- Maytı́n y J. J. Rodrı́guez - Núñez. Tı́tulo: ”How to rehabilitate
a vascular patient?”. Journal of Phlebology and Lymphology. (2009).
Versión electrónica. Siete (7) páginas.
40. Autores: A. A. Schmidt y J. J. Rodrı́guez - Núñez. Tı́tulo: ”Non Coexistence of superconductivity and ferromagnetism at mean field level: Closing the Dilema?”. Revista: Faraute, xxx, yyy
(2010).
41. Autores: J. J. Rodrı́guez - Núñez. Tı́tulo: ”Geopolı́tica del imperio estadounidense contra la unión latinoamericana y mundial”.
Revista: Estudios Culturales 5, enero - junio (2010).
26
15- Citaciones.
Paper No. 1: R. Micnas, M. H. Pedersen, S. Schafroth, T. Schneider, J. J.
Rodrı́guez–Núñez and H. Beck, Physical Review B 52, 16223 (1995).
1. P. Ziesche, Olle Gunnarsson, W. John and H. Beck, Phys. Rev. B 55,
10270 (1997). Tı́tulo: Two–site Hubbard model, the Bardeen–Schrieffer
model, and the concept of correlation entropy.
2. Oleg Tchernyshyov, cond-mat/9705124; Physical Rev. B 56, 3372 (1997);
Tı́tulo: Noninteracting Cooper pairs iside a pseudogap.
3. R. Micnas y S. Robaszkiewicz, in Nato Material Aspects of HTSC: 10
Years After the Discovery. Kluwer (1997)
4. R. Micnas y T. Kostyrko, in Recent Progress in High Temperature Superconductivity, volume 475. Springer (1996)
5. J.R. Engelbrecht, M. Randeria and C.A.R. Sá de Melo, Phys. Rev. B
55, 15153 (1997). Tı́tulo: BCS to Bose crossover: Broken–symmetry
state.
6. S. Stintzing and W. Zwerger, Phys. Rev. B 56, 9004 (1998). Tı́tulo:
Ginzburg–Landau theory of superconductors with short coherent length.
7. V.M. Loktev and S.G. Sharapov, cond-mat/9706285
8. J.M. Singer et al, Phys. Rev. B 54, 1286 (1996)
9. J. Ranniger and J.M. Robin, Solid State Commun. 98, 559 (1995)
10. J. Ranniger and J.M. Robin, Phys. Rev. B 53, R11961 (1996). Tı́tulo:
Manifestations of the pseudogap in the boson–fermion model forBose–
Einstein–condensation–direven superconductivity.
11. High Tc Update, Nota Bene July 1, 1994
12. J.R. J.R. Engelbrecht, A. Nazarenko, M. Randeria and E. Dagotto, Pseudogap above Tc in a model with dx2 −y2 pairing, cond-mat/9705166; Phys.
Rev. B 57, 13406 (1998)
13. B. Jankó, J. Maly and K. Levi, cond-mat/9705144; Phys. Rev. B 56,
R11407 (1997). Tı́tulo: Pseudogap effects induced by resonant pair scattering.
14. J. Ranninger, J.M. Robin and M. Eschrig, Phys. Rev. Letters 74, 4027
(1997). Tı́tulo: Superfluid precursor effects in a model of hybridized
27
bosons and fermions. See Ref. 10 of this paper.
15. N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995). Tı́tulo:
Deviations from Fermi-liquid behavior above Tc in 2D short coherence
lenght superconductors. Ref. 15 of this paper.
16. Ph. D. Thesis of J.M. Singer (1995). University of Regensburg. In
German
17. M.Y. Kagan, R. Frésard, M. Capezzali and H. Beck, cond-mat/9704136.
To be published in Phys. Rev. B 57, 5995 (1998). Tı́tulo: One–electron
spectral functions of the attractive Hubard model for intermediate coupling.
18. H. Eskes and A.M. Oleś, Phys. Rev. B 55, 2032 (1997). Tı́tulo: Spectral
properties of the large–negative–U Hubbard model.
19. J. Ranninger and J.-M. Robin, cond-mat/9702042
20. Thomas Meintrup’s Ph. D. Thesis (1995). Université de Neuchâtel
21. J. Ranninger et al, Physica C 253, 279 (1995)
22. J.M. Singer, M.H. Pedersen and T. Schneider, Physica B 230 - 232, 955
(1997)
23. M.H. Pedersen, T. Schneider and H. Beck, Acta Physica Polonica A 91,
419 (1997)
24. Diploma: R. Kirchhofer, Université de Neuchâtel (1997)
25. J. Ranninger and J.-M. Robin, Phys. Rev. B 56, 8330 (1997). Tı́tulo:
Pseudogap in underdoped high–Tc –superconductors in the framework of
the boson–fermion model.
26. B. Kyung, E. G. Klepfish and P.E. Kornilovitch, cond-mat/9802239;
Phys. Rev. Lett. 80, 3109 (1998). Tı́tulo: Density–induced breaking
of pairs in the attractive Hubbard model.
27. Mohit Randeria, cond-mat/9710223. Varenna Lectures, 1997
28. V. M. Loktev, R. M. Quick and S. G. Sharapov, cond-mat/9804026 Superconducting Condensate Formation in Quasi–2D Systems with Arbitrary Carrier Density, JET P Lett. 65, 182–188 (1997).
29. Q. Chen, I. Kosztin, B. Jankó and K. Levin, cond-mat/9805032. Superconducting Transitions from the Pseudo–Gap State: D–Wave Symmetry, Lattice, and Low Dimensional Effects; Phys. Rev. B 59, 7083–7093
(1999).
30. J. Mali, B. Jankó and K. Levin, cond-mat/9805018. Pairing Correlations
and the Pseudo–Gap State: Application of the ”Pairing Approximation”
28
Theory
31. J. E. Engelbrecht and A. Nazarenko, cond–mat/9806223. Vortex–pair
unbinding in the normal state of two–dimensional, short coherence–length
superconductors
32. P. E. Kornilovitch and B. Kyung, cond–mat/9808107. Pseudogap and
Photoemission Spectra in the Attractive Hubbard Model; J. Phys.: Condens. Matter 11, 741 (1999).
33. M. Letz, cond–mat/9905018. Crossover from BCS superconductivity to
BEC of pairs: The role of the lifetime of the pairs.
34. M. Letz and R. J. Gooding, J. Phys.: Condens. Matter 10, 6931–6951
(1998). A self–consistent, conserving theory of the attractive Hubbard
model in two dimensions
35. M. Capezzali and H. Beck, cond–mat/9809349, a ser publicado em Physica C (1998): Excitation spectrum of the two–dimensional attractive Hubbard model
36. G. Preosti, Y. M. Vilk and M. R. Norman, Evolution of the Pairing
Pseudogap in the Spectral Function with Interplane Anisotropy. August
26, 1998; Phys. Rev. B 59, 1474 (1999)
37. P. Pieri and G. C. Strinati, On the correct strong limit in the evolution from BCS superconductivity to Bose–Einstein condensation. cond–
mat/9811166; ibidem, Phys. Rev. B 61, 15370 (2000).
38. V. P. Gusynin, V. M. Loktev e S. G. Sharapov, Phase Fluctuations and
Single Fermion Spectral Density in 2–D Systems with Attraction. cond–
mat/9811207
39. O. V. Tchernyshyov, Fermion pseudogap from fluctuations of an order
parameter. Ph. D. thesis (1998). Columbia University.
40. M. Capezzali, Tese de Doutorado, Universitê de Neuchâtel, December
10, 1998. Superconductivity in Two Dimensions: Spectral Properties of
the Attractive Hubbard Model and Dynamics of Vortices
41. E. Babaev and H. Kleinert, Phys. Rev. B 59, 12083 (1999). Tı́tulo:
Nonperturbative XY-model approach to strong coupling superconductivity
in two and three dimensions.
42. E. Babaev, Phys. Rev. B 63, 184514 (2001). Tı́tulo: Thermodynamics of
the crossover from weak- to strong-coupling superconductivity.
43. I. Kosztin, Q. Chen, Y. J. Kao and K. Levin, Pair Excitations, Collective Modes and Gauge Invariance in the BCS–Bose–Einstein Crossover
Scenario, cond–mat/9906180, ibidem, Phys. Rev. B 61, 11662 (2000).
29
44. B. Kyung, Resonance state in the 2D attractive Hubbard model. Physica
B 270, 233–237 (1999)
45. M. Keller, W. Metzner and U. Schollwock, Thermodynamics of a superconductor with strongly bound Cooper pairs, Phys. Rev. B 60, 3499–3507
(1999).
46. T. Ichinomiya and K. Yamada, J. Phys. S. Jpn. 68, 981–986 (1999).
Strong Coupling Theory on Pseudogap in High–Tc Superconductor.
47. V. M. Loktev and V. M. Tirkowski, Green function of fermions in 2D
superconducting Frolich model with inhomogeneous order parameter, Low
Temp. Phys. 26, No. 2, 97 (2000).
48. D. Rohe and W. Metzner, cond–mat/0011500; Phys. Rev. B 63, 224509
(2001). Tı́tulo: Pair Fluctuation Induced Pseudogap in the Normal Phase
of the Two–Dimensional Attractive Hubbard Model at Weak Coupling.
49. L. Arrachea and A. A. Aligia, Phys. Rev. B 61, 9686 (2000). Pairing
correlations in a generalized Hubbard model for the cuprates.
50. T. Hotta, M. Mayr, and E. Dagotto, Phys. Rev. B 60, 13085 (2001).
Tı́tulo: Pseudogap formation in an electronic system with d-wave attraction at low density.
51. V. M. Loktev, R. M. Quick and S. G. Sharapov, cond–mat/0012082.
Phase Fluctuations and Pseudogap Phenomena, Physics Reports 349,
1–123 (2001).
52. Y. Yanase, T. Jujo and K. Yamada, cond–mat/0010281. Tı́tulo: Theory on Superconducting Transition from Pseudogap State. J. Phys. Soc.
Japan 69, 3664–3677 (2000).
53. M. Himmerich and M. Letz, Phys. Rev. B 64, 144519 (2001). Tı́tulo:
Electron gas with a strong pairing interaction: Three-particle correlations
and the Thouless instability.
54. S. Allen, cond–mat/0012301. Tı́tulo: Approximation auto–cohérente à
deux particules, pseudogap et supraconductivité dans le modèle de Hubbard attractif. Ph. D. Thesis. Sherbrooke University (August 2000).
55. S. Koikegami and K. Yamada, J. Phys. S. Jpn. 69, 768–776 (2000).
Tı́tulo: Antiferromagnetic and Superconducting Correlations on the d-p
Model.
56. A. Romano and J. Ranninger, Phys. Rev. B 62, 4066 (2000). Tı́tulo:
Hall coefficient and angle-resolved photoemission in systems with strong
pair fluctuations.
57. M. Keller, W. Metzner, and U. Schollwöck, Tı́tulo: Dynamical mean–
30
field theory for pairing and spin gap in the attractive Hubbard model.
cond–mat/0101047; ibidem, Phys. Rev. Lett. 86, 4612 (2001).
58. B. Kyung, Phys. Rev. B 63, 014502 (2001). Tı́tulo: Spectral properties
and pseudogaps in a model with d-wave pairing symmetry.
59. Z. Li and K. Yamada, J. Phys. S. Jpn. 70, 797–807 (2001). Tı́tulo: Study
of Superconductivity Based on the Nozies-Schmitt-Rink Formalism.
60. Y. Yanase and K. Yamada, cond–mat/0103214. Tı́tulo: Pseudogap Phenomena and Superconducting Fluctuations in Hubbard Model for High–Tc
Cuprates; ibidem, J. Phys. Soc. Japan 70, No. 6 pp. 1659–1680 (2001)
61. Y. Yanase, Theory of Electric Transport in the Pseudogap State of High–
Tc Cuprates, J. Phys. Soc. Japan 71, No. 1 pp. 278–292 (2002) (2001).
62. T. Domanski and J. Ranninger, Phys. Rev. B 63, 134505 (2001). Nonlinear feedback effects in coupled boson-fermion systems.
63. X.-Z. Yan, cond-mat/0107099 v3. Fluctuation Effect in an Electron
Model with d–Wave Attraction.
64. J. Ranninger and A. Romano. Tı́tulo: The Pseudogap Phenomemon in
High–Tc Superconductors. Acta Physica Polonica A 97, 157 (2000).
65. X.-Z. Yan, cond–mat/0107099 v4. Tı́tulo: Pairing–fluctuation effect in
quasi–two–dimensional superconductors.
66. X.-Z. Yan, cond–mat/0201382 v3. Tı́tulo: Fluctuation effect in an Elctron
Model with d–Wave Attraction.
67. A. Perali, P. Pieri, G. C. Strinati and C. Castellani, cond–mat/0202084.
Tı́tulo: Pseudogap and spectral function from superconducting fluctuations to to the bosonic limit; ibidem, Phys. Rev. B 66, 024510 (2002).
68. H. Yokoyama, Prog. Theor. Phys. 108, 59 (2002). Tı́tulo: Variational
Monte Carlo Studies of Attractive Hubbard Model. I.
69. R. Micnas, cond–mat/0211561. Tı́tulo: On the crossover from BCS superconductivity to Bose condensation; ibidem, Acta Physica Polonica A
100, 177–194 (2001).
70. A. Sewer and H. Beck, Phys. Rev. B 64, 224524 (2001). Thermodynamic
properties of the attractive Hubbard model.
71. H. Ghosh and A. Singh, Phys. Rev. B 66, 064530 (2002). Interplay of
staggered flux phase and d-wave superconductivity.
72. Y. Yanase, T. Jujo, T. Nomura, H. Ikeda, T. Hotta, and K. Yamada,
cond–mat/0309094. Tı́tulo: Theory of Superconductivity in Strongly
Correlated Electron Systems. To appear in Physics Reports.
31
73. R. Micnas, S. Robaszkiewicz and A. Bussmann–Holder, cond–mat/0309434.
Tı́tulo: Superconductivity in a two–component model with local electron
pairs. To appear in J. Superconductivity.
74. J. Ranninger and L. Tripodi, Phys. Rev. B 67, 174521 (2003). Tı́tulo:
From phase- to amplitude–fluctuation–driven superconductivity in systems with precursor pairing; ibidem, cond–mat/0212332.
75. M. Torio, A. A. Aligia, and H. A. Cecatto, Phys. Rev. B 67, 165102
(2002). Tı́tulo: Phase diagram of the t–t’–U chain at half filling.
76. B. Kyung, S. Allen, and A.-M. Tremblay, Phys. Rev. B 64, 075116
(2001). Tı́tulo: Pairing fluctuations and pseudogaps in the attractive
Hubbard model.
77. T. Ichinomiya, J. Phys. Soc. Jpn. 73, No. 3, 643–648 (2004). Tı́tulo:
Temperature and Interaction Dependence of the Electron Spectrum in a
2D Attractive Hubbard Model.
78. P. Pieri, L. Pisani, and G. C. Strinati, cond–mat/0406099. Tı́tulo: BCS–
BEC crossover at finite temperature in the broken–symmetry phase; ibidem, Phys. Rev. B 70, 094508 (2004).
79. R. J. Gooding, F. Marsiglio, S. Verga and K. S. D. Beach, J. Low Temp.
Phys. 136, 191 (2004). Tı́tulo: Demonstration of a Robust Pseudogap
in a Three–dimensional Correlated Electronic System.
80. R. Micnas, S. Robaszkiewicz y A. Baussmann-Holder, Tı́tulo: Two–
Component Scenarios for Non–Conventional (Exotic) Superconductors.
En ”Superconductivity in Complex Systems”. Structure and Bonding
Series. Springer Verlag 2005. Editores: K. A. Muller y A. Bussmann–
Holder.
Paper No. 2: J. J. Rodrı́guez–Núñez and H. Beck, J. Phys.: Condens.
Matter 5, L163 (1993).
1. Kh. Eid, M. Matlak and J. Zieliński, Phys. Status Solidi (b), 187, 589
(1995)
2. Thesis of Doctor Candidate of Yu. Maxim Kagan (1994). In russian
3. Ben Hur Bernard and Roberto Iglesias, Phys. Rev. B 50, 9522 (1994)
4. Ph. D. Thesis of B.H. Bernard. Universidade Federal de Rio Grande do
Sul. Brazil (1995). In portugues
5. E Kolley, W Kolley and R Tietz, J. Phys.: Condens. Matter 10, 657
32
(1998)
Paper No. 3: P. Martin, J. J. Rodrı́guez–Núñez and J. L. Marquez, Phys.
Rev. B 45, 8359 (1992)
1. A. González, L. Quiroga and B.A. Rodrı́guez, Few–Body Systems 21, 47
(1996)
2. L. Quiroga, A. Camacho and A. González, J. Phys.: Condens. Matter
7, 7517 (1995)
3. O. Mustafa, J. Phys.: Condens. Matter 5, 1327 (1993)
4. V.M. Villalba and R. Pino, J. Phys.: Condens. Matter 8, 8067 (1996)
5. O. Mustafa, J. Phys.: Condens. Matter 8, 8073 (1996)
6. R. Pino and V. Villalba, cond–mat/9901204; ibid., physica status solidi
(1999). Scaled variational computation of the energy spectrum of the two–
dimensional hydrogenic donor in a magnetic field of arbitrary strength.
7. E. Castro and P. Martin, J. Phys. A: Math. Gen. 33, 5321 (2000). Eigenvalues of the Schrödinger equation with Coulomb potentials plus linear
and harmonic radial terms.
8. V. M. Villalba and R. Pino, Energy Spectrum of a Relativistic Two–
Dimensional Hydrogen–like Atom in a Constant Magnetic Field of arbitrary strength. cond–mat/0101331.
9. V. M. Villalba, R. Pino, Physica E 10, 561–568 (2001). Tı́tulo: Energy Spectrum of a relativistic two–dimensional hydrogen–like atom in a
constant magnetic field of arbitrary strenght.
Paper No. 4: J. J. Rodrı́guez–Núñez, R. Medina and P. Silva, Phys. Status
Solidi (b) 176, 441 (1993)
1. Ben Hur Bernard y Roberto Iglesias, Phys. Rev. B 50, 9522 (1994)
Paper No. 5: J. J. Rodrı́guez–Núñez, S. Schafroth, R. Micnas, T. Schneider, H. Beck and M.H. Pedersen, Physica B 206-207, 654 (1995)
1. R. Micnas and S. Robaszkiewicz, in Nato Material Aspects of HTSC: 10
33
Years After the Discovery. Kluwer (1997)
2. R. Micnas y T. Kostyrko, en Recent Progress in High Temperature Superconductivity, volume 475. Springer (1996)
3. Ph. D. Thesis of J.M. Singer (1995). University of Regensburg. In
German
Paper No. 6: J. J. Rodrı́guez–Núñez, S. Schafroth, R. Micnas, T. Schneider, H. Beck and M. H. Pedersen, Physica C 98, 315 (1995)
1. R. Micnas and S. Robaszkiewicz, in Nato Material Aspects of HTSC: 10
Years After the Discovery. Kluwer (1997)
2. R. Micnas y T. Kostyrko, en Recent Progress in High Temperature Superconductivity, volume 475. Springer (1996)
3. Ph. D. Thesis of J.M. Singer (1995). University of Regensburg. In
German
Paper No. 7: T. Schneider, M. H. Pedersen and J. J. Rodrı́guez–Núñez, Z.
für Physik B 100, 263 (1996).
1. Ph. D. Thesis of M. H. Pedersen. University of Zürique (1996)
2. T. Hermann and W. Nolting, cond-mat/9702022; also, J. Magn. Magn.
Mater. 170, 253 (1997)
3. T. Herrmann and W. Nolting, cond-mat/9703129
4. J.M. Singer et al, Phys. Rev. B 54, 1286 (1996)
5. H. Eskes and A.M. Oleś, Phys. Rev. B 55, 2032 (1997)
6. M.Y. Kagan, R. Frésard, M. Capezzali and H. Beck, cond-mat/9704136.
To be published Phys. Rev. B 57, No. 9, 1 March 1998
7. Diploma: Roland Kirchhofer, Université de Neuchâtel (1997)
8. F. Mancini, cond-mat/9803276. Conservation of the Spectral Moments
in the n–Pole Approximation; ibidem, Phys. Lett. A 249, 231 ((1998).
9. D. Meyer, W. Nolting, G.G. Reddy e A. Ramakanth, Phys. Stat. Sol.
B 208, 473 (1998) Ferromagnetism within the periodic Anderson model:
A new approximation scheme
10. M. Potthoff, T. Herrmann, T. Wegner e W. Nolting, Phys. Status Solidi
34
(b) 210, 199 (1998). The moment sum rule and its consequences for
ferromagnetism in the Hubbard model
11. F. Mancini, Phys. Lett. A 249, 231–238 (1998). Conservation of the
spectral moments in the n–pole approximation.
12. Massimiliano Capezzali, Tese de Doutorado, Universitê de Neuchâtel,
December 10, 1998. Superconductivity in Two Dimensions: Spectral
Properties of the Attractive Hubbard Model and Dynamics of Vortices
13. S. Allen, cond–mat/0012301. Approximation auto–cohérente à deux particules, pseudogap et supraconductivité dans le modèle de Hubbard attractif. Ph. D. Thesis. Sherbrooke University (August 2000).
14. F. Mancini and A. Avella, Review on the Hubbard Model within the Equations of Motion Approach. Publicado en Advances in Physics (2004).
Paper No. 8: J. J. Rodrı́guez–Núñez, S. Schafroth, R. Micnas, T. Schneider, H. Beck and M. H. Pedersen, Physica C 235–249, 2341 (1995)
1. Ph. D. Thesis of J.M. Singer. University of Regensburg (1995). In
German
Paper No. 9: J. J. Rodrı́guez–Núñez, B. Coqblin, H. Beck and J. Konior,
Acta Physica Polonica A 85, 317 (1994)
1. Kh. Eid, M. Matlak and J. Zieliński, Phys. Status Solidi (b), 187, 589
(1995)
2. E Kolley, W Kolley and R Tietz, J. Phys.: Condens. Matter 10, 657
(1998)
Artı́culo No. 10: S. Schafroth, J. J. Rodrı́guez–Núñez and H. Beck, Journal
of Physics: Condensed Matter 9, L111 (1997)
1. M. Y. Kagan, R. Frésard, M. Capezzali and H. Beck, cond-mat/9704136.
Phys. Rev. B 57, No. 9, 1 March 1998
2. M. Capezzali, Ph. D. Thesis, Universitê de Neuchâtel, December 10,
1998. Superconductivity in Two Dimensions: Spectral Properties of the
Attractive Hubbard Model and Dynamics of Vortices.
35
3. V. M. Loktev, R. M. Quick and S. G. Sharapov, cond–mat/0012082.
Phase Fluctuations and Pseudogap Phenomena. To appear in Physics
Reports.
4. C. P. Moca and E. Macocian, cond–mat/0103330. Transport Properties
Calculation in the Superconducting State for a Quasi–Two Dimensional
System.
5. Peter Brusov, in Mechanisms of High Temperature Superconductivity.
Volume I. (Rostov University Publishing, Rostov, 1999).
Paper No. 11: M. H. Pedersen, J. J. Rodrı́guez–Núñez, H. Beck, T. Schneider and S. Schafroth, Z. fur Physik B 103, 21 (1997)
1. M.Y. Kagan, R. Frésard, M. Capezzali and H. Beck, cond-mat/9704136.
Phys. Rev. B 57, No. 9, 1 March 1998
2. J. Mali, B. Jankó and K. Levin, cond-mat/9805018. Pairing Correlations
and the Pseudo-Gap State: Application of the ”Pairing Approximation”
Theory
3. Massimiliano Capezzali, Ph. D. Thesis, Universitê de Neuchâtel, December 10, 1998. Superconductivity in Two Dimensions: Spectral Properties
of the Attractive Hubbard Model and Dynamics of Vortices
4. M. Keller, W. Metzner and U. Schollwock, Thermodynamics of a superconductor with strongly bound Cooper pairs, Phys. Rev. B 60, 3499–3507
(1999).
5. V. M. Loktev, R. M. Quick and S. G. Sharapov, cond–mat/0012082.
Phase Fluctuations and Pseudogap Phenomena. To appear in Physics
Reports.
6. C. P. Moca and E. Macocian, cond–mat/0103330. Transport Properties
Calculation in the Superconducting State for a Quasi–Two Dimensional
System; also, Physica C 356, 268–276 (2001). Tı́tulo: Transport properties calculation in the superconducting state for a quasi–two dimensional
system.
7. H. Yokoyama, Prog. Theor. Phys. 108, 59 (2002). Tı́tulo: Variational
Monte Carlo Studies of Attractive Hubbard Model. I.
8. R. Micnas, cond–mat/0211561. Tı́tulo: On the crossover from BCS superconductivity to Bose condensation; ibidem, Acta Physica Polonica A
100, 177–194 (2001).
36
9. T. K. Kopeć, Phys. Rev. B 65, 054509 (2002). Tı́tulo: Superconducting phase coherence and pairing gap in the three–dimensional attractive
Hubbard model.
Paper No. 12: J. J. Rodrı́guez–Núñez and S. Schafroth, J. Phys.: Condens.
Matter 10, L391–L400 (1998)
1. High Tc UPDATE. Nota Bene. November 1997.
2. C. P. Moca and E. Macocian, Physica C 356, 268–276 (2001). Tı́tulo:
Transport properties calculation in the superconducting state for a quasi–
two dimensional system.
Paper No. 13: J. J. Rodrı́guez–Núñez and M. H. Pedersen. Preprint sent
to the High Tc UPDATE
1. High Tc UPDATE. Nota Bene. Vol. 9, No. 12. June 15, 1995.
Paper No. 14: J. J. Rodrı́guez–Núñez, H. Beck, J. Konior, A. M. Olés and
B. Coqblin, Phys. Lett. A 197, 173 (1995)
1. E Kolley, W Kolley and R Tietz, J. Phys.: Condens. Matter 10, 657
(1998)
Paper No. 15: Self-Consistent Calculation of Particle–Hole Diagrams on the
Matsubara Frequency: FLEX Approximation. Autores: J. J. Rodrı́guez–
Núñez and S. Schafroth, International Journal of Modern Physics C 8, 1145
(1997).
1. S. Allen, cond–mat/0012301. Approximation auto–cohérente à deux particules, pseudogap et supraconductivité dans le modèle de Hubbard attractif. Ph. D. Thesis. Sherbrooke University (August 2000).
Paper No. 16: Moment Approach for the 2D Attractive Hubbard Model. Autores: J. J. Rodrı́guez–Núñez, C.E. Cordeiro, and A. Delfino. Physica A,
232, 408 (1996).
37
1. S. Allen, cond–mat/0012301. Approximation auto–cohérente à deux particules, pseudogap et supraconductivité dans le modèle de Hubbard attractif. Ph. D. Thesis. Sherbrooke University (August 2000).
Paper No. 17: BCS to Bose–Einstein crossover phase diagram at zero temperature for a dx2 −y2 order parameter superconductor: Dependence on the tight–
binding structure. Autores: M. B. Soares, F. Kokubun, J. J. Rodrı́guez–
Núñez and O. Rendón, Phys. Rev. B 65, 174506 (2002).
1. A. Perali, P. Pieri, and G. C. Strinati. Comment on ”BCS to Bose–
Einstein crossover phase diagram at zero temperature for a dx2 −y2 order
parameter superconductor: Dependence on the tight–binding structure”.
Phys. Rev. B 68, 066501 (2003).
2. J. Quintanilla, B. L. Györffy, J. F. Annett, and J. P. Wallington. Exotic
pairing via a central attraction: from the BCS to the Bose limits. cond–
mat/0106250 v2; ibidem, Phys. Rev. B 66, 214526 (2002).
3. J. Quintanilla and B. L. Györffy, cond–mat/0304462. Ibidem, J. Phys.
A 36, 9379 (2003). Cooper pairing with finite angular momentum: BCS
vs Bose limits.
4. V. M. Loktev and V. Turkowski. Superconducting properties of the 2D
models with different types of inter–particle coupling. cond–mat/0305162.
Paper No. 18: Tc and ∆o in a phenomenological ”pseudogap” model Autores:
D. Romero, L. Sánchez, J. J. Rodrı́guez-Núñez and H. Beck. Braz. J. Phys.
33, 1–5 (2003).
1. I. Ţifrea and C. P. Moca, cond–mat/0307362; ibidem, Eur. Phys. J. B
(2003).
Paper No. 19: Superconductivity and the Existence of Nambu’s Three-Dimensional
Phase Space Mechanics, Physics Letters A 104, 106–108 (1984). Autores: R.
Angulo, S. Codriansky, C. González–Bernardo, A. J. Kálnay, F. Pérez–M., J.
R. Rodrı́guez–Gómez, J. J. Rodrı́guez–Núñez and R. A. Tello–LLanos.
1. Jorge Pérez Guánchez, Estudio de los Sistemas Periódicos Haciendo Uso
de la Mecánica de Nambú. Master Thesis (1994). U CV – Venezuela.
38
Paper No. 20 Some sum rules for non-Fermi Liquids: new applications taking
into account the mass renormalization. Autores: J. J. Rodrı́guez–Núñez,
I. Ţifrea and S. G. Magalhães. Phys. Rev. B 62, 4026 (2000).
1. K. Biczuk, C. Janavitz, R. Manske. J. Spalek, and W. Wójcik, Europhys.
Lett. xxx, yyy (2004). Luttinger liquid phenomelogy and angle resolved
photoemission for single layer Bi2 Sr2−x Lax CuO6+δ high–temperature superconductor. Ibid., cond–mat/0405522.
Paper No. 21 Tı́tulo: Derivation of the Ginzburg–Landau Functional for Non–
Fermi Liquids: Renormalization of the Mass. Autores: J. J. Rodrı́guez–
Núñez, J. Budagosky M. and I. Ţifrea. Acta Physica Polonica B 34, 383
(2003).
1. K. Biczuk, C. Janavitz, R. Manske. J. Spalek, and W. Wójcik, Europhys.
Lett. xxx, yyy (2004). Luttinger liquid phenomelogy and angle resolved
photoemission for single layer Bi2 Sr2−x Lax CuO6+δ high–temperature superconductor. Ibid., cond–mat/0405522.
Paper No. 22 Tı́tulo: . Autores: J. J. Rodrı́guez–Núñez, and A. A. Schmidt.
Physical Review B 68, 224512 (2003).
1. G. G. N. Angilella, A. Bianconi, and R. Pucci, cond–mat/0503544. Multiband superconductors close to a 3D–2D electronic topological transition;
submited to Journal of Superconductivity.
Paper No. 23 Tı́tulo: Two - band superconductivity in (AlM g)B2 : Critical
temperature and isotope exponent as function of carrier density. Autores: J.
J. Rodrı́guez–Núñez, A. A. Schmidt, A. Bianconi and A. Perali, Physica C
468, 2299 (2008).
1. N. Kristoffel and K. Rägo, cond - matt/1003.5083. On the interband
pairing in doped graphane.
Número de Citaciones: 146
39
16- Creación de Unidades y
Asociaciones de Investigación..
1. SU P ERCOM P . Laboratorio de Superconductividad Computacional,
fundado en Febrero de 2001. Las normas del Laboratorio SU P ERCOM P
fueron aprobadas por el Consejo de la FACYT en Junio de 2004 y por el
Consejo Universitario de la UC en Marzo de 2005.
2. AP LIU C. Asociación para el Avance de la Investigación en la Universidad de Carabobo. Las normas fueron redactadas y se está actualizando
la lista de los investigadores de la UC para convocar una Asamblea y
establecer dicha asociación.
17- Productos Educativos en
Bachillerato.
1. GUIA DE LABORATORIO DE FISICA TERCER AÑO. Autores: J.
J. Rodrı́guez–Núñez, Luz Maria Daza y Eber Enrique Orozco Guillén.
2010. Aprobada por SAP I con registro 5493 del 5 (cinco) de enero de
dos mil cinco. Depósito Legal ISBN lf04120045302022.
2. GUIA DE LABORATORIO DE FISICA CUARTO AÑO. Autores: J.
J. Rodrı́guez–Núñez, M. Sc. Marı́a Teresa Cruz y Lic. Ayalid Villamarı́n. 2010.
3. GUIA DE LABORATORIO DE FISICA QUINTO AÑO. Autores: M.
Sc. Ángela Cova y J. J. Rodrı́guez–Núñez.
4. ”Talleres para la Elaboración de Materiales Didáctivos para
Docentes de Fı́sica de Bachillerato”. Dictado en el IUTVAL (Instituto Universitario de Valencia). Valencia, 27 y 28 de Abril de 2010. 16
horas. Financiado por el Fondo Editorial IP AS - M E. Se distribuyó
el material en CD.
18- Libros universitarios.
1. CURSO DE SUPERCONDUCTIVIDAD: Introducción y Sistemas Fuerte40
mente Correlacionados. Autores: J. J. Rodrı́guez–Núñez, C. Ventura
y otros 2009.
2. TERMODINÁMICA Y FISICA ESTADÍSTICA. Autor: J. J. Rodrı́guez–Núñez.
3. FÍSICA I. J. J. Rodrı́guez–Núñez. ”Fı́sica I - Mecánica”. Universidad de Carabobo (2009).
4. FISICA CUÁNTICA. Autores: J. J. Rodrı́guez–Núñez y Jorge Mahecha (Colombia).
5. J. J. Rodrı́guez–Núñez y Reimer Romero. ”Fı́sica I - Electromagnetismo” (2009).
41

Documentos relacionados