here - Institute for Knowledge Innovation and Technology

Transcripción

here - Institute for Knowledge Innovation and Technology
17t
h
Annua
l
KNOWL
E
DGE
BUI
L
DI
NG
S
UMME
R
I
NS
T
I
T
UT
E
Cr
os
s
i
ng
t
he
E
duc
a ona
l
Cha
s
m:
F
r
om
t
he
Ba
s
i
c
s
t
o
Cr
ea v
e
Wor
k
wi
t
h
I
dea
s
Aug
us
t
69,
2013
Uni
v
er
s
i
da
d
I
bea
r
oa
mer
i
c
a
na
,
Puebl
a
,
Me
x
i
c
o
Pa
per
s
KBSI2013
Papers
17th Annual Knowledge Building Summer Institute
Crossing the Educational Chasm:
From the Basics to Creative Work with Ideas
Conference Co-Organizers:
Knowledge Building International (KBI) <http://ikit.org/kbi/>
Institute for Knowledge Innovation and Technology (IKIT) <http://ikit.org/>
IKIT Mexico <http://www.ikitmexico.org.mx/>
Conference Chairs:
Oscar Hernández López & Marlene Scardamalia
Review Committee:
Oscar Hernández López, Susana La Rosa, María Yadira Rosas Bravo
Tomorrow’s Innovators:
Angela Durana Espinoza, Oscar Hernández López, Yadira Rosas
A special thanks to the colleagues who agreed to help us with the review process:
Stephane Allaire
Rolf Baltzersen
Merce Bernaus
Stefano Cacciamani
Bodong Chen
Rose Chen
Maria Chuy
Suzanne de Froy
Frank de Jong
Fernando Diaz del Castillo
Hamdi Erkunt
Ola Erstad
Bruce Forrester
Nobuko Fujita
Vincent Gagnon
Enrique Gonzales
Calixto Gutierrez
Christine Hamel
Oscar Hernandez
Anne Hill
Huang-Yao Hong
Leila Lax
Eddy Lee
Wincy Lee
Beatrice Ligorio
Sandy McAuley
Cesar Nunes
Jun Oshima
John Parry
Angela Perez
Don Philip
Fleur Prinsen
Richard Reeve
Monica Resendes
Yadira Rosas
Javier Sanchez
Pirita Seitamaa Hakkarainen
Cherry Rose Tan
Chris Teplovs
Sinqin Tuya
Jan van Aalst
Johnny Yuen
Jianwei Zhang
Yibing Zhang
i
KBSI2013
Papers
17th Annual Knowledge Building Summer Institute
Crossing the Educational Chasm:
From the Basics to Creative Work with Ideas
The "chasm" referred to in the title of this conference is a metaphor for a condition that has
serious social, economic, and personal consequences. On one side of the chasm are students
whose deficiencies in basic academic skills and knowledge keep them from moving to the other
side, where students have mastered the basics to a level judged sufficient for more advanced
content and more challenging tasks. Although basic academic skills are of undeniable importance,
the chasm itself is an artifact of educational beliefs. The key belief is that students must master
the basics before they can undertake more challenging work with knowledge and ideas. Contrary
to this belief is evidence that young children can work creatively with ideas -for instance,
modifying ideas in the light of evidence- and that this enhances basic skills. We aim to provide
powerful demonstrations and extensions of this finding and the reframing of practices and
outcomes resulting from this reorientation.
ii
KBSI2013
Papers
Table of Contents
Evaluating knowledge community curricula in secondary science using
model-based design research
Alisa Acosta, Jim Slotta
1
Metadiscourse in Knowledge Building: A question about written or verbal
metadiscourse
Rolf Kristian Baltzersen
11
Expanding the metadiscourse concept in knowledge building
Rolf Kristian Baltzersen
21
La importancia de las redes sociales como herramienta educativa en el Centro
de Estudios Científicos y Tecnológicos No. 1 Nivel Medio Superior del
Instituto Politécnico Nacional
Ranulfo Dimitri Cab Cordero, Marco Antonio Hernández Pérez
33
Effects of Different Implementations of The “Embedded and Transformative
Assessment” Principle on Knowledge Building in Online University Courses
Stefano Cacciamani, Vittore Perrucci
40
Promisingness Judgments as Facilitators of Epistemic Growth and Conceptual
Change
Bodong Chen, Fernando Diaz del Castillo, Jim Slotta
50
“Napoleón era también bajo..." Lectura, escritura y orientación motivacional
en una comunidad Knowledge Building de historia
Lisa Cingolani, Stefano Cacciamani
71
Las Tecnologías de información y comunicación (Tics) en educación
indígena, nuevos espacios con pertinencia cultural y lingüística
Salvador Galindo Llaguno
78
Diseño y aplicación de un portal web como herramienta didáctica en la
enseñanza-aprendizaje de la química en el nivel medio superior,
Ariadna Berenice González Arenas, Enrique Gonzales Vergara
83
Construcción de artefactos conceptuales a partir de foros de discusión en línea
Oscar Ernesto Hernández López, Karen Huesca Viveros
96
Influencia del clima institucional en la conducta de los adolescentes
Ana María Hernández Reyes
105
A Knowledge Building Discourse Analysis of Proportional Reasoning in
Grade 1
Kendra Susanne Hutton, Bodong Chen, Joan Moss
114
iii
KBSI2013
Papers
A knowledge building journey: Reflections of New Zealand senior secondary
teachers
Kwok-Wing Lai
129
Desarrollo de habilidades de pensamiento en la formación meta cognitiva del
pensamiento crítico en los estudiantes de nuevo ingreso a la licenciatura en
educación normal
Olga Sara Lamela Rios
139
“Drawing out” students’ voices: Students’ perceptions about learning science
through Ideas First, a Knowledge Building approach
John Ow, Katerine Bielaczyc
147
La Identidad Cultural en la Educación Superior: El Caso de la Licenciatura en
Educación Primaria para el Medio Indígena UPN-211
Eugenia Ramos Hipolito
166
Effect of Formative Feedback on Enhancing Ways of Contributing to a
Explanation-Seeking Dialogue in Grade 2
Monica Resendes
174
Responsabilidad compartida a través de la implementación de webquest en los
alumnos de primer grado de Telesecundaria
Yolanda Ruiz Cervantes, Oscar Hernández López
185
Farmtasia: A Case Study of Knowledge Building Processes in Game-Based
Learning
Cherry Rose Tan
193
iv
KBSI2013
Papers
Evaluating knowledge community curricula in secondary science using
model-based design research
Alisa Acosta, Jim Slotta, OISE/University of Toronto
Email: [email protected], [email protected]
ABSTRACT: This paper describes a new approach to design-based research that
utilizes a formal model of learning, mapped onto the curriculum design, to assess
when, where, why and how the enacted design is achieving or failing to achieve
its aims. Model-based design research (MBDR) goes beyond testing whether a
particular intervention ‘works’ or ‘doesn’t work,’ allowing researchers to
characterize each player within the learning environment, comparing their beliefs,
actions, and artifacts with the epistemic aims and assumptions built into the
model, and then iteratively refine the design. MBDR refers to a formal theoretical
model as a source of design constraint, allowing researchers to identify and justify
their choice of design elements and the linkages between them. However this
approach goes one step further and adds a means of evaluating curriculum designs
in relation to the model. Evaluation thus occurs on two levels: (1) How true was
the design to the model; and (2) How true was the enactment to the design. This
paper provides a detailed case study of MBDR, including the model that underlies
the design, and the two analyses that comprise the study. We evaluate a new
secondary biology curriculum that was designed according to the Knowledge
Community and Inquiry model, evaluating the design and enactment of the
curriculum according to the model, and conclude with a discussion and
recommendations for new epistemic elements within the model.
1. Introduction
One domain of research that is highly relevant to 21st century learning is that concerned with
learning as a knowledge community (Brown & Campione, 1994; Scardamalia & Bereiter, 1999;
Bielczyc & Collins, 2005), where students are given a high level of agency and responsibility for
developing their own questions, exchanging and critiquing ideas with peers, and even evaluating
their own progress. Teachers become members of the classroom knowledge community, and
participate as peers and mentors. The students within a knowledge community typically create a
“knowledge base” of commonly held resources or ideas, which are accessed, re-negotiated,
revised and applied during subsequent inquiry activities. Community knowledge resources are
captured and represented within a technology-mediated environment that scaffolds students as
they add new ideas, revise materials, synthesize arguments or inform their designs (Stahl, 2000;
Hoadley & Pea, 2002; Bielczyc & Collins, 2005).
This paper describes a new approach to design-based research that utilizes a formal model of
learning, mapped onto the curriculum design, to assess when, where, why and how the enacted
design is achieving or failing to achieve its aims. As with most design-oriented research
methods, the proposed process, called model-based design research (MBDR), goes beyond testing
whether a particular intervention ‘works’ or ‘doesn’t work.’ Instead, it allows researchers to
characterize each player within the learning environment, comparing their beliefs, actions, and
artifacts with the epistemic aims and assumptions built into the model, and then iteratively refine
the design such that ‘progress’ can be achieved in the design.
1
KBSI2013
Papers
2. Model-Based Design Research
Since its inception in the early 1990s (Brown, 1992; Collins, 1992), design-based research has
become a widely used and broadly accepted research paradigm in the learning sciences. This
approach maintains a commitment to the creation and development of innovative learning
environments by simultaneously engaging in design evaluation and theory building throughout
the research process (Edelson, 2002). Design-based research typically includes three
characteristics: (1) Systematic intervention into a specific learning context, accounting for factors
such as the teachers, learners, curricular materials, and available technologies; (2) An
interdisciplinary design team consisting of teachers, researchers, technologists, and subject-area
specialists; and (3) Iterative design modification in which interim findings are used to improve
the design throughout its implementation (Najafi, 2012; Edelson, 2002; Bell, Hoadley & Linn,
2004).
Bereiter (2002) highlights that design research is generally not defined by its methods but instead
by the goals of those who pursue it. Those engaging in design research are generally committed
to specific outcomes, including the development of innovative learning environments or
curricula, the characterization of the specific contexts in which the learning designs are
employed, as well as general knowledge about the fundamentals of teaching and learning
(Sandoval, in press). However, despite its commitment to these research goals, design-based
research has been criticized for lacking methodological rigor due to the absence of clearly defined
methods and standards (Sandoval, in press; Dede, 2004; Kelly, 2004; Shavelson et al., 2003).
Whereas the bulk of scholarly literature on design research within the past decade has focused on
the what rather than the how, Sandoval has attempted to address these criticisms by formulating a
methodological approach which he calls ‘conjecture mapping’ (Sandoval, 2004; in press). The
purpose of conjecture mapping is to explicitly identify and make salient the specific relationships
between a learning design and the theoretical conjectures that informed the design (Sandoval,
2004). Sandoval (in press) identifies three types of conjectures:
1. High level conjectures – the broad, theoretical, abstract “big ideas” or learning
principles that are typically used to motivate or initiate the design process
2. Design conjectures – theoretical assertions that guide or constrain how particular
design features or “embodiments” (e.g. tools and materials, task structures,
participant structures, discursive practices) will yield particular mediating
processes (e.g. observable interactions, participant artifacts)
3. Theoretical conjectures – theoretical beliefs or assertions that describe how the
mediating processes of a design will yield particular outcomes (e.g. learning,
interest/motivation, etc.)
By explicitly mapping such conjectures onto curriculum designs, researchers are productively
required to articulate and justify their choice of design embodiments, mediating processes,
outcomes, as well as the means and methods for tracing the linkages between them (Sandoval, in
press).
In ways that are similar to conjecture mapping, MBDR refers to a formal theoretical model as a
source of design constraint, allowing researchers to identify and justify their choice of design
elements and the linkages between them. However this approach goes one step further and adds a
means of evaluating curriculum designs in relation to the model. Evaluation thus occurs on two
levels: (1) How true was the design to the model; and (2) How true was the enactment to the
design.
2
KBSI2013
Papers
While MDBR is only applicable in cases where a formal structural model exists, and could be
seen as a special case of conjecture mapping, it is nonetheless an interesting form of designoriented research, particularly in the sense that the outcomes of an MDBR study can directly
inform revisions or improvements to the underlying model. In sections below, we provide a
detailed case study of MBDR, including the model that underlies the design, and the two analyses
that comprise the study. We conclude with a discussion of the model, including recommendations
for new epistemic elements of the model.
3. Case Study: Designing EvoRoom
3.1 The Model: Knowledge Community and Inquiry (KCI)
While knowledge community approaches, such as Fostering Communities of Learners (Brown,
1997) and Knowledge Building (Scardamalia & Bereiter, 2006) have been successfully
implemented at the elementary level, current school structures and content-heavy curriculum
demands often make those models inaccessible to course instructors – particularly at the
secondary level. KCI is a pedagogical model that was developed for secondary science as a
means of blending the core philosophies of the knowledge community approach with the
structural and scripted affordances of scaffolded inquiry (Slotta & Peters, 2008; Slotta & Najafi,
2010). KCI includes five major design principles, each accompanied by a set of epistemological
commitments, pedagogical affordances, and technology elements. Together, these guide the
creation of inquiry activities, peer interactions and exchange, and cooperative knowledge
construction. The five principles are summarized in Table 1 below:
3
KBSI2013
Epistemological Commitments
Papers
Pedagogical Affordances
Technology Elements
1. Students work collectively as a knowledge community, creating a knowledge base that serves as a resource for their
ongoing inquiry within a specific science domain.
Students “identify” as a community,
The knowledge base is indexed to the Tablets, wikis, semantic web,
with the goals and purposes of
targeted science domain as well as
metadata schemes, science content
learning together and advancing the
semantic and social variables;
standards, tagging schemes
community’s knowledge. The
Semantic index variables can be
knowledge base needs to be
designed, as well as user contributed
understood and valued as “their
or emergent
community resource.”
2. The knowledge base that is accessible for use as a resource as well as for editing and improvement by all members.
Knowledge building processes:
Scripts for jigsaw and collaborative
Socially editable media, wikis, notes,
improvable ideas, measurable or
knowledge construction;
or collections of observations; social
observable progress within the
visualizations and interfaces for
tagging; visualizations; recommender
knowledge base, emergent content
accessing the knowledge base;
agents
organization (i.e. semantic structure)
authorship attributions; versioning
and forking
3. Collaborative inquiry activities are designed to address the targeted science learning goals, including assessable
outcomes
Inquiry learning is fundamentally
Learner-centered and idea-centered
Web-based learning activities, wikis,
constructivist, where students build
activities, including critique,
Web portal, video editing,
on their existing ideas to develop
comparison, design and reflection.
simulations, tablet-based observation
understanding. A social dimension
Students create artifacts, reflect on
forms, laptop and tablet interfaces
of shared ideas, discourse and
those artifacts, and apply them as
practice also underlies the design of
resources within a larger inquiry
collaborative inquiry.
project.
4. Inquiry activities are designed to engage students with the knowledge base as a resource, and to add new ideas and
elements to the knowledge base
Inquiry emphasizes the growth of
Need for open-ended activity designs, Specific technology tools and
individual ideas through reflection
to connect to full index of knowledge materials are developed to support
and application, but also a social
base (i.e. to assure complete
inquiry activities. These adhere to a
connection, for discourse and
coverage), but also to respond to
pedagogical “script” that defines the
collaboration
emergent ideas or themes within the
sequence or progression of activities,
community; possible dynamic
roles, groups, etc. Students may use
grouping of students based on shared
a variety of technology-based
ideas, disagreements or other inquiry- learning environments, carefully
oriented variables.
designed to support the pedagogical
script.
5. The teacher plays a specific role defined within the inquiry script, but also a general orchestration role, scaffolded by
the technology environment
The teacher’s role is that of an expert
The teacher engages in specific
Teachers also rely on technology to
collaborator or mentor, responding to scripted interactions with students;
help orchestrate the flow of activities.
student ideas as they emerge, and
providing feedback and making
They may refer to representations of
orchestrating the pedagogical flow of orchestrational decisions based on the the aggregated community
activities. The teacher must
content of student interactions and
knowledge to inform reflective
understand student learning as a
artifacts. The teacher is responsible
discussions (e.g., about what the
collective endeavor, and must see his
for moving the inquiry forward
‘next steps” should be, in inquiry).
or her own role as that of an
through a progression of activities,
Or they may have specific
important community member.
but also plays specific roles within
technologies designed to support
activities (talking with students,
their interactions with students (e.g.,
giving feedback, etc).
a teacher tablet).
Table 1 – KCI design principles
3.2 – The Design: EvoRoom, Grade 11 Biology, Evolution and Biodiversity Curriculum
Use of the word ‘EvoRoom’ is twofold. In one sense it refers to an actual room that was
constructed using smart classroom technologies to simulate an immersive rainforest environment.
When students enter this “smart classroom”, their interactions – where they go in the room, and
with whom – are carefully orchestrated, and depend on real-time ideas and observations that they
4
KBSI2013
Papers
enter into their tablets. Their ideas and collective efforts are made visible and accessible to
everyone in the room through the use of a persistent aggregate display at the front of the room
(see Figure 1). In the other sense of the word, ‘EvoRoom’ refers to a much broader 10-week
curriculum for Grade 11 Biology that was designed to fulfill the requirements for evolution and
biodiversity. This 10-week curriculum included an online learning portfolio (for which activities
were completed both at home and at school); a zoo field trip; ‘traditional’ classroom lessons; as
well as two unique activities completed within the EvoRoom itself.
Figure 1 – Evoroom: a room-sized immersive simulation where students interact with peers and with
elements of the room itself (walls, table, tablets) to conduct collaborative inquiry in the domain of
evolution and biodiversity).
In order to ensure that the overall curriculum design, including all detailed activities, materials
and interactions, was suitable for secondary biology in a high achieving school context, the
teacher was a critical member of the design team. The teacher was highly involved in the
development of the orchestrational scripts and technology elements that went into the design, and
provided valuable feedback with regards to tool development and the overall curricular goals for
the evolution and biodiversity units. The co-design team also consisted of two graduate
researchers, three computer programmers, and one faculty supervisor.
At the time of this writing, the EvoRoom curriculum is just completing its third design iteration.
The pilot run for EvoRoom was completed in June 2011; the second iteration was completed
between December 2011 and February 2012; and the third (current) iteration was completed
between March and May 2013. It includes a 10-week sequence of activities, where students
participate in a wide range of classroom activities (including lectures and labs), create a shared
classroom knowledge base, and conduct field trip and smart room activities that make use of their
knowledge base.
As mentioned previously, the EvoRoom curriculum included activities across a number of
different contexts, including at home, at school in the students’ regular classroom, at school in the
smart classroom, and at the zoo, on a field trip. After conducting inquiry activities in the class,
and during homework, students were engaged in a smart classroom activity (i.e., where they were
engaged as a group in the “EvoRoom” itself). The interactions within the EvoRoom were
carefully designed to explore research questions related to large, immersive environments (Lui &
Slotta, 2012). The walls of the room were rendered as large animated simulations of the
rainforest at 8 different historical time periods (200, 150, 100, 50, 25, 10, 5 and 2 million years
ago). The teacher coordinated students’ investigation of the evolution of the rainforest, as they
made use of carefully designed tablet computers to add observations and reflections. A trip to the
zoo is used to promote reflections about biodiversity and habitat, followed by another visit to the
EvoRoom where students investigate the biodiversity of the present day rainforest, set in various
human- and nature-impacted contexts (e.g., from climate change). Further details of the design
are provided in the design analysis section.
5
KBSI2013
Papers
The school itself was located within a large and ethnically diverse urban setting. The participants
for the current iteration consisted of two sections of Grade 11 Biology (n=56). For the majority
of the activities, students were divided into groups of 3-4, with different groupings for different
activities.
It should be noted that, although there were significant changes between each design iteration,
and the KCI model served as an important referent and guide for design decisions, none of the
designs were explicitly connected to the role of epistemic cognition within KCI. While such
elements are clearly essential to the model, they were not at the forefront of concern for
researchers, who were focused on activity sequences, as well as specific questions about the smart
classroom (Lui & Slotta, 2012). The present research examines the role of epistemic cognition
within the EvoRoom designs, performing an MBDR analysis that will serve to strengthen the
coherence of the KCI model in terms of its epistemic commitments.
4. Data Analysis
4.1 – Design Analysis
The first stage of the MBDR analysis entails mapping the epistemic commitments (EC) of the
KCI model onto the EvoRoom curriculum design. Figure 2 connects the five epistemic
commitments of KCI to the various components of the EvoRoom curriculum design timeline.
As shown, the design of EvoRoom curriculum did address the major epistemic commitments of
KCI. However, it notably did not make any explicit attempts to address students’ epistemic
cognition, such as through reflections or discussions about the purpose of learning, the goals of
the curriculum, etc. Nor did the specified activities include details about the role of epistemic
cognition in the inquiry learning (Chinn et al, 2011).
4.2 – Enactment Analysis
The second step of the MBDR analysis is to evaluate whether the EvoRoom curriculum was
enacted faithfully to the design. Enactment data included the following (see Figure 3):
•
•
•
•
•
Digital learning artifacts, including posts to the online learning portfolio, contributions to
the EvoRoom database throughout the Evolution Activity, and evidence/claims collected
using Zydeco (for both the Zoo Field Trip and Biodiversity Activity) (n=56);
Pre/post summative rating scale instruments and that were completed before and after the
entire 10-week curriculum unit (n=56), as well as before and after the Zoo field trip
(n=112);
Open-ended survey items completed near the beginning and end of the entire 10-week
curriculum unit (n=56);
Student interviews, completed after the final EvoRoom biodiversity activity (n=4)
Researcher field notes for the EvoRoom Evolution Activity, Zoo Field Trip and
Biodiversity Activity
6
KBSI2013
Papers
EvoRoom Curriculum Design:
KCI Model:
Epistemic
Commitments
Epistemic Aims and Value
Students identify as a
knowledge community with
the shared goal of learning
together, advancing the
community’s knowledge, and
developing shared ideas and
understandings about the
targeted science learning
expectations
Time
Online
Learning
Portfolio
(ongoing)
EvoRoom
Evolution
Activity
(Week 2)
Zoo Field Trip
(Week 8)
EvoRoom
Biodiversity
Activity
(Week 10)
Students identify as a knowledge community with the shared goal of learning
together, advancing the community’s knowledge, and developing shared
ideas and understandings about the targeted science learning expectations
Structure of Knowledge
The structure and organization
of knowledge within the
knowledge base are emergent,
based on student-contributed
content; ‘progress’ is made
visible
Individual blog
posts with peer
comments;
Collaborative
wiki pages;
scaffolded titles
Co-constructed
aggregate
cladogram,
based on realtime
observations
Shared,
multimodal
evidence base
with
folksonomic
tagging structure
Shared,
multimodal
evidence base
with locationbased tags
Sources of Knowledge,
Justification and Epistemic
Stance
Sources: knowledge base is
understood as “their
community resource”; teacher
is regarded as an expert
collaborator
Justification: gap in model
Epistemic Stance: gap in
model
Epistemic Virtues and Vices
Virtues: knowledge
community membership,
sharing of ideas, (also implicit
are shared social conventions
and practices, discourse
“rules”)
Vices: (implicit are
‘knowledge hoarding,’
competitiveness, valuing
individual achievement over
collective advancement)
Sources:
authoritative
sources;
Justification &
Epistemic Stance
= gap in model
Sources:
primary
observations,
peers;
Justification &
Epistemic
Stance = gap in
model
Sources:
primary
observations,
peers;
Justification &
Epistemic
Stance: Zydeco
CER
Sources:
primary
observations,
peers;
Justification &
Epistemic
Stance: Zydeco
CER
Reliable Processes
Knowledge-building
processes; constructivist
inquiry activities; discourse;
practice/application; reflection
Virtues: meaningful contributions to the shared knowledge bases for each
activity; justificatory rigor (i.e. no satisficing throughout knowledge
negotiations); prioritizing collective advancement over individual. Vices:
lack of contributions to the knowledge base; frequent satisficing of group
decisions/knowledge claims, and maintaining a competitive, grades-first
mentality throughout the activities
Knowledge-building processes; constructivist inquiry activities; discourse;
practice/application; reflection
Figure 2 – Detailed description of how the epistemic commitments of KCI appear within the
EvoRoom curriculum design
7
KBSI2013
Papers
Enactment Analysis Findings
Online Learning
EvoRoom Evolution
EvoRoom Biodiversity
Activity (Week 10)
Portfolio (ongoing)
Activity (Week 2)
Zoo Field Trip (Week 8)
Epistemic Aims & Values
•
According to an open-ended post-survey, (n=40), the majority of students (67%) perceived the EvoRoom activities
as having a greater emphasis on collective knowledge advancement rather than individual learning gains.
•
Students identified shared goals within all four EvoRoom curriculum activities. However, students felt that shared
goals were most prominent in the Zydeco Zoo activity and the Biodiversity Activity.
•
The majority of students (83%) felt that their own contributions to the shared knowledge base were helpful to the
learning of others.
•
A pre/post likert questionnaire administered before and after the Zoo field trip revealed that students who
participated in the EvoRoom curriculum showed a significant improvement in their perceived knowledge
communities (t=-2.684, df=37, p-value=0.01081) compared to students who did not participate in the EvoRoom
curriculum (t=0.6114, df=26, p-value=0.5463)
Structure of Knowledge:
The level of completion of
Two sessions completed
Of the 655 pieces of data
The tagging structure of
the Borneo Field Guide
the activity pencil and
that were collected, the
data artifacts was
assignment (86%) was
paper rather than the tablet
majority consisted of
taxonomic rather than
higher than the level of
app. Within the paper
photos (79%) or the
folksonomic. Here, a much
completion for the Borneo
sessions, the higher-order
combination of photos with higher proportion of
Timeline wiki pages (47%) reasoning question
text (10%). The remaining evidence was used to
and the Timeline Summary (question 3) was left blank
11% of data used audio
support knowledge claims
(12%).
by 70% of respondents.
(1%), video (3%), text
throughout the biodiversity
Students who used tablets
(4%), or a mix of media
activity (42%) compared to
worked collaboratively and types (3%). 67% of data
the Zoo field trip activity
were able to share their
artifacts contained at least
(15%).
knowledge artifacts with
one folksonomic tag, while
each other such that none
33% remained untagged.
of their responses were left
blank.
Sources of Knowledge, Justification, and Epistemic Stance:
• A pre/post open-ended survey was administered to students before and after the EvoRoom curriculum (n=40). Presurvey results indicate a heavy reliance on authoritative sources of knowledge (89%), whereas post-survey results
show a more even distribution between authority (33%), peers (28%) and the self (38%) as sources of knowledge.
• Justification of knowledge was weakest in the Online Learning Portfolio and in the EvoRoom Evolution Activity,
where knowledge contributions were mostly factual and required little negotiation. Justification of knowledge was
strongest in the Zydeco Zoo field trip activity because scaffolds to support the justification of knowledge were built
into the design of the Zydeco app. Although the Biodiversity activity also used Zydeco, there was evidence of
students satisficing their epistemic stance in favour of consensus/agreement within the group (e.g. using approaches
such as a ‘group vote’ rather than argumentation/justification of knowledge claims)
Epistemic Virtues and Vices:
• Most students participated fully in all activities and contributed their findings to the shared knowledge base
• There was some evidence of satisficing throughout the Biodiversity Activity, therefore evaluating this epistemic
vice requires further evaluation in subsequent designs once the “Justification” and “Epistemic Stance” dimensions
have been refined
• Students recognized the EvoRoom Curriculum as focusing on collective advancement rather than individual gains
Reliable Processes:
• The achievement of the epistemic aims can be used as an indicator that the underlying learning processes were, in
fact, reliable.
• Students were also given an open-ended post-survey in which they were asked how much of the EvoRoom
curriculum they were likely to remember next year in comparison to the other units of the course. The majority of
students (62%) indicated they would remember more, citing reasons such as ‘active learning,’ ‘application’ and
‘understanding’ (rather than memorization). 17% indicated they would remember less, primarily due to interest in
other topics, or preference to learn/study independently rather than with classmates.
Figure 3 – The EvoRoom enactment analysis revealed how the designed EC were manifested in the
enacted curriculum
8
KBSI2013
Papers
5. Discussion
The enacted EvoRoom design provides feedback that may be used to help strengthen the
epistemic elements of future design iterations. It also provides insights as to how the epistemic
commitments of the KCI model can be improved.
One area of feedback into the design is concerned with the semantic organization of the
knowledge base. Throughout the EvoRoom curriculum, the ability to search for and retrieve
specific artifacts from the knowledge base was limited by the quality of student tagging. Within
the smart classroom activities, this issue was less pronounced because there were only 12-16
students contributing to the knowledge base at a time. Here, the teacher was able to circulate the
room and remind students to tag data, and the persistent aggregate display in the provided
additional visual evidence showing if/when tags were appropriately applied. However, during the
Zoo field trip, there was a much larger cohort of students who were simultaneously contributing
to the knowledge base (n=112). Due to time constraints, many students chose to collect various
multimodal artifacts as evidence and then tag them later (if at all), or otherwise poorly tagged
them in haste. This meant that a large quantity of evidence remained unsearchable and unused.
One area of theoretical insight that would feed into the KCI model would be considerations of
“justification” and “epistemic stance” (Chinn et al, 2011) for collaborative inquiry. Throughout
group knowledge negotiations, there was evidence that students were satisficing their true
epistemic stance in favour of achieving group consensus, thus compromising the justificatory
rigor of the inquiry. It is therefore recommended that the KCI model includes parameters to
explicitly support the justification of knowledge throughout collaborative inquiry activities.
6. Conclusion
MBDR can be used as an evaluative tool to identify when, where, why and how a particular
design is achieving or failing to achieve its curricular aims. This paper examines how the
epistemic commitments of the KCI model were mapped onto the design of the EvoRoom
curriculum, and – subsequently – how those commitments played out in the enactment of the
curriculum. While the EvoRoom curriculum wasn’t designed with epistemic cognition explicitly
in mind, it provides an interesting opportunity to take an ‘epistemological pass’ at the design, in
order to inform future design iterations. MBDR could be used to evaluate other aspects of the
design as well, including technological elements or pedagogical affordances. Similarly, different
curricula could be designed, enacted and evaluated using the same model as its basis. The
enacted designs are valuable for both informing future design iterations, as well as generating
theoretical insights that could contribute to the refinement of the model itself.
References:
Bell, P., Hoadley, C. M., & Linn, M. C. (2004). Design-based research. In M. C. Linn, E. A.
Davis, & P. Bell (Eds.), Internet environments for science education (pp. 73-88). Mahwah,
New Jersey, Lawrence Erlbaum Associates.
Bereiter, C. (2002). Design research for sustained innovation. Japanese Cognitive Science
Society, 9(3), 321-327
Bielaczyc, K. and Collins, A. (2005). Technology as a catalyst for fostering knowledge-creating
communities. In O’Donnell, A. M., Hmelo-Silver, C. E., and van der Linden, J. (eds.)
Collaborative Learning, Reasoning, and Technology, pp 37–60. Mahwah, NJ: Erlbaum.
Brown, A. L. (1992). Design experiments: theoretical and methodological challenges in creating
complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141-178.
9
KBSI2013
Papers
Brown, A. L. (1997). Transforming schools into communities of thinking and learning about
serious matters. American Psychologist, 52(4), 399–413.
Brown, A. L. and Campione, J. C. (1994). Guided discovery in a community of learners. In
McGilly, K. (ed.) Classroom Lessons: Integrating Cognitive Theory and Classroom Practice,
pp 229–272. Cambridge, MA: MIT Press/Bradford Books.
Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of
epistemic cognition: arguments from philosophy and psychology. Educational Psychologist,
46, 141–167.
Collins, A. (1992). Toward a design science of education. In E. Scanlon & T. O'Shea (Eds.), New
directions in educational technology (pp. 15-22): Springer-Verlag.
Dede, C. (2004). If design-based research is the answer, what is the question? Journal of the
Learning Sciences, 13(1), 105-114.
Edelson, D. C. (2002). Design research: what we learn when we engage in design. Journal of the
Learning Sciences, 11(1), 105-121.
Kelly, A. E. (2004). Design research in education: Yes, but is it methodological? Journal of the
Learning Sciences, 13(1), 115-128.
Lui, M., and Slotta, J.D. (2012, July). Designing immersive environments for collective inquiry.
Proceedings of the Tenth International Conference of the Learning Sciences – Volume 2 (pp.
12-14). July 2-6. Sydney, Australia: International Society of the Learning Sciences, Inc.
Najafi, H. (2012). Transforming learning in science classrooms: A blended knowledge
community approach. Doctoral dissertation. Ontario Institute for Studies in Education,
Toronto.
Sandoval, W. A. (2004). Developing learning theory by refining conjectures embodied in
educational designs. Educational Psychologist, 39(4), 213-223.
Sandoval, W. A. (in press). Conjecture mapping: an approach to systematic educational design
research. Journal of the Learning Sciences.
Scardamalia, M. and Bereiter, C. (1999). Schools as knowledge building organizations. In
Keating, D. and Hertzman, C. (eds.) Today’s Children, Tomorrow’s Society: The
Developmental Health and Wealth of Nations, pp 274–289. New York: Guilford.
Scardamalia, M., and Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and
technology. The Cambridge handbook of the learning sciences, 97–115. Retrieved from
http://ikit.org/fulltext/2006_KBTheory.pdf
Shavelson, R. J., Phillips, D. C., Towne, L., & Feuer, M. J. (2003). On the science of educational
design studies. Educational Researcher, 32(1), 25-28.
Slotta, J. D., & Najafi, H. (2010). Knowledge communities in the classroom. International
encyclopedia of education, 8, 189-196.
Slotta, J. D., & Peters, V. L. (2008). A blended model for knowledge communities: Embedding
scaffolded inquiry. International Perspectives in the Learning Sciences: Cre8ing a learning
world. Proceedings of the Eighth International Conference for the Learning Sciences Utrecht.
pp. 343-350. International Society of the Learning Sciences (ISLS).
10
KBSI2013
Papers
Metadiscourse in Knowledge Building: A Question about Written or Verbal
Metadiscourse
Rolf Kristian Baltzersen, Østfold University College, Norway
Email: [email protected]
ABSTRACT: In Knowledge Building (KB) research, the metadiscourse concept
has been taken in use more in recent years. Still, the definitions seem to be quite
simple and vague. In this paper, I therefore review how the metadiscourse
concept is used in some selected research papers. By comparing these papers, I
discuss the degree of similarities and differences in the use of the concept within
the field. In addition, I propose a typology that includes both written and verbal
metadiscourse and which may be relevant when analyzing knowledge building
discourse.
1. Background
Research question
In recent years, more knowledge building (KB) researchers have started to use the
metadiscourse concept (Scardamalia & Bereiter, 2006; van Aalst, 2009). Still, the definitions
seem to be simple and vague. In this paper, I therefore ask:
How is the metadiscourse concept used within knowledge building research?
I will review how the metadiscourse concept is used by analyzing some selected research
papers. A comprehensive definition of metacommunication developed by Baltzersen (2013) will
be used as an analytical framework. This metacommunication concept is similar to the
metadiscourse concept, although it has some analytic limitations because it only focuses on talk
about talk. Still, the definition of metacommunication is considered as relevant enough and is
introduced in some detail in Part 1. In Part 2, I review how the metadiscourse concept is used
within knowledge building research. Furthermore, in Part 3, I summarize my findings by
comparing the use of the metadiscourse concept in the different research papers. I also present a
typology that includes both written and verbal metadiscourse.
The metacommunication concept
People often comment on conversations with phrases such as “What do you mean by saying
that?” or “This is an interesting conversation.” This kind of communication is used for several
different purposes. Bateson (1972) labeled this kind of communication as metacommunication
and claimed it was essential for successful human communication. It was considered very
important in order to clarify messages and regulate the communication. Until now there have
been few attempts to try and develop a more coherent definition of the concept. One exception is
Baltzersen (2013) who reviews the use of the concept and also presents a comprehensive
typology. He suggests that verbal metacommunication can be divided into three basic
dimensions: what, how and when do you metacommunicate?
The "What-dimension" suggests that you will always have to refer to some part of the
communication when you metacommunicate. This can be done by metacommunicating about the
conversational content, the conversational relationship or the use of conversational time. It’s
possible to metacommunicate about the conversational content in several different ways. One
example is when a person explicitly suggests a change of conversational topic. Another example
is if one tries to explain the intentions behind the conversational content. A third example is
discussions about forthcoming conversational content, which is often considered important in
11
KBSI2013
Papers
professional conversations. Fourthly, summarizing can be regarded as metacommunication about
the conversational content. The second aspect of the “What-dimension” is to metacommunicate
about the conversational relationship. This can also be done in many different ways, but is usually
related to some kind of evaluation of the relationship between the persons interacting. In this
regard, it’s possible to highlight one’s own role or another person’s role in the relationship. A
third option is to metacommunicate about the use of conversational time. For example, persons
talking to each other can discuss meeting frequency (Baltzersen, 2013).
The "How-dimension" suggests that metacommunication itself indicates how people relate to
each other. For example, how we use our voice when we are metacommunicating will also
influence the interpretation of the metacommunicative utterance. In addition, Baltzersen (2013)
distinguishes between monological metacommunication, which refers to a situation where only
one person is metacommunicating, while dialogical metacommunication indicates that all persons
are metacommunicating.
The "When-dimension" suggests that a metacommunicative utterance will always take place
at a specific point in the conversation. Firstly, it’s possible to metacommunicate about the
ongoing "here-and-now" conversation. This can be done by explaining intentions or by posing
questions of clarification. By making such comments, people try to encourage openness in the
conversation. Metacommunication within an extended time frame will be about either a past or
future conversation which goes beyond the immediate communicative situation. This kind of
metacommunication may be important in professional collaboration, where people establish a
working alliance (Baltzersen, 2013).
2. The metadiscourse concept in knowledge building research
Frequency of use
In knowledge building (KB) research, the metadiscourse concept was originally introduced
by Scardamalia and Bereiter in a 2006 paper. In recent years, the use of the concept seems to have
increased. One reason appears to be the development of new "metadiscourse tools" in Knowledge
Forum, the online discussion environment often used by the knowledge building community.
With this background, I wish to explore whether a more comprehensive metacommunication
concept can increase our understanding of the use of the metadiscourse concept in knowledge
building.
In an attempt to answer this question, I have reviewed the use of the metadiscourse concept in
KB research. A search in Google Scholar with the combination of the two terms “knowledge
building” and “metadiscourse” resulted in 142 hits for the period from 2006-2012 (date 8th
November 2012). The four research papers that were top ranked were selected for further
analysis. They were the only papers that mentioned the metadiscourse concept more than one
time (See table 1 below).
The following papers were selected: Knowledge building: Theory, pedagogy, and technology
by Scardamalia and Bereiter (2006), Sustaining knowledge building as a principle-based
innovation at an elementary school by Zhang, Hong, Scardamalia, Teo and Morley (2011),
Collaborative productivity as self-sustaining processes in a grade 4 knowledge building
community by Zhang and Messina (2010) and Distinguishing knowledge-sharing, knowledgeconstruction, and knowledge-creation discourses by van Aalst (2009). Three of these papers have
been peer-reviewed in academic journals, while the paper by Zhang and Messina (2010) is a peerreviewed conference paper. All authors are well known knowledge building researchers.
12
KBSI2013
Papers
I also discovered that two similar terms are in use in KB research: both “metadiscourse” and
“meta-discourse” with a hyphen. A new search was done with the term “meta-discourse” in
combination with the term “knowledge building” to check if the search results were any different.
This search gave a total of 41 hits for the period from 2006-2012 (date 8th November 2012),
indicating that this term is less used. The top ranked paper is Designs for collective cognitive
responsibility in knowledge-building communities by Zhang, Scardamalia, Reeve, & Messina
(2009). This paper was also selected for further analysis. The research paper Knowledge Society
Network: Toward a Dynamic, Sustained Network for Building Knowledge by Hong, Scardamalia
and Zhang (2010) was ranked number two, but was not selected because the metadiscourse
concept was only mentioned once. The paper by van Aalst (2009) was ranked number 3, but had
already been included after the first search. In total, five papers were selected.
Table 1. Overview of selected research papers according to the frequency of the use of the
metadiscourse concept.
Selected research paper
Number of times
the metadiscourse
concept is used in the
paper
Distinguishing knowledge-sharing, knowledge-construction, and
knowledge-creation discourses (van Aalst 2009).
13
Collaborative productivity as self-sustaining processes in a grade 4
knowledge building community (Zhang and Messina 2010).
4
Sustaining knowledge building as a principle-based innovation at an
elementary school (Zhang et al. 2011).
3
Knowledge building: Theory, pedagogy, and technology (Scardamalia
and Bereiter 2006).
2
Designs for collective cognitive responsibility in knowledge-building
communities (Zhang et al. 2009).
2
In general we can see that the frequency of use of the metadiscourse concept is low. The
exception is the paper by van Aalst (2009). The concept is used 13 times. In the other papers the
content descriptions are limited because the concept is only used 2-5 times. Since Zhang is the
main author of three of these research papers, I have chosen to present his uses of the concept
together. Searches done with other related concepts such as "metatalk" gave very few relevant
results. In this paper I will therefore use the term metadiscourse consistently, because this is the
term that is most frequently used within KB research.
Research paper by Scardamalia and Bereiter
According to Scardamalia and Bereiter (2006), the founders of knowledge building,
metadiscourse is an important feature that distinguishes knowledge building discourse from other
types of discourse. It is part of the knowledge building discourse, but different because it is
related to some kind of evaluation of this discourse. In their paper they also emphasize that
specific tools developed in Knowledge Forum can encourage metadiscourse in a school
13
KBSI2013
Papers
classroom. With the use of epistemological markers or scaffolds (such as “My theory,” “I need to
understand,” “New information,” and so on), students can describe their own “thinking types”
together with the notes. These scaffolds can be used to stimulate a discussion about what kind of
contribution students have made. By linking these contributions together, they can create an
emergent hypertext that is collective.
As we see, the description of the metadiscourse concept is quite short, but still seems to
suggest two main perspectives. Firstly, metadiscourse is described as a specific type of discourse
with its own unique qualities. In this paper I will aim to describe this with more precision and I
will also give concrete examples from other research papers. Secondly, the different scaffolds
developed in Knowledge Forum are seen as important facilitators of metadiscourse and collective
knowledge advancement. Still, this perspective cannot be said to be part of the concept on the
same level as the first criterion, since it focuses on the technology itself.
Research papers by Zhang with others
Metadiscourse in the classroom
All three research papers by Zhang with others describe, in some detail, the role of
metadiscourse in the lesson. In one of the research papers, Zhang et al. (2009) emphasize that
metadiscourse is important when students are working collectively in Knowledge Forum. At
some point the teacher needs to engage the students in a discussion about their own work. It is
often necessary to redefine and narrow down the knowledge problems. Usually this is done by
projecting the work in Knowledge Forum onto a screen which is visible for everyone in the class.
In this context, the teacher encourages the class to identify significant knowledge advances. This
is a kind of metadiscourse that helps students to become aware of their progress and identify
learning needs that were not otherwise recognized. The class must discuss both what they have
achieved and what needs to be done.
Zhang and Messina (2010) present a similar perspective on metadiscourse. The purpose is to
let students review conceptual connections and try to identify important emergent questions that
can lead to the formulation of deeper interconnected goals. The authors highlight one example
where students identify questions such as: "Does light reflect off black opaque objects?" or "How
does a mirror reflect light of all colors?" These questions again triggered further idea
development. Here metadiscourse is defined as an integrated part of classroom conversations.
In another research paper, Zhang et al. (2011) explain that the goal of KB Talksi is to advance
students’ understanding and engage them in metadiscourse to reflect on progress (e.g., Is the
discourse getting anywhere?), as well as formulate emerging problems and develop action plans
to address problems. Metadiscourse is described as a discourse where students are encouraged to
take a more comprehensive look at what they are doing. This is done by shifting focus from
content-specific discussions to asking questions such as “Are we getting anywhere?” or “Is there
an important idea we’re missing?” In this way, metadiscourse supports goal setting, planning, and
review of current procedures and processes.
In general, the three papers by Zhang indicate a quite consistent use of the metadiscourse
concept. The emphasis is on evaluating the collective knowledge advancement. The purpose is to
select the ideas one should continue to work with. In Zhang et al. (2009), the metadiscourse
concept is related to both prior and forthcoming collective knowledge advancement. In Zhang et
al. (2011), several of the examples related to metadiscourse are formulated as specific questions.
For example, the question “Is the discourse getting anywhere?” invites students to a critical
discussion about the collaboration. Zhang and Messina (2010) also exemplify metadiscourse with
questions, but these seem to be related to the ordinary academic discourse. For instance, the
14
KBSI2013
Papers
question "How does a mirror reflect light of all colors?" seems, in itself, not to be an example of
metadiscourse.
Teacher role
Interestingly, two of the research papers by Zhang with others also describe the role of the
teacher in relation to metadiscourse. Zhang et al. (2009) emphasize that the teacher should
facilitate metadiscourse. This is necessary because the teacher needs to understand how the ideas
in the groups are emerging. By asking stimulating questions, the teacher can bring important new
ideas into student focus. In addition, the metadiscourse concept includes a discussion between
teachers in the school about teaching, without the students being present.
Zhang and Messina (2010) also give an example of how a knowledge building teacher
attempts to engage students in metadiscourse by reviewing ideas, monitoring conflicts and
reflecting on progress. The teacher often tries to stimulate deeper analysis by connecting his or
her own proposals with students’ ideas and questions. This is done by summarizing what students
have said earlier or by identifying contrasting perspectives between the students. Metadiscourse
also takes place when the teacher formulates and highlights knowledge goals. This can happen
when the teacher creates new view structures in Knowledge Forum in line with such goals.
In both these papers, the teacher’s ability to metacommunicate seems to be closely related to
his role as a conversational regulator in the class.
Research paper by van Aalst
Van Aalst (2009) seems to be the only knowledge building researcher who describes the
metadiscourse concept in more detail. He defines metadiscourse as a level of discourse that is
different from maintaining social relations or building understanding. The concept is related to
the existence of long-range goals in a knowledge-creation community. In this regard, he
mentions four examples: 1. reviews of the state of knowledge in the community, 2. work aimed at
helping new insights diffuse throughout the community, 3. making arguments for a new phase of
inquiry and 4. establishing more difficult goals over time.
We see that the third and fourth examples focus on future collaboration by emphasizing a
new phase of inquiry and the establishment of more difficult goals. Oppositely, example one
focuses on metadiscourse as an attempt to summarize past work, while example two has a less
clear time focus. According to van Aalst (2009), students may discuss how to improve previous
efforts or evaluate the evolution of ideas over a substantial period, such as an entire school year.
Later in the paper, this meta-discourse concept is presented as one of five key conditions in an
innovation ecology that can stimulate knowledge creation (or knowledge building).1 These five
conditions are: 1. the nature of the task, 2. the sense of community, 3. idea-centered discourse, 4.
the use of technology and 5. meta-discourse.
Furthermore, metadiscourse is used as an empirical indicator when van Aalst (2009) analyzes
group discourse. Metadiscourse is defined as one of the seven main codes: Community, Ideas,
Questions, Information, Links, Agency, and Meta-Discourse. The metadiscourse concept is
further divided into three subcodes: Major review, Deepening inquiry and Lending support.
Van Aalst (2009) assumes that the first sub-code, major review, is a more important sub-code
in knowledge creation than in knowledge sharing, because it’s a more complex and timeconsuming process. This review process is considered important in discussions about the
reorganization of the collective inquiry.
1
Knowledge creation and knowledge building are often used in a similar way, but van Aalst (2009) prefers
to use the term knowledge creation in his paper.
15
KBSI2013
Papers
The second sub-code, deepening inquiry, is defined as activity that creates deeper reflection
around valuable contributions in Knowledge Forum. This requires students to interpret and
evaluate information, and to elaborate on this information by providing examples and
counterexamples (van Aalst, 2009).
It’s not clearly explained in the paper in what way the second sub-code, deepening inquiry,
and the third sub-code, lending support, are related to metadiscourse. Van Aalst (2009) refers to
one example where a student, in a group discussion about avian flu, attempts to advance the
inquiry to a new stage by suggesting a new question:
… I guess the question now is how we can make the chickens less likely to develop
serious symptoms, and to become more like the wild poultry. And maybe an
effective method of keeping the chickens from getting sick and to stop the spread of
the Avian flu is by doing something to the wild fowl to make them unable to carry
the virus. It raises some interesting questions that can probably be analyzed
further! (van Aalst, 2009: 277)
The student suggests topics the group can continue to work with, but this is not followed up
by the others. The formulation, “It raises some interesting questions that can probably be
analyzed further!” illustrates an open-ended initiative. According to van Aalst (2009), this is a
failed attempt to establish a metadiscourse. If the group had instead started a discussion about
further work they would have been doing metadiscourse, but it is still not explained how this
example then would qualify as metadiscourse. Furthermore, van Aalst (2009) admits there are
limitations in his study of metadiscourse, partly due to the short duration of the project. All
groups in the study engaged in metadiscourse, but it occurred infrequently.
3. Comparison between the research papers
By comparing the selected research papers, it’s possible to say something more general about
the explicit use of the metadiscourse concept in knowledge building research. In the table below,
I give an overview according to the definition developed by Baltzersen (2013):
Table 2. Overview of the explicit use of the metadiscourse concept in selected research
papers.
What do you do
metacommunicate about?
Scardamalia
and Bereiter
(2006).
How do you
meta-communicate?
When do you do
metacommunicate?
Metacommunication
about the conversational
content
(-)
Zhang et al.
Metacommunication
(2009, 2010, 2011) about the conversational
content
(-)
Need for review.
Students’ work in KF is
becoming too complex.
Van Aalst
(2009)
(-)
Need for review.
Students’ work in KF is
becoming too complex.
Metacommunication
about the conversational
content
(-)
In general, the research papers indicate a relatively similar use of the metadiscourse concept.
Firstly, metadiscourse is described as something different from the ordinary topic-orientated
16
KBSI2013
Papers
discourse, but there seems to be little focus on metacommunication about the conversational
relationship or the use of conversational time. There is no explicit focus on how you can
metacommunicate or on metacommunication as part of the ongoing conversation.
Compared with the definition of metacommunication from Part 1, one could claim that the
metadiscourse concept focuses mainly on communication about the conversational content. In
this regard, all the papers relate the metadiscourse concept to a review of the students’ collective
work. A lot of activity in Knowledge Forum will eventually lead to a need to "ease up" (“clear
up”) and narrow down the discussions in order to get a better overview. The class needs to select
some ideas for further work in a new topic area or view in KF. This review process requires
metadiscourse in the way that students try to synthesize notes and create new views (do a “riseabove”). Still, it can be discussed to what degree the class should discuss what they have achieved
compared to what they want to do in the future. Regarding a metadiscourse about the future
discourse, van Aalst (2009) seems to emphasize a discussion about long-term goals to a larger
degree than Zhang with others.
An important question in knowledge building will be when and how often this review process
is necessary. In his paper, van Aalst (2009) relates the metadiscourse concept to a major review
process, thus emphasizing the summarization of the collective work in the class. Since the term
"major" implies an important change of direction in the collective knowledge advancement, it is
assumed that this can’t be done all the time. Nevertheless, it seems to be difficult to estimate in
advance when this should be done, but the need increases proportionally as the work in
Knowledge Forum becomes more complex. Sometimes in collective knowledge advancement it is
necessary to stop and discuss the further direction, because it’s very difficult to build on all the
notes that are contributed in the database. Students are usually invited to discuss and select the
promising ideas. These research papers suggest the importance of regular metacommunication,
also emphasized by Baltzersen (2013), but because each class will work in a different pace and
with different ideas, the timing of the metadiscourse cannot be defined in advance.
The research papers also indicate that the researchers have difficulty using a clear-cut
definition of the metadiscourse concept. For example, in the paper by van Aalst (2009), subcodes
such as deepening inquiry and lending support may also be interpreted as including elements
from an ordinary topic-orientated discourse. Oppositely, a subcode such as project planning may
also contain elements of metadiscourse even though it is not categorized this way. Another
similar example is Zhang et al (2009), who relate the metadiscourse concept to a discussion
between teachers about teaching, without students being present. In this regard, the concept is
actually being used more broadly than in the definition from Part 1.
In addition, there seems to be an important distinction between written and verbal
metadiscourse. For example, Zhang and Messina (2010) emphasizes verbal metadiscourse, while
van Aalst (2009) describes written metadiscourse, although it is not explicitly labeled in this way.
Furthermore, it is possible to distinguish between both written and verbal discourse on a metalevel, but also in relation to the kind of discourse one refers to. In this way one could operate with
four different kinds of metadiscourse:
Table 3. Typology that describes different kinds of written and verbal metadiscourse.
Meta-writing
Meta-talk
Written discourse
1. Written discourse about a written
2. Verbal discourse
discourse.
about a written discourse.
Verbal discourse
3. Written discourse about a verbal
discourse.
4. Verbal discourse
about a verbal discourse.
17
KBSI2013
Papers
Firstly, one can have a written discussion about a written discussion. Usually this kind of
metadiscourse seems to be done in the online discussion environment Knowledge Forum. As
previously mentioned, when a class is working with diverse ideas the work will eventually
become complex and messy in KF. At some point it will be necessary to do a “rise-above” to
simplify the collective knowledge and bring it to a new level. Such “rise-above” notes suggest a
possible new synthesis by combining existing ideas. Students may bring the discourse to a higher
conceptual plane.
Nevertheless, a study by van Aalst (2009) finds limited use of advanced features such as
“rise-above” notes. It seems far more common to do major reviews through verbal discussions.
Furthermore, van Aalst (2009) asks if KF always provides the best medium for creating
knowledge in all situations. In some situations, talking face-to-face might be more effective.
While asynchronous writing can support reflective thought, it is time consuming and should only
be used when it provides advantages over more social ways of interacting. Still, this kind of
metadiscourse seems to be considered as very important for the knowledge building pedagogy
(Scardamalia and Bereiter 2006).
Secondly, one can engage in a verbal discourse about a written discourse. One example might
be a discussion of how to use Knowledge Forum. In addition, the research papers indicate that
this kind of metadiscourse usually takes place when the class needs to get an overview of the
written discussions in Knowledge Forum. A common strategy seems to be to let the whole class
discuss the notes that they have produced in Knowledge Forum (KF) together. This is done by
projecting the notes onto a visible screen. The teacher then tries to encourage knowledge
advancement by posing open questions and reading aloud some of the written notes in the
database.
Van Aalst (2009) claims that such verbal discussions are often the best solution when these
challenges arise. If these talks are absent, work on Knowledge Forum is disconnected from the
educational culture of the class and may feel like a special project. Another reason is that since
Knowledge Forum is an asynchronous communication tool without chat features, students might
have less opportunity to interchange ideas rapidly.
KF also provides different statistical tools that can summarize class activity and can give an
overview of how the community is progressing, such as the software Analytic Toolkit (ATK),
Applets for Social Network Analyses and the Idea Thread mapper (Chen, Zhang, & Lee, 2013;
Zhang, Chen, Chen, & Mico, 2013; Zhang, Lee, & Wilde, 2012). These tools can support
metadiscourse in different ways. One example is Chan (2011) who finds that one teacher receives
information about to what degree the class is working together as a closely knit social network.
These results are discussed with the students, thereby showing that this kind of formative
assessment may also be used to facilitate metadiscourse.
Thirdly, one can have a written discourse about a verbal discourse. The research papers
indicate that this kind of metadiscourse is not so common. For example, one could write a
summary about a KB Talk in Knowledge Forum. Another example is if students ask the teacher if
they can write their ideas from a class discussion in Knowledge Forum. In addition, chat tools
could support an ongoing written metadiscourse about the verbal face-to-face discourse.
Fourthly, a verbal discourse about a verbal discourse is possible, but doesn’t seem to be
addressed as metadiscourse that often. One example is if the teacher discusses conversational
rules or knowledge building norms with the students.
18
KBSI2013
Papers
4. Conclusion
In this paper I have reviewed how the metadiscourse concept is used within KB research.
Usually the concept describes some kind of planned metadiscourse. Metadiscourse seems to be
closely connected to a major review process which requires an intentional goal-orientated effort
from both students and teachers. Furthermore, since knowledge building will often include some
kind of writing technology, it may be advantageous to distinguish between written and verbal
metadiscourse. It is therefore suggested that the metadiscourse typology presented in Part 3 can
be used as a comprehensive analytical framework when studying knowledge building discourse.
In this regard, the metadiscourse concept is broader than the definition in Part 1, which only
focuses on talk about talk or verbal metacommunication.
5. Acknowledgements
I have had the opportunity to work at IKIT as a visiting scholar in 2012-2013. This has been
an important inspiration for my work with this paper.
6. References
Baltzersen, R. K. (2013). The Importance of Metacommunication in Supervision Processes in
Higher Education. International Journal of Higher Education, 2(2), 128–140. Retrieved from
http://sciedu.ca/journal/index.php/ijhe/article/view/2764
Bateson, G. (1972). Steps toward an ecology of mind. New York: Ballantine.
Chan, C. (2011). Bridging research and practice: Implementing and sustaining knowledge
building in Hong Kong classrooms. … Journal of Computer-Supported Collaborative
Learning. Retrieved from http://link.springer.com/article/10.1007/s11412-011-9121-0
Chen, M. H., Zhang, J., & Lee, J. (2013). Making Collective Progress Visible for Sustained
Knowledge Building. In Proceedings of CSCL. In N. Rummel, M. Kapur, M. Nathan, & S.
Puntambekar (Eds.), To See the World and a Grain of Sand Learning across Levels of Space
Time and Scale CSCL 2013. International Society of the Learning Sciences. Retrieved from
http://tccl.rit.albany.edu/wpsite/wpcontent/uploads/2013/03/CSCL13_ITM_zhangetalFinal_proceeding-rev.pdf
Hong, H., Scardamalia, M., & Zhang, J. (2010). Knowledge Society Network: Toward a
dynamic, sustained network for building knowledge. Canadian Journal of Learning and
Technology, 36(1). Retrieved from
http://cjlt.csj.ualberta.ca/index.php/cjlt/article/viewArticle/579
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology.
In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–118). Cambridge,
UK: Cambridge University Press.
Van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and
knowledge-creation discourses. International Journal of Computer-Supported Collaborative
Learning, 4(3), 259–287. doi:10.1007/s11412-009-9069-5
Zhang, J., Chen, M.-H., Chen, J., & Mico, T. F. (2013). Computer-Supported Metadiscourse to
Foster Collective Progress in Knowledge-Building Communities. In N. Rummel, M. Kapur,
M. Nathan, & S. Puntambekar (Eds.), To See the World and a Grain of Sand Learning across
Levels of Space Time and Scale CSCL 2013 Conference Proceedings Volume 2 — Short
Papers, Panels, Posters, Demos & Community Events. (pp. 197–200). International Society
of the Learning Sciences. Retrieved from http://www.isls.org/cscl2013/Volume 2 Final CSCL
2013 Proceedings.pdf
Zhang, J., Hong, H.-Y., Scardamalia, M., Teo, C. L., & Morley, E. A. (2011). Sustaining
Knowledge Building as a Principle-Based Innovation at an Elementary School. Journal of the
Learning Sciences, 20(2), 262–307. doi:10.1080/10508406.2011.528317
19
KBSI2013
Papers
Zhang, J., Lee, J., & Wilde, J. (2012). Metadiscourse to foster collective responsibility for
deepening inquiry. In J. van Aalst, K. Thompson, M. J. Jacobson, & P. Reimann (Eds.), The
Future of Learning: Proceedings of the 10th International Conference of the Learning
Sciences (ICLS 2012) (Full papers) (pp. 395–402). Sydney, NSW, Australia: International
Society of the Learning Sciences (ISLS). Retrieved from http://tccl.rit.albany.edu/wpsite/wpcontent/uploads/2013/04/Spacestudy_icls_final_refined.pdf
Zhang, J., & Messina, R. (2010). Collaborative productivity as self-sustaining processes in a
grade 4 knowledge building community. In Proceedings of the 9th International Conference
of the Learning Sciences - Volume 1 (pp. 49–56). International Society of the Learning
Sciences. Retrieved from http://dl.acm.org/citation.cfm?id=1854360.1854367
Zhang, J., & Scardamalia, M. (2007). Sustaining principle-based knowledge building innovation
at an elementary school. In Annual Meeting of American Educational Research Association.
Chicago, IL. Retrieved from
http://tccl.rit.albany.edu/papers/conferenes/AERA07_KBschool.pdf
Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for Collective Cognitive
Responsibility in Knowledge-Building Communities. Journal of the Learning Sciences,
18(1), 7–44. doi:10.1080/10508400802581676
20
KBSI2013
Papers
Expanding the Metadiscourse Concept in Knowledge Building
Rolf Kristian Baltzersen, Østfold University College, Norway
Email: [email protected]
ABSTRACT: In Knowledge Building (KB) research, the metadiscourse concept
has been taken in use more in recent years. The concept seems to have been used
mainly to inform the academic discourse and the collective advancement of ideas.
Still, there have been few attempts to define the concept in a coherent way. In this
paper I discuss whether we need to expand our understanding of the concept in
order to fully understand knowledge building discourse. By using a comprehensive
definition of metacommunication as a theoretical framework, I demonstrate how
different kinds of “talk about talk” are present in knowledge building discourse in
selected KB research papers, while not being explicitly described as metadiscourse.
It is suggested that several new discourse elements should be included in the
metadiscourse concept; these are explanations of intentions in the knowledge
building discourse, discussions of the relationship between the participants and
questions of clarification that may better capture the meta-level in the “ongoing
flow” of the knowledge building discourse. In addition, one should focus more on
the discourse relationship.
1. Background
In recent years, more Knowledge Building (KB) researchers have started to use the
metadiscourse concept (Scardamalia & Bereiter, 2006; van Aalst, 2009). Still, the definitions of
this “discourse about the discourse” or “talk about the talk” seem to be simple and, in some cases,
not even explicitly defined. Research related to a similar concept, the metacommunication
concept, also appears to have had minimal influence on the development and definition of the
metadiscourse concept in KB research. One exception is a review study done by Baltzersen
(2013a). He finds that the present use of the metadiscourse concept refers mainly to the
discussion of ideas within the academic discourse in a class or student group. The concept seems
to be closely linked to a major review process which is sometimes necessary in the knowledge
building discourse. Interestingly, the metadiscourse concept does not focus on issues related to
the conversational relationship or the use of conversational time. In this paper, I therefore ask:
Do we need a broader understanding of the metadiscourse concept in order to fully
understand knowledge building discourse?
A comprehensive definition of metacommunication developed by Baltzersen (2013b) is used
as an analytical framework. He divides the concept into three basic dimensions: what, how and
when do you metacommunicate? On the basis of this broad definition, the goal is to explore if
some aspects of “talk about talk” are present in knowledge building research, but still not
emphasized in the analysis by the researchers.
In the selection of relevant examples, it was important to use discourse data in order to
explore the relationship between metadiscourse and knowledge building discourse in more depth.
Furthermore, it was essential to find examples which could be regarded as a legitimate part of
“mainstream” knowledge building research. A review study by Baltzersen (2013a) was used to
locate research papers which, to some degree, related the metadiscourse concept to the knowledge
building discourse:
21
KBSI2013
Papers
Table 1. Overview of selected research papers according to the frequency of the use of the
metadiscourse concept
Top ranked research papers in Google Scholar (A search with the
combination of the two terms “knowledge building” and
“metadiscourse/meta-discourse” for the period from 2006-2012, date 8th
November 2012).
Number of times the
metadiscourse
concept is used in the
paper
Distinguishing knowledge-sharing, knowledge-construction, and
knowledge-creation discourses (van Aalst 2009).
13
Collaborative productivity as self-sustaining processes in a grade 4
knowledge building community (Zhang and Messina 2010).
4
Sustaining knowledge building as a principle-based innovation at an
elementary school (Zhang et al. 2011).
3
Knowledge building: Theory, pedagogy, and technology (Scardamalia
and Bereiter 2006).
2
Designs for collective cognitive responsibility in knowledge-building
communities (Zhang et al. 2009).
2
Table 1 shows that the metadiscourse concept is used only a few times in most research
papers. This suggests that the concept has not been thoroughly explained in the theory. The two
top ranked research papers were selected as the basic data corpus. These papers were not
considered to be representative, but they were rather regarded as being of some significance in
knowledge building research.
In the paper by Zhang and Messina (2010) there is only one lengthy and detailed text excerpt
which illustrates knowledge building discourse. The discourse data here had not been explicitly
related to the metadiscourse concept in the analysis in the paper. This excerpt was therefore
selected as a relevant example for further analysis.
The paper by van Aalst (2009) consists of several short text excerpts. Most of them are used
in the section in the paper that presents the community code. These excerpts had not been
interpreted as examples of metadiscourse. Four of five excerpts from this section were therefore
selected for further analysis. Because these excerpts were shorter in length, more excerpts were
chosen than in the paper by Zhang and Messina (2010). Nevertheless, the two cases are similar
because they both consist of discourse data, but they differ in the way that Zhang and Messina
(2010) refer to a discussion between the teacher and the student in the class, while van Aalst
(2009) refers to online discussions between groups of students.
Both these cases will be analyzed in order to find out if some aspects of “talk about talk” are
present, but have not been emphasized in the analysis by these researchers. One can assume that,
in these two research papers, the authors has attempted to describe the meta-level, but still might
have excluded parts of this phenomenon. The goal of the paper is not to do an extensive analysis,
but rather illustrate a possible further direction for the development of the metadiscourse concept.
Regarding the organization of the paper, the two cases from the published research papers
will be presented in Part 2. In Part 3, I analyze if other kinds of metacommunication actually are
present in these published papers. In Part 4, I discuss whether some types of metacommunication
22
KBSI2013
Papers
should be included in a new and broader metadiscourse concept in order to better understand the
knowledge building discourse.
2. Examples of knowledge building discourse
Case 1 from research paper by van Aalst
In the study by van Aalst (2009), secondary school students in 2003 and 2004 were assigned
an inquiry project related to different kinds of viruses. Two classes shared a Knowledge Forum
database and worked on the same topics. To limit the number of notes they would encounter, the
students were divided into four groups. Each group had students from both classes and had their
own online environment (“view”) in Knowledge Forum. The separate groups were not expected
to interact with each other during the inquiry. Most of the students worked on Knowledge Forum
during class a few times per week, and after school hours.
In his case study, van Aalst (2009) uses community as one of the seven main codes in a
Knowledge Building discourse. This code describes the extent to which the social interactions
within a group suggest a “sense of community”, in which people feel they will be treated
sympathetically by “their fellows”. The indicators include social processes such as commitment
to shared goals, encouragement, giving credit, drawing in participants, and apologizing. He
suggests that these processes seem to be a necessary first step for collaborative learning. Whether
ideas are appreciated and taken up by the community is seen as important to the formation of
students’ identities as community members.
Van Aalst (2009) finds several social differences between the studied groups. One of the
groups functioned especially well with a shared commitment to the task, a sense of belonging to
the group, and an appreciation for all group members’ contributions. Examples 1 and 2 are used
to illustrate the encouragement in this group. Students wrote the following comments online:
Table 2. Text excerpts from group discussion (van Aalst, 2009: 273).
Example 1
Example 2
“I think your ideas for groups are good … It
“I really like [S’s] idea of setting
would mean that we could get a start on all the
ourselves little mini-deadlines so that
topics right away. Good job of actually getting
everybody will stay on task and finish the job
things going!”
more efficiently.”
Van Aalst (2009) interprets the two excerpts in table 2 as related to encouragement and
giving credit, but he doesn’t relate them to the metadiscourse concept. In addition, he gives two
examples of conflicts in another group that arose from miscommunication:
Table 3. Text excerpts from group discussion (van Aalst, 2009: 276).
Example 3
Example 4
In the final phase of the work one student in
A student from the Grade 10 class
the Grade 11 class wrote to a Grade 10 class: “As responded as follows: “Yeah, alright. If the
of now, we have less than 1 week left and
rest of our group wants to do it then I guess
because your class have not been very active in
that’s what’s being done since “we have not
23
KBSI2013
Papers
this final phase, we’ve decided to go with these
two questions above because we’ve already been
researching them and getting information. I’m
sorry if this inconveniences you in any way, but
you’ve left us no choice. Hopefully this will work
out alright with you.”
been very active.” I thought we were only
supposed to research our own questions first.
Are those the only questions that we are doing
then? We are sorry that you are not satisfied
with the level of our commitment on KF. We
weren’t aware that we needed to pick from
your questions as well as ours. Sorry for the
inconvenience.”
All four text excerpts have been coded as community and they have not been explicitly
interpreted as related to the metadiscourse concept. In Part 3, I will discuss if it’s possible also to
connect these utterances (phrases) to the metacommunication concept.
Case 2 from paper by Zhang and Messina (2010)
In the research paper by Zhang and Messina (2010) the analysis will be concentrated on a text
excerpt where the teacher explains the rules of reflective contributions to the class. As we can see
from example 5 in the table below, the teacher reminds the students several times of the basic
conversational norms and rules related to collective knowledge advancement.
Table 4. Text excerpt with whole class conversation (Zhang and Messina, 2010: 52).
Example 5
“Analysis highlight” by Zhang
and Messina.
- GM: Well, there’[re] bricks, which are still opaque.
But they’re not reflective. But I don’t know what they are
called, like that kind of opaque. JL (2:20)
- Identifying non-reflective
opaque materials, using a tentative
voice.
- JL: I think all opaque materials are reflective,
except not all of them reflect light back. … OK, let’s just
say um like…a yellow carpet… your eyes would be able to
see the yellow of it because it would only reflect yellow
light. That means like that sort of like a tissue for example
that would only reflect white, except the yellow carpet,
since it’s like green mixed with red, I believe. Then the
beam of red [and green] light would touch us and your
eyes would take it in as yellow. (2:31)
- Contributing an alternative
idea: All opaque materials are
reflective, by analyzing a thought
experiment (yellow carpet), drawing
on knowledge of primary and
secondary colors.)
- Teacher: So you’re saying everything is reflective
then. Every opaque object is reflective to some degree. Oh,
I hear some people disagree. Can you pass it on? [JL:
SG.] (3:58)
- Revoicing student idea;
highlighting contrasting
perspectives.
- SG: What about wood? Wood isn’t reflective. JL.
(4:07)
- FJ: I think if wood is shiny and polished, you could
see your reflection. I think it’s mostly just shiny objects so
it depends on what kind of wood you have, what kind of
table you have, if you see your reflection. SG. (4:53)
- Bringing in an anomaly.
- Re-analyzing and interpreting
the instance as non-anomalous.
24
KBSI2013
- SG: Like if you had a glass table. (5:12)
Papers
- Supporting fact.
- Teacher: The question is: Are all opaque objects
reflective? Have we answered that? … Do all opaque
objects reflect light? Anyone has a theory or evidence to
support that? So, SG, it’s yours to pass. [SG: DN.] (5:16)
- Highlighting/reminding a
focal problem and promoting
reflection on progress.
- DN: Um, actually all opaque objects do reflect light,
because they reflect their own color. So we see them as
whatever color they are. TS. [inaudible student talking]
(5:35)
- Articulating an idea and its
supporting thoughts.
- Teacher: Hold on, let’s hear him talk. (5:57)
- TS: If they didn’t reflect their own color, you
wouldn’t see a brick of red, or someone’s t-shirt as purple
or whatever. RP. (5:59)
- RP: What about black? (6:11)
- Maintaining conversation
norms.
- Extending and elaborating
idea.
- Bringing in an anomaly.
- Teacher: Don’t throw it back to him. Give your
theory. (6:14)
- Maintaining norms; encourage
initial thoughts.
- RP: I don’t think black reflects. I think that black
might reflect light, but it might not. Because we had a
reading today that um all the colors of the rainbow make
white light and there is a note in the database about that,
and everything reflects its own color. But it didn’t say
anything about black. EY. (6:18)
- Summarizing a reading and an
online note and identifying black as
an unaddressed issue.
This text excerpt is not explicitly connected to the metadiscourse concept in the published
research paper. In Part 3, I will discuss if it’s possible to relate it to the metacommunication
concept.
3. The presence of metacommunication in knowledge building discourse
In this section, cases 1 and 2 are analyzed according to Baltzersen’s (2013b) definition of
metacommunication. The definition is presented together with the analysis of the different
examples.
Metacommunication about the conversational content
According to Baltzersen (2013b), one main option is to metacommunicate about the
conversational content. This can be done in several different ways, and usually happens when a
speaker is trying to manage or regulate the conversational content. One strategy is to talk about
the forthcoming conversational content. There are several examples of this “future-orientated”
metacommunication. In example 1, the phrase “We could get a start on all the topics (...)”
indicates the presence of a talk about what we are going to talk about. The student representing
the group suggests that they should start to work with all topics instead of only a few. The
utterance refers to the number of conversational topics. Furthermore, when the student in example
3 writes “(…) we’ve decided to go with these two questions,” he is actually deciding the scope of
topics that the group is going to work with.
25
KBSI2013
Papers
According to Baltzersen (2013b), one can talk about the intentions behind the conversational
content in different ways. For example, it’s possible to either talk about what oneself is saying or
what the other person just has said. This kind of metacommunication is illustrated in example 4,
when the student says: “I thought we were only supposed to research our own questions first. Are
those the only questions that we are doing then? (…) We weren’t aware that we needed to pick
from your questions as well as ours.” The student is talking here about the workload in the
collaboration. The student is both disclosing the group’s own opinion about the allocation of
group work, and also asking for the other group’s opinion about the group work. This utterance
can be seen as an attempt to clarify the group’s own position by explaining the task.
Furthermore, Baltzersen (2013b) emphasizes that summarizing can also be regarded as
metacommunication about the conversational content. In case 2 by Zhang and Messina, (2010)
one could claim that there are several such examples. When the teacher says: “So you’re saying
everything is reflective then, (...)” this can be interpreted as an attempt to give a short summary of
what has just been said. Zhang and Messina (2010) code this utterance as “revoicing a student
idea”. In the same excerpt, a student tries to summarize the academic work: “Because we had a
reading today that um all the colors of the rainbow make white light and there is a note in the
database about that, and everything reflects its own color. But it didn’t say anything about black.”
Zhang and Messina (2010) code/interpret this utterance as summarizing a reading and an online
note and identifying black as an unaddressed issue. The key to understanding the meta-level is the
explicit utterance related to something that has been said earlier. In this example the phrase
“because we had a reading today” is of central importance, because it indicates that this is a
summary. According to Baltzersen (2013b), one will usually still be talking about the same
conversational topic, but this is done within a different communicative “frame”. The important
issue here is the explicit attempt to identify the essential prior conversational content.
Metacommunication about the conversational relationship
According to Baltzersen (2013b), the second main option is to metacommunicate about the
conversational relationship. Usually this type of metacommunication is related to some kind of
evaluation of the relationship between the persons interacting. There seem to be several such
examples in the text excerpt from van Aalst (2009). In example 1, formulations such as “I think
your ideas for groups are good,” and “Good job of actually getting things going!” indicate that the
groups are evaluating each other’s work positively. In example 4, the evaluation is more
negative. Here the student writes that the group has not been very active: “If the rest of our group
wants to do it then I guess that’s what’s being done since ‘we have not been very active.’” The
group here accepts the other group’s decision since they agree with the assessment of their
performance. In one way the group is summarizing the conversational relationship when they say
they have not been very active. This message is also repeated in the phrase: “We are sorry that
you are not satisfied with the level of our commitment on KF.” The student here apologizes for
the group’s lack of work.
Baltzersen (2013b) also highlights that one can talk about one’s own role or another person’s
role in the relationship. In example 2, the phrase “so that everybody will stay on task and finish
the job more efficiently” also indicates the presence of metacommunication about each person’s
role in the group relationship. The phrase “stay on task” also suggests something about future
expectations concerning how the group should work together. In example 5 by Zhang and
Messina (2010) there is also an example of the teacher commenting on the person’s role in the
relationship in the class discussion. The teacher says: “Don’t throw it back to him. Give your
theory.” The teacher is describing here how a student is not communicating adequately by using
the metaphor of “throwing something”. Zhang and Messina codes this utterance as “maintaining
norms”. By saying “give your theory” the teacher instructs the student to bring up his own ideas.
The utterance is coded as encouraging initial thoughts.
26
KBSI2013
Papers
As stated in Baltzersen (2013b), another kind of metacommunication about the
conversational relationship is related to the verbalization of a disagreement. This kind of
metacommunication is illustrated in example 3 with the phrase: “I’m sorry if this inconveniences
you in any way, but you’ve left us no choice. Hopefully this will work out alright with you.” This
can be interpreted as an attempt to explicate potential disagreement. With the phrases “I’m sorry
if this inconveniences you in any way,” and “Hopefully this will work out alright with you” the
student is saying something about possible negative feelings that the other group might get when
they read the message. At the same time there is an element of apology and politeness in the
critique, with the phrases “I’m sorry (…)” and "hopefully.” At the same time, the phrase “(…) but
you’ve left us no choice” explains the intentions behind the communicative message in more
detail, and clarifies that the suggested solution is non-negotiable. This discussion about a possible
disagreement between the groups is followed up by the other group in example 4. The phrase
“Sorry for the inconvenience” indicates regret for the possible difficulties that this group may
have created in the group work. The group is referring here to the other group’s experience of
their own work. This is also indicated in the phrase “not satisfied.”
In example 5 by Zhang and Messina (2010), there are also phrases that can be interpreted as
attempts to make disagreements more explicit. For example, the teacher says: “Oh, I hear some
people disagree.” This is a verbal opinion about some of the students’ behavior in the class.
Zhang and Messina (2010) code this phrase as “highlighting contrasting perspectives.” This
utterance can also be interpreted as an assessment of the degree of agreement in the ongoing
conversational relationship in the class. Interestingly, this is a recommended metacommunicative
strategy within therapy (Baltzersen, 2013b), but it also seems to be potentially beneficial within
an educational context.
Metacommunication about conversational time-use
A third main option is to metacommunicate about the use of conversational time (Baltzersen,
2013b). This can be done in several different ways and also seems to be part of the discussion in
the text excerpts in the study by van Aalst (2009). In example 1, the phrase “get a start (...) right
away” indicates that the student wants to begin to work immediately. In example 2, the phrase “I
really like [S’s] idea of setting ourselves little mini-deadlines so that everybody will stay on task
and finish the job more efficiently” can be interpreted as containing two types of metadiscourse.
The suggestion about “setting little mini-deadlines” concerns how to organize the time-frame of
the collaborative work. According to the definition of metacommunication from part 1, this can
be interpreted as a comment about conversational time-use. In example 3, the phrase “we have
less than 1 week left” also says something about conversational time-use. In itself this is an
objective description of time, but in this context it can also be interpreted as a sign of urgency. In
another example by Zhang and Messina (2010) the teacher says: “Hold on, let’s hear him talk.”
The student is here given more time to speak. Zhang and Messina (2010) code this utterance as
“maintaining conversation norms”. This utterance can be related to the allocation of talking time.
One important task for most teachers is to let everybody speak.
Monological or dialogical metacommunication?
According to Baltzersen (2013b) the metacommunication in itself can also say something
about how people relate to each other. In this regard, he distinguishes between monological
metacommunication, which refers to a situation where only one person is metacommunicating,
while dialogical metacommunication indicates that all persons are involved. Example 5 gives
some impression of how the teacher is metacommunicating with the students. In this conversation
the teacher is, to a small degree, a content provider, but mainly instead appears to be regulating
conversational rules and directing the classroom discussion. Here the ability to metacommunicate
seems to play an important role. Nevertheless, the teacher seems to be defining the discussion
27
KBSI2013
Papers
rules, making summaries and directing the time-use. In this way the teacher’s behavior is close to
a monological metacommunication dominated by one person, though this is not necessarily
negative.
Still, the communication structure is clearly different from the traditional IRE-structure
(initiation, response, evaluation) in which the teacher starts by asking a question, which is
followed up by a response from a student, and which then terminates with evaluative feedback
from the teacher (Cazden, 2001). In knowledge building, students are supposed to build on each
other’s ideas. Still, the teacher needs to sustain the discussion by constantly explaining the
conversational rules during the ongoing conversation, like in example 5 with the phrase: "Hold
on, let’s hear him talk." This order illustrates what one could call teacher-controlled
metacommunication, but paradoxically, the control is used here to facilitate students’ continuous
reflections around ideas. One could argue that this kind of metacommunication is necessary
because students are used to traditional instruction and don’t know how to do knowledge
building.
Another important didactical question is to what degree students should be allowed to
participate in dialogical metacommunication with the teacher. In a research study by Zhang,
Scardamalia, Reeve and Messina (2009), they found that students requested “KB talks” to discuss
the Knowledge Forum database with each other. Zhang, Hong, Scardamalia, Teo and Morley
(2011) also mention that learning designs and inquiry strategies are often co-constructed by both
teachers and students. Together they decide on what views should be created in Knowledge
Forum and how different groups might contribute to different facets of the community enterprise.
They discuss issues such as: Are we making progress in idea improvement? What are the weak
areas that need more research? What experiments need to be conducted to test our theories?
When do we need a KB Talk and what should it focus on? What kinds of information should be
recorded in Knowledge Forum? This approach would indicate a more dialogical
metacommunication since the students here have some degree of executive control over the
classroom.
When can you metacommunicate?
Metacommunication will always happen at a specific time in a discourse. Baltzersen (2013b)
suggests that metacommunication can either focus on an extended time frame or on the ongoing
"here-and-now" conversation. The ongoing metacommunication can be done in several different
ways, for example by explaining intentions or by posing questions of clarification. In example 5
by Zhang and Messina (2010), there are some phrases that illustrate this kind of
metacommunication. For example, the utterance: “Have we answered that? … Do all opaque
objects reflect light? Anyone has a theory or evidence to support that?” may here be interpreted as
a request for clarification of what the class has been talking about. The teacher is raising a
question and asking if this topic has already been discussed or talked about. Zhang and Messina
(2010) code this as “Highlighting/reminding a focal problem.” The phrase “Anyone has a theory
or evidence to support that?” is related to encouraging further reflection around the same topic.
The teacher is here asking for more ideas that support the suggested theory and in this way asking
for further clarification or reflection around the topic. Zhang and Messina (2010) also code this as
“promoting reflection on progress.” Interestingly, these examples are not defined as
metadiscourse.
4. Concluding remarks
There has been little discussion around the possible existence of qualitatively different types
of metadiscourse which may be important for the knowledge building discourse. The current use
28
KBSI2013
Papers
of the metadiscourse concept represents only a thin slice of the possibilities available (Baltzersen
2013b). In this paper I have therefore tried to answer the following research question:
Do we need a broader and more complex definition of the metadiscourse concept in order to
more fully understand the knowledge building discourse?
By using a comprehensive definition of metacommunication as a theoretical framework, I
have demonstrated the presence of several different kinds of talk about talk in the knowledge
building discourse. The analysis of the case descriptions in the two research papers indicates that
several types of metacommunication are currently not coded as metadiscourse even though they
describe some kind of talk about talk. This includes metacommunication about the conversational
content, but also about the group relationship and the organization of the use of time in the
collaborative process. For example, large parts of the selected text excerpts from van Aalst (2009)
which was originally coded in the category community could also be reinterpreted as being
metacommunication. Zhang and Messina (2010) use some coding terms which are closely
connected to the metacommunication concept, such as “summarizing.” Other terms such as
“maintaining norms” are not as conceptually close to the metacommunication concept. Cases 1
and 2 both also illustrate the metacommunicative complexity on an interactional micro level.
Several different types of metacommunication are intertwined and seem to have different
functions in the knowledge building discourse.
The original metadiscourse concept in knowledge building seems to be used narrowly with
more specific normative functions. It seems to mainly focus on metacommunication about the
conversational content (Baltzersen, 2013b). One could ask if this is a conceptual problem for the
knowledge building theory. Should the metadiscourse concept also include other elements that
are used in the metacommunication definition? Even though metacommunication is present in the
selected text excerpts, one may ask if this is of any significant importance. What does one gain by
using a more coherent framework like Baltzersen’s (2013b)?
Firstly, it seems to be necessary to more closely connect the metadiscourse concept to the
explanation of intentions in the knowledge building discourse. This issue is mentioned by several
knowledge building researchers, but is not specifically related to the metadiscourse concept. For
example, Zhang et al (2011:292) refer to a Grade 3 teacher who thinks one needs to be much
more explicit about the pedagogy in the classroom with the students: “The whole notion of a
knowledge building community is something that . . . has to be made much more explicit. Our
investigations have to have a clearer agreed upon direction. . . . Many students honed in on
individual questions and connected only minimally to their classmates.” This teacher thinks one
should continuously explain the knowledge building pedagogy as a part of the collective
knowledge advancement. Similarly, Chan (2011) mentions the importance of talking about
knowledge building pedagogy with the class in the beginning of the process. The teacher must
help students understand that they should not only work as individuals, but also as a community.
Students need to discuss the importance of the pedagogy in relation to their own expectations of
the learning processes.
Because the knowledge building discourse is so different from the traditional IRE structure, it
seems to be even more important than usual to try and explain the pedagogy to the students. The
text excerpt by Zhang and Messina (2010) also illustrates that the teacher needs to explain the KB
pedagogy continuously. A more detailed definition of metadiscourse can potentially help the
teacher to reflect around these questions when implementing Knowledge Building in classrooms.
Secondly, one seems to need a metadiscourse concept that can capture meta-levels that are
part of the “ongoing flow” of the knowledge building discourse. The text excerpts from van Aalst
(2009) and Zhang and Messina (2010) illustrate that several different types of
metacommunication are intertwined in the ongoing knowledge building discourse. In present
29
KBSI2013
Papers
research, the metadiscourse concept seems to lack such a focus. Van Aalst (2009), for example
does not choose to code clarification as part of the metadiscourse concept. Nevertheless,
clarification seems to play an important role in the metacommunication concept (Baltzersen,
2013b; Bateson, 1972). One could, for instance, discuss whether short metacommunicative
utterances such as clarification should be highlighted as being part of the metadiscourse concept
on a “micro level.”
Furthermore, Zhang et al. (2009) emphasize the importance of collaborative improvisation in
knowledge building discourse. Diverse ideas are generated and critically examined in
unpredictable and complex ongoing interactions. When everybody contributes to the flow of the
conversation, the students can take on higher level responsibility in deciding what and how to
learn. The text excerpt by Zhang and Messina (2010) also illustrates how metacommunication
regulates this kind of discourse and does not necessarily inhibit this conversational flow as
suggested by Sawyer (2004). There seems to be a need for a metadiscourse concept that can
capture the more spontaneous ongoing regulation of the knowledge building discourse in addition
to research on more explicit metadiscourse designs (Zhang, Lee, & Wilde, 2012).
Thirdly, the text excerpt from Zhang and Messina (2010) illustrates examples of summarizing
on a micro level in the ongoing discourse. This kind of summarizing is not included in the
metadiscourse concept. This may be a weakness, since the present metadiscourse concept focuses
so much on a major review which can be interpreted as an attempt to summarize the discussion of
academic ideas within a broader time period. A more complex metadiscourse concept would be
useful in order to encompass different ways of reviewing the collective work. Summarizing of
collective work also seems to play an essential role in the educational design of knowledge
building (Resendes, Chen, Acosta, & Scardamalia, 2013; Zhang et al., 2012). For example, Zhang
et al. (2012) examined different designs of metadiscourse in the classroom. Both classes had
regular “metacognitive meetings” where students reflected on progress and identified the focus of
their further inquiry. Class A reviewed student questions in order to formulate deepening goals,
while class B co-monitored key disciplinary concepts.
Fourthly, the groups in examples 1-4 are metacommunicating about the conversational
relationship by expressing possible conflicts or disagreements in the relationship. Since van Aalst
(2009) does not relate this text excerpt to metadiscourse, he implicitly operates with a
metadiscourse concept that does not focus on how students regulate social relations. This might
be a weakness since these relational components are considered important in the total framework
of a knowledge building discourse. It is therefore recommended that the metadiscourse concept
should include a new subcategory which is more related to a “discourse about the discourse
relationship.”
Still, it is not entirely clear how important this kind of metadiscourse is in knowledge
building discourse. According to Bereiter and Scardamalia (2010) a dialogue about the group
dynamics is subordinate to the most important issue of whether the dialogue is progressing. A
group involved in knowledge building, which pauses to evaluate the progress of their dialogue, is
usually not mainly concerned with group dynamics. They exemplify a dialogue about the
dialogue relationship by whether everyone has had a chance to be heard, how turns are being
taken and whether people are paying attention to what others say.
To conclude, there seems to be a need to start a more profound theoretical discussion around
the importance and the scope of the metadiscourse concept in KB theory. A broad and
comprehensive concept might help the teacher in developing more effective strategies when
trying to implement knowledge building in the classroom. The metadiscourse concept should also
be discussed in relation to other similar concepts as for instance reflective communication
(Engeström, 2008). In addition there seems to be an interesting link between the metacognition
30
KBSI2013
Papers
concept and the metadiscourse concept which is largely unexplored (Whitebread & O’Sullivan,
2012).
5. Acknowledgements
I have had the opportunity to work at Institute for Knowledge Innovation and Technology
(IKIT) as a visiting scholar in 2012-2013. This has been an important inspiration for my work
with this paper.
6. References
Baltzersen, R. K. (2013a). Metadiscourse in Knowledge Building: A question about written or
verbal metadiscourse. Knowledge Building Summer Institute 2013. Toronto: Institute for
Knowledge Innovation and Technology.
Baltzersen, R. K. (2013b). The Importance of Metacommunication in Supervision Processes in
Higher Education. International Journal of Higher Education, 2(2), 128–140. Retrieved from
http://sciedu.ca/journal/index.php/ijhe/article/view/2764
Bateson, G. (1972). Steps toward an ecology of mind. New York: Ballantine.
Bereiter, C., & Scardamalia, M. (2010). “Good Moves” in Knowledge-Creating Dialogue:
Preliminary Sketch of a Model. Toronto: Institute for Knowledge Innovation and
Technology. University of Toronto. Retrieved from http://ikit.org/dialoguemodel.pdf
Cazden, C. B. (2001). Classroom discourse : the language of teaching and learning (2nd ed.).
Portsmouth: Heinemann.
Chan, C. (2011). Bridging research and practice: Implementing and sustaining knowledge
building in Hong Kong classrooms. … Journal of Computer-Supported Collaborative
Learning. Retrieved from http://link.springer.com/article/10.1007/s11412-011-9121-0
Engeström, Y. (2008). From teams to knots: Studies of collaboration and learning at work.
Cambridge, NY: Cambridge University Press. Retrieved from
http://www.lavoisier.fr/livre/notice.asp?ouvrage=1443776
Resendes, M., Chen, B., Acosta, A., & Scardamalia, M. (2013). The Effect of Formative
Feedback on Vocabulary Use and Distribution of Vocabulary Knowledge in a Grade Two
Knowledge Building Class. In N. Rummel, M. Kapur, M. Nathan, & S. Puntambekar (Eds.),
To See the World and a Grain of Sand Learning across Levels of Space Time and Scale
CSCL 2013 Conference Proceedings Volume 1 Full Papers Symposia (pp. 391–398).
International Society of the Learning Sciences.
Sawyer, R. K. (2004). Improvised lessons: collaborative discussion in the constructivist
classroom. Teaching Education, 15(2), 189–201. doi:10.1080/1047621042000213610
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology.
In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97–118). Cambridge,
UK: Cambridge University Press.
Van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and
knowledge-creation discourses. International Journal of Computer-Supported Collaborative
Learning, 4(3), 259–287. doi:10.1007/s11412-009-9069-5
Whitebread, D., & O’Sullivan, L. (2012). Preschool children’s social pretend play: supporting the
development of metacommunication, metacognition and self-regulation. International
Journal of Play, 1(2), 197–213. doi:10.1080/21594937.2012.693384
Zhang, J., Hong, H.-Y., Scardamalia, M., Teo, C. L., & Morley, E. A. (2011). Sustaining
Knowledge Building as a Principle-Based Innovation at an Elementary School. Journal of the
Learning Sciences, 20(2), 262–307. doi:10.1080/10508406.2011.528317
31
KBSI2013
Papers
Zhang, J., Lee, J., & Wilde, J. (2012). Metadiscourse to foster collective responsibility for
deepening inquiry. In J. van Aalst, K. Thompson, M. J. Jacobson, & P. Reimann (Eds.), The
Future of Learning: Proceedings of the 10th International Conference of the Learning
Sciences (ICLS 2012) (Full papers) (pp. 395–402). Sydney, NSW, Australia: International
Society of the Learning Sciences (ISLS). Retrieved from http://tccl.rit.albany.edu/wpsite/wpcontent/uploads/2013/04/Spacestudy_icls_final_refined.pdf
Zhang, J., & Messina, R. (2010). Collaborative productivity as self-sustaining processes in a
grade 4 knowledge building community. In Proceedings of the 9th International Conference
of the Learning Sciences - Volume 1 (pp. 49–56). International Society of the Learning
Sciences. Retrieved from http://dl.acm.org/citation.cfm?id=1854360.1854367
Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for Collective Cognitive
Responsibility in Knowledge-Building Communities. Journal of the Learning Sciences,
18(1), 7–44. doi:10.1080/10508400802581676
32
KBSI2013
Papers
La Importancia de las Redes Sociales como Herramienta Educativa en el
Centro de Estudios Científicos y Tecnológicos No. 1 Nivel Medio Superior
del Instituto Politécnico Nacional
Ranulfo Dimitri Cab Cordero, Marco Antonio Hernández Pérez
Centro de Estudios Científicos y Tecnológicos No. 1, Instituto Politécnico Nacional
Emails: [email protected], [email protected]
ABSTRACT: This paper describes the results gotten from an investigation made
about the impact of social networks in young students applied to learning process.
The development of Information Technologies and its democratization via Internet
has influenced the society in different grades. Young people are more adaptable,
and perceptive to this influence, in a more natural way. Social networks, (as
Facebook and Twitter) have become part of their lives, and today not to have it
could be cause of exclusion.
Different areas of the society must also be adaptable to these changes, and should
take advantage of the opportunity that they represent. This report exposes the
success gotten during the implementation of social networks in the learning process
for high school students at Instituto Politécnico Nacional, and how the social
networks can complement the educational platform, and enrich the student
experience.
Keywords: Information Technologies, Social Networks, Students, Education.
RESUMEN: Este artículo describe los resultados conseguidos a partir de
investigación realizada sobre impacto de las redes sociales en estudiantes aplicados
al proceso de aprendizaje.
El desarrollo de las Tecnologías de la Información y su democratización a través de
Internet ha influido en la sociedad en diferentes grados. Los jóvenes son más
adaptables y perceptivos a esta influencia, de una manera más natural. Las redes
sociales (como Facebook y Twitter) se han convertido en parte de su vida, y hoy en
día no tenerlas podría ser causa de exclusión.
Diferentes áreas de la sociedad también deben adaptarse a estos cambios, y deben
aprovechar la oportunidad que representan. Este informe expone el éxito
conseguido en la implementación de las redes sociales en el proceso de aprendizaje
de los estudiantes de bachillerato en el Instituto Politécnico Nacional, y cómo las
redes sociales pueden complementar la plataforma educativa, y enriquecer la
experiencia de los estudiantes.
Palabras clave: Tecnologías de la información, Redes sociales, Estudiante,
Educación.
INTRODUCCIÓN.
Actualmente podemos decir los que nos dedicamos a la educación que las escuelas de hoy
son distintas a las de hace tres años y más distintas aún que las de hace cinco años. Lo anterior
implica necesariamente que las escuelas y los docentes tienen que realizar una serie de ajustes a
sus estrategias en el proceso enseñanza aprendizaje a la par de los cambios en las características y
necesidades de sus alumnos. Sin embargo, aun cuando podemos decir que mucho de ello tiene
33
KBSI2013
Papers
que ver con el uso de nuevas tecnologías también es digno de tomar en cuenta que esas mismas
tecnologías son para los estudiantes una ventana al mundo demasiado grande y en donde “No
todo lo que brilla es oro”. Lo anterior se acentúa más cuando nuestros alumnos están ante
modalidades educativas a distancia, virtuales, mixtas o presenciales que permiten la elección de
sus trayectorias académicas, -principalmente en nivel medio superior y superior- dentro de un
mapa curricular flexible en el que incluso el estudiante puede modificar el tiempo de estancia en
su nivel educativo.
En la actualidad los estudiantes tienen un contacto con las tecnologías de la información y
comunicación prácticamente desde que inician su etapa escolar, es por ello que su uso ya es parte
de la vida académica de los jóvenes, al llegar al bachillerato los alumnos tienen un dominio
amplio en el uso de las principales herramientas tales como el correo electrónico, redes sociales
como Facebook, twitter y de plataformas electrónicas específicas.
Sin embargo se observa que uso de dichas herramientas en ningún momento se utiliza con
fines que impacten en el desempeño académico de los estudiantes del nivel medio superior, pues
su fin queda concentrado a los fines lúdicos y de entretenimiento, encontrando ahí una importante
área de oportunidad para proponer por medio del uso de las TIC´s mantener una seguimiento en
las actividades de asesoría y discusión de los estudiantes.
Pues si bien la tutoría o asesoría de los docentes es una estrategia útil para mejorar el
aprovechamiento de sus estudiantes, esta es una estrategia que se usa en la mayoría de los
modelos educativos de todos sus niveles. Es importante mencionar que esta actividad en algunos
de los casos su eficacia se ve mermada por la falta de tiempo tanto para realizarla como para darle
un seguimiento puntual, lo cual se puede englobar como falta de comunicación efectiva entre los
actores del proceso enseñanza aprendizaje.
Por lo anterior es importante plantear estrategias que permitan una mayor interacción entre
docente y alumno para que por medio del uso de diversas plataformas de fácil acceso implique
una mejora en el proceso enseñanza aprendizaje por medio de redes de conocimiento. En el
entendido que las redes sociales: Permiten una amplia capacidad comunicativa, no requieren
grandes capacidades de equipos, gran accesibilidad, y no requieren hasta el momento del pago de
licencias por su uso.
Este trabajo muestra los resultados parciales de la investigación- acción realizada en una
escuela del nivel medio superior del Instituto Politécnico Nacional que es una institución pública
de bachillerato en la Ciudad de México.
La investigación pretende de primera instancia partir de demostración de la hipótesis que
plantea: La viabilidad del uso de las redes sociales como herramienta didáctica para mejorar el
proceso enseñanza aprendizaje en los alumnos del nivel medio superior del CECyT 1. Y a partir
de ella se desprenden los siguientes objetivos parciales: a) Encontrar el impacto en el aprendizaje
cuando se utiliza como herramienta de comunicación las redes sociales; b) Determinar la
frecuencia de uso de las redes sociales como herramienta didáctica; c) Encontrar las experiencias
exitosas de comunicación a partir del uso de las redes sociales como herramienta didáctica; d)
Determinar en función de sus características las estrategias didácticas que pueden ser aplicadas en
redes sociales.
En el presente trabajo se quiere compartir la experiencia exitosa del uso de las redes sociales
como instrumento didáctico en diversas asignaturas, partiendo que la comunicación es un
elemento fundamental en la educación y que las redes sociales permiten ser una plataforma útil en
cualquier institución educativa al ser un software libre, que además dominan nuestros estudiantes
de bachillerato y que su aplicación tiene como límite la propia creatividad del docente
34
KBSI2013
Papers
El constructivismo y el aprendizaje en línea.
Los modelos educativos actuales consideran al constructivismo como la postura dominante en
la que se basa la conceptualización de los procesos de enseñanza aprendizaje. Sin embargo no se
puede decir que sea una teoría que tenga un enfoque unificado, ya que no concuerda con un solo
modelo de aprendizaje, pero en lo general se establece que la mayor parte de lo que se entiende y
aprende es construido por las personas y que su conocimiento del mundo se hace a través de
representaciones que el mismo re estructura para su comprensión.
Tomando como base lo anterior a continuación se desarrollan los fundamentos que sirven de
base a la propuesta que se está realizando es este trabajo. Por ello se ha podido identificar las tres
vertientes que nutren este trabajo tales como, la perspectiva sociocultural de Lev Vygotsky, el
aprendizaje significativo de Ausubel y el enfoque de la enseñanza para la comprensión apoyado
en la teoría de las inteligencias múltiples de Howard Gardner. En todos los casos la propuesta que
se formula es la de tomar alguna ideas fundamentales de estos modelos tratando de integrarlas
como ejes de aprendizajes constructivistas y el proceso enseñanza- aprendizaje usando las TIC´s
como herramienta.
Lev Vygotsky y la escuela histórica cultural.
Para Vygotsky la función del aprendizaje debe ser la creación de zonas de desarrollo próximo
(ZDP) definida como “…La distancia entre el nivel de desarrollo actual, determinado por la
solución independiente de problemas, y el nivel de desarrollo potencia, determinado por medio de
la solución de problemas bajo la orientación de un adulto o en colaboración con pares más
capaces”(Vygotsky, 1978,p86).
La zona de desarrollo próximo representa el desarrollo cognitivo prospectivo, o sea que se
proyecta a funciones que todavía no maduraron. Es interesante resaltar que esta entidad pone de
manifiesto las potencialidades de las funciones mentales como algo abierto y no definitivamente
hecho. Lo anterior se vería facilitado por el uso de nuevas tecnologías que a través de diferentes
actividades que se pueden llevar a cabo en los entornos virtuales proporcionaría un aprendizaje
entendido como un proceso en donde el alumno a progresivamente controlando su actividad y el
profesor y/o tutor ayuda a estructurar los contenidos de una acción de enseñanza recíproca.
En la teoría de Vygotsky son importantes los instrumentos psicológicos como recursos para
dominar los procesos mentales tales como la lengua, los símbolos algebraicos, los diagramas,
mapas, entre otros.
El hombre para su desarrollo siempre se ha valido de herramientas, específicamente se trata
de los sistemas que crea y produce el hombre como producto de su mismo crecimiento. Desde
esta perspectiva podemos considerar a la virtualidad como un nuevo escenario donde el uso de la
computadora es vista como una aplicación y una proyección de la mente del usuario. Esta
herramienta informática mediatiza las relaciones como si las personas estuvieran cara a cara,
facilitando un gran número de interacciones. (Bransford et al 2001). Le adjudica las interacciones
computacionales, el papel de facilitadoras haciéndolas más fáciles, de tal manera que operan
como un auxiliar externo de la propia memoria. Pero también por otra parte pueden ser factores
que determinen ciertas configuraciones del pensamiento y de la capacidad cognitiva de los
sujetos.
(Pea, 2000) Refiere al término cognición distribuida, como aquellos saberes que están
presentes en diferentes personas y que, al compartirse, pasan a ser apropiados por los compañeros
del grupo, sin embargo para Perkins (2001), la inteligencia distribuida está constituida por los
recursos cognitivos del ser humano además de todas las herramientas que ha desarrollado a lo
largo de la civilización. En otras palabras la inteligencia se distribuye entre los individuos, el
entorno, las representaciones simbólicas externas, las herramientas y los artefactos; Pero también
al intercambio de saberes entre los miembros del grupo.
35
KBSI2013
Papers
Una oportunidad para distribuir las cogniciones son el establecimiento de redes que puedan
ser próximas o distantes dando la oportunidad que se constituyan por medio de las redes sociales,
de esta manera la actuación de los instrumentos tecnológicos pasan de ser solitarios, a ser en
colaboración. El mundo contemporáneo está lleno de artefactos que se emplean para realizar
labores y las TIC desempeñan un papel importante potenciando esas actividades humanas.
Una derivación que atañe directamente a proponer un modelo con TIC´s se refiere al diseño
de actividades que considere este potencial distribuido de la cognición, en donde el punto de
partida se basa en incluir cuestiones profundas relacionadas con los procedimientos de las
ciencias, en un acuerdo las teorías enmarcadas en el contexto histórico-cultura. Por lo que con
respecto a la manera en la que se concibe el aprendizaje y sus relaciones incide en las
definiciones que se tomen para desarrollar un modelo de enseñanza con TIC´s. especialmente las
redes sociales al ser una herramienta eficaz de comunicación.
David ausubel y el aprendizaje significativo.
Ausubel (2000), por ser considerado como uno de autores más importantes y representantes
de las teorías del aprendizaje contemporáneo. Resulta valioso el estudio porque es una teoría
utilizada en el campo de las ciencias y puede servir de fundamento para los desarrollos de nuevas
tecnologías.
La principal noción que postula Ausubel es la del aprendizaje significativo, que se define
como el proceso a través del cual la tarea de aprendizaje puede relacionarse de manera arbitraria y
sustantiva con la estructura cognitiva de la persona que aprende al no arbitrariedad significa que
la relación de la nueva información con la estructura cognitiva es específica, se realiza con
conocimientos previos ya existentes, ya sean conceptos ideas o proposiciones denominados
subsumidores que funcionan como anclaje para los nuevos conocimientos. Traduciendo esto a las
actividades que se proponen con las TIC podemos hablar de relaciones que se establecen entre los
contenidos y los conocimientos previos de los alumnos: con respecto a la sustantividad nos indica
que los que se incorpora es la sustancia del nuevo conocimiento y no a las palabras o elementos
utilizados en ello.
La interactividad como marco de actuación del docente presencial y virtual.
Se han señalado algunas de las relaciones e influencias mutuas que se dan entre los tres
elementos instruccionales que acaban conformando las interacciones dinámicas responsables del
proceso de construcción de conocimiento. Hay que decir que no todas estas relaciones deben
darse de manera que coincidan el profesor y el/los alumno/s y no nos referimos a la diferencia
entre enseñanza presencial y en línea.
Es por ello que se ha introducido el concepto de interactividad (Coll y Cols, 1995) que
supone la evidencia de los intercambios que se producen entre tutor y alumnos en relación al
contenido de aprendizaje. Dichos intercambios pueden realizarse de manera directa (presencia
compartida entre ellos: en un aula presencial o en línea aunque sea asíncrona, en la que se lleva a
cabo una discusión sobre un tema) o de manera indirecta (por ejemplo, cuando los alumnos, de
enseñanza presencial o en línea, realizan tareas en sus casas y no hay coincidencia en el tiempo ni
en el espacio pero existe una tarea mediadora que los une) y en la mayoría de casos se utiliza el
lenguaje verbal como instrumento de comunicación.
Por ello es importante puntualizar que la enseñanza en línea no difiere del paradigma teórico
que soporta la enseñanza presencial en cuanto, en todo caso, se trata de enseñar y de aprender los
saberes culturales que se acercan a los alumnos. A nivel institucional y docente se busca que los
alumnos estén preparados para el futuro y para ello se estructura un dispositivo en este caso
telemático, por ejemplo, que será el canal educativo pero no la finalidad de la educación en sí
misma.
36
KBSI2013
Papers
Por tanto, no olvidemos que al hablar de enseñanza en línea estamos hablando de un medio y
no de un fin y así hemos de tratar la virtualidad, al servicio de la educación. Naturalmente
reconocemos que este dispositivo, como cualquier otro que se utilice, demanda de los alumnos
una interacción concreta y funciona de poderoso mediador de sus aprendizajes modelándolos en
función delas características y posibilidades del medio.
Sin embargo es importante señalar que es la manera cómo se lleva a cabo la comunicación
formativa y ello distingue sobremanera un proceso educativo presencial. Sin dejar de tomar en
cuenta que para desarrollar una tutoría de calidad es necesario formalizar un plan de tutoría que
guía al alumno a lo largo de su formación específica, tanto en el caso de la presencialidad como
en el de la enseñanza en línea.
METODOLOGÍA.
En este proyecto se propuso el uso de las redes sociales como auxiliar en el proceso
enseñanza aprendizaje, dicha investigación se plantea la pregunta central de investigación:
¿Cómo influye en el aprendizaje un modelo didáctico, mediante redes sociales que, coadyuven
con los principios constructivistas para el nivel medio superior en el CECyT 1 del IPN?
La hipótesis del trabajo es la viabilidad del uso de las redes sociales como herramienta
didáctica para mejorar el proceso enseñanza aprendizaje en los alumnos del nivel medio superior
del CECyT 1. Y a partir de ella se desprenden los siguientes objetivos parciales: a) Encontrar el
impacto en el aprendizaje cuando se utiliza como herramienta de comunicación las redes sociales;
b) Determinar la frecuencia de uso de las redes sociales como herramienta didáctica; c) Encontrar
las experiencias exitosas de comunicación a partir del uso de las redes sociales como herramienta
didáctica; d) Determinar en función de sus características las estrategias didácticas que pueden ser
aplicadas en redes sociales.
Esta investigación se llevará a cabo por medio de investigación-acción de tipo mixto
predominantemente de tipo evaluativa.
Para ello se tomó una muestra al azar: el grupo 6IV21 será el grupo experimental de la
asignatura redes digitales de sexto semestre y un grupo control integrado por dos grupos 6IV22 y
6IV23 de la misma asignatura.
Durante el semestre se usaron en el grupo experimental se usaron las redes sociales
(Facebook y twitter) para subir evidencias, hacer foros de discusión, captura de evidencias entre
otras cosas.
Durante el desarrollo de la investigación cada uno de los meses se contabilizó a partir de sus
participaciones e ingresos a las plataformas su participación en alguna de las actividades
planteadas, tomando como participación valida al menos un ingreso al Facebook o twitter por
mes.
Se llevó a cabo el registro del aprovechamiento en los tres cortes de evaluación y la
evaluación final del curso. Esto en los tres grupos usados en el estudio.
Para la puesta en marcha se hizo mediante entrevistas estructuradas en el espacio de tutoría
(al menos una vez por semana) se les preguntó a los estudiantes sobre sus opinión, ventajas,
comentarios y sugerencias del trabajo para el uso de la herramienta usada.
Finalmente también dentro del desarrollo del curso se llevaron a cabo guías de observación
de campo en las cuales se tomaron notas de algunas de las características del trabajo desarrollado
en relación a su efectividad para cumplir las competencias establecidas en la propia planeación
académica de la asignatura.
37
KBSI2013
Papers
RESULTADOS.
En lo referente a los resultados del aprovechamiento escolar de los estudiantes que utilizaron
la herramienta se encontró en las actas de calificaciones que en el grupo experimental el
aprovechamiento escolar fue en los primeros dos cortes muy similar al grupo control, sin
embargo conforme fue avanzando el semestre el aprovechamiento en el grupo experimental se
elevó con respecto al grupo control de la siguiente forma: 1er corte 1%, segundo corte 2%,
tercer corte 19% y para finalizar con un 18% en la evaluación final.
En lo que respecta al uso de los estudiantes del grupo 6IV21 de alguna de las herramientas se
encontró que el ingreso en porcentaje de los alumnos inició en 62% para el mes de enero, terminó
siendo su uso del 92%. Pues algunos estudiantes mencionaron que no contaban con cuenta de
Facebook y solicitaron que entregar evidencias de forma tradicional.
A partir de las entrevistas con los estudiantes se detectó entre otras que algunos de los
estudiantes consideraban poca la utilidad del twitter pues consideraban que el Facebook era
suficiente y que algunos de ello no contaban con él, sin embargo se les solicito abrieran una
cuenta con el fin de usar esta herramienta únicamente para la implementación de foros de
discusión.
En lo que se refiere a la observación llevada a cabo durante el trabajo, se encontró que en un
primer momento el uso de Facebook si bien permitía compartir información el flujo de
información personal de los estudiantes dificultaba un poco el trabajo.
Sin embargo, se detectó en los estudiantes un amplio dominio en las competencias
relacionadas con el uso de las TIC´s y una gran disposición para participar. Sin embargo,
consideran que la labor del profesor es importante para su desarrollo académico, - solo cuando
existe una verdadera comunicación con ellos- Sin embargo al final del camino los estudiantes
manifestaron su aprobación sobre la forma de trabajo colaborativo entre pares y con los
profesores.
DISCUSIÓN.
La discusión principal de esta investigación estriba en el cuestionamiento del por qué usar
redes sociales como herramienta educativa, tomando en cuenta que existen en la actualidad
diversas plataformas educativas que tienen como fin principal el facilitar el proceso enseñanza
aprendizaje. Desde luego en la actualidad existen muchos sistemas auxiliares y todos de mucha
utilidad de cuerdo a la necesidad y características de uso, sin embargo aquí se encontró que los
alumnos tenían un acceso mayor a las redes sociales, -pues todos los estudiantes las manejan a la
perfección- e inclusive dichas redes sociales por sus características tienen aplicaciones que
permiten establecer comunicación entre alumnos y maestros, que son programas de uso libre y
que una escuela no requiere ninguna inversión más.
CONCLUSIONES.
De forma preliminar se puede concluir la viabilidad del uso de las redes sociales como una
herramienta para coadyuvar en el aprendizaje de los estudiantes de acuerdo a los resultados
obtenidos en este inicio del estudio, sin embargo queda como principal pendiente en la
investigación la de proponer un modelo basado en experiencias exitosas mismo que deberá ser
evaluado de nuevo con un tamaño de muestra mayor.
En un inicio, se puede establecer como un hallazgo importante en la ejecución el
inconveniente ha sido que a veces la información que fluye y que no necesariamente es valiosa
38
KBSI2013
Papers
académicamente invade y satura el canal de comunicación pues por su naturaleza y gustos de los
estudiantes contiene demasiados elementos.
Sigo sosteniendo -hasta este punto- la pertinencia del uso de plataformas ya establecidas
como medio de comunicación y acción –en algunos casos-, entre los estudiantes y su profesor
tutor con el fin de mejorar el desempeño académico mediante ese acompañamiento efectivo.
Desde luego el modelo deberá ser establecido de acuerdo a las necesidades de los estudiantes, las
estrategias planteadas por el profesor y la asignatura que se trate e incluso por la propia
institución educativa, ¿por qué no? La implementación con algunos ajustes para lograr la
implementación future de un Facebook o un twitter academic para el uso de instituciones
educativas con los respectivos ajustes de acuerdo a las necesidades de las universidades.
AGRADECIMIENTOS.
A nuestros alumnos que son la razón de ser las instituciones educativas.
A nuestros profesores que han sido nuestro ejemplo a seguir.
REFERENCIAS.
AUSUBEL, D, NOVAK, J. D. y HANESIAN, H. (2000). Psicología Educativa un punto de vista
cognoscitivo (13ed). México. Trillas.
BRANSFORD, J.D, BROWN, A (2000). (Eds.) How People Lear: Mind, Brain, Experiencie and
school, Expanded Edition. Washington D.C. National Academy Press.
CANO GONZÁLEZ, RUFINO (2009). Tutoría universitaria y aprendizaje por competencias.
¿Cómo lograrlo? REIFOP, 12 (1), 181-204. (Enlace web: http://www.aufop.com/ - :
ISSN 1575-0965 · Revista Electrónica Interuniversitaria de Formación del Profesorado, 12 (1),
181-204.
COLL, C., COLOMINA, R, ONRUBIA, J. Y ROCHERA, M J. (1995).
Actividad conjunta y habla: una aproximación a los mecanismos de influencia educativa. En P.
Fernández y M. A. Melero (comps.) La interacción social en contextos educativos. Madrid.
Siglo XXI,
HERNÁNDEZ, P. (1991). Psicología de la instrucción. México, Edit. Trillas.
PEA, R (2001). “Prácticas de inteligencia distribuida y diseños para la educación”, en:
SALOMÓN, Gavriel (Comp.): Cogniciones distribuidas. Buenos Aires: Norma.
PERKINS, D. (2001): “La persona-más. Una visión distribuida del pensamiento y el
aprendizaje”, en: SALOMÓN, Gavriel (Comp.): Cogniciones distribuidas. Buenos Aires:
Norma.
ROMO, A. (2004), “Acompañando el aprendizaje”, Suplemento campus universitario, año 2,
num. 90, Milenio Diario, 22 de julio, México
SUAREZ, R. (2002). La educación: Teorías educativas. Estrategias de enseñanza aprendizaje,
México: Trillas,
VYGOTSKY, L. S. (1978). Mind in society: The development of higher psy-chological
processes, (M. Cole, V. John-Steiner, S. Scribner & E. Souberman, Eds.). MA: Harvard
University Press.
39
KBSI2013
Papers
Effects of Different Implementations of The “Embedded and Transformative
Assessment” Principle on Knowledge Building in Online University
Courses
Stefano Cacciamani and Vittore Perrucci
University of Valle d’Aosta
[email protected]; [email protected]
ABSTRACT: The aim of this study is to analyze different implementations of the KBC
principle “Embedded and transformative assessment” in online courses at the University
of Valle d’Aosta. For this purpose, using a design based research approach, three online
courses, different for the planned phases of the strategies and knowledge assessment,
were implemented. The assessment of knowledge and of strategies were considered in
face-to-face meetings during the course in the first case, in an online portfolio at the end
of each online module of the course in the second case, and or strategies in an online
portfolio in the middle of the course, and for knowledge assessment in face to face
meetings in the third case (see the excerpts in the Appendix). The results show that in the
second implementation interdependence emerges between reading and writing from the
module immediately following the online portfolio, but not interdependence among
participants in reading and writing, which is probably due to the dimension of the
community. Some implications concerning the relationship between the implementation
of the “Embedded and transformative assessment “principle and the knowledge building
activity, with reference to student Epistemic Agency, have been identified for future
direction of inquiry.
1. Introduction
The social constructivist perspective applied to designing online courses highlights the
importance to consider the active role of students in the knowledge building process (Garrison &
Anderson, 2002). In this scenario, Scardamalia and Bereiter (1999) proposed their Knowledge
Building Community (KBC) model defined by 12 principles (Scardamalia & Bereiter, 2006),
suggesting that, in educational contexts, it is possible to organize a community that creates new
knowledge through a collaborative inquiry activity. One of the 12 KBC model principles, called
“Embedded and transformative assessment”, requires the active involvement of students in a
continuous evaluation process, focused on the knowledge built by the community and the
strategies of work used (Scardamalia, 2002).
With reference to the central role of the community engaged in an activity of inquiry, it is
important to consider two different aspects in analyzing the efficacy of the knowledge building
process in an online course.
The first aspect refers to the interdependence between writing and reading: it is only if each
member of the community understands the relevance to connect reading and writing activities
that the inquiry takes place as a common enterprise. In fact, in online courses when people write
without reading others’ texts a self-referential situation is created, where each author remains
encapsulated within their own ideas. On the other hand, when people read without writing, it
results in a passive participation, typical of “lurking” (Preece, Nonnecke & Andrews, 2004).
Hence, the presence of interdependence between reading and writing in the activity of each
member of the community is a signal that knowledge building activity works.
The second aspect concerns the social interactions inside the community, so relevant in an
online course that Garrison and Anderson (2002) introduce the idea of “Social presence” as an
40
KBSI2013
Papers
important component of knowledge building. The community works well if in writing and
reading it is possible to identify interdependence among the community members that can be
studied using the parameter of “density” through Social Network Analysis (Ehrich & Carboni,
2005). Reffay and Chanier (2002), for instance, used “density” to describe the evolution of social
interdependence inside four groups involved in online activities and identified a progressive
decrease in online interactions among participants, with reference to some changes in the group
composition (Mazzoni, 2002).
The aim of this study is to analyze different implementations of the KBC model principle,
“Embedded and transformative assessment principle”, that has effective functioning in online
courses shown by the interdependence between writing and reading, and by the level of
interdependence among participants. It follows the Design-Based Research (DBR)
methodological approach (The Design Based Research Collective, 2003): a systematic but
flexible methodology aimed to improve educational practices through iterative analysis, design,
development and implementation, which is based on collaboration amongst researchers and
practitioners in real-world settings, and leads to contextually-sensitive design and principle
theories (Anderson & Shattuck, 2012).
2. Method
2.1 Educational Setting
The Psychology of Education online course is for first-year students in the Faculty of Science
of Education and second-year students in the Faculty of Science for Primary School at the
University of University of Valle d’Aosta. It aims to develop a critical understanding of the main
approaches and theoretical models of this discipline with reference to learning at school. The
course is typically organized into four modules, each of which addresses a specific subject area
(e.g. theories of learning, motivation, collaborative learning, classroom observation, disciplinary
learning, and the use of new technologies). Three modules are in common among the students of
the two faculties and the last one is specific for students of Science Education. Each module starts
with a face-to-face meeting in which the teacher introduces the content and sets the conditions to
start an online discussion to be held for a period of two weeks. The online environment used for
the course is Knowledge Forum (KF herein after), created by the research group of IKIT (Institute
for Knowledge Innovation and Technology) of the University of Toronto. Each student is able to
insert notes in KF through written texts to which graphs and images can be added. These notes
can also be connected to one another through some links (in this case the notes are called “buildon”), meaning they represent some developments of the knowledge building activity. In KF there
are also “views”, which are specific spaces that can be used to organize online discussions about
specific topics.
2.2 Participants
This DBR project included three different implementations with the following participants:
-1st cycle: 16 students (1 male and 15 females), 7 of whom were students enrolled in Science
for Primary School and 9 in Science of Education.
-2nd cycle: 26 students (5 males and 21 females), including 7 students enrolled in Science for
Primary School and 19 students in Science of Education.
-3rd cycle: 14 students (2 males and 12 females). Of these, 5 were enrolled in Science for
Primary School and 9 in Science of Education.
2.3 Description of Implementations
41
KBSI2013
Papers
The different features of the three implementations of the “Embedded and transformative
assessment” principle are showed in Table 1.
Table 1. The “Embedded and transformative assessment” principle implementation
Knowledge Assessment
st
1 implementation
st
1 phase: each student
wrote an “assessment note” in
KF in face to face meeting
2 phase: face-to-face
meeting discussions of the
“assessment notes” take place
in small groups
3rd phase: in face-to-face
meetings plenary discussion
takes place on the issues to be
clarified
2nd implementation
1st phase: “online
community portfolio” on
knowledge built at the end of
each module
Strategies Assessment
1st phase: in face-to-face
meetings in the “assessment
note” in KF , description of
the strategies used and
identification of the strengths
and weaknesses
2nd phases: in face-to-face
meetings plenary discussion
for sharing reflections on the
strategies
1st phase “online
community portfolio” on the
strategies used at the end of
each module
2nd phase: in face-to-face
meetings small group
discussions take place to
identify issues to be clarified
3rd phase: in face-to-face
meetings plenary discussion
takes place on issues to be
clarified
3rd implementation
1st phase: face-to-face
discussions in small groups to
highlight relevant ideas
emerged in KF and the most
important issues to be
clarified
1st phase: mid-course
“online community portfolio”
on the strategies used
2nd phase: in face-to-face
meetings plenary discussion
on issues to be clarified
First implementation: 2004-2005. In this online course the assessment of knowledge was
managed in three phases: each student was asked at the end of each module in the face to face
meeting to insert an “assessment note” in KF on the knowledge developed by the community, to
indicate from his or her point of view the important ideas that emerged. This assessment was then
reviewed in a small group discussion, and asked students to identify the more relevant ideas from
the discussion and the most important issues to be clarified. In the third phase issues previously
identified were discussed with the teacher in a plenary debate. The strategies assessment took
42
KBSI2013
Papers
place in two phases in the face-to-face meeting at the end of each module. First, in the
“assessment note” each student described the strategies used to deal with the online course and
identified the strengths and weaknesses, and then there was a subsequent discussion with the
teacher who facilitated the sharing of reflections on the strategies of the entire community.
This implementation of the principle revealed two main limits: the first concerned the
difficulties of attending face-to-face meetings by students, the second was the limited time in the
meetings, to manage the assessment of knowledge and of the strategies of work
Second implementation: 2006-2007. Considering the limits of the previous experience, in the
second implementation it was decided to manage the strategies and knowledge assessment online;
this was completed in the following way. At the end of each module, an “online community
portfolio” was organized, where each student was asked to answer two questions:
1. What are the two most interesting ideas that emerged from the discussion in this module?
2. What strategies did you use? What strengths and critical points did they reveal?
The assessment of knowledge developed was completed in a second phase in the face-to-face
meetings in small groups, where students were asked to identify the open questions to which they
returned in the third phase to discuss with the teacher.
Reflecting at the organizational level at the end of the on line course, a problem emerged in
this implementation: the compilation of a portfolio at the end of each module seemed to be an
expensive request for the students.
Third implementation: 2008-2009. In this implementation, considering the limit emerged
from the previous one, it was decided to only opt for a single online space for strategies
assessment to be carried out mid-course. Each student was asked to describe the strategy used to
study in the first part of the online course, highlighting two strengths and two weaknesses. The
assessment of knowledge built by the community took place in the face-to-face meetings in two
phases: the first was in small groups, asking each group to highlight the relevant ideas and the
most important open questions that had emerged. This was followed by the next phase where they
were discussed with the teacher.
2.4 Observed Variables
The observed variables have been analyzed in the first three modules of each course because
they are the modules in common among the students of the two faculties.
In particular, the following variables were analyzed:
a) Interdependence between reading and writing
The notes written and read by each participant have been counted by a specific software
program called Analytic Toolkit (ATK). ATK provides summary statistics on activities in a KF
database. It shows how many notes are in the database, how connected they are, how many notes
a user has created, in which views a user has worked, and what percentage of the notes have been
read. The number of notes read by each participant was then calculated using the percentage
indicated by ATK.
b) Interdependence among members
The interdependence among members in writing and reading has been detected using the
parameter of “density”, calculated thanks to the Social Network tool provided by Analytic Tools
(AT) in KF. Density indicates the number of network edges activated by the members and then
divided by the number of the edges potentially available in the community in writing and reading.
43
KBSI2013
Papers
2.5 Data Analysis
Due to the small number of cases considered, the interdependence between the read and
written notes has been analyzed in each module through the statistical correlation using Rho of
Spearman. The density parameter was analyzed in each module with a descriptive approach.
3. Results
The correlations between reading and writing in each implementation are shown in Table 2.
Table 2. Correlations (Rho of Spearman) between reading and writing
Academic
Year
Participants
Module 1
Module 2
Module 3
2004-2005
16
0.31
0.30
0.36
2006-2007
26
0.11
0.44*
0.51**
2008-2009
14
-0.29
0.43
0.49°
*p<.05**p<.01 °p=.09
As can be seen, in the first implementation the correlations between writing and reading are
not significant in all the modules. In the second implementation, in which the “portfolio” was
introduced, the correlation between reading and writing are significant only in the second and
third modules. Finally, in the third implementation, there is the emergence of a high correlation
between reading and writing in the third module even if it did not reach a significant statistical
level.
The densities in writing activity among students for each module in each implementation are
shown in Table 3.
Table 3. Densities in writing activity in each implementation
1st module %
2nd module %
3rd module %
Participants
Total
Network
Edge
(Network edges
activated)
(Network
edges
activated)
(Network edges
activated)
16
120
21,66%
14,16%
8,33%
(26)
(17)
(10)
6,15%
8,3%
4%
(20)
(27)
(13)
13,18%
31,86%
18,68%
(12)
(29)
(17)
Academic
Year
Number of
2004-2005
2006-2007
2008-2009
26
14
325
91
From the above, it is seen that the second implementation shows a lower level of density in
each module when compared to the other implementations. In addition, in the first
implementation the density value decreases from the first to the third module, whereas in the
44
KBSI2013
Papers
second and the third implementations the density value reaches the higher level in the second
module.
Densities in the reading activity among students in each implementation are shown in Table 4.
Table 4. Densities in reading activity for each module in each implementation
Academic
Year
2004-2005
2006-2007
2008-2009
Number of
Total Network
1st module
2nd module
3rd module
Participants
Edge
%
%
%
(Network
edges
activated)
(Network
edges
activated)
(Network
edges
activated)
99,16%
98,33%
100%
(119)
(118)
(120)
56,61%
88,92%
44%
(184)
(289)
(143)
100%
86,81%
85,71%
(91)
(79)
(78)
16
26
14
120
325
91
As it is possible to see, the second implementation shows a lower level of density in the first
and third modules when compared to the other implementations, which overcome 85 per cent of
density in each module.
4. Discussion
It is possible to summarize the “lessons learned” from the different implementation cycles in
the following aspects.
First, the way in which the principle of KBC was implemented in the second cycle seems to
have favoured a correlation between reading and writing in the second module of the course
(immediately after the first portfolio) and was present in the subsequent module too. This may be
connected to the innovation introduced in the assessment of the strategies: the mediation of online
writing may have allowed students to examine the strategies used by their colleagues more in
depth compared to the oral discussion used in the first implementation. Reflecting on their own
strategies and on those of their colleagues, students may have understood the importance of
reading the notes of others and intervening with their own contributions. They may have decided
to adopt the strategy of “first read then write”, creating the correlation that emerged in the results.
This interpretation is consistent with Meyer (2003) that through a content analysis of the threaded
on line discussions supported that online discussions promote higher-order thinking, especially by
contributing comments that are exploratory, integrative or resolution (cfr. Garrison et al. 2001). In
addition Balaji and Chakrabarti (2010) showed that the perceived richness of online discussion
forum has significant positive effect on student participation and interaction, and learning, when
used along with traditional classroom lecture.
The importance of continuity of the strategies assessment seems to be confirmed by the third
implementation: a high correlation, although not significant, between reading and writing was
found only in the third module following the online metacognitive reflection on strategies. In
support of this claim, other studies state that the presence of a space for reflection on the
45
KBSI2013
Papers
metacognitive strategies in an online course will encourage the development of discussions (e.g.
Cesareni et al., 2008).
A second lesson learned concerns the interdependence among community members. The
lower level of density in the second implementation can depend on the higher number of
participants, compared to other courses. Considering the data of the other implementations, the
optimal number of participants in an online course – to ensure a high level of interdependence
among individuals – is considered to be around 15. Overcoming this limit implies managing the
“Embedded and transformative assessment” principle in a different way to make it more
distributive, for instance proposing students assume some roles to improve collaboration (Strijbos
& Weinberger, 2010).
5. Conclusion
By the results of our study, it is possible to conclude that the implementation which seems to
favour the development of a better interdependence between writing and reading is the second
one: where metacognitive assessment of knowledge and strategies at the individual level is
shared, continuous and available all of the time in the online environment. We need to highlight
also some limits in the present study. The main approach used was quantitative analysis of notes:
we recognize that this kind of analysis need to be enriched by a qualitative analysis of students’
ideas to verify if different implementations of the embedded and transformative assessment
principle support different ways in the advancement of knowledge creation. It could be possible
to use a Content Analysis with a coding scheme adopted in previous research (Cacciamani &
Ferrini, 2012), for instance, to analyze the development of the Epistemic Agency (Scardamalia,
2002) in students activity.
At the same time, it is necessary to pay attention to the dimension of community that can
require creating, in a more intentional way, interdependence among participants. However, in this
regard it is desirable to conduct further investigations.
Acknowledgements
We want to express our gratitude to University of University of Valle d’Aosta that provided
funds to support the present study.
References
Anderson, T. & Shattuck, J. (2012) Design-Based Research: A Decade of Progress in Education
Research? Educational Researcher 41, 16-25
Balaji, M. S., & Chakrabarti, D. (2010). Student interactions in online discussion forum:
Empirical research from ‘Media Richness Theory’ perspective. Journal of Interactive Online
Learning, 9(1), 1-22.
Cacciamani, S e Ferrini, T. (2012). Embedded and Transformative Assessment in an Online
Course: A Design-Based Research Project. Paper presented at Knowledge Building Summer
Institute- University of Toronto. August 2012. Available at:
http://ikit.org/SummerInstitute2012/Papers/3011-Cacciamani.pdf
Cesareni, D., Albanese O., Cacciamani, S, Castelli, S., De Marco, B. , Fiorilli, C. Luciani, M.,
Mancini, I., Martini, F. e Vanin L. (2008). Tutorship style and knowledge building in an on
line community: cognitive and metacognitive aspects. In B. M. Varisco (Ed.), Psychological
pedagogical and sociological models for learning and assessment in virtual communities
(pp.13-56) Brescia: Polimetrica.
46
KBSI2013
Papers
Ehrich, K & Carboni, I. (2005). Inside Social Network Analysis. IBM Watson Research Center.
Available at:
http://domino.watson.ibm.com/cambridge/research.nsf/58bac2a2a6b05a1285256b30005b395
3/3f23b2d424be0da6852570a500709975!OpenDocument Retrieved 29.05.13
Garrison, D. R., Anderson, T., Archer, W (2001). Critical Thinking, Cognitive Presence, and
Computer Conferencing in Distance Education. The American Journal of Distance
Education, 15 (1), 7-23.
Garrison, R.D. e Anderson, T. (2002). E-Learning in the 21st Century: A Framework for
Research and Practice. London: RoutledgeFalmer
Mazzoni, E. (2005). La Social Network Analysis a supporto delle interazioni nelle comunità
virtuali per la costruzione di conoscenza. Tecnologie Didattiche, 35 (2) 54-63
Meyer, K. (2003). Face-to-face versus threaded discussions: the role of time and higher-order
thinking. JALN, 7(3), 55-65.
Preece, J., Nonnecke, B., & Andrews, D. (2004). The top five reasons for lurking: improving
community experience for everyone. Computers in Human Behavior, 20, 201-223.
Reffay, C. & Chanier, T. (2002). Social Network Analysis used for Modelling Collaboration in
Distance Learning Group. Lecture Notes in Computer Sciences, 2363, 31-40.
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In
B. Smith (Ed.), Liberal education in a knowledge society (pp. 67-98). Chicago: Open Court.
Scardamalia, M., Bereiter C. (2006). Knowledge Building: Theory, Pedagogy and Technology. In
Sawyer K. (Ed.), Cambridge handbook of the Learning Sciences (pp.97-115). Cambridge:
Cambridge University Press.
Strijbos, J. W. & Weinberger, A. (2010). Emerging and scripted roles in computer-supported
collaborative learning. Computers in Human Behavior, 26, 491-494.
The Design-Based Research Collective (2003). Design-Based Research: An Emerging Paradigm
for Educational Inquiry. Educational Researcher, 32, 1, 5-8
47
KBSI2013
Papers
Appendix
1st Implementation: Assessment note at the end of each module in face to face meeting
Teacher oral instructions in face to face meeting:
“Write a note in KF about, in 15 minutes, considering the following questions:
1. Assessment of knowledge created
-Which elements of knowledge relevant to me have emerged from the discussion?
-What issues remain open or be clarified?
2.Assessment of strategies
-What strategies I used in the work in this community?
-What are the point of strengths and the aspects that it seems useful to change? Why? "
Note in KF by S: “Conclusion”
1a) I must say it was very interesting to know the experiences of other people, find out their ideas
on the subject which are then found to be the same or different. Furthermore, the possibility to
ask questions quite immediatly.1b) Additional information on the "community of learners" at a
practical level. 2a) At first I read the messages of colleagues then later I tried to give my
contribute. 2b) Strengths: carry out the task at home - new experience - the exchange of ideas and
information
2nd Implementation: on line community portfolio at the end of each module
Teacher note in KF:
We are at the end of this first module of the online course, where we conducted an analysis of the
main theories of learning.
I ask each of you to make an assessment on two aspects:
1. What are the two ideas that you think are the most interesting for you emerged from the
comparison in this module?
2. What strategy did you use to work? What strengths and what critical points showed?
Note in KF by M: “Interesting ideas”.
I have noticed that there are two interesting ideas related to the work of a group and the other
related to the motivation to study.
The team work is very useful because in addition to learning develops social skills (help,
understanding and mediation). In the group emerge a theory in which you create reference points
to avoid or take into consideration. Through social interaction you can progress in the area of
proximal development, crossing thresholds of logical reasoning that it would be very difficult to
make by themselves.
Even the idea of the project work was very impressing for me because it raises the student's need
to know in order to create a product, that it is material or abstract (a model - an explanation). In
carrying out the project which is based on real problems rather than theoretical, the student makes
his own theories for use in solving the problem, or better yet the sub-problems, who will meet in
the course of development. Here comes the utility of the scaffolding from which to draw the
answers not pre-packaged. These two ideas of course can be connected together to create a
project group work.
48
KBSI2013
Papers
Note in KF by M: “Strategies of work”
To participate in the KF I started by reading the first two chapters of the book "Psychology for
teaching" and then I tried to insert myself in open discussions or responding to direct questions
posed by teachers.
One of the strengths of this methodology was to understand the questions asked or interventions
carried out by my classmates having a common land base.
The weak point is that I did not feel ready to intervene until I finished reading the chapter.
proposed.
One of my weakness that I will try to avoid in the next module is the time delay on the KF, which
is related to my time required for the analysis of the material to think about. The weak point of
weakness is that I have to improve in search of the essential concepts in the text to be analyzed,
without dwelling too much on parts of lesser importance for the intervention of KF.
3rd implementation: mid-course “online community portfolio” on the strategies used
Teacher note in KF:
Answer the following question:
What strategy I'm using to study in this course online? (List the actions that make up the strategy)
A point of strength of this strategy is ...
A critical point of this strategy is ...:
Note in KF by F.: “Strategy”
I have not adopted a different strategy than the one I normally use to study: I read the chapter,
highlighter in hand, and fixed the most important points (e.g. authors and keywords), then I
elaborate schemes of the chapters, to have the material, as well books, with which prepare for
the exam.
One of the point of strengths I think the passage repeated several times, at different levels of
detail, on the topics; a source of concern is the long time period that this strategy requires.
49
KBSI2013
Papers
Promisingness Judgments as Facilitators of Epistemic Growth and
Conceptual Change
Bodong Chen1, Jennifer Gonzalez2, Fernando Diaz del Castillo2, Jim Slotta1
1
OISE/University of Toronto, Canada,
2
Gimnasio La Montana, Colombia
Emails: [email protected], [email protected],
[email protected], [email protected]
ABSTRACT: Promisingness evaluation plays an important role in knowledge- building
discourse, helping the community identify promising ideas and make choices on
directions to pursue. This study investigates promisingness judgments carried out by a
sixth grade class in their study of a science unit, focusing on the impact of promisingness
judgments on students’ conceptual understanding and epistemic beliefs. After being
engaged in a pedagogical intervention dis- cussing the meaning of promisingness,
students made promisingness judgments on their community ideas on a regular basis,
using a Promising Ideas tool that is integrated into Knowledge Forum. Results indicated
students’ understanding of promisingness and capability of making promisingness
judgments improved in this process. Analysis of student discourse found promisingness
judgments had an impact on discourse patterns, such as contribution types, depth of
questioning and justification of ideas. Students’ conceptual understanding also improved,
reflected by increases of scientific sophistication and epistemic complexity. More- over,
students’ epistemic beliefs appeared to co-develop with promisingness knowledge and
conceptual understanding. This study opens up rich possibilities of further investigations
of promisingness judgments.
Perspectives
The Knowledge Building Approach to Foster Science Learning
Knowledge building as an educational approach was developed with a promise to address the
contemporary emphasis on knowledge creation and innovation (Scardamalia & Bereiter, 2006). It
treats education as a coherent component of a knowledge-creating society and engages learners in
the full process of knowledge creation from an early age (Scardamalia & Bereiter, 2003). The
knowledge-building approach, which has been extensively applied in science teaching, has two
distinctive characteristics: (1) a “theory-building” approach for deep understanding, and (2) a
community-oriented view of learning. The theory-building approach is partially grounded on a
strand of conceptual change literature that embraces a “knowledge-as-theories” perspective.
According to this perspective, science learning involves revisions of coherent structures grounded
in persistent ontological and epistemological commitments (Özdemir & Clark, 2007). For
example, Posner, Strike, Hewson, & Gertzog (1982) think conceptual change happens when a
learner finds the existing conceptual schema inadequate in solving problems and seeks to replace
the initial conception with a more scientific one. Similarly, Carey (1985) argues science learning
is a process of “restructuring” a coherent theory framework that connects concepts (see also,
Carey, Scholnick, & Nelson, 1999). This notion is also in line with research of “mental models,”
which views conceptual change as a gradual shift from a learner’s initial models based on their
everyday experience, to more scientific ones generated through reinterpreting their
presuppositions and synthesizing them with the scientific theories (e.g., Vosniadou & Brewer,
1992). These theories of conceptual change urge educators to take students’ initial ideas seriously
in science teaching. The “theory-building” approach represents one example of conceptual
50
KBSI2013
Papers
change teaching (Carey & Smith, 1993). It encourages students to produce an explanatory idea
and further develop it for a better explanation. Students’ explanatory ideas are always treated as
improvable and the goal is to improve them to have stronger “explanatory power” through
elaborating, evaluating and refining (Bereiter, 2012). Knowledge building, defined as “continual
improvement of ideas” (Scardamalia & Bereiter, 2003), embraces the theory-building approach
and treats all student ideas with a development trajectory and subject to further improvement by
means of discourse. When it is applied in science learning, students are genuinely engaged in
progressive inquiry akin to mature scientific inquiry, seeking increasingly deep levels of
explanation (Hakkarainen, 2003).
Besides the theory-building approach, knowledge building has a strong emphasis on
knowledge advancement as a community enterprise rather than a task of each individual. In the
field of science education and learning sciences there have been major shifts from focusing on
development of individual minds towards emphasizing on both individual and social aspects of
science learning (Vosni- adou, 2008). The social construction of knowledge and discursive
interactions in classrooms have been widely investigated in science learning research. For
instance, research finds science learning can be promoted by engaging students in explaining and
articulating their ideas to peers (Roschelle, 1992). Computer- Supported Collaborative Learning
(CSCL) as a field of research and practice has produced numerous tools to support conceptual
change by enabling, scaffolding, recording, and analyzing student collaboration (Miyake, 2008).
For example, the Web-based Inquiry Science Environment (WISE)—a very successful science
learning environment—provides functionalities to engage students to carry on scientific debates,
review and revise each others’ ideas (Linn, Clark, & Slotta, 2003); rich empirical evidence shows
benefits of such environments on students’ individual learning (Slotta & Linn, 2009). Knowledge
building, while sharing many traits with such approaches of science education, rethinks school
classrooms as knowledge-creating organizations in which the state of knowledge is more
determined by the community rather than individuals (Scardamalia & Bereiter, 2006). Based on
this understanding, the knowledge-building approach tries to elicit student ideas and treats them
as “epistemic artifacts” that can be publicly shared and continuously improved by the community
(Zhang, Scardamalia, La- mon, Messina, & Reeve, 2007). To improve their ideas, students take
collective cognitive responsibility (Scardamalia, 2002)—which is normally assumed by teachers
in other models—in building explanations, designing experiments, intro- ducing resources,
synthesizing, and making analogies (Chuy, Zhang, Resendes, Scardamalia, & Bereiter, 2011).
The knowledge-building approach was found facilitating conceptual change (Chan, Burtis, &
Bereiter, 1997) as well as the development of students’ understanding of nature of science (Chuy
et al., 2010).
Promisingness Judgments in Knowledge-Building Discourse
The theory-building approach adopted in knowledge building provides students the
opportunity to go through long-stretches of work which is usually absent in other constructivist
models. In this process, students are exposed to risks, uncer- tainty, and choice-making that
abound in real-world problem-solving. Promis- ingness evaluation, which is a vital step of
“design-mode” thinking in knowledge- building discourse (Bereiter, 2002; Bereiter &
Scardamalia, 1993), helps students distinguish ideas and find the most fruitful direction for idea
improvement. As expertise research indicates, this task is a natural component of all kinds of
creative processes. In his studies of scientific reasoning in real-world laboratories, Dunbar (1995)
highlights that scientists assess risks of research projects and are keen to work on research
projects which could produce more promising or fruitful discoveries even though they might have
a high probability of failure. In explaining creative process, Howard Gardner (1994) also
emphasizes the importance of “promisingness” in helping people intuitively detect “discrepant el-
51
KBSI2013
Papers
ements” in their work and encouraging them to invest to deal with these elements. Although the
“fruitfulness” (T. S. Kuhn, 1977) of the original idea will only become manifest later—until local
coherence that explains these discrepancies is achieved—promisingness does play an important
role in committing scientists to challenging lines of scientific inquiry that lead to these
breakthroughs. This claim is widely supported by reported experience of creative individuals. For
example, when discussing the development of the theory of relativity, Albert Einstein said,
“During all those years there was the feeling of direction, of going straight toward something
concrete. It is, of course, very hard to express that feeling in words; but it was decidedly the case,
and clearly to be distinguished from later considerations about the rational form of the solution
(M. Wertheimer & Wertheimer, 1959, p. 228).” Similarly, Michael S. Brown, Nobel laureate in
medicine, said, “I think, we almost felt at times that there was almost a hand guiding us. Because
we would go from one step to the next, and somehow we would know which was the right way to
go.” Bereiter (2002) calls those vague, intuitive feelings of direction knowledge of promisingness,
and goes further to stress that the ability of making promisingness judgments as something distinguishing creative experts from non-experts (see also, Bereiter & Scardamalia, 1993). Thus, the
ability to identify promising ideas—ideas that with development might grow to something of
consequence—is essential for creative work with ideas and ought to be attended in any form of
education for knowledge creation.
As mentioned above, collective knowledge building calls for risk taking and judgments of
promisingness in order to pursue novel solutions to problems. In knowledge-building classrooms,
students’ collective discourse usually starts from their real ideas—composed of naive conceptions
in most cases—and gradually advances to more scientific understanding through continuous idea
improve- ment. Substantial, long-stretches of work is normally needed to develop students’ naive
understanding into something coherent to address their collective knowl- edge goals. Prior studies
found students capable of generating theories, posing explanation-seeking questions, designing
experiments to collect data, introducing expert sources, and refining their ideas (e.g., Zhang et al.,
2007). However, like anyone working in creative contexts, students in knowledge-building classrooms are also confronted with the significant challenge of identifying promising directions to
avoid wasting time or becoming entrapped by unpromising ones (Bereiter & Scardamalia, 1993).
Other models of learning, such as problem-based learning and inquiry learning, provide extensive
scaffolding—from either teacher or technical tools—to support student learning in complex
domains; these scaf- folding strategies usually include structures for students to follow or models
of performance for students to emulate (Hmelo-Silver, Duncan, & Chinn, 2007). In knowledge
building, although students take greater cognitive responsibility than their counterparts under
other instructional models, in many cases the teacher still need to take the “steering-wheel” and
make decisions about which direction to follow for students (see Zhang, Scardamalia, Reeve, &
Messina, 2009). Given the prominent role of promisingness in creative processes, it is intriguing
to explore the possibility of explicitly turning more epistemic agency (Scardamalia, 2002) to
students, by engaging them in making promisingness judgments in their knowledge building
work.
Preliminary work on promisingness judgments has been done in the past few years. Two lines
of efforts have been made to support young students’ promis- ingness judgments. Firstly, because
the concept of promisingness is naturally challenging for young students (Chen, Chuy, Resendes,
Scardamalia, & Bereiter, 2011), pedagogical interventions were designed and tested in knowledge
building classrooms to engage them in discussing this concept in meaningful scenarios. Research
shows students as young as 8-year-old could grasp the essence of promisingness and apply it in
their own knowledge building practice (Chen, Scar- damalia, Resendes, Chuy, & Bereiter, 2012).
Results indicated promisingness judgments could lead to greater knowledge advancement and
closer collaboration. The second effort was devoted to design and develop technical tools to
integrate promisingness judgments as an integral component of knowledge-building dis- course.
52
KBSI2013
Papers
In particular, a Promising Ideas (PI) tool has been developed as an add-on of Knowledge Forum
and continually refined through a series of design experiments (Chen, Chuy, Resendes, &
Scardamalia, 2010; Chen, Scardamalia, Acosta, Resendes, & Kici, 2013; Chen et al., 2012). The
current design of the tool allows students to highlight promising ideas in Knowledge Forum notes,
tag ideas with specific knowledge goals, and conveniently export them to dedicated workspaces
for further inquiry. The tool, coupled with innovative pedagogical designs, has been adopted
broadly at various age levels and in several different contexts [e.g., @Boutin2013]. Further
design research is needed to explore the impact of promisingness judgments on various aspects of
knowledge building.
Epistemic Beliefs in Science Learning
Students’ epistemological thinking is one of the aspects that appear to be connected with
promisingness judgments. Research of epistemic beliefs, or beliefs about the nature of knowledge
and knowing, can be traced back to Perry’s (1970) influential work in 1960s and has come a long
way to understand epistemic beliefs in multi-dimensions (Conley, Pintrich, Vekiri, & Harrison,
2004; Hofer & Pintrich, 1997; Sandoval, 2005; Schommer, 1990; Schommer- Aikins & Hutter,
2002) as well as to recognize the social aspect of epistemology (Kotzee, Eds., 2013). Early work
on epistemic beliefs took a Piagetian stage-like developmental approach, tracing changes of
epistemological thinking as a whole in a stage-like manner (e.g., Perry, 1970). Later studies
challenged this view treating epistemic beliefs as unidimensional and started to distinguish a set
of distinct beliefs that develop more or less independently of each other. For example, Schommer
(1990) proposes a multi-dimensional model of epistemic beliefs composed of five dimensions,
including the structure, certainty, source of knowledge, the control and speed of knowledge
acquisition. Hofer & Pintrich (1997) do not agree with these dimensions and suggest four general
epistemological dimensions including certainty of knowledge, simplicity of knowledge, source of
knowing, and justification for knowing. Although disagreement on dimensions exists among
different theories, it is generally agreed that students at all age levels are commonly infested with
problematic conception about the nature of scientific knowledge and knowing (Carey & Smith,
1993; e.g., D. Kuhn, 1993; Ryan & Aikenhead, 1992; Sandoval, 2005); students’ epistemic
beliefs follow a developmental trajectory but could remain quite naïve even in college (Leach,
Driver, Scott, & Wood-Robinson, 1996; Ryan & Aikenhead, 1992).
Student understanding of the nature of science knowledge has a direct link with student
success in learning (Carey & Smith, 1993; Schommer, 1990). On one hand, students’ beliefs
about knowledge and knowing would affect their learning. For example, when encountering
complex information, students believing in quick learning tend not to integrate knowledge deeply
(Schommer, 1990). On the other hand, many researchers have attended to the importance of
epistemic beliefs and have attempted to improve students’ epistemological thinking in science
teaching. Researchers argue that conceptual change involves not only changes in concepts, but
also changes in students’ views about the nature of science (Duit & Treagust, 2003). Chuy and
colleagues (2010) find by emphasizing on theory development and sustained creative work with
ideas, students could develop deeper understanding of the nature of theoretical progress, the
connections between theories and facts, and the role of ideas in scientific inquiry. Chan & Lam
(2010) examine the effect of reflective assessment and find as students examine their own and
others’ understanding their metaconceptual and epistemic awareness could grow.
Promisingness judgments are associated with epistemological thinking in many potential
ways. Firstly, one premise of promisingness is that ideas are complex and tentative and
knowledge builders can find promising directions to further advance them. Underlying
promisingness lives the belief that knowledge is improvable, which is linked to the
epistemological dimension of “certain knowl- edge” (Schommer-Aikins & Hutter, 2002). Second,
53
KBSI2013
Papers
promisingness judgments also require students to see knowledge as an evolving and changing
subject that needs to be justified by observation and reasoning rather than residing in external
authorities (Conley et al., 2004). Finally, while quality promisingness judgments require
sophisticated epistemic beliefs, it also sounds promising to study whether by engaging students in
making promisingness judgments their epistemological thinking could be improved. This study
builds on prior studies on promisingness judgments in knowledge building, introducing epistemic
beliefs as another important factor that is potentially related to promisingness. The present study
aims to answer the following major questions: (1) To what extent could students’ knowledge of
promisingness be improved by pedagogical interven- tion and practice of promisingness
judgments? (2) By practicing promisingness judgments, did students reveal any epistemic
growth? (3) To what extent was students’ scientific knowledge improved in the process of
knowledge building?
Methods
Participants
Twenty six 6th grade students from one class in a Colombian K-12 school participated in this
study. This school was a bilingual school; all science lessons in the class were taught in English
and all student notes in Knowledge Forum were written in English. Students were from middleupper class families in Bogotá. Before this study, the teacher and students had several years of
experience with Knowledge Building and Knowledge Forum so they were comfortable with this
pedagogy and technology.
The Promising Ideas Tool
Promisingness judgments in knowledge building are supported by a Promising Ideas (PI) tool
in Knowledge Forum (KF). This tool was first implemented and integrated into KF in 2010 and
its functionalities have then been continually revised in a series of design experiments (Chen et al.,
2010; 2011; 2013; 2012). The PI tool used in this study included the following major
functionalities:
(1) Highlighting: Students can highlight promising ideas (and other types of contributions)
when reading any note in KF. The PI tool provides a customizable set of promisingness
categories—called “highlighters”— which a student can choose from when highlighting ideas
in a note. The promisingness categories customized for this study included promising idea,
unsolved problem, useful fact, and dead-end. When finding a snippet fitting into any of those
categories, a student can choose the related highlighter and highlight the piece of text in the
note window. After the highlighting action is completed, a window will pop-up, asking
students to intentionally choose or type-in a criterion for the highlighting and further justify
the choice of any criterion (see Figure 1, left).
54
KBSI2013
Papers
Figure 1: Highlight an idea with the Promising Ideas tool in Knowledge Forum.
Note: (1) upper-left–clicking on an “Ideas” button in the note window will activate a set of
highlighters to be chosen from for promisingness tagging; (2) lower-left–this window pops-up
when a highlight action is completed, and the student is prompted to provide a content-based
criterion for this highlight and justify her choice.
(2) Reviewing: Firstly, a note containing a highlight, whether it is a promising idea, an
unsolved problem or a useful fact, will be embellished with a specific icon in the KF view
interface (see Figure 1, right). In this case, a note containing a promising idea is embellished
with a light bulb, a note with a unsolved problem gets a question mark, and a note with useful
information has an “i” on top of its icon. These icon embellishments draw the community’s
attention to arguably more promising directions in their community (depending on the quality
of their promisingness judgments). Second, and more importantly, an idea aggregation
window that lists all highlighted ideas in a view provides a handy way of reviewing
highlights (see Figure 2, left). A few filtering and searching functionalities were implemented
in the idea aggregation window to facilitate the reviewing process.
55
KBSI2013
Papers
Figure 2: Review ideas in the idea aggregation window, and exporting selected ideas to
another view.
(3) Exporting: Since the purpose of promisingness judgments is to define next steps of the
inquiry, an exporting feature has been introduced since the last version (Chen et al., 2012).
When reviewing the aggregated idea list, a student can choose several related ideas to be
exported to another workspace for further inquiry (see Figure 2, right). Each time, selected
ideas are exported to a single note as references, and the student can further revise this note to
explain how these ideas are related and what the next step would be (see Figure 3).
Procedures
This study was conducted in one semester from January to March in 2013 for around 10
weeks (Colombian school calendar). The sixth grade class was studying a biology unit about
“population growth.” There were four lessons in each week, with each lesson lasting for 45
minutes. The knowledge-building approach was applied in the class; students discussed topics
around population growth and wrote notes in Knowledge Forum.
56
KBSI2013
Papers
Figure 3: Summarize exported ideas in the exported new note using a set of “Summary”
scaffolds.
The procedures of this study is described in Table 1. Detailed explanation of each activity is
provided below:
Pre- and post-tests: Pre- and post-tests were designed to measure students’ content knowledge,
epistemic skills, and understanding of promisingness. Content knowledge was assessed with a
conceptual test about “population dynamics”; the test included 3 multiple-choice items and 7
short-answer questions. Epistemic skills are measured with a questionnaire adapted from Conley
et al. (2004), focusing on epistemic dimensions including certainty of knowledge, source of
knowledge, development of knowledge, and justification of knowing. Students’ understanding of
promisingness was assessed with three items constructed by the authors (see Appendix). All items
in the epistemic and promisingness tests were 5-point Likert-scale items. The tests were
administered through an online survey, and all students responded together to the tests for one
class session each time.
Knowledge building: In each phase, students participated in knowledge- building discourse,
advancing their collective understanding by face-to-face discussion in classrooms, dialog in
Knowledge Forum, use of authoritative sources, and various types of virtual experiments and
games related to population growth.
Pedagogical intervention: Based on findings from the pre-test and previous studies (Chen et al.,
2011), the teacher and researchers identified students’ areas of understanding of promisingness
that need to be advanced. Pedagogical intervention was designed to tackle those areas, by asking
students to discuss related issues and informing them with examples that confront their current
beliefs relevant to promisingness. During this intervention, the teacher or the researcher did not
directly teach students the “correct” definition of promisingness. Rather, students were engaged
in discussing a series of important questions, including “what do you do next when an idea is
57
KBSI2013
Papers
posted in KF”, “what does a promising idea or a promising question mean to you”, “are our
promising ideas all right or wrong”, “what is a fact”, “how is fact different from a promising
idea”, etc. After students achieve a favorable understanding of promisingness, a demo of the PI
tool was conducted to get them familiar with the tool.
Table 1: Procedures of the study.
Note: KB—knowledge building; PJ—promisingness judgments.
Promisingness judgments: After the pedagogical intervention, students were invited to identify
promising ideas in their knowledge-building work and were encouraged to do so on a regular
basis all through the semester. As introduced in the previous section, the tool guided them to
evaluate each contribution and decide whether it fits into one of the four categories, namely
“promising ideas”, “unsolved problems”, “useful facts”, and “dead-ends”.
Focal interventions (promisingness judgments reviews): At the end of each phase, reflection
on students’ promisingness judgments was carried out in a class session. During interventions in
Phase 1 and 2, students worked in groups to review the list of ideas in the idea aggregation
window. They collaboratively reviewed the community advances, identified frontiers of their
knowledge, made connections among identified ideas, and exported related ideas pertinent to any
topic they were interested in to a new view. In each group, students collaboratively wrote a
synthesis note based on each set of ideas they exported. A set of meta-cognitive scaffolds,
including “We used to think”, “We found”, “Now we think”, and “Next we will”, were used to
guide their writing. At the end of each intervention, students brought their reflection back to the
whole class for discussion. The new view containing these synthesis notes were treated as the
starting point of the next phase knowledge building. In Phase 3, the intervention was conducted
slightly differently. Given students have already experienced successes and failures in the course
of promisingness judgments, they were asked to not only review their judgments made in Phase 2,
but also to reflect on all decisions they had made and assess whether ideas they have identified to
be promising turn out to be fruitful or not. Students discussed their thoughts as a whole group and
each of them wrote a reflection note in KF. The class kept carrying on knowledge building after
the reflective intervention; however, knowledge building in Phase 3 was limited because the end
of the semester was approaching.
58
KBSI2013
Papers
Data Analysis
Data collected in this study included students’ responses to the pre- and post- tests, students’
online discourse in Knowledge Forum, and video recordings of classroom discussion.
In the pre- and post-tests, students’ responses to the content knowledge test were scored. For
the open-ended questions, two raters scored the results and the inter-rater agreement measured by
Krippendorff’s alpha was .88. As for epistemic beliefs, each response was scored according to the
5-point Likert-scale in the survey (Conley et al., 2004). Students’ performance on each epistemic
dimension was then scored by averaging scores of items under that dimension; the scores of
reverse items were adjusted accordingly. An overall score of epistemic beliefs was computed by
averaging scores of all four epistemic dimensions. Lastly, students’ responses to the
promisingness items were scored with the same technique, and a score of promisingness
understanding was represented by the mean score of three promisingness items.
In this study, students had worked in three Knowledge Forum views, mapping to three
discourse phases. During the process, they wrote notes, read each other’s notes, build on each
other, and highlight promising ideas in the communal space. An overview of notes and
highlighted ideas in the views is provided in Table 2. Content analysis (Chi, 1997) was conducted
on each note focusing on ways of contribution, level of scientific sophistication, and epistemic
complexity. For notes under the questioning category in ways of contribution coding, depth of
questioning was further analyzed. For notes under the theorizing category, ways of justification
was also coded. A summary of coding schemes for content analysis of notes is presented in Table
3.
Table 2: An Overview of Dataset
59
KBSI2013
Papers
Table 3: Coding schemes for content analysis of KF notes.
60
KBSI2013
Papers
Table 4: Coding schemes for content analysis of highlighted ideas.
Each idea was also analyzed for the quality of promisingness judgments. This quality rating
focused on four different aspects of judgments: (1) promisingness of an idea—how promising an
idea is in its knowledge building context from the perspective of an expert; (2) judgment of idea
type—for each highlight, how well did a student make choices among four different
promisingness categories, including “promising idea”, “unsolved problem”, “useful fact” and
“dead-end”; (3) promisingness criterion (or promising for understanding what)—how well did a
student identify the criterion each highlight was promising for; and (4) reasoning—how well did a
student justify the promisingness criterion. We coded all her highlights in these four aspects.
Table 4 presents details of coding schemes for this analysis.
Finally, videos of classroom discussion were transcribed and analyzed to track the change of
students’ conception of promisingness. Video analysis, combined with students’ final reflection
notes of their promisingness judgments, could provide further qualitative accounts of students’
understanding of promisingness as well as their knowledge building work.
Results and Discussion
Evolution of Students’ Knowledge of Promisingness
In this study, we first conducted a pedagogical intervention that elicited students’ prior
conceptions of promisingness and engaged students to discuss them among the class. Then
students made promisingness judgments on their collective ideas on a regular basis and also had
the chance to reflect on their judgments in three focal interventions. According to Bereiter (2002),
the knowledge of promisingness accumulates from experiences of successes and failures of
promisingness judgments in creative processes. One important research question we investigated
was whether students’ knowledge of promisingness had improved in this study.
In the pre- and post-tests, students’ promisingness knowledge was assessed with three items.
A paired-sample t-test indicated students’ promisingness knowledge measured by these items has
61
KBSI2013
Papers
improved significantly during this study, t(24) = -2.03, p < .05.
Classroom discussion was further analyzed to make sense of this change. In the pedagogical
intervention session, students pondered on the question “what does a promising idea or a
promising idea mean to you” and shared their thoughts to the whole class. Analysis of student
discussion found their intuitive understanding of promisingness centered on “truthfulness.” For
example, two students said,
“A promising answer is something that convince you and is a good answer, and we
proves that the answer is perfect.”"
“It is true. You have the observation that is true.”
This notion of promising ideas being true was also found in previous studies (Chen et al., 2011);
it could hamper the quality of promisingness judgments and needed to be treated. At the same
time, it was interesting a few students held a relativist point of view towards ideas, although their
view of promisingness still centered on truthfulness. For example, a few students said,
“It is impossible to locate the most promising answer because people have different
points of view. So when someone think one answer is correct, but other people think it’s
wrong.”
“It depends on the person who write the answer because ... if the answer is answered by
a scientist, the answer can be more accurate. As well, it depends on the information a
person wants.”
“Other thing is like the point of view you have. If we are educated that way, we will
think it’s promising. But if we are not educated like that way, you will probably not
agree.”
In the process of discussion, new thoughts of promisingness kept emerging. The relativist point of
view challenged the original conception of being true, and some students stepped onto the notion
of “possibility,” which is an important element of promisingness (Chen et al., 2012). One girl said,
“We think promising idea is like a possible answer. It probably can be correct.”
A few students built on this idea and thought promising ideas were not necessarily true but closer
to the “correct” idea. For example,
“I don’t think it’s absolutely correct because. . . we don’t think promising means
absolutely correct but near correct.”
“A promising answer is one that is closer to the absolutely correct answer, since there is
no absolutely correct answer.”
This change of understanding was fundamental because it gave rise to the notion that promising
ideas are leading to scientific understanding. One boy began to think that the pursuit of promising
ideas does not depend on expertise one has but on the amount of efforts one invests in.
“I disagree with . . . I think that’s not necessary an expert can make a promising
answer. ... Because the promising question takes time, not like a question you’re doing in
a second.”
This notion touched the essence of promisingness, which is, as Gardner (1994) explains, the thing
that encourages scientists to “cast around” for a long time to achieve local coherence. However,
during the pedagogical intervention, this notion was only mentioned by this student, and most
students still regarded promising ideas as ideas being correct, accurate or convincing.
After two focal interventions engaging students in promisingness judgments on their ideas,
students were asked to reflect on their changes of understanding of promisingness. Analysis of
62
KBSI2013
Papers
recorded discussion indicated that the conception of being correct was widely replaced with more
sophisticated views. For example, one girl explicitly discussed her change in this way,
“At the beginning I thought it was . . . it was the correct answer, but now I think it’s not,
because there are many different points of view. ... So it’s an idea that can be discussed to
get to a ... I don’t know ... a common opinion that can be the conclusion.”
Similarly, a few other student shared,
“I thought a promising idea is an idea that has a lot of answer. I
thought like that. But a promising idea is something has a lot of ‘searching’. . . ”
“I think what makes ideas promising is ... it produces interests of further investigation or
discussion, to get to a conclusion.”
“A promising idea is not the answer, it is the idea that lead you to discussion. As we said
before, they are not necessarily the correct answer, but those topics can lead you to
discuss and be engaged, and learn a little bit about that topic.”
In these examples, it was evident students’ explanation of their understanding of promisingness
was a little bit constrained by their vocabulary, as they were struggling to find the proper words to
describe promisingness. However, it was clear they had made a lot of progress comparing to their
understanding in the pedagogical intervention.
Analysis of promisingness test results and student discussion found evident improvement of
students’ promisingness knowledge. We further analyzed quality of students’ actual
promisingness judgments in knowledge-building discourse to investigate their in-vivo
understanding of promisingness. As described in the methods section, quality rating of
promisingness judgments focused on four aspects including promisingness of selected “promising”
ideas, judgments of idea type, criteria, and reasoning. Because only one idea was highlighted in
Phase 3, we only compared the mean scores of each aspect between the first two phases. t-Tests
indicated only the reasoning aspect was significantly different between Phase 1 and Phase 2, t(31)
= -3.52, p < .01, while differences in the other three dimensions were nonsignificant at the .05
significance level. Means and standard deviations of four dimensions in each phase are presented
in Table 5. Further analysis of mean scores found students’ performance on judging idea types
already quite high in Phase 1 and left little space to improve in Phase 2. For the other two aspects,
i.e. idea promisingness and judgment of criterion, great variance was found among students,
implying substantial individual differences on those two dimensions. Overall, analysis of students’
promisingness judgment quality indicated that even though their conception of promisingness has
been improved in this study, their actually performance in most important aspect of
promisingness judgments was not significantly improved. As Bereiter (2002) notes that
knowledge of promisingness is acquired from rich experience; so perhaps students needed more
experience to achieve significant improvement on their actually judgments.
63
KBSI2013
Papers
Table 5: Improvement of promisingness judgment performance.
Impact of Promisingness Judgments on Discourse Patterns
Promisingness evaluation as a crucial component of design-mode thinking is expected to
have a great impact on knowledge-building discourse. Effective promisingness judgments should
help the class focus on promising ideas in the community and keep deepening the inquiry.
Promisingness judgments could also promote higher-order thinking and metadiscourse in
knowledge building, such as making synthesis and diagnosing knowledge progress. To
investigate the impact of discourse patters, we focused on the changes of ways of contributing
patterns, depth of questioning, and ways students justify their ideas in different phases.
Preliminary analysis of ways of contributing patterns focused on the distribution of
contribution types in each phase. According to the results presented in Figure 4, students has
maintained a high portion of theorizing contributions across three phases. Questioning
contribution has declined, representing a trend of convergence in discourse. The number of
synthesizing contributions started to appear in Phase 2 and Phase 3, mostly because in each
intervention session students were exporting and synthesizing promising ideas to reset their
discourse. Reflecting notes were only present in Phase 3, because students wrote their reflection
on promisingness judgment at the end of this unit. To summarize, promisingness judgments had
influenced contribution types in many different ways, such as encouraging synthesizing and and
promoting convergence. However, to what extent had such impacts promote knowledge
advancement is still to be further analyzed. For example, given questions are often regarded as
important “boosters” of knowledge building, whether the decline of questions was a good thing is
still to be analyzed. We plan to create Chronologically-Ordered Representations of Discourse and
Tool-Related Activity (CORDTRA) diagrams (Hmelo-Silver, 2003; Hmelo-Silver, Chernobilsky,
& Jordan, 2008) to further interpret the pattern of ways of contribution in discourse, focusing
especially on the relations among different contribution types.
As for the depth of questioning, a chi-square test of independence found the depth of
questions marginally significantly different across three phases, χ2(2) = 5.50, p = .06. Further
descriptive analysis found the number of factual questions declined from 16 (out of 31) in Phase 1
to 1 (out of 8) in Phase 2, and to none in Phase 3. Analysis of justification of theories did not
confirm a significant improvement across three phases, χ2(2) = 4.62, p = .10. However, the count
of theories grounded on evidence was found increasing from 4 (out of 24) in Phase 1 to 7 (out of
23) in Phase 2. Overall, results found an increasingly deep level of questioning and more
sophisticated type of justification of ideas across phases. However, it is to be investigated whether
these changes should be attributed to promisingness judgments or were just natural progression in
knowledge-building discourse.
64
KBSI2013
Papers
Figure 4: Changes of contributing types in three phases. Note: Q–questioning; T–theorizing; E–
evidence; S–synthesis and analogies; D–supporting discussion; R–reflecting.
Conceptual Advancement in Population Dynamics
Conceptual quiz. A conceptual quiz was designed to tap into students’ under- standing of the
biology unit “population dynamics” and administered in the pre- and post-tests. Items in this quiz
were designed based on conceptual literature related to this topic. Each student’s responses were
graded. A paired samples t-test was conducted to assess the change of students’ conceptual
understanding during this study. Results indicated a significant improvement, t(24) = -5.75, p
< .001. The average score was improved from M = 5.44 (SD = 1.74) to M = 8.46 (SD = 3.16).
Level of scientific sophistication. The level of scientific sophistication was coded for each
note containing a theorizing contribution. We compared mean scores of scientific sophistication
between Phase 1 and Phase 2 by two-sampled t-tests. Phase 3 was left out in this comparison
because of its limited number of theorizing contributions. Results indicated scientific
sophistication of notes had improved significantly from Phase 1 to 2, t(44) = -2.02, p < .05. Notes
moved from a hybrid level of scientificness (M = 2.12, SD = 0.85) to a level closer to prescientific (M = 2.65, SD = 0.93).
Epistemic complexity. We further evaluated students’ knowledge gains with respect to the
level of epistemic complexity. Like analysis of scientific sophisti- cation, all theorizing notes
were coded using an epistemic complexity scheme adopted from Zhang et al. (2007).
Unfortunately, two-sampled t-tests comparing epistemic complexity between Phase 1 and Phase 2
did not confirm a significant difference, t(44) = -0.68, n.s.. Most contributions stayed between
levels of elaborated facts and unelaborated explanations, and there was a great variance among
contributions in epistemic complexity. One possible explanation of this result is that epistemic
complexity, comparing to scientific sophistication which is more directly related to content
knowledge, is naturally harder to improve for younger students. The average epistemic
complexity of Grade 4 students’ portfolio notes reported in Zhang et al. (2007) was on the level
of elaborated facts, and complexity of thinking by college students in problem-based learning
studied by Hmelo-Silver et al. (2008) was still mostly knowledge telling or elaborated telling.
Thus, the timespan of this study could be too short to change epistemic complexity in sixth grade
students’ knowledge building.
65
KBSI2013
Papers
Changes in Students’ Epistemic beliefs
One of the most important questions in this study was whether promisingness judgments
could facilitate epistemic growth of students. In the pre- and post-tests, students were
administered a questionnaire on epistemic beliefs adapted from Conley et al. (2004). This
questionnaire measures epistemic beliefs from four independent dimensions, including source of
knowledge, certainty of knowledge, development of knowledge, and justification of knowing. To
test the consistency of this instrument with previous studies, confirmatory factor analysis (CFA)
was conducted. Test of four-dimension hypothesis in CFA was sufficient, χ2 = 307.6, p < .001,
with a goodness-of-fit score of 0.94. Detailed inspection on the loading matrix found four
identified components were properly loaded on related questionnaire items as expected.
To investigate changes of epistemic beliefs happening with students, paired- sample t-testes
were conducted on the sum score of epistemic beliefs as well as scores of four specific epistemic
dimensions. Results indicated that students had significantly improved on their overall epistemic
beliefs (t(24) = -3.80, p < .001), source of knowledge (t(24) = -2.61, p < .05), and justification of
knowing (t(24) = -2.96, p < .01). The improvement on the other two epistemic dimensions—
certainty of knowledge (t(24) = -1.86, p = .08) and development of knowledge (t(24) = -1.72, p
= .10)—was nonsignificant. Means and standard devisions of all dimensions are presented in
Table 6. Further inspection on mean scores found students’ epistemic beliefs in the source and
certainty dimensions were less developed compared to the other two dimensions. This
phenomenon could be related to a school culture that emphasizes on testing. Since the certainty
dimension had not significantly improved, we further investigated its change in this study.
Because it is widely accepted gender is an important factor for epistemic beliefs (e.g., Perry,
1970), we further conducted a two-factor analysis of variance (ANOVA) of the certainty
dimension on trial (Pre- vs. Post-tests) and gender (Female vs. Male). Results found gender as the
only significant main factor (F(1, 48) = 9.41, p < .01), with girls having more sophisticated
epistemic beliefs in certainty of knowledge. However, post-hoc comparisons among four groups
indicated girls did not improve much on this dimension (from 3.52 to 3.54), while boys had
caught up (from 3.00 to 3.44) during this study. This finding points to an intriguing direction for
future studies.
To explore which factors might have contributed to the change of epistemic growth,
correlation analysis was conducted among various measures, including epistemic beliefs,
conceptual understanding, and a number of indices of KF activities. Results indicated overall
epistemic growth was significantly correlated with change of promisingness conception (r = .47,
p < .05) and conceptual understanding (r = .46, p < .01). Promisingness conception and
conceptual understanding were also found significantly correlated (r = .52, p < .01). For each
specific dimension, the development of knowledge dimension was found significantly correlated
with promisingness conception (r = .42, p < .05) and marginally significantly correlated with
conceptual growth (r = .38, p = .06); correlations between changes with other dimensions and
promisingness conception and conceptual growth were nonsignificant.
Table 6: Improvement of epistemic beliefs from pre- to post-tests
66
KBSI2013
Papers
The relation between epistemic growth and a number of KF indices were in- vestigated too.
Firstly, using the Analytic Toolkit (ATK, Burtis, 1998) we extracted several important individual
measures of students, including number of notes created, number of notes linked, number of notes
read, and number of revisions. Correlation analysis between these measures and epistemic growth
dimensions only found the correlation between number of revisions and the development
dimension was significant, r = .56, p < .05. This correlation is interesting and straightforward
because the more a student believes an idea has a development trajectory, the more likely the
student will revise their ideas in knowledge building.
Based on exported data and content analysis results, we further computed several other KF
measures that reflected quality of students’ contributions for analysis. These measures included:
average scientific sophistication and epistemic complexity of notes, average word count of notes,
average number of promising ideas identified in notes, average times one’s notes were read by
other students, and average times one’s notes were referenced by other students. Correlation
analysis found overall epistemic skills of students in post- test marginally significantly with
average word count of notes, r = .52, p = .07. Average word count of notes were also found
marginally significantly correlated the source and development dimensions, r = .53, p = .06 and r
= .55, p = .05 respectively. These results implies the more sophisticated epistemic beliefs a
student has, the longer notes she writes, or vice versa.
In summary, correlation analysis found epistemic beliefs co-developed with con- ceptual
knowledge and understanding of promisingness. A number of knowledge building activities may
have an impact on the development of some specific aspect of epistemic beliefs. However, it
should be noted that these correlation analyses are quite preliminary, and no causal conclusion
can be drawn at this point. More advanced analysis, such as path analysis, is needed to distinguish
the relations among these variables.
Conclusions
Promisingness judgments are thought to be the heart of effective, creative actions, and
improved by immersing in progressive problem solving (Bereiter & Scardamalia, 1993). In
knowledge-building discourse, an important step is to assess promisingness of ideas presented in
a community and choose the most promising direction to follow. This study engaged a class of
sixth grade students in making promisingness judgments on their own ideas. Results indicated
students’ naive understanding of promisingness could be easily treated with a pedagogical
intervention that simply invited them to discuss their thoughts about promisingness. Students’
capability of making promisingness judgments, more specifically the ability to justify one’s
judgments with reasoning, appeared to improve across different phases. Further, promisingness
judgments were found to have an impact on discourse patterns, such as distribution of
contribution types, depth of questioning, and justification of theories. In the process, conceptual
understanding also significantly improved, reflected by increase of scientific sophistication and
epistemic complexity across phases. Last but not the least, students’ epistemic beliefs appeared to
co-develop with promisingness knowledge and conceptual understanding.
This preliminary study opens possibilities of further investigations on promis- ingness
judgments in knowledge-building discourse, especially the effectiveness of promisingness
judgments in facilitating students’ epistemic skills. However, it should be noted this study has a
few limitations. First of all, the lack of a control class undermines the comparisons made across
different discourse phases in this study. Someone could argument that given the absence of a
control group, it is unclear whether these improvement in conceptual knowledge and epistemic
beliefs could be attributed to promisingness judgments. The second limitation of this study is the
small sample size. This class only had twenty-six students, and around half of them were fairly
active in using the Promising Ideas tool to make promisingness judgments. This limitation
hampers same statistical analysis conducted in this study, especially correlation analyses which
requires data from different sources and the valid number of cases further decreased in the data
67
KBSI2013
Papers
merging process. Future research with stricter design and larger sample sizes will be conducted to
deepen this line of research around promisingness judgments. At the same time, we will also
further advance technological design of the Promising Ideas tool and explore its integration with
the next generation of Knowledge Forum.
Appendix: Items to measure promisingness understanding
1. Presented with two competing ideas, I may not be able to decide which one is true, but I
could sense which one is better.
2. When I firstly come up with an idea to explain something, being correct is the most
important thing.
3. Scientists often make mistakes, and they’re good at learning from them.
References
Bereiter, C. (2002). Education and Mind in the Knowledge Age. Lawrence Erlbaum.
Bereiter, C. (2012). Theory Building and Education for Understanding. (M. Peters, P. Ghiraldelli,
B. Žarnić, & A. Gibbons, Eds.).
http://www.ffst.hr/ENCYCLOPAEDIA/doku.php?id=theory_building_and_education_for_un
derstanding.
Bereiter, C., & Scardamalia, M. (1993). Surpassing ourselves: an inquiry into the nature and
implications of expertise. Open Court.
Burtis, P. J. (1998). Analytic Toolkit for Knowledge Forum. Centre for Applied Cognitive
Science, The Ontario Institute for Studies in Education/University of Toronto.
Carey, S. (1985). Conceptual Change in Childhood. MIT Press.
Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. (D. Perkins,
J. L. Schwartz, M. M. West, & M. S. Wiske, Eds.) Educational Psychologist, 28(3), 235–251.
doi:10.1207/s15326985ep2803\_4
Carey, S., Scholnick, E. K., & Nelson, K. (1999). Sources of conceptual change. Conceptual
development: Piaget’s legacy, 293–326.
Chan, C. K. K., & Lam, I. C. K. (2010). Conceptual change and epistemic growth through
reflective assessment in computer-supported knowledge building. In Proceedings of the 9th
International Conference of the Learning Sciences- Volume 1 (pp. 1063–1070). Chicago,
Illinois: International Society of the Learning Sciences.
Chan, C. K. K., Burtis, P. J., & Bereiter, C. (1997). Knowledge Building as a Mediator of Conflict
in Conceptual Change (Vol. 15). doi:10.1207/s1532690xci1501\_1
Chen, B., Chuy, M., Resendes, M., & Scardamalia, M. (2010). “Big Ideas Tool” as a New Feature
of Knowledge Forum. In 2010 Knowledge Building Summer Institute. Toronto, Ontario,
Canada.
Chen, B., Chuy, M., Resendes, M., Scardamalia, M., & Bereiter, C. (2011). Evaluation by Grade
5 and 6 Students of the Promisingness of Ideas in Knowledge Building Discourse. In H.
Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting Computer-Supported
Collaborative Learning to Policy and Practice: CSCL2011 Conference Proceedings. Volume
II - Short Papers and Posters (pp. 571–575). International Society of the Learning Sciences.
Chen, B., Scardamalia, M., Acosta, A., Resendes, M., & Kici, D. (2013). Promis- ingness
Judgments as Facilitators of Knowledge Building. In N. Rummel, M. Kapur, M. Nathan, & S.
Puntambekar (Eds.), To See the World and a Grain of Sand: Learning across Levels of Space,
Time, and Scale: CSCL 2013 Conference Proceedings Volume 2 — Short papers, Panels,
Posters, Demos & Community Events (pp. 231–232). International Society of the Learning
68
KBSI2013
Papers
Sciences.
Chen, B., Scardamalia, M., Resendes, M., Chuy, M., & Bereiter, C. (2012). Students’ intuitive
understanding of promisingness and promisingness judgments to facilitate knowledge
advancement. In J. van Aalst, K. Thompson, M. J. Jacobson, & P. Reimann (Eds.), The future
of learning: Proceedings of the 10th international conference of the learning sciences (ICLS
2012) – Volume 1, Full Papers (pp. 111–118). Sydney, Australia: ISLS.
Chi, M. T. H. (1997). Quantifying Qualitative Analyses of Verbal Data: A Practical Guide.
Journal of the Learning Sciences, 6(3), 271–315. doi:10.1207/s15327809jls0603\_1
Chuy, M., Scardamalia, M., Bereiter, C., Prinsen, F., Resendes, M., Messina, R., Chow, A.
(2010). Understanding the nature of science and scientific progress: A theory-building
approach. Canadian Journal of Learning and Technology, 36 (1).
Chuy, M., Zhang, J., Resendes, M., Scardamalia, M., & Bereiter, C. (2011). Does Contributing to
a Knowledge Building Dialogue lead to Individual Advancement of Knowledge? In H. Spada,
G. Stahl, N. Miyake, & N. Law (Eds.), Connecting Computer-Supported Collaborative
Learning to Policy and Practice: CSCL2011 Conference Proceedings. Volume I - Long
Papers (pp. 57–63). International Society of the Learning Sciences.
Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological
beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186–
204. doi:10.1016/j.cedpsych.2004.01.004
Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving
science teaching and learning. International Journal of Science Education, 25(6), 671–688.
doi:10.1080/09500690305016
Dunbar, K. N. (1995). How scientists really reason: Scientific reasoning in real-world laboratories.
In R. J. Sternberg & J. Davidson (Eds.), The Nature of Insight (pp. 365–395). MIT Press.
Gardner, H. (1994). More on private intuitions and public symbol systems. Creativity Research
Journal, 7(3-4), 265–275. doi:10.1080/10400419409534534
Hakkarainen, K. (2003). Progressive inquiry in a computer-supported bi- ology class. Journal of
Research in Science Teaching, 40(10), 1072–1088. doi:10.1002/tea.10121
Hmelo-Silver, C. E. (2003). Analyzing collaborative knowledge construction. Computers &
Education, 41(4), 397–420. doi:10.1016/j.compedu.2003.07.001
Hmelo-Silver, C. E., Chernobilsky, E., & Jordan, R. (2008). Understanding collaborative learning
processes in new learning environments. Instructional Science, 36(5-6), 409–430.
doi:10.1007/s11251-008-9063-8
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in
problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006).
Educational Psychologist, 42(2), 99–107.
Hofer, B. K., & Pintrich, P. R. (1997). The Development of Epistemological Theories: Beliefs
About Knowledge and Knowing and Their Relation to Learning. Review of Educational
Research, 67(1), 88–140. doi:10.3102/00346543067001088
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking.
Science Education, 77(3), 319–337. doi:10.1002/sce.3730770306
Kuhn, T. S. (1977). Objectivity, Value Judgment, and Theory Choice. In M. Lange (Ed.),
Philosophy of Science An Anthology (pp. 320–339). University of Chicago Press.
Leach, J., Driver, R., Scott, P., & Wood-Robinson, C. (1996). Children’s ideas about ecology 2:
ideas found in children aged 5-16 about the cycling of matter. International Journal of
Science Education, 18(1), 19–34. doi:10.1080/0950069960180102
Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science
Education, 87(4), 517–538. doi:10.1002/sce.10086
Miyake, N. (2008). Conceptual change through collaboration. International handbook of research
on conceptual change, 453–478.
Perry, W. G. (1970). Forms of intellectual and ethical development in the college years. New
69
KBSI2013
Papers
York: Academic Press.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a
scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–
227. doi:10.1002/sce.3730660207
Roschelle, J. (1992). Learning by Collaborating: Convergent Con- ceptual Change. Journal of the
Learning Sciences, 2(3), 235–276. doi:10.1207/s15327809jls0203\_1
Ryan, A. G., & Aikenhead, G. S. (1992). Students’ Preconceptions about the Epistemology of
Science. Science Education, 76(6), 559–580. doi:10.1002/sce.3730760602
Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on
learning through inquiry. Science Education, 89(4), 634–656. doi:10.1002/sce.20065
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In
B. Smith (Ed.), Liberal education in a knowledge society (pp. 67–98). Chicago, IL: Open
Court.
Scardamalia, M., & Bereiter, C. (2003). Knowledge building. In J. W. Guthrie (Ed.),
Encyclopedia of education (2nd ed., Vol. 17, pp. 1370–1373). New York, NY: Macmillan
Reference.
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology.
In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 97–115).
Cambridge University Press.
Schommer, M. (1990). Effects of beliefs about the nature of knowledge on compre- hension.
Journal of Educational Psychology, 82(3), 498–504. doi:10.1037/0022- 0663.82.3.498
Schommer-Aikins, M., & Hutter, R. (2002). Epistemological beliefs and thinking about everyday
controversial issues. The Journal of Psychology: Interdisciplinary and Applied, 136(1), 5–20.
Slotta, J. D., & Linn, M. C. (2009). WISE Science: Web-based Inquiry in the Classroom. New
York, NY: Teachers College Press.
Vosniadou, S. (2008). International handbook of research on conceptual change. Taylor &
Francis.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual
change in childhood. Cognitive Psychology, 24(4), 535– 585. doi:10.1016/00100285(92)90018-W
Wertheimer, M., & Wertheimer, M. (1959). Productive thinking. Harper New York.
Zhang, J., Scardamalia, M., Lamon, M., Messina, R., & Reeve, R. (2007). Socio-cognitive
dynamics of knowledge building in the work of 9- and 10- year-olds. Educational
Technology Research and Development, 55(2), 117–145. doi:10.1007/s11423-006-9019-0
Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for Collective Cognitive
Responsibility in Knowledge-Building Communities. Journal of the Learning Sciences, 18(1),
7–44. doi:10.1080/10508400802581676
Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal
of Mathematics, Science & Technology Education, 3(4), 351–361.
70
KBSI2013
Papers
“Napoleón era también bajo..." Lectura, escritura y orientación
motivacional en una comunidad Knowledge Building de historia
Lisa Cingolani, University of Macerata, Italy
Email: [email protected]
Stefano Cacciamani, University of Valle d’Aosta, Italy
Email: [email protected]
RESUMEN: En el siguente estudio participaron 25 estudiantes de segundo año
de la escuela secundaria inferior. Los estudiantes han desarrollado el estudio de
la historia a través de algunas de las discusiones en presencia, que non son
objeto de este studio, y de las discusiones en línea.
Los resultados mostraron una correlación estadísticamente significativa entre las
actividades de lectura y escritura en el segundo y el tercero módulo de discusión
en línea. El anàlisis estadìstico ha identificado una correlación entre la
orientación motivacional y las notas leydas en el segundo módulo y entre la
orientación motivacional y la notas escritas en el tercero módulo. La conciencia
de la importancia de la relación entre la lectura y la escritura emerge en los
estudiantes gradualmente con el tiempo. En cuanto a la orientación motivacional,
los alumnos con metas de maestría, parecen demostrar la necesidad de adquirir la
competencia para la tarea, primero leyendo y luego por escrito.
INTRODUCCIÓN
El modelo de la Knowledge Building Community (KBC en adelante) tiene la intención de volver
a la clase en la dirección de una comunidad que se construye el conocimiento (Scardamalia, 2002;
Scardamalia y Bereiter, 2006): en ella se mejora la colaboración entre los estudiantes, que no
debe centrarse en el aprendizaje de conceptos, sino en la generación de ideas útiles para el
desarrollo del conocimiento de toda la comunidad.
La actividad de la construcción del conocimiento se apoya en el Knowledge Forum (KF en
adelante) en línea y por lo tanto está mediada por la lectura y la escritura de textos. Para ello, es
importante que en el proceso de construcción del conocimiento en colaboración, entre la lectura y
la escritura en línea que se estableció una relación de interdependencia: el proceso de
construcción del conocimiento es un hecho de verdadera colaboración, si todos los miembros de
la comunidad escribe textos colocados en relación con los productos de otros miembros.
Contribuir relevante y productivo para la construcción del conocimiento con una nota escrita, es
importante que después de leer las notas de los otros participantes. Tales consideraciones son
apoyados por estudios de escritura colaborativa en entornos en línea, que muestran que la
escritura será más eficaz si se apoya en conversaciones y discusiones: facilitar la interacción entre
los estudiantes ayuda a pasar de un concepto a una experiencia solitaria de la escritura la visión
de la escritura como una actividad social (Sanford, 2012).
En base a estas premisas, en una KBC podemos esperar que los estudiantes son muy activos y
que participen en el proceso de construcción del conocimiento y que ellos entienden que este
proceso requiere que todos vengan con ideas en colaboración con otros miembros de la
comunidad.
En el presente estudio se ha supuesto que las actividades de lectura y escritura en el entorno
en línea pueden estar en relación con la orientación motivacional de los participantes.
71
KBSI2013
Papers
Los autores que se han ocupado de este constructo en estudiantes identifican dos tipos de
orientación motivacional (Ames y Archer, 1988), la orientación (o objectivo) definida,
respectivamente para el rendimiento y la orientación de la maestría. Un objetivo puede ser
definida como "la previsión de que una persona se avecina, con el resultado que se pretende
lograr o evitar" (Cacciamani, 2002).
Los alumnos orientados a el rendimiento, centra su atención en la evaluación de sus
capacidades, tiene la intención de lograr buenos resultados y quiere evitar los negativos. Estudia
para mostrar lo que sabe y está motivado para obtener comentarios positivos de los demás. En
lugar, el estudiante que se orienta hacia la maestría se ha comprometido a mejorar sus habilidades
de acuerdo para hacer frente a tareas difíciles, ya que, a riesgo de cometer errores, está motivado
por la idea de aprender cosas nuevas. Está estudiando para aprender, independientemente del
resultado final (Dweck, 1999).
¿Es posible que los estudiantes con un dominio motivacional orientación tiene un mayor
énfasis en la lectura y la escritura en una actividad de construcción de conocimiento en línea en
comparación con el rendimiento de los alumnos orientados?
El presente estudio tiene como objetivo detectar la existencia de una relación de
interdependencia entre la lectura y la escritura dentro de un proceso de construcción del
conocimiento y para verificar si existe una relación entre la orientación motivacional de los
estudiantes y su enfoque en la lectura y escritura dentro de una KBC.
MÉTODO
Participantes
Participaron en este estudio 25 estudiantes, entre ellos 12 mujeres y 13 varones,
pertenecientes al segundo año de la escuela secundaria inferior del Instituto "G. Cingolani" de
Montecassiano, Italia.
Entorno en línea
El entorno en línea utilizado en este estudio es el Knoweldge Forum
(http://www.knowledgeforum.com) en la versión 4.8. Se ha desarrollado en el grupo de
investigación de la Universidad de Toronto, coordinado por Carl Bereiter y Marlene Scardamalia.
En este entorno, los estudiantes pueden crear notas (textos escritos a los que se pueden
agregar o imágenes o gráficos), que son objetos que contienen el conocimiento acumulado
gradualmente de la comunidad de la clase. Las notas pueden ser citadas en otras notas o resaltar
con las palabras clave que también se pueden conectar entre sí mediante enlaces. En este caso, se
les conoce con el término build on (literalmente, "construir"), lo que indica que representan la
evolución de la construcción del conocimiento. Las notas y los build on se pueden agrupar en las
carpetas correspondientes nombrados vista, lo que le permite organizar las áreas temáticas de la
actividad de la construcción del conocimiento en su proceso de desarrollo.
Para facilitar la discusión de las estructuras lingüísticas son también valores predeterminados
actuales, soporte escribir, los tipos de pensamiento (o etiquetas de pensamiento) que tienen la
función de los andamios (literalmente "andamiaje") en el sentido de que sirven para crear
categorías comunes de la construcción meta-discurso que le permiten comunicarse acerca de los
efectos de las propias notas. Estas estructuras son flexibles y personalizables.
Descripción
La actividad en la clase tenía el objetivo de la reflexión crítica a través del debate en
presencia y en línea, sobre dos periodos históricos estudiados: el período napoleónico en Italia y
72
KBSI2013
Papers
en Europa y los movimientos revolucionarios de 1820 y 1830 en Italia, seguido de la restauración
dell'Antiguo Régimen tras la derrota de Napoleón.
La actividad se implementó con referencia al modelo de la KBC en las siguientes fases:
1. La profesora presentó la primera parte de la argumentación de estudio a través de una
conferencia y la lectura del libro, y luego en casa, cada alumno ha estudiado de forma individual
sobre el argumento del libro 's explicado por la profesora.
2. La clase se dividió en dos grupos heterogéneos de estudiantes y cada grupo fue un debate
sobre la propuesta de parte del tema ya cursado, a partir de una cuestión de análisis crítico
(“¿Según usted, el período napoleónico tenía más negativa o positiva y por qué ?”). La discusión
se llevó a cabo en la presencia, fue guiada por la investigadora y grabó en vídeo.
3. La profesora, con una conferencia posterior, concluyó la explicación del estudio: en casa,
cada alumno tiene un estudio en profundidad sobre una base individual.
4. En el aula, los estudiantes han estudiado durante todo el perìodo estudiado a través de un
Jigsaw (Aronson, 1978; Aronson, Blane, Stephan, Sikes, y Snapp, 1978), articulada sobre la base
de preguntas de orientación, elaborado por la investigadora.
5. La investigadora ha presentado a los estudiantes en el entorno en línea y se ha hecho una
primera familiarización con el medio ambiente a través de una vista de la auto-presentación.
6. Posteriormente, la investigadora ha puesto en marcha un debate en línea para el periodo
histórico estudiado, desde la misma aplicación de la reflexión crítica dirigida a los estudiantes en
la discusión en presencia (“¿Según usted, el período napoleónico tenía más elementos positivos o
negativos y por qué?”). Incluso en este caso, los estudiantes fueron divididos en los mismos
grupos de la fase 2.
Este modelo de trabajo se repitió para cada objeto de estudio presentado por la profesora.
Este modelo de trabajo se repitió para cada sujeto de estudio presentado por la profesora. Debido
a las necesidades organizativas de la profesora, la actividad de debate en línea sobre el período
napoleónico se llevó a cabo después de la discusión de los movimientos revolucionarios.
Variables observadas
Han sido objeto de estudio de esta investigación las siguientes variables observadas:
- La relación entre la lectura y la escritura en cada una de las tres formas de actividades en línea
("Bienvenido", "Los movimientos rivolucionarios”, "Napoleón");
- La orientación motivacional de los estudiantes.
Instrumentos
La variable sobre la relación entre la lectura y la escritura se ha detectado por el software
Analític Toolkit (ATK), que proporciona estadísticas sobre las actividades llevadas a cabo en el
KF línea. El software identifica cuántas notas están en la base de datos, cuántas notas están
vinculadas, cuántas notas fueron creadas por cada estudiante y el número de notas fueron leídas.
Se calcularon para cada estudiante las notas escritas y las notas de lectura, en cada uno de los
módulos mencionados.
La variable sobre la orientación motivacional se ha detectada a través de una escala de la
prueba AMOS 8-15 (Cornoldi, De Beni, Zamperlin y Meneghetti, 2005): la escala QC3O, que se
han utilizado 4 artículos relacionados con la orientación motivacional , en comparación con que
el sujeto debe elegir una respuesta en una escala Likert. La puntuación entre zero y dieciséis años,
expresa una orientación hacia la maestría si es alto, una orientación al rendimiento, si baja.
73
KBSI2013
Papers
Análisis de los datos
Los datos fueron analizados con el software SPSS, detectando correlaciones, utilizando el
coeficiente Rho de Spearman (teniendo en cuenta el número de estudiantes), incluyendo notas
escritas, notas leídas y la orientación motivacional de cada estudiante.
RESULTADOS
Los resultados relativos a la actividad de la lectura y de la escritura en los tres módulos se
muestran en la Figura 1.
Fig.1. Lectura y escrituras en los tre módulos.
16 14 12 10 8 6 4 2 0 Notas escritas Notas leydas El módulo con la mayor actividad de la lectura y escritura de notas es Movimientos
revolucionarios.
Los resultados relativos a la relación entre la lectura y la escritura se presentan en la siguiente
tabla (Tabla 1).
Tabla 1. Correlación entre la lectura y la escritura en tres módulos.
Módulo
“Bienvenida”
notas escritas e notas leydas
“Movimientos revolucionarios”
notas escritas e notas leydas
“Napoleón”
notas escritas e notas leydas
Rho di
Spearman
Sign.
-.07
p >.05
.53**
p<.01
.80**
p<.01
74
KBSI2013
Papers
La correlación es estadísticamente significativa en el segundo módulo (Rho = 0,53, p <0,01) y el
tercer módulo (Rho = 0,80, p <0,01) de las actividades en línea.
Los resultados referentes a la relación entre la orientación motivacional y la lectura se informan
en la Tabla 2.
Tabla 2. Correlación entre la orientación motivacional y la lectura en tres módulos.
Módulo
Rho di
Spearman
Sign.
“Bienvenida”
Orientación motivaciónal y notas leydas
-.03
p >.05
.47**
p<.05
.27
p>.05
“Movimientos revolucionarios”
Orientación motivaciónal y notas leydas
“Napoleón”
Orientación motivaciónal y notas leydas
Como se muestra, surge una correlación estadísticamente significativa en lel segundo moduló de
la actividad en línea (Rho = 0,47, p <0,05).
Los resultados referentes a la relación entre la orientación de motivación y la escritura se
muestran en la Tabla 3.
Tabla 3. Correlación entre la orientación motivacional y la escritura en tres módulos.
Módulo
“Bienvenida”
Orientación motivaciónal y notas escritas
“Movimientos revolucionarios”
Orientación motivaciónal y notas escritas
“Napoleón”
Orientación motivaciónal y notas escritas
Rho di
Spearman
Sign.
-.25
p >.05
.32
p>.05
.51**
p<.01
Como se muestra, surge una correlación estadísticamente significativa en lel tercero módulo de la
actividad en línea (Rho = 0,51, p <0,01).
DISCUSIÓN
Los resultados que se desprenden de este estudio muestran que, en el comienzo de la
discusión en línea, leer y escribir notas son considerados por los estudiantes dos actividades
75
KBSI2013
Papers
independientes: no captan la necesidad de leer los discursos de los otros participantes para
conectar sus propias ideas. Este resultado es coherente con lo encontrado por Cingolani, Hamel &
Cacciamani (2010). Además, en la fase de familiarización con el medio ambiente, el tipo de tarea
a los estudiantes requeridos, es decir, la presentación de sí mismo, no puede haber implicado la
necesidad de leer las notas de otros para escribir su propia contribución.
La conciencia de la importancia de la relación entre la lectura y la escritura surge en los
dos módulos siguientes, cuando la tarea requiere un trabajo explícito de construir conocimiento:
cuando se les pide a los estudiantes a expresar su opinión con respecto a un período histórico
crucial estudiado, los estudiantes entienden que el desarrollo de la discusión debe tratar con la
opinión expresada por otros participantes.
Los resultados que se desprenden de la orientación motivacional pueden estar
relacionados con esta interpretación: los estudiantes orientados a la maestría, en la tarea de
discusión en línea, sintieron la necesidad de aumentar su competencia, en primera instancia por la
actividad de la lectura (segundo módulo), en un segundo tiempo a través de la actividad de la
escritura (tercero módulo).
En lugar, los estudiantes orientados a la ejecución, que se limitan a la prestación recibida por el
investigador, que incluía la elaboración de por lo menos una nota.
CONCLUSIÓN
El presente estudio ha puesto de relieve la tendencia de los estudiantes a adquirir poco a
poco conciencia de la importancia de la relación entre la lectura y la escritura en línea dentro de
un proceso de construcción del conocimiento. Los resultados de la investigación confirman la
veracidad de la hipótesis avanzada por los estudiantes de la escuela primaria para los estudiantes
de la escuela secundaria. Además, el estudio ha revelado un enfoque diferente para la tarea en
relación con la diferente orientación motivacional del estudiante.
El estudio tiene algunas limitaciones: en primer lugar, el número limitado de sujetos no
asegura una amplia generalización de los resultados. Además, el tiempo disponible para la
actividad fue muy corto y no permitió la aplicación de otros módulos temáticas previstas.
Sería deseable una réplica del estudio para intervenir en los limites y tomar en cuenta el
análisis de otras dimensiones motivacionales que podrían jugar un rol de importancia en la lectura
y la escritura en una KBC.
REFERENCIAS
Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Students' learning strategies
and motivation processes. Journal of Educational Psychology, 80, 260-267.
Aronson, E. (1978). The Jigsaw classroom. Beverly Hills, CA: Sage.
Aronson, E., Blane, N., Stephan, C., Sikes, J. e Snapp, M. (1978). The Jigsaw classroom. Beverly
Hills, CA: Sage.
Cacciamani S. (2002). Psicologia per l’insegnamento. Roma: Carocci.
Cingolani, I., Hamel, C., Cacciamani, S., (2010). Reading and writing in a Knowledge Building
Community: correlation or independence? Poster presented at IKIT Summer Institute, OISEUniversity of Toronto, 3-6 August 2010.
Cornoldi, C., De Beni, R., Zamperlin, C. & Meneghetti, C. (2005). AMOS 8-15. Abilità e
motivazione allo studio: prove di valutazione per ragazzi dagli 8 ai 15 anni. Trento:
Erickson.
Dweck, C.S. (1999). Self theories: Their role in motivation, personality, and development. Ann
Arbor, Mich.: Psychology Press.
76
KBSI2013
Papers
Sanford, D. (2012). The peer interactive writing center at university of New Mexico.
Composition forum, 25. Retrieved from http://compositionforum.com/issue/25/.
Scardamalia M. (2002). Collective cognitive responsibility for the advancement of knowledge. In
B. Smith (ed.), Liberal Education in a knowledge society (pp.76-98). Chicago: Open Court
Scardamalia M. e Bereiter C. (2006). Knowledge Building: Theory, Pedagogy and Technology.
In K. Sawyer (ed.), Cambridge handbook of the Learning Sciences (pp.97-115) Cambridge:
Cambridge University Press.
77
KBSI2013
Papers
Las Tecnologías de Información y Comunicación (Tics) en Educación
Indígena, Nuevos Espacios con Pertinencia Cultural y Lingüística
Salvador Galindo Llaguno, Centro de Estudios y Desarrollo
de las Lenguas Indígenas de Oaxaca
Email: [email protected]
RESUMEN: En la actualidad las nuevas tecnologías de información y comunicación (TIC)
se han expandido vertiginosamente en las diferentes estructuras sociales, en donde el sistema
educativo no puede quedar exento. Esta interacción y revolución tecnológica demanda
entonces la necesidad de un cambio y una modernidad en el contexto educativo, tanto en la
profesionalización de agentes educadores como de la creación de programas y entornos
virtuales con pertinencia cultural y lingüística, puesto que hoy en día las poblaciones
originarias son las más resentidas de estos recursos humanos y tecnológicos por su situación
de marginación y exclusión.
Por el contacto que tienen con la sociedad occidental las comunidades indígenas demandan
de estas nuevas formas de interacción tecnológica a efecto de hacerlas competentes con la
modernidad actual, para ello se requiere tomar en cuenta sus características socioculturales y
lingüísticas, lo que permitirá fortalecer en el ámbito educativo la identidad de las niñas y
niños indígenas, contribuyendo en la formación de sujetos interculturales a partir de una
proeficiencia lingüística equilibrada.
Considerando que las TIC crean nuevos lenguajes y formas de representación, además de que
permiten arribar a nuevos escenarios de aprendizajes; las instituciones educativas del nivel de
educación indígena del estado mexicano propiamente del estado de Oaxaca serán las más
comprometidas en reducir la brecha digital a partir de diversas estrategias y técnicas de
aprendizaje mediante el uso de los diversos recursos tecnológicos que estén a su alcance para
promover aprendizajes significativos.
INTRODUCCIÓN
Entre los países pertenecientes al Continente Americano, México ocupa el segundo lugar en
número de lenguas originarias vivas habladas. Aunque hay muchos hablantes del español en este
país, existen 68 grupos de lenguas originarias, mismas que integran un total de 364 variantes
lingüísticas reconocidas por el Instituto Nacional de lenguas Indígenas (INALI). Del total de las
agrupaciones lingüísticas existentes en México, el 47 % perviven en territorio oaxaqueño
Caracterizado por esa gran diversidad lingüística, el servicio educativo indígena de Oaxaca
atiende a alumnos monolingües en lengua originaria, monolingües en español y bilingües en
español y lengua originaria. Además, por temporadas durante el año, en ciertas regiones hay
alumnos migrantes provenientes de los Estados Unidos de América y que por tal condición
dominan el idioma Inglés.
Dicha pluralidad lingüística-cultural requiere cambios fundamentales y acciones alternativas
del contexto educativo indígena, por ello, las escuelas deben establecer condiciones necesarias
que permitan la atención y tratamiento de la alfabetización digital mediante el uso y apoyo de las
TIC, desde una perspectiva cultural-lingüística y con ello, sin atentar contra la diversidad misma,
incursionar en la sociedad de comunicación digital y empezar a ser partícipes en el uso
democrático, ético e idóneo de las TIC. Al respecto, Pérez Tornero y Variss (2010) plantean que
El carácter intercultural de la alfabetización multimedia y la posibilidad de encausarla a favor
de una diversidad cultural amenazada por la creciente norteamericanización de la vida en el
78
KBSI2013
Papers
mundo, permite plantear la necesidad de promover un diálogo intercultural para luchar contra la
brecha digital y cognitiva, estimular la cooperación y participación nacional e internacional, para
[...] revitalizar la esfera global pública, e integrar valores comunicacionales (Pérez Tornero y
Variss, 2010).
Para atender esta realidad, hace falta del Estado mexicano, políticas públicas que atiendan,
promuevan y dirijan el uso de las TIC hacia una sociedad de la información de manera
innovadora e inclusiva, políticas que no se limiten simplemente a la dotación de equipos (Pcs) o
dispositivos tecnológicos (pizarrones digitales), sino desarrollen programas educativos mediante
conectividad y soporte digital que atiendan la diversidad cultural y lingüística reconocida en el
Artículo 4° de la Constitución Política de los Estados Unidos Mexicanos (SEGOB 2008-2009),
de esta manera evitar que las tecnologías de información y comunicación se conviertan en una
nueva forma de exclusión y marginación de las comunidades indígenas.
Al respecto, el Programa Nacional de Educación 2000-2006 publicado en México, manifestó
cierto interés por el uso de las tecnologías de información y comunicación, para lo cual
implementó programas emergentes y de expansión acelerada, así como una serie de acciones para
promover el acceso a estas tecnologías en diversos contextos (Lucio, 2006-2007). Tal fue el caso
del proyecto de apoyo escolar en el nivel de educación básica mediante el Programa
“Enciclomedia”, así como la instalación de una infraestructura de telecomunicaciones conocida
como Red Satelital de Televisión Educativa (EDUSAT). Los resultados obtenidos por estos
programas fueron en su mayoría poco favorables, lo anterior se atribuye a la falta de capacitación
permanente de los usuarios, a la falta de: soporte técnico, mantenimiento y contenidos
pertinentes al contexto comunitario. Dicha situación ha generado el abandono parcial/total o falta
de continuidad de los programas mencionados.
Sin embargo, este tipo de experiencias ha permitido apreciar que el acceso a las TIC y demás
dispositivos (pizarrón electrónico), así como la conectividad a internet pueden ofrecer nuevas
prácticas de enseñanza-aprendizaje además de servir como alternativa para acortar la brecha
digital existente entre las escuelas indígenas alejadas de los contextos citadinos y las urbanas.
De igual forma y conscientes que la carencia de acceso a las TIC en la actualidad puede
desencadenar una serie de incidencias y dificultades hacia los educandos, tales como el contacto
tardío, la falta de dominio o analfabetismo digital; los docentes no debemos mantenernos al
margen, por el contrario, habrá que tomar en serio la necesidad de la alfabetización digital y ser
partícipes del desarrollo de la formación acorde con el contexto local y global.
La necesidad de generar y facilitar mejores condiciones respecto al uso de las TIC en los
contextos indígenas ciertamente es lenta y costosa, no obstante, el equipamiento y conectividad
del servicio son procesos que no parecen ser reversibles.
Con esa perspectiva, habrá que proyectar y crear condiciones que fortalezcan la práctica de
los docentes y ampliar las oportunidades de aprendizaje de los alumnos mediante la capacitación
de los primeros, así como la generación, utilización e interacción de programas multimedia con
pertinencia cultural y lingüística, promoviendo la interacción de los sujetos con estos, a fin de
contribuir al logro de una mayor participación en la información global, con una intervención
pedagógica cuyos rasgos sean democráticos e incluyentes.
Propuesta de inserción de las Tics en los programas educativos del nivel de educación
indígena
Para alumnos y docentes, los materiales o programas alternativos con los que se trabajan
actualmente en la mayoría de las escuelas primarias indígenas son nulos o escasos, situación que
conduce desfavorablemente a la pérdida del uso de la lengua indígena como medio de instrucción
79
KBSI2013
Papers
y como objeto de estudio, influyendo tanto en la desaparición o desplazamiento de lenguas
originarias, como en el detrimento de los valores culturales indígenas.
Ante tal panorama, se debe generar materiales educativos multimedia, mismos que se
concreten en el desarrollo y en la producción de programas y actividades virtuales interactivas
grabadas en soporte digital de manera bilingüe o multilingüe, los cuales coadyuven a desarrollar
una educación intercultural y bilingüe de manera alternativa; además, apoyar en el
fortalecimiento, desarrollo y preservación de las lenguas indígenas, y en la promoción de los
valores lingüísticos, culturales y comunitarios.
Para el mencionado propósito, se requiere de una participación interdisciplinaria en la que
intervengan hablantes nativos de la lengua indígena que será básica en el diseño de los programas
interactivos, aunado a la colaboración de los docentes quienes serán capaces de sugerir estrategias
y secuencias didácticas que faciliten la comprensión de los contenidos o ejes temáticos.
Villavicencio Zarza y Salgado Andrade (2011) manifiestan que:
Para garantizar un mejor desarrollo de los programas, será imprescindible la participación de
especialistas en educación, capaces de garantizar que los programas estén adecuadamente
diseñados y cumplan de manera óptima los objetivos que persigue cada uno Invalid source
specified.
Procurando que la aportación sea más rica y la sinergia dé mayor efecto, en determinadas
ocasiones se demandará la contribución de lingüistas, diseñadores gráficos y programadores,
quienes de manera conjunta establecerán las competencias y habilidades indispensables a requerir
en el diseño de los materiales multimedia para contextos de diversidad cultural y lingüística.
Dadas estas circunstancias, el tipo de materiales que nos ocupa, debe promover procesos de
observación, experimentación y conocimiento sobre aspectos culturales y lingüísticos que sirvan
como ejes transversales destinados a apoyar los procesos educativos que promuevan la reflexión
del usuario sobre la interculturalidad y sobre sus derechos a pertenecer a un determinado grupo
étnico. Tal observación será útil durante el correspondiente monitoreo para, según el específico
proyecto, en determinados momentos de las correspondientes fases, hacer el análisis respectivo y
las adecuaciones consecuentes (realimentación).
Relacionadas con este aspecto, se considera una serie de recomendaciones para el desarrollo e
inserción de las TIC en los programas educativos correspondientes a educación indígena. Para
ello, es pertinente considerar lo siguiente:
1. Los software multimedia deben promover un bilingüismo coordinado, es decir, que el
alumno utilice ambas lenguas de manera independiente y adecuada según la situación.
2. Analizar las principales características pertinentes e idóneas que debe presentar el
software para su uso en el aula.
3. El software multimedia debe responder a las necesidades específicas del contexto.
4. Procúrese que sean flexibles y con una interfaz2 amigable.
5. Deben ser recursos de aprendizaje para la convivencia y la paz, inculcando valores y
principios sociales necesarios para convivir en armonía.
2
Interfaz es un término que procede del vocablo inglés interface (“superficie de contacto”). En
informática, esta noción se utiliza para nombrar a la conexión física y funcional entre dos
sistemas o dispositivos de cualquier tipo dando una comunicación entre distintos niveles. Su
plural es interfaces.
80
KBSI2013
Papers
6. Sean promoventes de un aprendizaje colaborativo, mismo que permita a los alumnos
trabajar en equipo.
7. Motivar a los alumnos con respecto a la información y los contenidos educativos
mediante su lengua materna.
8. Debe potenciar un aprendizaje significativo, que le permita la reestructuración de
conocimientos previos y la construcción de nuevos conocimientos. Así, el bagaje sea más rico.
9. Plantear procesos de evaluación y autoevaluación.
10. Que tenga una función formativa global para el análisis y construcción de nuevos
conocimientos.
Por lo expuesto en el cuerpo de este trabajo, y tomando como referencia las recomendaciones
anteriores concebidas en su mayoría por el Laboratorio de Lengua y Cultura Víctor Franco
(LLCVF) que forma parte del los laboratorios del Centro de Investigaciones y Estudios
Superiores en Antropología Social (CIESAS), es necesario comenzar a trabajar en el desarrollo de
propuestas coherentes sobre el uso de las TIC en contextos indígenas. Pues como lo cita Lourdes
C. (2012) en su ponencia “Retos de la expansión de las tecnologías de la información y la
comunicación en las comunidades indígenas de México”:
Tratándose de materiales multimedia que apoyan el aprendizaje y fortalecimiento de las
culturas y lenguas indígenas se hace necesario adoptar una perspectiva teórico pedagógica y
lingüística desde la cual se construya la propuesta didáctica y se aborde el diseño de situaciones
de aprendizaje pertinentes (Lourdes, 2012, p: 34).
De antemano, habrá que reconocer que existen muchas limitantes para que las escuelas
situadas en comunidades indígenas o rurales reciban los beneficios potenciales que ofrecen las
TIC, no obstante, es preciso considerar que las tecnologías de información y comunicación
avanzan de manera vertiginosa y cada vez se tornan en herramientas imprescindibles en la vida
cotidiana de los individuos, y que se posiciona rápidamente en cualquier espacio geográfico.
La situación insatisfactoria ya se ha vislumbrado en algunos centros educativos, pues aunque
originalmente no haya sido proyectado su uso para tal fin, la dotación y equipamiento de aulas de
cómputo o el establecimiento de aulas de medios, terminan siendo talleres de computación o de
paquetería administrativa, como en el caso de las aulas de medios de las escuelas primarias
bilingües indígenas de la zona escolar número 039 de Educación Indígena del Estado de Oaxaca.
Desvirtuando su propósito principal, que consiste en facilitar a los docentes y estudiantes las
herramientas y recursos necesarios para fortalecer la enseñanza-aprendizaje a través de la
tecnología. La falta del cumplimiento de los objetivos se debe también a la carencia de
programas multimedia pertinentes a los contextos indígenas.
Para disminuir ese tipo de situaciones, hoy en día, se debe producir materiales educativos
multimedia con enfoques de diversidad lingüística y cultural, de suerte tal, que se vayan
construyendo repositorios3 con este tipo de materiales, mismos que estén disponibles en el
momento que se requieran, es decir, habrá que planificar y crear materiales para el futuro (que ya
nos alcanzó).
Para tal efecto, corresponde a los docentes, buscar espacios y mecanismos de capacitación y
autoformación en el empleo de las TIC, con la finalidad de hacer un uso formativo de las mismas
y colaborar en la construcción de plataformas interactivas con idoneidad cultural y lingüística.
Respecto a la conectividad del servicio y equipamiento del mismo, dependerán de la gestoría y/o
3
Un repositorio, depósito o archivo es un sitio centralizado donde se almacena y mantiene información digital,
habitualmente en bases de datos o archivos informáticos.
81
KBSI2013
Papers
a las políticas públicas que realicen los diversos funcionarios educativos o niveles de gobierno en
sus correspondientes instancias, según su responsabilidad.
Referencias bibliográficas
Carneiro, R., Toscano, J. C., & Díaz, T. (2012). Los desafíos de las TIC para el cambio
educativo. Madrid, España: OEI-Fundación Santillana.
Instituto Nacional de Lenguas Indígenas. (2009). Catálogo de las Lenguas Indígenas Nacionales.
México, D.F.: IEPSA.
BIBLIOGRAPHY Lourdes, C. M. (XII). Retos de la expansión de la técnologías de la
información y la comunicación en las comunidades indígenas de México. Revista científica
electrónica de educación y comunicación en la sociedad del conocimiento .
Lucio, I. N. (2006-2007). Antología Unidad Estatal de Actualización Para Maestros de Educación
Básica en Servicio. El uso educativo de material audiovisual por computadora . Oaxaca de
Juárez, Oaxaca, México: ILCE.
Pérez Tornero, J. M. y Tapio Variss (2010). Media literacy and new humanism. UNESCO,
Institute for information technologies in education. Federación Rusa.
SECRETARÍA DE GOBERNACIÓN. (2008 - 2009). Dirección General de Compilación y
Consulta del Orden Jurídico Nacional. Recuperado el 07 de Febrero de 2013, de
WWW.ORDENJURIDICO.GOB.MX:
http://www.ordenjuridico.gob.mx/Constitucion/cn16.pdf
Sunkel, G., & Trucco, D. (2012). Las tecnologías digitales frente a los desafíos de una educación
inclusiva en América Latina . Santiago de Chile: Publicación de las Naciones Unidas.
Villavicencio Zarza, F., & Salgado Andrade, E. (2011). Materiales multimedia en contextos de
diversidad lingüística y cultural. México, D.F.: Ducere, S.A. de C.V.
82
KBSI2013
Papers
Diseño y aplicación de un portal web como herramienta didáctica en la
enseñanza-aprendizaje de la química en el nivel medio superior
1
Ariadna Berenice González Arenas1,2 y Enrique González Vergara1,3
Maestría de Educación en Ciencias. Benemérita Universidad Autónoma de Puebla
2
Colegio Humboldt, Puebla
3
Centro de Química ICUAP. Benemérita Universidad Autónoma de Puebla
ABSTRACT: According to the needs expressed in the objectives of a chemistry course at
high school level, an hypermedia tool for teaching-learning chemistry was designed and
implemented, providing to the students with various learning resources such as: videos,
specialized websites, application exercises, tutorials, lectures on current topics of chemistry,
simulators, etc.
This tool served tthe students in their classes and homework activities during the
development of the course which were evaluated by the teacher as an integral part of students
formative and summative assessment.
This hipermedia tool allowed the the teacher and students to interact inside the physical
classroom and in a virtual environment created by them in a collaborative way, showing the
students that they can interact in both, widening their vision of the chemistry field.
ANTECEDENTES
El uso de los recursos multimedia como herramienta didáctica ha demostrado a lo largo de su
corta historia ser un medio de apoyo en la enseñanza de las ciencias, no obstante no debe ser visto
como un sustituto entre el binomio alumno- profesor durante el proceso de enseñanzaaprendizaje.
Cuando se diseñan las estrategias adecuadas para el proceso de enseñanza-aprendizaje, la
implementación de las TIC´s; facilita de manera considerable el logro de los objetivos planteados
durante el curso y abarca no sólo los objetivos procedimentales sino también los actitudinales, ya
que se propician espacios para el trabajo colaborativo, despertando así al educando un interés que
más allá del trabajo en el aula.
En 1924, (Killefer, 1924) describió el uso didáctico de la radio, en charlas sobre temas de
química (petróleo, colorantes, alimentos…). En 1929, (Taft, 1929) implementó un sistema de
proyección de nombre “Bolopticon” que permitía proyectar tanto diapositivas como objetos
oscuros. En el año 1941 (Durban, 1941) utilizó la primera película muda de 16 mm sobre cómo
utilizar una balanza analítica.
En 1956 se usó por primera vez la televisión para transmitir clases de química en circuito
cerrado de televisión (Smith, 1956). Se empezó a hablar de “modern chemistry classrooms”
(Barnard et al., 1968) como aulas en donde se combinaba el uso de proyectores, diapositivas,
grabadores de audio, televisión y video.
El proyecto informático más ambicioso en la primera mitad de la década de los 80´s fue el
proyecto “SERAPHIM”: recopilación de software para la enseñanza de la química (Lagowski,
1995). Los sistemas multimedia, flexibles y asociados a la idea de interacción, comenzaron a ser
utilizados en la didáctica de la química e incluso de llegó a hablar de un cambio en la enseñanza
de la química, catalizado por la tecnología multimedia (Jones y Smith, 1993).
La inversión en la educación ha sentado los precedentes para la manifestación de aulas
transformadas en espacios con computadoras, por lo que en la actualidad se pueden mencionar
83
KBSI2013
Papers
tres espacios educativos, salones sin computadoras, con computadoras y en las que tanto alumnos
y docentes hacen uso de las computadoras. (Rosas, et.al., 2009).
Según ellos, el desarrollo de aulas inteligentes permite realizar en conjunto una serie de
actividades en las que los alumnos desarrollan su conocimiento, incrementan sus habilidades y
participan activamente en la construcción de juicios de valor que favorecen el desarrollo de la
sociedad. Los alumnos son autores de los mecanismos que utilizan para la regulación de
aprendizaje pudiéndolo extender más allá del aula física.
Cuando las actividades realizadas en los espacios virtuales se convierten en una evidencia
tangible, estos espacios se convierten en aulas visibles (Lynch, 2003). Así es como se debe
concebir al aula actual: como un espacio inteligente y visible, donde interactúan tanto alumnos
como docentes, en un marco que les permite desarrollar conocimientos, habilidades y actitudes.
DEFINICIÓN DEL PROBLEMA
En la actualidad, el internet es un medio de difusión de información masiva, lo que conlleva a
que los alumnos lo utilicen para estudiar y realizar sus trabajos escolares. El problema de esto es
que en muchas ocasiones; no hacen buen uso de todos los recursos disponibles en él porque
desconocen la gamma de herramientas educativas, que contiene ya que sólo se limitan a usar un
buscador o a consultar el primer sitio web; que encabeza la lista de resultados que encabeza la
búsqueda.
Otra dificultad es que los sitios especializados en la enseñanza de la química a partir de
hipermedia, en su mayoría; están disponibles en otros idiomas distintos al español, lo que limita
la búsqueda de información por parte de los alumnos propiciando que no se recurran a ellos y que
no amplíen sus fuentes de información, lo cual propicia que no siempre los resultados obtenidos
sean los que buscan de acuerdo a los objetivos planteados por el docente, en el diseño curricular
de la materia.
JUSTIFICACIÓN
El uso de internet dentro de las aulas para la adquisición de conocimiento por parte de los
alumnos y docentes, es algo tangible que hoy en día permite la diversidad de estilos de
aprendizaje en un mismo espacio de manera efectiva y eficiente.
Este recurso permite desarrollar la metacognición del alumno a través del aprendizaje basado
en el constructivismo, donde él es quien regula la adquisición de su conocimiento haciendo uso
de las herramientas diseñadas para cubrir sus necesidades. Así es como el aprendizaje
convencional se ve complementado por el uso de hipermedia para el desarrollo de sus habilidades
cognitivas.
De acuerdo a lo anterior es justificable el diseño y la aplicación de un curso de química en
hipermedia, que promueva el aprendizaje significativo y colaborativo, tanto dentro como fuera
del aula, ampliando así las posibilidades del alumno de preparatoria, de disponer de información
confiable que lo apoye en su aprendizaje de la química.
OBJETIVO GENERAL
Desarrollar y evaluar un portal web que sirva como apoyo en la enseñanza de la química a
nivel medio superior, considerando para su producción, las ideas y conocimientos previos de los
estudiantes e incorporando actividades visuales, auditivas y quinestésicas.
84
KBSI2013
Papers
OBJETIVOS PARTICULARES
• Diseñar un portal web usando Google Sites para aplicarlo durante un curso de química en
nivel medio superior.
•
Evaluar su funcionalidad y las herramientas didácticas que contiene.
• Desarrollar ambientes confiables para el proceso de enseñanza-aprendizaje, donde se
promueva el trabajo cooperativo y el desarrollo de valores y actitudes positivas entre la
comunidad escolar.
• Fortalecer la relación alumno-profesor a través de la retroalimentación que permite el
portal, facilitando que el alumno forme parte activa de su aprendizaje.
HIPÓTESIS
Con el uso del portal web se proveerá al estudiante de las herramientas necesarias que le
servirán como fuente de información, a la que podrán recurrir tanto dentro como fuera del aula. El
diseño interactivo del portal permitirá que éste le apoye en tanto en sus estudios, como en la
realización de sus tareas escolares y facilitará su evaluación por parte del profesor.
MARCO TEÓRICO
Para Ausubel, Novak y Hanesian (1990) la educación es el conjunto de conocimientos,
órdenes y métodos por medio de los cuales se ayuda al individuo en el desarrollo y la mejora de
sus facultades intelectuales, morales y físicas. Por lo que un a lo largo de su proceso educativo, un
individuo debe ser capaz de desarrollar conocimientos, habilidades y actitudes, en donde este
debe manifestarse como sujeto activo y generador de su propio conocimiento a partir de un
modelo constructivista que propicie la metacognición.
Según Prendes y Solano (2001), existen dos tipos de multimedia de acuerdo al tipo de
soporte: soporte físico y en línea. El soporte físico es aquel con el que se encuentra equipada un
aula tradicional; es decir, materiales audiovisuales, libros de texto, equipos de sonido, etc.,
mientras que el soporte en línea es el medio de distribución de los materiales multimedia que,
corresponde a la fusión de la tecnología audiovisual con la tecnología informática y con la
tecnología telemática o Internet. La primera aplicación documentada de Internet en el campo de
la enseñanza de la química la encontramos en 1993 (Varberi, 1993) y se refiere al uso de Internet
como fuente de información.
Se integró la tecnología multimedia con el hipertexto, creando hipermedia (Tissue, 1996). El
potencial de las TICs aumenta y ya no es difícil encontrar referencias al uso de Internet o de otras
TICs en la enseñanza de la química: Internet como fuente de información (Holmes y Warden,
1996; Matthews, 1997; Stevens y Stevens, 1996; Waldow et. al, 1997), su uso didáctico a través
de los foros de discusión (Paulisse y Polik, 1999) y del correo electrónico (Pence, 1999); el uso
de tutoriales en lenguaje html (Parril y Gervay, 1997; Tissue, 1996; 1997) o la realización de
ejercicios o informes y confección de exámenes basados en páginas web (Earp y Tissue, 1996;
McGowan y Sendall, 1997; Tissue et al., 1996). Además, Internet permite a los docentes y
estudiantes poder colaborar superando las barreras espaciales y temporales (Jiménez y Llitjós,
2005; Stout et al., 1997; Towns et al., 1998).
Desde la aparición de los primeras computadoras, el uso de éstas ha ido avanzando acorde a
las necesidades de la sociedad; por ello es que en la actualidad no es difícil concebir la idea de
que se utilicen como herramientas didácticas dentro de un aula, aunado al hecho de que internet
se ha convertido en el medio masivo de difusión de información, aparentemente a la mano de
cualquier comunidad social; no obstante las limitaciones que se tienen de acuerdo a los estándares
económicos de estas comunidades vuelve restringido su uso, sin embargo; en la actualidad debe
85
KBSI2013
Papers
entenderse su aplicación como una extensión más en el proceso enseñanza-aprendizaje donde
tanto el alumno como el profesor se ven beneficiados .
En un recuento histórico sobre la evolución de las TIC´s, Jiménez-Valverde y Llitjós-Viza
(2006), afirmaron que la implementación de un nuevo recurso en el contexto escolar generó
inicialmente un interés y entusiasmo, que disminuye con el tiempo, lo que lleva al docente a la
tarea constante de estarse actualizando para generar nuevas herramientas didácticas que motiven
la participación y colaboración de su comunidad escolar.
El uso de las herramientas digitales lleva a la creación de internacionales que generan
plataformas donde los alumnos pueden participar de manera proactiva en bien de su comunidad
generando así no solo un interés con aspectos relacionados con su ambiente escolar, sino también
a involucrarse en cuestiones económicas, políticas y sociales del resto de su entorno.
Es importante señalar que la enseñanza que hace uso de hipermedia está basada en diferentes
modelos que se tratarán a continuación. Uno de los modelos es el sistémico conformado por los
siguientes elementos (Keegan, 1999):
•
•
•
•
•
Recursos: necesidades del alumnado, organizaciones, teoría, historia y filosofía. Diseño: instruccional, tecnológico, programa y evaluación. Envío: impreso, audio y video, radio, televisión, audioconferencia, videoconferencia, programas computacionales y red. Interacción: instructores, tutores, consejeros, personal administrativo. Ambiente de aprendizaje: trabajo, casa, salón de clases y centros de aprendizaje Este modelo pretende explicar que el uso de la hipermedia dentro de la educación está
íntimamente ligado al contexto en el que se está ubicando. Este autor concibe a este tipo de
educación como una integración de todas las partes que conforman dando énfasis a cada una de
ellas.
El modelo de Silva (2003) considera los siguientes puntos:
•
•
•
Fuentes de conocimiento y expertos: en este momento se definen el tipo de información y su transmisión, se fijan metas y objetivos. Diseño de cursos y materiales de apoyo: se define la metodología y tecnología para la transmisión de ellos. Comunicación de información e interacción por medio de tecnologías: comunicación entre el binomio educativo La verdadera función de los aparatos tecnológicos no debe ser la enseñanza en sí misma, sino
más bien crear las condiciones para el aprendizaje a través de la articulación de herramientas
culturales y herramientas tecnológicas que respondan a los propósitos de la educación (Giordan,
2008)
Por ello si los recursos electrónicos son utilizados como apoyo para el docente, este debe
entender que no es la herramienta un sustituto ni pretender que funcionará por sí misma, ya que
en ocasiones puede tener el efecto contrario en los alumnos; es decir, se convierte en un aspecto
negativo para el estudiante cuando esté no consigue avanzar en su proceso de enseñanza, por lo
que se ve desmotivado al querer seguir utilizando el entorno virtual.
Esta vinculación se desarrolla con técnicas computacionales para la programación de los
entornos virtuales de aprendizaje (EVA). De esta manera el profesor se posiciona como un
organizador de las actividades de la educación en los EVA y puede mediar en el proceso de
desarrollo intelectual de los estudiantes. (Gois 2009)
86
KBSI2013
Papers
Un EVA diseñado correctamente puede convertirse en un potenciador del desarrollo de
habilidades y actitudes, tanto de los alumnos como del profesor, ya que ambos se ven
beneficiados cuando se hace uso correcto de estos espacios de aprendizaje.
La visualización de los recursos disponibles para la enseñanza de la química ha evolucionado
de manera considerable en la última década, ahora es posible hacer uso de simuladores de
procesos que en la práctica resultarían costosos y engorrosos para los estudiantes, además de
controlar diversas variables sin tener que invertir grandes cantidades de dinero en la
infraestructura de un laboratorio físico, haciéndolo todo a través de una computadora.
Las representaciones son una parte importante de los conocimientos químicos, como una
ciencia que se ocupa de la materia en una escala nanoscópica, de hecho se han utilizado para
comunicar conceptos a los estudiantes en diferentes niveles. Actualmente es de base amplia la
idea de que el conocimiento químico se construye con la combinación de las dimensiones
macroscópica, nanoscópica y simbólica de la realidad. (Johnstone 1993)
Un EVA inclusivo es aquel que promueve que el estudiante sea una parte activa de su
elaboración permitiéndole a este desarrollar actividades que considere necesarias para su proceso
de enseñanza, generando productos que satisfacen las necesidades de su comunidad escolar.
En los últimos años se ha llegado asignar a los materiales en hipermedia el papel de
catalizadores de un cambio en la docencia, ya que pueden suplir carencias de los libros de texto
en cuanto a interactividad, dinamismo y tridimensionalidad (Jiménez y Llitjós 2006).
Debido a esto el aprendizaje se ha visto centrado en el uso de las TIC´s, promoviendo la
creación de espacios de colaboración en línea (on line), e incluso se habla de un nuevo paradigma
educativo (Hiltz, 1998), en el que el alumno es ahora co- constructor de su propio conocimiento
más que consumidor del mismo (Bruffee, 1993)
No obstante lo anterior se debe tener en cuenta que aunque el alumno se vuelva parte
inclusiva en la formación de su nuevo conocimiento, la guía del docente resulta punto clave para
asegurar que se sigue con los objetivos planteados en el curso, debido a que es el que puede
verificarlos de acuerdo a las necesidades que se presenten en el proceso.
La mayoría de las investigaciones sobre el desarrollo de los EVA demuestran que estos se
centran en el aprendizaje de los estudiantes; en las condiciones propicias para lograrlo y el éxito
de las actividades que se dan en estos entornos depende también de si el docente asume los
nuevos roles que le exige al profesorado la docencia en entornos virtuales: organizativo, social,
intelectual o pedagógico (Mason, 1998). Un profesor virtual debe ser una guía para el estudiante
durante el proceso de construcción de conocimiento, en vez de ser el experto que transmite sus
conocimientos (McFadzean y McKenzie, 2001). Por lo que el docente virtual debe desempeñar
los siguientes roles:
•
•
Como organizador, debe crear los espacios virtuales del curso, el horario de trabajo, las reglas para participar en el foro y fomentar la participación activa de la comunidad educativa. Debe revisar periódicamente el ambiente de trabajo para detectar posibles fallos y repararlo a la brevedad, verificar que se cuente siempre con conexión a internet, además de corroborar que los programas elegidos eventualmente sean compatibles con el sistema operativo que se trabaja, así como actualizarlos constantemente. El rol social implica dar un ambiente de bienvenida en el entorno virtual, mensajes de agradecimientos, respuestas a los comentarios elaborados por los estudiantes, generando un ambiente amigable para la comunidad educativa. Conducir las discusiones en el foro apropiadamente promoviendo en respeto e igualdad. 87
KBSI2013
•
Papers
El rol intelectual o pedagógico implica un nivel cognitivo más alto, para formular y dar respuesta, para proporcionar retroalimentación, unificar criterios, establecer y explicar las tareas, para generar temas para los estudiantes expertos e incrementar paulatinamente el nivel académico del curso en línea (on line). Proporcionar los mecanismos de evaluación acorde a los objetivos planteados de manera inicial en el curso. El conocimiento no existe en el mundo de uno o en las mentes individuales, sino que es un
aspecto de participación en prácticas culturales (Leve y Wenger, 1991). Lo que se opone a la
teoría de que el aprendizaje es una cuestión y adquisición individual y estos resultados se realizan
a través de un proceso de transferencia (Sfard, 1998).
Así el aprendizaje es un proceso de interconexiones individuales y sociales, que convergen en
un punto donde el individuo es el responsable de los mecanismos que elige para llevarlo a cabo,
ya que si bien el conocimiento formal es aquel que se adquiere en las instituciones educativas no
es el único lugar para obtenerlo ya que también es conocimiento aquel que se construye a partir
de las experiencias vividas en los diferentes contextos del individuo, mediante la interacción con
la sociedad en la que habita, pues entonces el aprendizaje puede concebirse como un mecanismo
que va de lo individual a lo general, siendo éste determinado por las condiciones sociales y
culturales en las que se lleve a cabo.
Por lo tanto se puede hacer referencia a esto mismo en el ámbito virtual, si bien el estudiante
es quien participa de manera individual, siendo esta participación enriquecida con la incursión en
actividades diseñadas para una discusión grupal lo que promueve que esos concomimientos o
ideas previas se modifiquen o reconstruyan generando así un nuevo conocimiento, originado por
la interacción activa dentro del espacio virtual.
METODOLOGÍA
Se construyó un portal web en un ambiente virtual gratuito que ofrece Google llamado
Google Sites, aprovechando que es una herramienta de fácil manejo que permite que el portal
pueda ser modificado constantemente sin necesidad de manejar lenguaje el HTML(Fig.1).
Los materiales se encuentran disponibles en el portal web cuya dirección electrónica es:
https://sites.google.com/site/portalquimicahumboldt/home.
88
KBSI2013
Papers
Para la elaboración del portal web se consideraron los siguientes aspectos:
Que los objetivos para el diseño del portal web estuvieran de acuerdo al programa de estudios del curso de química a de nivel preparatoria de la BUAP (Anexo 1). • Que ayude a planificar y organizar la información durante todo el curso. • Que motive el interés de los alumnos al utilizar este medio de información • Que defina los objetivos que se pretenden alcanzar durante el curso al hacer uso de esta herramienta. • Que muestre contenidos significativos y operacionales • Que fomente la participación activa del estudiante volviéndolo protagonista de su propio conocimiento • Que propicie actividades que promuevan respuestas para un análisis posterior. • Que promueva la metacognición, siendo el papel del docente el de guía en el proceso educativo. • Que potencie el trabajo colaborativo. • Que incentive la retroalimentación • Que omente a que los aprendizajes adquiridos sean aplicados a otros contextos. • Que propicie la autoevaluación como medio para reforzar el aprendizaje ya que el alumno identificara sus fortalezas y sus puntos a mejorar. Los puntos anteriores fueron evaluados mediante una serie de rúbricas. (Anexo 2)
•
En la barra lateral izquierda del “Portal de Química Humboldt” aparece un índice con las
siguientes secciones, a las cuales se puede acceder con un sencillo click. Las cuales se citan a
continuación:
 Conferencia. Cada mes se selecciona un tema relacionado con un tópico de interés y se
selecciona una conferencia, para después realizar una tarea en base a esta información.
 Fuentes de información: En esta sección se sugieren a los alumnos sitios web
especializados en la materia de química, pueden encontrar tanto bibliotecas como
metabuscadores.
 Páginas web generalizadas: Se pueden encontrar páginas especializadas sobre temas
específicos, se les indica a los alumnos lo que podrán encontrar en cada una de ellas.
 Revistas electrónicas: Se sugieren como medio de información e investigación para la
elaboración de trabajos y tareas curriculares y extracurriculares.
 Bibliotecas. Listado de bibliotecas nacionales e internacionales que manejan su
información por web.
 Biografías. Se escoge un personaje famoso del mes y se publica su vida.
 Ejercicios que abarcan las siguientes secciones:
o Crucigramas para identificar a los elementos químicos
o Estequiometría.
o Formulación de compuestos químicos
o Nomenclatura de química inorgánica y orgánica
o Escritura de reacciones
 Herramientas para construir animaciones. Muestra tutoriales de cómo crear animaciones
que ayuden en la elaboración de sus presentaciones.
 Laboratorios virtuales. En esta sección se pueden encontrar laboratorios en línea (on line)
que permiten recrear experimentos.
89
KBSI2013
Papers
 Simuladores. Se utilizan para recrear situaciones que apoyan a los alumnos para entender
un problema planteado.
 Tabla periódica. Se ofrece una modalidad interactiva para que los alumnos la tengan
disponible.
 Tutoriales en temas de química general, inorgánica y orgánica
 Videos que apoyan a temas vistos durante el curso
IMPLEMENTACIÓN DEL PORTAL WEB
A) Se consideró que los materiales didácticos que se podrán encontrar en el portal web
deben ser enfocados a una labor tutorial ya que esto facilitará al alumno la comprensión de los
contenidos, no sólo se abordará la teoría sino que esta irá acompañada de una serie de ejercicios
de aplicación para posteriormente se puedan verificar, promoviendo así el pensamiento
constructivista de los alumnos.
B) Se realizó una revisión de sitios de internet, que cumplieran con los objetivos planteados
del curso y además se ofrecieran ejercicios de aplicación en diferentes niveles cognitivos.
C) Los materiales se agruparon en secciones que fueran de fácil acceso para la comunidad
educativa y se nombraron de forma sencilla para su rápida localización.
EVALUACIÓN DEL PORTAL WEB
Para la evaluación del portal web se llevó cabo una investigación cualitativa donde el
objetivo de esta fue la interpretación de las conclusiones obtenidas del objeto de estudio.
El objeto de estudio para esta investigación se basó en una muestra de 15 estudiantes que
están en el curso de Química I durante el primer año de preparatoria, cuyas edades oscilan entre
los 15 y 16 años de edad.
Los recursos que se utilizaron para la recolección de datos fueron:
a) El cuestionario con el cual se pudo recabar información que describía aspectos de la
experiencia de los alumnos al hacer uso del hipermedia en el curso de química.
Se elaboró a partir de preguntas cerradas para datos de identificación y descripción de los
sujetos que son el objeto de estudio. Otra parte estuvo compuesta por preguntas abiertas donde se
pudo analizar las opiniones sobre las ventajas y desventajas que se experimentaron durante el
curso y recomendaciones que hacen los alumnos para mejorar la eficiencia del uso del portal web.
Cuestionario
Nombre: _______________________________________________________________
Edad: _____________ Curso: __________________ Grado escolar: _______________
El siguiente cuestionario tiene como finalidad conocer la calidad y funcionalidad del portal
web utilizado durante el curso de Química.
Para las preguntas del Q1 al Q7 encierra en un círculo tu respuesta, del Q8 al Q10 expresa tus
comentarios:
Q1. La información contenida es precisa (formato, ortografía, gramática)
Sí
No
Parcialmente
90
KBSI2013
Papers
Q2. ¿Es el sitio navegable, bien organizado, fácil de manejar?
Sí
No
Parcialmente
Q3. ¿Encuentras actividades didácticas o sólo se exponen contenidos?
Sí
No
Parcialmente
Q4. ¿Existe un balance adecuado entre los aspectos técnicos y educativos?
Sí
No
Parcialmente
Q5. ¿El sitio web posibilita la interacción entre usuarios?
Sí
No
Parcialmente
Q6. ¿Los enlaces están etiquetados de tal manera que ofrezcan una información clara de hacia
donde los dirige?
Sí
No
Parcialmente
Q7. ¿Puedes encontrar, además del correo del contacto, una dirección física u otra
información relevante donde puedas enviar dudas o comentarios?
Sí
No
Parcialmente
Q8. ¿Qué tipo de aprendizaje se busca, autónomo, individual, colectivo, colaborativo…?
Q9. ¿El enfoque es atractivo o muy similar a otros sitios que hayas consultado para el área de
química?
___________________________________________________________________________
Q10. ¿Se ofrecen contenidos útiles o muy similares a otros que materiales que consultaste?
___________________________________________________________________________
b) La entrevista se llevó a cabo con una muestra de 5 estudiantes de la población original
con el fin de conocer la experiencia en el uso de tecnologías en la educación, comparación entre
material didáctico electrónico y su libro de texto, si la información contenida en el portal web fue
relevante para la realización de sus trabajos y si fue de utilidad como herramienta de apoyo para
el logro de su aprendizaje en el curso.
Para la interpretación de los datos se utilizó la estrategia de triangulación para poder
comprender e interpretar lo que los alumnos manifiestan sobre el uso de los materiales didácticos
contenidos en el portal web, haciendo énfasis en el análisis de las respuestas una vez que hayan
sido categorizadas además de verificar si existe congruencia entre la información aportada por el
portal web y el programa de estudios.
ENTREVISTA
La siguiente entrevista tuvo como propósito conocer los comentarios de algunos alumnos que
participaron en el uso de hipermedia como recurso didáctico en un curso de química.
1. ¿Puedes describir la experiencia que tuviste al hacer uso de hipermedia en tu curso de
química?
2. ¿Consideras que la utilización de este tipo de materiales didácticos contribuye para la
mejora de tu aprendizaje?
91
KBSI2013
Papers
3. ¿Los materiales dispuestos te motivan a la realización de trabajos o tareas extraescolares?
4. ¿Cuáles serían las ventajas o desventajas que encontraste al hacer uso de esta
herramienta?
5. En tu siguiente curso de Química II ¿volverías a utilizar el hipermedia?
RESULTADOS
Resultados para el cuestionario:
RESULTADOS DEL CUESTIONARIO SI No. ALUMNOS
15 NO PARCIALMENTE 14 11 11 10 7 6 6 4 0 0 Q1 3 0 0 Q2 Q3 1 5 3 1 Q4 3 3 1 Q5 Q6 Q7 PREGUNTAS
Para la pregunta 8 la mayoría opinan que es aprendizaje individual en la mayoría de los casos,
y algunas veces es colectivo.
Para la pregunta 9 opinan que el enfoque es muy atractivo por los diferentes artículos que se
encuentran en la página, pero sin hacer referencia a comparación con otros portales existentes en
la web.
Para la pregunta 10 se dividen las opiniones entre 50% que opinan que son útiles, mientras el
otro 50% dicen que son similares a otras fuentes en la web.
Resultados de las entrevistas
1. ¿Puedes describir la experiencia que tuviste al hacer uso de hipermedia en tu curso de
química?
La mayoría opinó que es muy interesante la experiencia que tuvieron al usar la página ya que
les facilitó la realización de la mayoría de sus trabajos tanto dentro como fuera del aula, sin
embargo hay algunos que sugieren que la página podría tener un contenido mejor, es decir, con
mayores contenidos sobre el curso y con más tutoriales para facilitar su aprendizaje.
92
KBSI2013
Papers
2. ¿Consideras que la utilización de este tipo de materiales didácticos contribuye para la
mejora de tu aprendizaje?
En todos los casos la respuesta fue afirmativa ya que consideraron a la herramienta como un
tutor virtual que los podía auxiliar en caso de requerir apoyo en la comprensión de conceptos o
realización de ejercicios.
3. ¿Los materiales dispuestos te motivan a la realización de trabajos o tareas extraescolares?
Sólo 2 de 5 contestaron afirmativamente, mostrando cierto desinterés por el hecho de que se
hacía referencia a tener que hacer más tareas.
4. ¿Cuáles serían las ventajas o desventajas que encontraste al hacer uso de esta
herramienta?
Entre las ventajas que mencionan es que no tuvieron que buscar más en otros sitios porque la
mayoría de la información solicitada se encontraba disponible en el portal, pero dentro de las
desventajas era que algunos temas o ejercicios no estaban bien explicados lo que les dificultaba la
comprensión de los mismos.
5. En tu siguiente curso de Química II ¿volverías a utilizar el hipermedia?
Todas las respuestas fueron afirmativas.
CONCLUSIONES
Se desarrolló y evaluó la herramienta didáctica digital conocida como “Portal de Química
Humboldt”, que sirvió como apoyo en la enseñanza de química a nivel medio superior, en el
Colegio Humboldt durante el ciclo escolar 2012-2013. En la elaboración del portal web se
consideraron las ideas y conocimientos previos de los estudiantes, además de englobar
actividades visuales, auditivas y quinestésicas.
El material contenido dentro de este portal sirvió al estudiante como una guía para la
construcción de su conocimiento; sin embargo existen aspectos que se deben mejorar en cuanto a
los contenidos y la manera en la que se presentan en el ambiente virtual.
Se evaluaron las herramientas didácticas contenidas en el portal web y su funcionalidad, se
promovió el trabajo colaborativo creando espacios confiables donde se promovieran valores y
actitudes en la comunidad educativa.
Se fortaleció la relación entre el binomio alumno-profesor promoviendo el uso de la
retroalimentación, volviendo al alumno parte activa de su aprendizaje.
Se concluye que se deben buscar estrategias que permitan que el portal web funcione como
ambiente de trabajo colaborativo, para que el alumno se sienta motivado a seguir utilizándolo
para cursos posteriores.
Se pretende que en las próximas modificaciones al portal web sean los propios alumnos los
que siguieran los contenidos que aparecerían, además de involucrarlos constantemente en la
creación de nuevos materiales.
El portal tiene como finalidad ser una guía en el proceso educativo, pero no pretende sustituir
el rol que juega el profesor en el aula, está diseñado para complementar su trabajo y apoyar al
alumno en los diferentes estilos de aprendizaje.
93
KBSI2013
Papers
El ambiente virtual está diseñado con herramientas que además permiten al docente poder
evaluar los trabajos realizados en el haciendo uso de herramientas como el portafolio de
evidencia, estudios de casos, rúbricas, todos ellos elaborados a partir de los contendidos que se
pueden encontrar en él.
Aunque en un principio resulte una herramienta novedosa no debe olvidarse que a lo largo del
proceso puede volverse monótona, por lo que es responsabilidad del docente el incentivar la
motivación de la comunidad escolar, así como la elaboración de materiales que promuevan el uso
de esta sin hacerla parecer como el único recurso que se tiene disponible.
Finalmente se creó una comunidad educativa comprometida con el proceso enseñanzaaprendizaje en ambiente de trabajo colaborativo que permitió convertir una aula inteligente en
una aula visible con las perspectivas de extenderse a otras asignaturas e inclusive a traducirse al
Inglés y al Alemán.
Es importante hacer notar que aunque no tenemos un entrenamiento en KB y no conocíamos
el KF, mucho de lo que se logró en este trabajo está de acuerdo a los doce principios de
Knowledge Building, por lo que nos es muy grato compartir nuestros hallazgos en IKIT.
AGRADECIMIENTOS
Agradecemos los valiosos comentarios del M. en C. Aarón Pérez Benítez.
BIBLIOGRAFÍA
Barnard, W. R. (1968). Projection screens and chalk boards in the modern chemistry classroom.
Journal of Chemical Education, 45(8), 543-546.
Bruffee,K.A(1993).Collaborative learning Higher education, interdependence, and the authority
of knowledge. Baltimore: The John Hopkins University Press.
Daza, et.al (2009). Experiencias de enseñanza de la química con el apoyo de las TIC. De
Aniversario: La educación y las TIC, 10(2), 320-325.
Durban, S.A. (1941). Teaching weighing techniques the aid of a motion picture film. Journal of
Chemical Education, 18(11), 520.
Earp, R.L. y Tissue, B.M. (1995). A PERL script to generate HTML pages containing multiplechoice questions. The Chemical Educator, 1(5). Consultado el 3/01/2012 en:
http://dx.doi.org/10.1333/s00897960055a
Giordan, M.(2008). Computadores e linguagens nas aulas de ciencias. Ed. Da Unijuí. Ijuí-RS. P.
328
Gois, J. (2009). Entornos Virtuales de aprendizaje en química: una revisión de la literatura.
Educación Química, 3(20), 302.
Hiltz, S.R. (1998). “Collaborative learning in asynchronous learning networks: Building leaning
communities”, en Proceedings of the WEB’98, Orlando 1998.
Holmes, C.O. y Warden, J.T. (1996). CIS Studio: worldwide web-bases, interactive chemical
information course. Journal of Chemical Education,73(4), 325-331.
Jiménez, G. y Llitjós, A. (2005b). Cooperación en entornos telemáticos en la enseñanza de la
química. Revista Eureka sobre enseñanza y divulgación de las Ciencias, 3(1), 115-133.
Consultado el 3/01/2012 en: http://www.apaceureka.org/revista/Volumen3/Numero_3_1/Jiménez_y_Llitjos_2006.pdf
Jiménez , V.G. y Llitjós, V.A(2006).Una revisión histórica de los recursos didácticos de los
recursos didácticos audiovisuales e informáticos en la enseñanza de la química. Revista
electrónica de enseñanza de las Ciencias, 5(1), 1-8.
94
KBSI2013
Papers
Johnstone, A.H 1993. The Development of chemistry teaching: A changing response to changing
demand, J. Chem. Educ., 70(2), 701-704
Jones, L.J y Smith, S.G. (1993). Multimedia technology: a catalyst of change in chemical
education. Pure vs. Applied Chemistry,65(2), 245-249.
Killefer, D.H. (1924). Chemical Education via radio. Journal of Chemical Education, 1(3), 43-48.
Keegan, D.(1988). “Problems in Definig the Field of Distance Education”, en The American
Journal of Distance Education, 2(2), 12-15.
Lagowski, J.J.(1998). Chemical Education: past, present, and future. Journal of Chemical
Education,75(4), 425-436.
Leve, J. y Wenger, E. (1991). Situed Learning: Legitimate Peripheral Participation.Cambridge:
Cambridge University Press.
Lynch C.(2003); The Visible Classroom, EDUCAUSE review, July-August,68.
Matthews, F.J. (1997) Chemical literature: a course composed of traditional and online searching
techniques. Journal of Chemical Education, 78(2), 1011-1014.
Mason, R. (1998) Models of online courses, Asynchronous Learning Networks Magazine. 2(3), 111.
McFadzean, E. y McKenzie, J.(2001) Faciliting virtual learning groups. A practical approach, J.
Manag. Develop., 20(1), 470-494.
McGowan, C. y Sendall, P. (1997). Using the world wide web to enhance writing assignments in
introductory chemistry courses. Journal of Chemical Education, 74(4), 391.
Pence, L.E (1999). Cooperative electronic mail: effective communication technology for
introductory chemistry. Journal of Chemical Education,76(5), 697-698.
Parrill, A. L. y Gervay, J. (1997). Discovery-based stereochemistry tutorials available on the
world wide web. Journal of Chemical Education, 74(3), 329.
Paulisse, K. W. y Polik, W. F. (1999). Use of WWW discussion boards in chemistry education.
Journal of Chemical Education, 76(5), 704-707.
Pence, H. E. (1993). Combining cooperative learning and multimedia in general chemistry.
Education, 11(3), 375-380.
Prendes, M.P. y Solano, I.M. (2001). Multimedia como recurso para la formación. Actas de las III
Jornadas Multimedia Educativo,25-26 de junio (pp.460-470).Barcelona: Universitat de
Barcelona
Rosas B.Y, De Ita C.M y González V.E (2009) De aulas visibles e invisibles y hasta inteligentes.
Educación Química, 20 (3), 330.
Sfard, A.(1998). On two metaphors for learning and the dangers of choosing just one, Educ.
Resear. 20(27), 4-13
Stevens, K.E y Stevens, R.E (1996). Use the world-wide web in lower division chemistry courses.
Journal of Chemical Education, 73(10), 923.
Stout, R.; Towns, M. H.; Sauder, D.; Zielinski, T. J. y Long, G. (1997). Online cooperative
learning in physical chemistry. The Chemical Educator [versión electrónica], 1(2), S14304171(97)01107-2. Consultado el 03/01/2012 en: http://dx.doi.org/10.1333/s00897970107a
Tissue, B.M. (1996). Applying hypermedia to chemical education. Journal of Chemical
Education,73(1), 65-68.
Tissue, B. M. (1997). Overview of interactive programming methods for the world-wide web.
Trends in analytical chemistry, 16(9), 490-495.
Towns, M. H.; Kreke, K.; Sauder, S.; Stout, R.; Long, G. y Zielinski, T. J. (1998). An assessment
of a physical chemistry online activity. Journal of Chemical Education, 75(12), 1653-1657.
Varveri, F.S. (1993). Information retrieval in chemistry. Journal of Chemical Education,70 (3),
204-208.
Waldow, D.A.; Fryhlr, C.B. y Bock, J.C. (1997). CIRRUS: A chemistry internet resource for
research by undergraduate students. Journal of Chemical Education, 74 (4), 441-442.
95
KBSI2013
Papers
Construcción de Artefactos Conceptuales a Partir de Foros de Discusión
en Línea
Oscar Ernesto Hernández López, Universidad Iberoamericana Puebla
Email: [email protected]
Karen Huesca Viveros, Instituto de Estudios Universitarios
Email: [email protected]
ABSTRACT: This paper presents a way to encourage the development of knowledgebuilding communities using the Moodle online discussion forum. The study focuses on the
observation of the development of a conceptual artifact from the contributions of the students
made as a community to build knowledge collectively. The task is facilitated by the features
added to the Moodle discussion forum, with these modifications is possible to classify inputs
according the categories that are selected from a menu, and selecting the contributions that
each student considers most appropriate as in Knowledge Forum for the development of an
assay. The community under study was a group of doctoral students in online education of
the Instituto de Estudios Universitarios of Puebla. The results of this work allow assess how a
relationship networks generate individual contributions that allow students to take advantage
of all notes shared for improving the process of knowledge building community. The
methodology used for the construction of community knowledge corresponds to the 12
principles of Knowledge Building
RESUMEN: En este trabajo se presenta una manera de fomentar la creación de comunidades
de construcción de conocimiento utilizando el foro de discusión en línea de moodle. El
estudio se centra en la observación de la elaboración de un artefacto conceptual a partir de las
contribuciones de los alumnos constituidos como comunidad para construir conocimiento
colectivamente. La tarea se facilita gracias a las características agregadas al foro de discusión
de moodle, con estas modificaciones es posible clasificar las aportaciones de acuerdo a las
categorías que se seleccionan de un menú y seleccionar las aportaciones que cada uno
considere más convenientes para la elaboración de un ensayo. La comunidad bajo estudio la
formaron el grupo de estudiantes del doctorado en educación en línea del IEU online del
Instituto de Estudios Universitarios. Los resultados de este trabajo permiten valorar cómo se
generan redes de relaciones a partir de las contribuciones individuales que permiten a los
alumnos sacar provecho de las participaciones de todos los compañeros mejorando así el
proceso de construcción de conocimiento comunitario. La metodología usada para la
construcción de conocimiento comunitario corresponde a la propuesta pedagógica
Knowledge Building a través de los 12 principios que la sustentan.
Palabras clave: Comunidades de construcción de conocimiento, andamiaje plurimedial, artefactos conceptuales, foro de discusión, knowledge building.
Introducción
Abdul Waheed Khan, siendo subdirector general de la UNESCO para la Comunicación y la
Información decía que el concepto de “sociedad de la información” está relacionado con la idea
de la innovación tecnológica, mientras que el concepto de “sociedades del conocimiento” implica
más la idea de una transformación social, cultural, económica, política e institucional, así como
una perspectiva más pluralista y desarrolladora (Burch, 2006), por eso el gran reto educativo de
hoy consiste en desarrollar estudiantes y ciudadanos que no solamente posean conocimiento
96
KBSI2013
Papers
actualizado sino que sean capaces de participar en la creación de nuevo conocimiento como parte
normal de sus vidas. Las escuelas deben ser parte activa de la sociedad del conocimiento
produciéndolo y utilizándolo, conocimiento que debe ser socialmente construido a través de
colaboraciones y éstas pueden darse entre alumnos dentro de una sala de clase o entre estudiantes
de diferentes centros educativos, países y culturas constituyendo así comunidades que construyen
conocimiento en ambientes presenciales o en las variadas modalidades de la educación a
distancia. Construir conocimiento en una comunidad va más allá del interés por el aprendizaje,
significa producir y mejorar las ideas valiosas sin límite de fronteras ni físicas ni geográficas
(Hernández, 2008)
El concepto constructivista del aprendizaje plantea que éste se logra de manera significativa
cuando el alumno participa activamente y estas características se ven favorecidas no solamente
con las nuevas tecnologías que tienen la virtud potencial de hacer participar a los estudiantes y de
estimular de diferentes modos la percepción mediante los cuales se capta y se procesa la
información, también los medios tradicionales como libros y cuadernos juegan un papel
importante en el proceso de aprendizaje (Scardamalia & Bereiter,2005). En el campo educativo,
últimamente se ha acentuado el énfasis en la investigación colaborativa más que en la individual,
se habla de promover el “conocimiento del conocimiento” lo cual tiene muchas implicaciones
educativas en una civilización creadora de conocimiento, una de ellas consiste en la transición del
aprendizaje cooperativo en el que los estudiantes participan trabajando sólo una parte del
problema a la construcción colaborativa del conocimiento en la que todos participan y se
responsabilizan en el avance de la frontera del conocimiento. En los entornos virtuales,
presenciales o a distancia, se utilizan foros de discusión pero se pueden aprovechar mejor para
que un curso, una asignatura, un espacio académico se puedan transformar en una comunidad de
construcción de conocimiento facilitando la conexión entre los nodos de la red, es decir, de los
miembros de la comunidad.
Planteamiento del problema
Muchas de las teorías del aprendizaje se centran en el análisis de los procesos individuales, por
eso las teorías cognitivas no pueden explicar casi nada acerca del conocimiento que existe en la
colectividad (Bereiter, 2002 y Gros, 2007). Bereiter distingue con mucha claridad el aprendizaje
de la construcción de conocimiento. Construir conocimiento implica el esfuerzo colectivo para el
avance y la elaboración de los artefactos conceptuales tales como las ideas y las teorías mientras
que el aprendizaje se orienta hacia el cambio en las estructuras del conocimiento individual.
En cuanto a la moderna educación a distancia, prácticamente todos los ambientes virtuales de
aprendizaje incluyen foros de discusión, estos espacios permiten la participación de los alumnos
en los temas que se proponen o que ellos desean abordar, sin embargo, resulta difícil dar
seguimiento a las ideas principales que se generan en ellos y sobre todo, muy pocas veces se
obtienen resultados concretos de las discusiones desarrolladas en esos foros, por otra parte,
muchos de los cursos en la educación virtual establecen como requisito que los alumnos
participen en los foros, los criterios se establecen la mayoría de las veces en función del número
de accesos en tiempos determinados, generalmente semanas pero no establecen claramente
criterios de pertinencia, y lo que es peor, no se proponen resultados específicos de esos foros,
suelen ser espacios en los que los participantes expresan sus creencias, comentan las lecturas y
hacen preguntas que muchas veces quedan sin respuesta pero acaban por ser registros que muy
pocas veces sirven para lago más (Gros, 2007).
Objetivo del trabajo
Muchas escuelas en todo el mundo están incorporando la comunicación a través de redes sobre
todo basadas en Internet en sus actividades educativas, pero en su mayoría no logran ningún
cambio fundamental en el discurso del aula sea ésta presencial o virtual. En algunos casos,
97
KBSI2013
Papers
Internet solamente provee una biblioteca de recursos para ser usados, para escribir informes y
otros documentos, en otros casos se organizan proyectos de investigación conjuntos entre
distintas escuelas pero siempre con la dificultad de organizar la información de las discusiones y
su correspondiente seguimiento.
El objetivo de este trabajo consistió en crear un ambiente virtual para cursos en línea mediante
la adaptación del foro de discusión de moodle conforme a la pedagogía Knowledge Building para
que se facilite el análisis de las participaciones de todos los alumnos y que mediante la selección
de las que cada alumno considere más adecuadas de acuerdo al enfoque del problema que desee
abordar y que haya sido tratado en el foro, pueda crear un artefacto conceptual: un ensayo
Enfoque teórico
Las ideas rara vez se tratan aisladamente, sistemáticamente se interconectan, una idea asume,
contradice, restringe o de alguna forma se relaciona con otras. Lograr la comprensión de una idea
es explorar estas interconexiones y profundizar a medida que se sintetiza y construye para tener
una perspectiva más amplia. La construcción exitosa de conocimiento, implica el que las ideas se
encajen profundamente en estructuras conceptuales más amplias, como en las prácticas de
construcción de conocimiento en una comunidad en la que los participantes comparten la
responsabilidad por el conocimiento comunitario adicionalmente a los logros individuales, esto es
Knowledge Building, provee una alternativa que está dirigida a satisfacer la necesidad de educar
personas para un mundo en el que la creación de conocimiento y la innovación se expande cada
día. Knowledge Building puede ser definido como la producción y continuo mejoramiento de
ideas valiosas para una comunidad, esto quiere decir que se incrementa la probabilidad de que lo
que la comunidad puede lograr colaborativamente será mayor a la suma de las contribuciones
individuales (Scardamalia, 2002).
Knowledge Building puede entenderse mejor y llevarse a la práctica siguiendo los doce
principios establecidos como la columna vertebral de este paradigma. Es necesario que los
alumnos trabajen con ideas reales para la solución de problemas auténticos (principio 1), para ello
se necesita una diversidad de ideas (principio 2), pero se debe ir más lejos por lo que el
mejoramiento de las ideas (principio 3) es fundamental, este proceso requiere de una gestión
epistémica (principio 4) de parte de todos los integrantes del grupo, la información con respecto
al tema o problema que se trata proviene de fuentes de información con autoridad, confiables y
diversas (principio 5), el espacio para pensar, discutir, observar y resolver va más allá del aula y
la escuela, así se logra una construcción permanente del conocimiento (principio 6), el problema a
resolver o trabajo a realizar no debe seguir siendo visto como un rompecabezas en el que cada
miembro del equipo se ocupa de una parte y éstas se ensamblan al final, se trata de fomentar la
responsabilidad colectiva para el conocimiento comunitario (principio 7) lo que implica el
derecho de todos a participar, opinar, disentir y construir, es decir, estamos hablando de una
democratización del conocimiento (principio 8), conforme se avanza en la construcción del
conocimiento se va generando un discurso transformativo progresivo (principio 9), como en toda
discusión hay que rescatar los elementos fundamentales y separarlos de los menos importantes o
más triviales para avanzar en lo sustantivo, ir a lo más profundo, por eso es necesario hacer un
resumen incremental (principio 10), siguiendo estos principios se logra el avance simétrico del
conocimiento (principio 11)y así el grupo alcanza la madurez para realizar una autoevaluación
transformativa (principio 12) (Durana, Hernández y Sánchez, 2006).
Knowledge Forun (KF) fue desarrollado para hacer operativa la pedagogía Knowledge
Building, es un medio asincrónico en el que el conocimiento representado por las notas en la base
de datos se preserva y está continuamente disponible para búsquedas, comentarios, referencias y
revisiones. Provee varios soportes específicos para la construcción de conocimiento que
continúan siendo mejorados en versiones sucesivas de la plataforma. El KF permite que ese
encaje profundo vaya mucho más allá de lo que otras plataformas que gestionan conocimiento
98
KBSI2013
Papers
permiten, una simple nota del KF se puede ver como la personificación de una idea, esa nota se
identifica con un problema y con palabras que constituyen categorías, esas categorías se utilizan
como “andamiajes” que le dan a la nota un rol en el trabajo más amplio con ideas como
refinamiento de teorías, recolección de evidencia, argumentación, interpretación literaria, etc.
Knowledge Forum es una plataforma en red que permite la creación de espacios virtuales para la
discusión y la creación conjunta de materiales. El KF no tiene como objetivo crear un foro de
intercambio de información u opiniones sino que aspira a ser un espacio de apoyo para la
construcción de conocimiento que se genera a partir de las contribuciones individuales y grupales
de los participantes.
Por otra parte KF no es un LMS, no puede ser usado en cursos en línea como la plataforma
sobre la que se diseñe y ejecute un curso virtual porque carece de todas las demás características
que se necesitan para un curso en línea y utilizar dos plataformas que se complementan resulta
confuso para los estudiantes y difícil de manejar tanto para el profesor como para los estudiantes.
Para eliminar este inconveniente y aprovechando la posibilidad que ofrece moodle de modificar
el código, hemos incorporado algunas de las características del KF a los foros de este LMS. Estas
modificaciones se describen a continuación.
Metodología
La primera etapa consistió en modificar el código de moodle para que el foro de discusión
tuviera las características necesarias para ayudar en la construcción de artefactos conceptuales
como por ejemplo un ensayo.
En la figura 1 se ilustra la pantalla para la captura de una participación en el foro y se observan
dos campos agregados, uno es un menú deslizante para clasificar la aportación y otro es un campo
para introducir palabras clave, por ahora este segundo campo no está activado para búsquedas y
ordenamiento de información, pero será de mucha utilidad para buscar y agrupar participaciones
bajo estas palabras clave. La figura 2 muestra el menú de opciones para clasificar la
contribución, es obligatorio seleccionar una de ellas en cada contribución que se haga en el foro.
Una vez que las contribuciones han sido realizadas, cuando éstas son consultadas aparecen
como se muestra en la figura 3. Cada contribución presenta en la parte superior izquierda, la
clasificación utilizada para esta contribución, en este caso “Nueva Información”, se indica con el
número 1 encerrado en un círculo rojo, un click sobre este letrero provocará que se muestren
todas las contribuciones en el debate clasificadas con este nombre, en este caso se mostrarían
todas las contribuciones clasificadas como “nueva información” realizadas por éste y otros
autores que hayan clasificado contribuciones con el nombre “nueva información” y que se
encuentren en este mismo debate, un click sobre el letrero “T. foro” (todo el foro) mostrará todas
las contribuciones con la misma clasificación en todo el foro, es decir, busca y muestra todas las
contribuciones que estén clasificadas como “nueva información” en todos los debates de este
foro, y un click en el letrero “O. foro” (organiza todo el foto) mostrará todas los contribuciones en
el foro de todos los participantes ordenadas por clasificación de acuerdo al orden en la lista de la
figura 2.
99
KBSI2013
Papers
Fig. 1 Campos para clasificación y Palabras clave agregados a Moodle
Un click en el nombre del participante señalado con el número 4 genera la presentación de
todas las participaciones de ese usuario en todos los foros de esa base de datos, es decir, si en el
curso hay 3 foros, presentará todas las participaciones del usuario en los tres foros del curso.
Fig. 2 Clasificaciones posibles para las participaciones en el foro
En este reporte se muestra en cada contribución el foro al que pertenece ésta y las etiquetas de
las contribuciones que se encuentran en la misma por arriba de la que se consulta como se
muestra en la figura 4, la letra “a” encerrada en el circulo rojo indica el foro al que pertenece la
contribución, la letra “b” indica el nombre del foro y las etiquetas que forman la rama en la que se
encuentra esta contribución, es decir, la contribución de la figura 4 se encuentra en el “foro
único” de llama “docencia” y la contribución inicia un debate con la etiqueta “evaluación
docente”.
100
KBSI2013
Papers
Fig. 3 Funciones de búsqueda y ordenamiento en el foro
Un click en el letrero “foro” a un lado del nombre del participante enlista todas las
contribuciones de ese participante en ese mismo foro mientras que un click en el letrero debate,
enlista todas las contribuciones de ese participante en ese mismo debate.
Fig. 4 Claves de ordenamiento
Uso del foro de discusión de moodle modificado para generar artefactos conceptuales.
La experiencia se tuvo en un curso de Doctorado en línea del Instituto de Estudios
Universitarios del ieuOnline que se desarrolló durante tres meses en el año 2010 con la
participación de 13 alumnos. Al iniciar el curso, se explicó a los participantes la manera en que
funciona el foro y la utilización que se haría de él.
Desde las primeras contribuciones de los alumnos, se hizo énfasis en la importancia de
clasificar correctamente cada una de ellas ya que esto los ayuda a darse cuenta de su proceso
intelectual, el alumno se obliga a ordenar su pensamiento y lo ayuda a reformularse nuevas
101
KBSI2013
Papers
preguntas y construir sobre las aportaciones de los compañeros. La incorporación de ideas de
diferentes compañeros facilita al alumno ampliar su perspectiva sobre la discusión, este
intercambio de ideas favoreció la mejora de las teorías que iban surgiendo y ayudó a que el
alumno se diera cuenta de que toda teoría es mejorable siempre.
Se pidió a cada alumno la elaboración de un ensayo que recogiera las participaciones en el
foro que necesitara para ello, éstas conclusiones constituyen el artefacto conceptual construido
colaborativamente, no es la suma del conocimiento individual de los integrantes del grupo sino el
conocimiento creado gracias a diversas contribuciones, éstas aparecen en este documento a modo
de referencias bibliográficas es decir, gracias a esas y otras contribuciones de esta comunidad fue
posible construir ese conocimiento nuevo.
Resultado de la experiencia
Mediante la utilización de herramientas que favorecen la construcción de conocimiento como
el foro de moodle con las modificaciones explicadas en este escrito, se facilita el trabajo
colaborativo y sobre todo es posible aprovechar fácilmente la riqueza de los foros para generar
artefactos conceptuales que evidencian el conocimiento construido colaborativamente.
La utilización de las participaciones de los compañeros en la elaboración del ensayo personal
se presenta en la tabla 1 para n= 13. Cada alumno cita a sus compañeros para sustentar su trabajo,
tales referencias a su vez están relacionadas a lecturas de los materiales del curso o debates y
reflexiones relacionadas a dichas lecturas así como dudas o cuestionamientos que surgen al
analizar críticamente los materiales y participaciones en el foro.
Promedio de participaciones propias en el
ensayo
8
Promedio de participaciones ajenas incluidas en
el ensayo
9
Promedio de compañeros citados en los ensayos
7
Promedio de Notas Nueva información
utilizadas por ensayo
8
Promedio de notas Necesito entender utilizadas
por ensayo
4
Promedio de notas Mi teoría utilizadas por
ensayo
5
Promedio de notas Juntando nuestro
conocimiento utilizadas por ensayo
3
Tabla 1. Participaciones utilizadas en los ensayos
Discusión
La Tabla 1 muestra la riqueza de los ensayos presentados en términos de la colaboración entre
los estudiantes, aunque todos los ensayos versan sobre el mismo tema que se discutió en el foro,
los trabajos individuales están enriquecidos por las colaboraciones comunitarias, cada trabajo
individual lleva implícito el trabajo intelectual de los demás, la articulación de las participaciones
de los miembros del grupo permite profundizar en el tema en lo grupal y favorece la comprensión
simétrica de los alumnos, además, cada alumno es consciente de la importancia de las
aportaciones de sus compañeros y las reconoce al citarlos y considerarlos coautores de su propio
102
KBSI2013
Papers
trabajo. El resultado recabado de la evaluación del curso demuestra que los alumnos reconocen
que su trabajo no hubiera alcanzado la profundidad y claridad obtenida sin la participación de sus
compañeros.
Conclusiones
Los resultados alcanzados en esta experiencia de tipo exploratorio, ya que no se cuenta con
información sistematizada que relacione las participaciones de los alumnos en foros de discusión
en línea, permiten observar cómo se pueden construir artefactos conceptuales en cursos en línea
utilizando foros. Componentes tecnológicos como el foro modificado del moodle pueden ser
utilizados para hacer converger diferentes medios que constituyen un andamiaje pluri-medial para
aplicar modelos pedagógicos que facilitan la construcción del conocimiento, es decir, que
favorezcan el proceso de aprendizaje de los estudiantes y que construyen conocimiento que se
plasman en esos artefactos conceptuales como los ensayos elaborados en este curso, la
participación de los alumnos en su propio proceso educativo y la reflexión crítica sobre las ideas
y el conocimiento son también resultado de esta pedagogía.
Las contribuciones en una comunidad basada en conocimiento sirven para crear y compartir
un producto intelectual, y dar a las ideas vida más allá de la naturaleza transitoria de una
conversación y su aislamiento desde otros discursos. El espacio compartido en el foro de
discusión de moodel modificado permite un sistema auto – organizado de interacciones entre
participantes y sus ideas y los ayuda a eliminar la necesidad de organizadores externos. El foro
de discusión así utilizado involucra a los estudiantes en espacios virtuales directamente en trabajo
creativo y sostenible con ideas que lo hacen especialmente promisorio.
Agradecimientos.
Agradecemos el apoyo otorgado por el Instituto de Estudios Universitarios para la realización
de esta investigación y por creer en nosotros, a Cuauhtémoc León quien interpretó perfectamente
nuestras indicaciones y realizó la modificación al software. A la fecha, el Moodle utilizado en la
institución conserva estas modificaciones.
REFERENCIAS
Álvarez, I., Ayuste, A., Gros, B., Guerra, V. y Romañá, T. (2005). Construir conocimiento con
soporte tecnológico para un aprendizaje colaborativo. Universidad de Barcelona, España.
Barragán, R., y Buzón, O. (2004). Un modelo de enseñanza-aprendizaje para la implantación del
nuevo sistema de créditos europeos en la materia de Tecnología Educativa. Revista
Latinoamericana de Tecnología Educativa. Vol. 3, 1
Barragán, R. y Buzón, O (2004, junio 24-25). Desarrollo de competencias específicas en la
materia Tecnología educativa bajo el marco del Espacio Europeo de Educación Superior. En
las Jornadas de Tecnología Educativa. Cáceres.
Bereiter, C. & Scardamalia, M. (2002). Schooling and the growth of intentional cognition:
Helping children take charge of their own minds. In B.Smith (Ed.), Liberal education in a
knowledge society (pp. 245-277). Chicago: Open Court
Bereiter, C. (2002). Design research for sustained innovation. Cognitives studies.Bulletin of the
Japanes Cognitive Science Society, 9, 321-327
Burch, S. (2006). Sociedad de la información/Sociedad del conocimiento. Consultado el 24 de
agosto de 2010 en: http://vecam.org/article518.html
Colom, A., (2002). La (de)construcción del conocimiento pedagógico. Nuevas perspectivas en
teoría de la educación. Barcelona: Paidós.
103
KBSI2013
Papers
Hernández, O., Durana, A., y Sánchez, J. (2006). Knowledge Building and metacognition:
dialogue between two frameworks. Ponencia presentada en el Summer Institute 2006. OISE
Uiversity of Toronto, Toronto, Canadá.
Hernández, O., Sánchez, J. y Guerra, V. (2005, Agosto). Seeking conditions for collaborative
knowledge construction supported by knowledge fórum in higher education. An experience
of design research. Ponencia presentada en el Summer Institute 2005. OISE Uiversity of
Toronto, Toronto, Canadá.
Hernández, O. y Sánchez, J. (2007). Problem Based Learning PBL as a strategy for Knowledge
Building (KB) based on informatics technology. Ponencia presentada en el Summer Institute
2007. OISE Uiversity of Toronto, Toronto, Canadá.
Hernández, O. (2005). Desarrollo de habilidades cognitivas en educación a distancia usando
internet. Tesis doctoral en educación. Universidad Autónoma del Estado de Morelos,
Cuernavaca, Morelos. México.
Hernández, O. (2008). Modelo educativo de la Preparatoria de la Universidad Iberoamericana
Puebla, competencias para la era del conocimiento en la sociedad de la información. Ponencia
presentad en el Encuentro Académico sobre el Bachillerato, Noviembre 2008.
Jonassen, D. (2000). Computers as mindtools for schools. Second edition . USA. Prentice hall
international.
Morin, E. (2000). La mente bien ordenada. Barcelona: Editorial Seix Barral.
Morin, E. (2002, Septiembre). Ética y globalización. Conferencia dictada en el marco del
Seminario Internacional "Los Desafíos Éticos del Desarrollo", Buenos Aires, Argentina.
Morin, E., E. Ciurana y R. Motta. (2003). Educar en la era planetaria. Barcelona, España: Gedisa.
Ornelas, C. (2006). El sistema educativo mexicano. México. D.F. Fondo de cultura Económica.
Polanco, H. (2002). Entornos virtuales de enseñanza y aprendizaje en la educación a distancia.
Sánchez, J. (2008). Criterios y estrategias para la creación de comunidades de construcción de
conocimiento con soporte tecnológico. Tesis Doctoral en Educación. Universidad de
Barcelona, Barcelona, España
Scardamalia, M., & Bereiter, C.(1994). Computer support for knowledge-building communities.
The Journal of the Learning Sciences, 3, 256-283.
Scardamalia, M. & Bereiter, C. (2005). Knowledge Building: Theory, pedagogy, and
Technology. In K. Sawyer (Ed), Cambridge Handbook of the Learning Sciences.
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In
B.Smith (Ed.), Liberal education in a knowledge society (pp. 67-98). Chicago: Open Court
104
KBSI2013
Papers
Influencia del clima institucional en la conducta de los adolescentes
Ana María Hernández Reyes, Instituto de Estudios IEU
Email: [email protected]
ABSTRACT: Inform the conduct of the teenager, as it will influence the institutional
climate and seeks to be favorable and adequate since it is fundamental to a wellfunctioning, efficient educational institution, to create conditions for harmonious
coexistence. One of the most important recommendations to promote the institutional
climate that facilitates change, is the of the institution, making more flexible to respond to
the continuous, complex and relevant changes that occur in the social and educational
context. It will take place from the perspective of organization capable of learning even
of Unlearning and relearning. High school is a conflictive coexistence in modern
capitalist societies today. Also the characteristics that must have secondary education,
from curricular and educational point of view, are permanent subject of debate in various
parts of the world. This phenomenon, in our view, has its origin in the same features of
the school as an agent of socialization (and therefore also of social reproduction) and the
complexities of the juvenile condition in modern societies that have been tested on
several occasions. Cancino and Cornejo, 2001 p. 33-62 The work of a teacher is more
than simply give your class, it includes an educational process since it is an educator and
trainer, entails the responsibility of knowing why the student doesn't end with a
significant learning and in many cases to investigate the social context in which it takes
place. Giving pattern to analyze behaviors typical or atypical of the students in the
classroom,today the influence of the institutional climate in adolescent behavior
influences the work that was carried out in the research that we are discussing, has special
characteristics which must be detailed and analysed in all its aspects, in order to clarify
what were the elements that were determining the final results. Some teens have problem
in its institutional climate and affects their behavior, it is very common and I believe that
this issue is of major importance, since students have behaviors and attitudes increasingly
unfavorable to their learning such as the lack of interest in school, apathy, isolation and
aggression inside and off-campus, that I think interesting dealing with this problem and
know what are the causes that originate them.
RESUMEN: La escuela secundaria es un espacio de convivencia conflictivo en las
sociedades capitalistas modernas actuales. Asimismo las características que debe tener la
enseñanza secundaria, desde el punto de vista curricular y formativo, son objeto
permanente de debate en distintas partes del mundo. Este fenómeno, a nuestro juicio,
tiene su origen en las características mismas de la escuela como agente de socialización
(y por lo tanto también de reproducción social) y las complejidades de la condición
juvenil en las sociedades modernas que han sido analizadas en repetidas ocasiones.
Cancino y Cornejo, 2001 pág. 33-62.
PALABRAS CLAVES: Conducta Motriz, Conducta Adaptativa, Conducta de Lenguaje,
Conducta Persona- Social, Interaccionista, Atmosfera Psicológica, Clima Escolar,
Inteligencia, autoconcepto, Interés, Amenidad.
INTRODUCCIÓN DEL TEMA (FINALIDAD DEL ARTÍCULO)
Dar a conocer la conducta del adolescente, como va influir en su clima institucional y se
busca que sea favorable y adecuada ya que es fundamental para un buen funcionamiento,
eficiente de la institución educativa, para crear condiciones de convivencia armoniosa.
105
KBSI2013
Papers
Una de las recomendaciones más importantes para promover el clima institucional que
facilite el cambio, es la de flexibilizar la institución, para responder a los continuos, complejos y
relevantes cambios que se producen en el contexto social y educativo.
Ello se realizará desde la perspectiva de organización capaces de aprender incluso de
desaprender y volver a aprender.
HIPOTESIS:
Reconocer y hacerse consciente de los factores climáticos si influyen en el aprendizaje
significativo del adolescente de secundaria.
En donde las competencias educativas si se ven afectadas por la influencia climática. Y nos
ayuda a que los alumnos identifiquen. El como un aprendizaje que se vuelve significativo, sirve
para solucionar y prevenir problemas dentro y fuera de la institución. Por lo que se ve reflejado
en la conducta que presentan los adolescentes en su desempeño escolar.
El sentirse parte del conocimiento da la armonía tanto de cuerpo, espíritu si ayuda a
reconocer en que está fallando y le proporciona alternativas de mejora.
Dentro de la conducta se enseña a manejar las emociones para llevar un análisis de los pilares
de la educación para aprender a conocer y a ser para convivir con los demás esto mejora sus
acciones y emociones.
Ya que considero que el Método Trascendental, es la base para poder aprender todo ya que
tenemos que experimentar, conocer, emitiendo juicios para poder llegar a un juicio de valor. Esto
me permite entender lo que están diciendo y haciendo los alumnos
ANTECEDENTES TEORICOS
Como ya fue señalado en la parte preliminar de mi trabajo, utilizare la estandarización al
ambiente mexicano del método de Gesell (1954) pág.23-47, ya que el nos provee con un enfoque
global de la conducta del adolescente. En el presente capítulo señalare los fundamentos teóricos
que sustentan el método, así como su teoría de aplicación.
La clínica de desarrollo fundada por Dr. Arnold Gessell (1954) pág. 23-47 y sus
colaboradores, ha venido trabajando en la Universidad de Yale y en el Instituto de Desarrollo
Infantil de New Haven desde 1923. Estudia aquellos patrones y formas de conducta que
manifiesta. Recientemente este estudio se ha ampliado para abarcar de los 10 a los 16 años.
El método elaborado por Gesell, para sus investigaciones ha sufrido variantes desde su
concepción inicial hasta llegar al enfoque que se le da actualmente. En sus comienzos se trató de
un plan de investigación tendiente a establecer normas tipificadas de conducta, operando
mediante conceptos pertinentes al conductismo. Actualmente ha variado el enfoque hacia una
postura más biológica, fundamentándose en hechos pertinentes a la neurología, a la embriología y
a la biología.
El estudio de la conducta global de un gran número de adolescentes, en forma seriada y
continua, ha permitido la formulación de la denominada “Escala de Gesell (1954), pág.23-47”
que tiene en cuenta, y trata de ilustrar las tendencias básicas del crecimiento infantil y adolescente,
haciendo posible la predicción de los cambios subsecuentes de la formas de conducta que han de
conducir a la marcha erecta, la manipulación fina de objetivos, la creación de instrumentos de
juego y trabajo y la expresión de las vivencias, a través del lenguaje.
106
KBSI2013
Papers
El adolescente de doce años es un ser humano maduro y eficaz, sus experiencias posteriores
le van a proporcionar solamente oportunidades para entrenar sus adquisiciones previas,
aumentando así el repertorio de sus posibilidades.
Es sobre la base de la dotación natural del adolescente y a partir del período neonatal,
cuando el ambiente externo va a influir modelando las formas de conducta. Los factores
ambientales apoyan, influyen o modifican, pero no engendran la progresión del desarrollo, la
consistencia de las inclinaciones y secuencias del crecimiento, y las tendencias cíclicas
fundamentales del mismo.
La conducta del lenguaje engloba toda forma de comunicación entre el adolescente y su
ambiente, esto es: el llanto, la risa, los gestos, las actitudes posturales, las vocalizaciones, el
lenguaje hablado propio, el lenguaje escrito.
INFLUENCIA DEL CLIMA EN OTRAS VARIABLES ESCOLARES
Ya en Anderson, (1982), pág. 56-178 planteó que el estudio del clima se centro y podía
considerarse la mejor medida de la eficacia institucional (Anderson, 1982). Los resultados se han
obtenido en contextos muy diversos y con diferentes instrumentos.
Definición de variables e instrumentos:
a) Clima escolar: Definición conceptual: según Walberg, Botten Miller, Althousser,1977
pág.78-93, consiste en las percepciones por parte de los alumnos del ambiente socio-psicológico
en el que se produce el aprendizaje
Definición operacional: para medir la variable de clima escolar se usa el instrumento «School
Environment Scale» (ses) desarrollada originalmente por Kevin Marjoribanks, en 1980, Aron A.
M y N (1999), pag.78-93, y adaptada a España por Aurelio Villa, que llamaremos de aquí en
adelante escala de clima escolar. Ésta mide la percepción que tienen los alumnos sobre las
relaciones que establecen con sus maestros en relación a distintos contextos ambientales
interrelacionados.
b) Inteligencia. Definición conceptual: utilizare la definición de inteligencia como la
capacidad básica que determina el rendimiento presente y futuro (Coll, 1991, pág.13-47).
Definición operacional: para medir esta variable se opta por la Escala del Factor de Cattell,
Erickson, 1985, pág. 23-87, en la adaptación se trabaja sólo con el puntaje directo o bruto total.
c) Autoconcepto: Es la percepción y valoración que una persona tiene de sí misma, que se
forma a través de sus experiencias y relaciones con el medio (Lecuyer, 1985).
Palma, Aron, A.M. y N 1998, pág.78-93. Los Datos generales de caracterización de los
jóvenes, se trata de datos que nos permiten caracterizar a los jóvenes según escuela secundaria,
curso, sexo, edad y antecedentes sociofamiliares. Los jóvenes participan en el plantel mostrando
actitudes positivas al ser tomados en cuenta e incidir en el espacio social en el que se convive.
ACTITUDES QUE FAVORECEN EL DESARROLLO DE UN BUEN CLIMA ESCOLAR
Se debe respetar al prójimo, como ser humano, evitando interrumpir a quien habla;
esperando su turno para poder hablar. Debemos dominar las reacciones agresivas, evitando ser
descortés o irónicos. En caso contrario, dé una explicación válida, trate de conocer mejor a los
miembros de su grupo, a fin de comprenderlos y adaptarse a la personalidad de cada uno.
El reconocimiento y aprovechamiento de las potencialidades del profesorado. Los vínculos:
amistad, simpatía, antipatía. El saber ¿Cómo participar en un grupo de trabajo?, ¿Qué se debe
107
KBSI2013
Papers
hacer cuando llega un nuevo colega?, ¿Cómo hacer para integrarse?, ¿Cómo evitar discusiones y
diferencias?, conocer a los alumnos, a los docentes a sus colegas. Conózcase a sí mismo, al
grupo. “El mal humor siempre tiene una razón”. El trabajo en grupo, permite la participación de
todos los miembros, permite la liberación de la creatividad, contribuye a un clima de trabajo
agradable. Las variables del clima institucional, Martín Bris,1999, plantea el siguiente modelo
del clima institucional en el trabajo en las instituciones educativas considerando algunas variables
como participación, confianza, motivación, comunicación, creatividad, planificación y liderazgo.
Los valores y objetivos que busquen el desarrollar la autoestima y afirmación personal, a través
de una adecuada definición de política de motivación y estímulo.
El interés es una cualidad que busca producir “influencias positivas”, en el ánimo del
destinatario (maestro-alumno), para que concentre su atención en el contenido de la información.
Es el deseo de saber y la participación activa, es importante este elemento en muchas formas de
las relaciones humana. La evolución de los intereses se cumple en cinco períodos:
1.
2.
3.
4.
5.
Período de los intereses sensoriales (0-2 años).
Período de los intereses subjetivos (2-7 años).
Período de los intereses objetivos (7-10años).
Período de los intereses especializados (10-15 años).
Período de los intereses lógicos (15-18años).
METODOLOGIA
El trabajo que se llevó a cabo en la investigación que nos ocupa reúne características
especiales que deben ser detalladas y analizadas en todos sus aspectos, a fin de esclarecer cuales
fueron los elementos que actuaron determinando los resultados finales.
Los adolescentes estudiados provenientes de un ambiente familiar ordinario, aunque de
diferentes niveles sociales, económicos y culturales, generados en varias instituciones educativas
a partir de las vivencias cotidianas de sus miembros en la escuela. Este ambiente tiene que ver
con las actitudes, creencias, valores y motivaciones que tiene el alumno, directivo, maestro,
padres de familia de la institución educativa y que se expresan en las relaciones personales y
profesionales.
Un hecho muy discutido siempre ha sido tratar de determinar cuáles características humanas
están determinadas por la herencia y el clima institucional influye en el adolescente en cómo se
desenvuelve el individuo va influir sobre ellos permitiendo el desarrollo de algunas, modificando
e inclusive inhibiendo o deformando otras.
Esta discusión se ha venido desarrollando en el campo especulativo de la filosofía desde la
remota antigüedad, fue heredada por la psicología tradicional especulativa, para reaparecer en la
actualidad en el terreno científico de lo biológico, de la psicología experimental y de la genética.
Una vez definidas las dimensiones redactare los ítems de la escala. Para su redacción
seguimos las indicaciones propuestas por Morales Vallejo en cuanto a la construcción de escalas
de actitudes: “Es conveniente planificar la comprobación de la validez desde el principio, de
manera que puedan obtenerse datos para comprobar hipótesis. (Morales Vallejo, 2000: 79).
ENCUESTADOS
APLICADOS
ADECUADOS
INADECUADOS
MAESTROS
100
80
20
ALUMNOS
900
600
300
108
KBSI2013
Papers
ADMINISTRATI
VOS
20
15
5
PADRES DE
FAMILIA
70
40
30
2. ¿Consideras que el lugar donde vives influye de manera relevante en el Aprendizaje significativo que estas desarrollando, tanto en aula como en tu hogar?
A) Algunas veces B) Frecuentemente C) No tiene relevancia
ENCUESTADOS
APLICADOS
SI
NO
MAESTROS
100
70
30
ALUMNOS
900
500
400
ADMINISTRATIVOS
20
13
7
PADRES DE FAMILIA
70
35
5
3.-­‐ ¿En la clase se propicia que el alumno construya su propio conocimiento (formule sus definiciones, conclusiones y sus planteamientos)?
A) Siempre B) Frecuentemente C) Nunca
ENCUESTADOS
APLICADOS
SIEMPRE
NUNCA
MAESTROS
100
80
20
ALUMNOS
900
800
100
ADMINISTRATIVOS
20
60
10
PADRES DE FAMILIA
70
18
2
109
KBSI2013
Papers
•
4.-­‐¿ Se promueve en los adolescentes la auto reflexión del aprendizaje (que aprendí y para que me va servir)?
A) Siempre B) Algunas veces C) Nunca
ENCUESTADOS
APLICADOS
SI
NO
MAESTROS
100
90
10
ALUMNOS
900
800
100
ADMINISTRATIVOS
20
16
4
PADRES DE FAMILIA
70
50
20
6.-­‐¿ Se está actualizando constantemente para poner situaciones reales o similares a los de la vida cotidiana del adolescente?
A) Siempre B) Algunas veces C) Nunca
ENCUESTADOS
APLICADOS
SIEMPRE
NUNCA
MAESTROS
100
85
15
ALUMNOS
900
650
250
ADMINISTRATIVOS
20
16
4
PADRES DE FAMILIA
70
50
20
JUSTIFICACIÓN SU DISEÑO Y SU UTILIZACIÓN
DISEÑO: Metodología cuantitativa mediante un diseño no experimental, transversal.
POBLACIÓN: Delegación (1)
MUESTRA: 2 Centros educativos.
Muestra incidental es baja cuyas tendencias y limitaciones y perspectivas por la dificultad.
INVESTIGACION CUALITATIVA.
INSTRUMENTOS: Observación, cuestionarios, entrevistas, videos y grupos de observación.
CLIMA INSTITUCIONAL.: Educación
110
KBSI2013
Papers
FUENTES: Documentos, Alumnado, Profesores, Padres de familia y Miembros de la
comunidad.
RESULTADOS
Un clima institucional favorable o adecuado es fundamental para un funcionamiento
eficiente de la institución educativa, así como crear condiciones de convivencia armoniosa.
Centraremos estos resultados y conclusiones en la percepción del clima escolar de parte de
los jóvenes, así como la correlación entre esta percepción y otros factores, dejando de lado un
análisis a las respuestas de los jóvenes a la encuesta de datos y opinión y los resultados en las
variables de autoconcepto e inteligencia.( Cancino y Cornejo)
Análisis de la fiabilidad a través del Coeficiente Alfa de Cronbach.
Para encontrar este coeficiente de fiabilidad se aplicó la fórmula de Cronbach, obteniéndose
los siguientes resultados: factor 1 (interpersonal) a: 0.9081; factor 2 (instruccional) a: 0.8004;
factor 3 (disciplinario) a: 0.7012. La fiabilidad de las tres subescalas es estadísticamente
aceptable.
Análisis de la consistencia interna de la escala a través de las correlaciones ítem-test.
Se analiza la consistencia ítems de los ítems de la escala, aplicando una correlación bivariada
de Pearson a cada ítem respecto del test total. Los resultados son los siguientes:
Item 1
Item 2
Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10
Coeficientes
.52
de correlación
.66
.63
.64
.64
.51
.50
.66
.64
P
.000
.000
.000
.000
.000
.000
.000
.000
.000
Item 11 Item 12 Item 14 Item15 Item16 Item17 Item18 Item19 Item20
Coeficientes .40
de
correlación
.45
.65
.23
.54
.57
.66
.43
.39
P
.000
.000
.000
.000
.000
.000
.000
.000
.000
Item 21
Item 22
Item 23
Item 24
Item 25
Item 26
Item 27
Item 28
Coeficientes de
correlación
.62
.71
.46
.48
.43
.64
.26
.48
P
.000
.000
.000
.000
.000
.000
.000
.000
Como se puede observar, todos los ítems correlacionan con el total de la prueba lógicamente
son significativos. Los ítems que presentan una menor correlación con el total del test son los
ítems 15 y 27, ambos del factor «disciplinarios» (3 A). No obstante, se ha decidido mantenerlos
en la escala tomando en cuenta el carácter experimental del estudio.
111
KBSI2013
Papers
DISCUCIONES
Una discución fue llegar a las recomendaciones más importantes para promover el clima
institucional que facilite el cambio, es la de flexibilizar la institución, para responder a los
continuos, complejos y relevantes cambios que se producen en el contexto social y educativo.
Ello se realizará desde la perspectiva de organización capaces de aprender incluso de
desaprender y volver a aprender.
CONCLUSIONES Y LIMITACIONES
En primer lugar podemos destacar el hecho que dos de los cuatro contextos del clima escolar
originalmente descritos en la escala se funden en un solo factor. Estos contextos son el
interpersonal y el imaginativo. Tal como ocurre en las aplicaciones españoles y mexicanas del
instrumento en la enseñanza secundaria, la percepción que tienen los jóvenes respecto del
contexto imaginativo varía de manera conjunta con la valoración que ellos hacen de otro
contexto. Lo interesante es que este otro contexto en México resultó ser el instruccional, más en
nuestra muestra este contexto es el interpersonal.
Entre las conclusiones fundamentales para un clima institucional favorable se necesita una
institución como la que tenemos:
La disposición a realizar un trabajo conjunto en equipo, para incorporar innovaciones,
generar cambios internos y externos.
Las personas y el ambiente de trabajo se basan en la previsión y la planificación. Todo esto es
facilitado por la comunicación, la participación, la confianza y el respeto.
La labor de un profesor va mas allá de simplemente dar su clase, comprende un proceso
educativo ya que es educador y formador, esto conlleva la responsabilidad de saber por qué el
alumno no termina con un aprendizaje significativo y en muchos casos a investigar el contexto
social en el que se desarrolla.
Algunos adolescentes tienen problema en su clima institucional y afecta su conducta, es muy
común y considero que este tema es de mayor importancia, ya que los alumnos tienen
comportamientos y actitudes cada vez más desfavorables para su aprendizaje tales como la falta
de interés por la escuela, apatía, aislamiento, agresividad dentro y fuera del plantel, por eso
considero interesante abordar este problema y saber cuáles son los causas que los originan.
BIBLIOGRAFIA
1. Anastastasi, A.1954- The Inhereted and Acquired Components of Behavior. Genetics and the
Inheritance of Integrated Neurological and Psychialiams, Wilkins Compañy.
2. Avedaño, J. 1955. El Crecimiento Mental del Niño. Tesis Recepcional de la Escuela
Nacional de Medicina. México,pág. 567- 720.
3. Davis, A. 1948. Social Class Influences Upon Learning. The English Lecture. Harvard
University Press.
4. Freud, A y Burlingham, 1946 Niños sin hogar. Ediciones Imán. Buenos Aires.
5. Althousser, L. (1977): Aparatos ideológicos del Estado. México: Ediciones Quinto Sol. Pág.
1-287
6. Arancibia, V. et al. (1993): Desarrollo socioafectivo en la enseñanza secundaria y media.
Santiago: CPU. Pág. 56-178.
112
KBSI2013
Papers
7. Arias, V. (2001): «Autoconcepto en adolescentes, un estudio descriptivo». Pág. 23-87.
8. Arón, A. M. y N. Milicic (1999): Clima social escolar y desarrollo personal. Un programa
de mejoramiento. Santiago: Editorial Andrés Bello. Pág. 78-93.
9. Assael, C. (1998): «La teoría de la modificabilidad estructural cognitiva de Reuven
Feuerstein». Centro de Desarrollo Cognitivo, Universidad Diego Portales. Pág.221-287.
10. Bellei, C. (2000): «Educación básica, media y juventud en los 90. Actualizando la vieja
promesa». Última Década Nº12. Viña del Mar: Ediciones CIDPA. Pág. 565-598.
11. Calvo, F (1990): Estadística aplicada. Ediciones Deusto S. A.
12. Cancino, T. y R. Cornejo (2001): «La percepción del clima escolar en jóvenes estudiantes
municipales y particulares subvencionados. Un estudio descriptivo y de factores asociados».
Pág.145-190.
13. Cariola, L. y C. Cox (1990): «La educación de los jóvenes: crisis de relevancia y calidad de la
educación básica». En Generación (editores): Los jóvenes en México.Pág. 12-124.
14. Casassus, J., S. Cusato, J. E. Froemel y J. C. Palafox (2000): «Primer estudio internacional
comparativo sobre lenguaje, matemática y factores asociados, para alumnos del tercer y
cuarto grado de la educación básica (segundo informe)». Laboratorio Latinoamericano de
Evaluación de la Calidad de la Educación, UNESCO.Pág.18-231.
15. Cere (1993): «Evaluar el contexto educativo». Documento de Estudio. Vitoria: Ministerio de
Educación y Cultura, Gobierno Vasco.Pág.12-167.
16. CEPAL-UNESCO (1992): Educación y conocimiento. Eje de transformación productiva con
equidad. Santiago: CEPAL.pág.12-87.
17. Chadwick, C. (1997): «La psicología del enfoque constructivista». Revista de Educación.
SEP. Coleman, J. y T. Husén (1989): Inserción de los jóvenes en una sociedad en cambio.
Madrid: OCDE/CERI Narcea Ediciones.Pág. 12-34.
18. Coll, C. (1993): Psicología y currículum. Buenos Aires: Paidós.Pág.12-45.
19. C. Calvo, A. M. Cerda y otros (1993): Prácticas de trabajo y socialización en
establecimientos de educación media. Colección de estudios sobre enseñanza media.
Santiago: PIIE, U. Católica de Temuco, U. de La Serena y MINEDUC. Pág.45-78.
20. Erickson, E. (1985): Identidad, juventud y crisis. Madrid: Editorial Taurus. Pág.23-87.
AGRADECIMIENTOS:
A MIS PADRES A MI ESPOSO Y A MI MAESTRO OSCAR QUE SIN EL NO LO
HUBIERA LOGRADO.
113
KBSI2013
Papers
A Knowledge Building Discourse Analysis of Proportional Reasoning in
Grade 1
Kendra Hutton, Bodong Chen, and Joan Moss
Institute of Child Study, OISE/UT
Institute for Knowledge Innovation and Technology, OISE/UT
[email protected], [email protected], [email protected]
ABSTRACT: Proportional reasoning can be defined as the consideration of
number in relative terms as opposed to absolute terms. This reconceptualization
requires for the learner a shift from additive to multiplicative reasoning—a shift
that has been shown to be challenging for both children and even many adults. In
this study we use the discourse analysis tool Knowledge Building Discourse
eXplorer (KBDeX) to analyze the growth and extent of the use of proportional
language in a grade one classroom as students engage in material over the course
of four specially designed discourse-based lessons in proportional reasoning. The
design of the first three lessons (the intervention) was based on psychological and
educational research and employed a context integrating both continuous and
discrete representations of proportions. The fourth lesson served as an
assessment and involved the students solving proportional reasoning problems
featuring discrete quantity of the types typically found in math textbooks for
students in older grades. Content analysis was conducted on recorded discourse,
focusing on students’ multiplicative reasoning and knowledge building
behaviours. KBDeX was then used to track frequencies and connectedness of
students’ multiplicative reasoning as well as knowledge building behaviours
across lessons. The social network of students involved using multiplicative
reasoning and knowledge building behaviours was also analyzed. Findings reveal
that knowledge building behaviours and multiplicative reasoning (multiplicative
comparisons, multiplicative operations, and grouping language) increased
between lesson 1 and lesson 4 and that the majority of the students were able to
solve the final assessment tasks presented in the fourth lesson. Finally, we
present a discussion on the potential of knowledge building discourse for student
learning in math.
Keywords: discourse, knowledge building, math, proportional reasoning, young
children
Introduction: A Background on Proportional Reasoning
Proportional reasoning can be difficult to define. As Van DeWalle (2006) states, “it is not
something that you either can or cannot do but is developed over time through reasoning. It is the
ability to think about and compare multiplicative relationships between quantities.” Lanius and
Williams (2003) refer to proportional reasoning as a mathematical way of thinking defined by the
ability to recognize proportional situations and to use multiple approaches for solving problems
involving proportionality. Fernandez, Llinares, Van Dooren, De Bock, and Verschaffel (2009)
make the distinction between within-variable and between-variable relationships in proportional
contexts. ‘Within’ relationships compare quantities of the same nature, while ‘between’
relationships compare quantities of different nature. The authors assert that competence in
proportional reasoning involves not only the ability to solve proportional problems, but also the
possession of a deep understanding of the multiplicative relationships between quantities,
including the comprehension and use of both within and between relationships. The Ontario
114
KBSI2013
Papers
Ministry of Education (MOE; 2012) refers to proportional reasoning as simply the consideration
of number in relative rather than absolute terms. All these definitions refer to a very important
component of math development that encompasses many aspects of the math curriculum (i.e.
equivalent fractions, converting units of measurement, probability, multiplication and division,
money amounts, rates of speed etc.). Proportional reasoning is also known to be conceptually
very difficult for middle school students (Lamon, 2007; Mitchelmore, White, & McMaster, 2007)
and even adults (Lamon, 2007). Exceptional teaching practices are required to ensure a deep
understanding of proportional reasoning.
Proportional reasoning has been thought of as a topic for older children. The Ontario
curriculum does not mention proportional relationships until grade four (MOE, 2005). Similarly,
Piaget and Inhelder (1975; Inhelder & Piaget, 1958) have documented that children are not
capable of proportional reasoning until about the age of 11.Van Dooren, De Bock, and
Verschaffel (2010) found that students in the younger grades almost always incorrectly apply
additive strategies to proportional problems. In contrast, other studies have shown that children as
young as five (Sophian, 2000; Sophian & Wood, 1997), six (Schlottman, 2001), and seven-years
old (Goswami, 1989) can partake in proportional thinking in different contexts. In particular it
was discovered that young children can be successful at proportional reasoning when the problem
context involves reasoning with continuous, rather than discrete representations (Mix,
Huttenlocher, and Levine 2002; Jeong, Levine, & Huttenlocher, 2007). Boyer, Levine, and
Huttenlocher (2008) found that children go astray on proportional reasoning tasks when they are
asked to match two proportions given in numerical (i.e, discrete) quantities. It has been suggested
that students might benefit from proportional reasoning tasks that integrate continuous with
discrete contexts or representations. With this kind of integration in mind, Moss and Case (1999)
developed a successful experimental lesson sequence for the teaching and learning of rational
number that grounded students’ initial understandings of proportion in a linear measurement
context of continuous quantity using the numerical language of percents (discrete representation).
The analyses revealed that this learning context involving the integration of discrete and
continuous quantity played an important part in the development of the students’ understanding
of rational number and proportion (Moss, 2005). Since proportional reasoning takes time to
develop and is not a result of natural growth (Koeller-Clark & Lesh, 2003), it should be
introduced to children even younger than the curriculum suggests.
The present case study uses a sequence of lessons designed by Moss, Comay, Stephenson, and
Halewood (in preparation) with grade one students exploring the concepts of intuitive (or
continuous) and numerical (discrete) proportionality. In this lesson sequence, as we describe in
detail in upcoming sections, proportional reasoning tasks were introduced in a fantasy context
that used snakes of various lengths (continuous quantity) and numbers of magic pellets (discrete
quantity).
Discourse and Mathematics Learning
Current reforms in mathematics education advocate the establishment of mathematical
learning communities in classrooms to support students to engage in productive mathematical
discourse. Indeed the importance of mathematical discourse—“math talk” —has been central in
reform mathematics education literature in both North America and internationally for over 25
years (NCTM, 2000; National Research Council, 2001). Underlying this shift towards discourse
in the teaching and learning of mathematics is the idea that mathematics is primarily about
reasoning and not memorization; it is not about remembering and applying a set of procedures but
about developing understanding and explaining the processes used to arrive at solutions.
115
KBSI2013
Papers
Central to the move towards discourse is the notion that mathematics should be taught in a
way that mirrors the nature of the discipline (Lampert, 1990). In this model of mathematics
learning, the classroom functions as a community where thinking, talking, agreeing, and
disagreeing is encouraged in order to discover important mathematical concepts (Bruce, 2007).
Indeed, numerous research studies reveal that students learn mathematics best when they are
given opportunities to explain their mathematical reasoning using the language of mathematics
(Kazemi & Stipek, 2001). As Martino and Maher (1999) point out, the opportunities to engage in
discourse not only increase student’s abilities to problem solve but also increase students’
engagement in the subject matter.
However, while research points to the potential benefits of math talk to promote student
learning, many studies reveal the problems of discourse classrooms. Indeed, the model of math
learning in which students' ideas serve as the basis for class discussion has proven to be
challenging for both teachers and students.
From a teacher’s perspective, this form of discourse can be difficult to implement. Kilpatrick,
Swafford, and Findell (2001) have suggested that managing discourse is one of the most complex
tasks of teaching. Sherin (2002) aptly likens the teacher’s role in trying to promote sustained,
productive, and meaningful math discourse to a “balancing act” wherein teachers operate within a
tension of supporting a student-centered process of mathematical discourse and, simultaneously,
facilitating discussions of significant mathematical content.
A discourse-based math learning environment also involves many challenges for students. For
example, Baxter, Woodward, and Olson (2001) raise the concern that math talk may not suit all
students. Many students do not know how to explain their mathematical ideas and are
uncomfortable with expressing their understandings (Empson, 2003; Walshaw & Anthony, 2008).
However, the greatest challenge is the change in the role of student from passive recipient of
math knowledge to an active and responsible member of a learning community (epistemic agents
who understand their role as contributors to knowledge). Cazden (2001) points out that each
student becomes a significant part of the learning environment, and that in a math discourse
classroom, teachers depend on students’ individual contributions for advancing learning in the
class (p. 131).
Exploring the Use of Knowledge Building in Mathematics
The importance and challenges of discourse in mathematical learning are clear. In the present
study we experimented with a knowledge building approach to discourse to support grade one
students to use multiplicative reasoning for proportions. We speculated that a knowledge building
approach might maximize the quantity and quality of discussion amongst the students and thus
support them in gaining a strong foundational understanding of this very difficult topic.
Knowledge building (KB) pedagogy focuses on collaborative learning experiences where
students can openly negotiate their ideas with each other, in which the goal is to improve the
community’s understanding as a whole (Chiarotto, 2011). As Scardamalia and Bereiter (2003) put
it, “knowledge building results in the creation or modification of public knowledge—knowledge
that lives ‘in the world’ and is available to be worked on and used by other people.” In a
knowledge building classroom, a student proposes her ideas to the whole class and the
responsibility to improve those ideas rests on all students in the class acting as a community. In
other words, students doing knowledge building take collective responsibility for continually
advancing their community knowledge (Scardamalia, 2002). Thus, shared discourse, face-to-face
or online, is central to knowledge building.
116
KBSI2013
Papers
In the present study the teacher engaged the students in KB discourse using a circular seating
configuration known as a knowledge building (KB) circle (Chiarotto, 2011). The advantage of a
KB circle is that it can encourage attentive listening and communication, diminish hierarchy, and
foster inclusive respect. A KB circle is not organized according to scripted procedures or rituals
(Zhang, Hong, Scardamalia, Teo, & Morley, 2011). Rather, it operates according to a set of
twelve knowledge building principles (Scardamalia, 2002), such as community knowledge and
collective responsibility, and progress in an emergent manner towards knowledge advancement.
Method
The present study consists of three intervention sessions on proportional reasoning in the form
of knowledge building lessons. The lessons were then followed by an extended discussion where
the students were given the opportunity to apply their knowledge to different contexts which
assessed their proportional reasoning skills.
Participants
Eleven grade one students act as participants of the knowledge building circle which was
moderated by their teacher. The school culture is one in which knowledge building pedagogy is a
central focus and the students have had previous experience using Knowledge Forum to engage in
the learning of science topics. These students were sorted by their teacher as the higher achieving
half of their class. A few researchers were also present to film and take field notes on the
sessions.
Materials and Apparatus
The materials for the lessons consisted of rectangular construction paper strips
representing a long snake, Longy (14 x 2cm), a short snake, Shorty (7 x 2cm), and Baby snake
(3.5 x 2cm). Circular counters were also used to represent magic pellets required for the snakes to
perform magic tricks.
Multiple video cameras were used to record the lessons and to capture the discourse
between students in a clear manner. A total of two hours of videos were then transcribed using a
personal computer and Microsoft Excel. Analysis was conducted using KBDeX software.
Procedure: The Lessons
Each of the four lessons was half an hour in length (described in detail below) and used
different participation structures. Lesson 1 took place in the form of a knowledge building circle.
Lesson 2 was mostly comprised of small group discussions. Lesson 3 was a presentation
sequence of student-designed challenges. Lesson 4 (like lesson 1) was a knowledge building
circle for extension problems.
Lesson 1. To begin the first lesson, the students were presented with two rectangular
construction paper strips, one of which was half the length of the other. The teacher told the
students that these two strips were actually snakes named Longy and Shorty and asked the
students to comment on the relationship of the length of one snake to the other. Once the students
offered that the short snake was half the length of the tall snake, they were given their own pairs
of rectangular strips and asked to prove this relationship. The goal of this part of the lesson is to
have each child experience the 1:2 relationship in the context of continuous quantity—length.
Next, they were introduced to the discrete assignment of numerical values in the form of
magic pellets the snakes required in order to perform magical feats. They were told and shown
using the circular counters that Longy needed exactly four pellets and Shorty needed exactly two
pellets to dance on the CN Tower, and then were asked why they thought these were the numbers
required. Next, missing-value problems were introduced in the following order.
117
KBSI2013
Papers
“If Shorty needs five pellets to sing opera, how many might Longy need?”
“If Longy needs eight magic pellets to play the guitar, how many will Shorty need?”
“What if we wanted Longy and Shorty to build a tower at structures, out of blocks. Can
someone tell me how many pellets Shorty might need and Longy might need to do that?
The lesson ended with the introduction of “Baby snake” a 3.5 x 2 cm rectangle, similar to the
opening of the lesson, students were asked to prove the 1:4 relationship of the length of Baby to
Longy.
Lesson 2. The lesson took place two school days after the first lesson. A few new researchers
were present so the students were asked to explain to the new visitors what they discovered the
other day about the lengths of the snakes. Next, students were asked to find a partner and to
design their own missing-value challenge for the class using Baby and Longy (discrete, numerical
values for the 1:4 relationship). The lesson concluded with a re-gathering; one group got to share
their work with the time that permitted.
Lesson 3. The third lesson took place three school days after the second lesson. Students
presented their invented missing-value challenges to their classmates.
Lesson 4. The last lesson served as an informal assessment offering students the opportunity
to extend their knowledge and to attempt to solve proportional reasoning problems in purely
discrete, numerical contexts. The lesson began with a brief review of the preceding lessons;
children were asked to explain the proportional relations of the lengths amongst the three snakes
(continuous relations) and numerical proportions of the pellets (discrete relations), and how the
lengths of the snakes related to the numbers of magic pellets required for the snakes to perform
magic acts. Next the students were presented with a pair of proportional reasoning problems in
written form with accompanying illustrations. The two problems were typical of textbook-style
proportional reasoning problems and were as follows:
“If 5 candy canes cost 10 cents. How many candy canes can you buy for 30 cents?”
“If you need 5 pellets to feed 2 fish. How many pellets do you need to feed 8 fish?”
Analysis of Data
Coding. The transcript of the discourse was coded in two different ways. The first was for
different types of knowledge building behaviours and the second was for different types of
multiplicative reasoning.
Knowledge Building Behaviour Codes.
The following three codes were based directly on knowledge building theory and were used to
analyze the different ways that the students contributed to the discourse.
Build-on (bdo): A discourse unit was coded as a build-on when the student adds to the
conversation, whether it’s a new idea or another strategy (E.g. after a child reports that one snake
is longer than the other one, another child adds “one’s half the size of the other.”).
Extension (extn): A discourse unit was represented as an extension when a student offers a
novel idea to a problem either because it is the first response or because it is a contribution that
hasn’t been brought up before (E.g. a student offers the representation of fractions, “the fraction
would be, um here's the centre line. The fraction would be 1 out of 2 because two of these blue
pieces would make up to one whole.”).
Collaboration (clln): A discourse unit is coded as collaboration when a student explicitly
references a peer’s idea (E.g. “I’m building onto Nichola’s”), make clear reference to a peer’s
118
KBSI2013
Papers
idea (jumping in while students are offering ideas/ responding; E.g. “no that would be half”), or
making we statements (ex. “we figured it out” or “we think”)
Multiplicative Reasoning Codes.
Multiplicative Action (ma): when students refer to or actually fold or cut with scissors or hand
gestures. E.g. “So I folded this; and then I opened it back up and then I put this on to see if it was
half, and it was.”
Multiplicative Comparison (mc): when students refer to at least two multiplicative situations
in the same explanation. This could include either within-variable or between-variable reasoning.
E.g. “I think that’s it's always going to be that Shorty's always gonna have half less than Longy
because he's half shorter, so it's always half lower.”
Multiplicative Operation (mo): when students refer to a specific operation such as multiply by,
divide by or when they compute using multiplication or division. E.g. “But you can't divide 100
by 40.”
Fraction Language (fl): when students use fraction language in explanation. E.g. “The
fraction would be 1 out of 2 because two of these blue pieces would make up to one whole.”
Count By (cb): when students either explicitly or implicitly suggest counting by strategy. E.g.
“‘cause if you count by twos - two, four, six- by counting by twos and then you would put four.”
Grouping Language (gl): when students either explicitly refer to grouping for multiplication
or it is inferred. E.g. “you use two twos” meaning “you use two (groups of) two.”
Halving Language (hl): when students refer to half as a part of a whole, E.g. “this snake is a
whole and this snake is a half” or half as a multiplicative operation of halving. E.g. “half of four
is two.”
Off Task (ot): when students lose focus with the discussion; may include irrelevant features.
KBDeX.
The discourse was analyzed using a relatively new social network analysis tool called
Knowledge Building Discourse eXplorer (KBDeX; Oshima, Oshima, & Matsuzawa, 2012).
Given a transcript of discourse, the tool analyzes social networks of learners, based on cooccurrences of a pre-selected list of terms, which can be domain vocabulary, phrases, or content
analysis codes. Given a discourse transcript and a list of terms, KBDeX goes through each
discourse unit to check co-occurrence of terms. If two terms co-occur in the current unit, a link
will be drawn between them; similarly, if two discourse units share a same term, a link will be
drawn between them too. At the same time, by attributing each discourse unit to its contributor
(e.g., student), KBDeX further infers links between students based on accumulated linkages of
discourse units contributed by them. In the end, KBDeX will create a social network of students,
a network of discourse units, and a network of terms, all based on co-occurrence of terms. By
visually and interactively exploring these three types of networks, researchers can investigate
relationships among students from very specific angles. For instance, by interpreting the student
network, KBDeX allows one to see which students are integrating terms or phrases similarly to
other students and which ones are more isolated in terms of conversation content. By checking
the network of tracked terms, KBDeX can display the connectedness of codes in a transcript and
provide significant insights about the discourse content. By comparing these networks across
different discourse phases, researchers could further inspect changes of discourse across time
represented by structure of terms and students. In the present study, by tracking multiplicative
reasoning and knowledge building behaviour coding, KBDeX was used to answer our primary
119
KBSI2013
Papers
research question of whether there will be an increase or movement to multiplicative language
across the lessons as the tasks become more discrete in nature.
Research Questions.
The present case study attempts to address the following specific research questions.
Knowledge Building Behaviours.
1) Did the students collaborate, build onto, and extend each other's ideas? Is there an
increase in these behaviours between lesson 1and lesson 4?
2) Did all the students participate in working on the proportion challenges? Were there any
off-task behaviours? Were they using a collective use of language?
Multiplicative Reasoning.
3) Was there an increase in the number of multiplicative reasoning codes between lesson 1
and lesson 4?
4) Did the students make use of both within and between-variable reasoning, in solving the
challenges in lesson 4?
Potential Benefit of KB for Multiplicative Reasoning.
5) Is there a co-occurrence of the KB codes and multiplicative reasoning codes that is
greater in lesson 4 than lesson 1?
Results and Discussion
In our analyses we compared lesson 1 to lesson 4. As we described earlier in preceding
sections of the paper, both lesson 1 and 4 used the same knowledge building circle format. Both
lessons two and three were different. One involved small group activity and the other involved
presentation of student-created problems. Therefore for the purpose of these analyses we
compared multiplicative reasoning and knowledge building behaviours of lesson 1 and lesson 4.
Knowledge Building Behaviours
The defined build-on, extension, and collaboration codes were detected abundantly throughout
the transcripts. As table 1 indicates, the proportion of each of the coded discourse units to the
total number of discourse units were much larger in lesson 4 than lesson 1, suggesting that the
children adapted to the KB set-up and made use of these approaches in advancing their
knowledge as a group. When one child built onto another child’s idea, further ideas manifested.
See Table 1 for these values.
Table 1
Proportion of Discourse Units Coded with KB Behaviours
Knowledge Building Behaviour
Lesson 1
Lesson 4
Build-on (bdo)
19%
47%
Extension (extn)
19%
31%
Collaboration (clln)
5%
14%
120
KBSI2013
Papers
All children were immersed in the discourse and were actively participating. See Figure 1
for a visual representation from KBDeX reflecting the extent to which students were knowledge
building and multiplicatively reasoning similarly to their peers. The thickness of the lines
indicates the extent to which each student displayed knowledge building behaviours and
multiplicative reasoning similarly to other students.
A frequency count of only four discourse units, by two students reflected off task behaviours
demonstrating a high level of engagement as well.
Multiplicative Reasoning
Absence of Additive Reasoning.
Initially we also coded for additive reasoning, as the literature states young children begin
their proportional reasoning using additive strategies (Van Dooren et al., 2010). However,
inconsistent with the literature, there was less additive reasoning happening initially (two
instances in total). This can be accounted for by the knowledge building structure of the lessons
which have been revised many times as a part of a Japanese lesson study (Moss, Comay,
Figure 1.Student network based on co-occurring knowledge building behaviours and
multiplicative reasoning. The teacher and researchers were taken out of the analysis.
Stephenson, & Halewood, in preparation). The absence of additive references could be because
the lesson and the questions were structured in such a way to divert thinking away from additive
reasoning. For instance, the teacher presented Longy with four pellets and Shorty with two pellets
and asked the students why they think these are just the right amounts. The KB circle allowed for
discussion to be steered towards more accurate strategy use and misconceptions were quickly
addressed by one’s peers through verbal reasoning. Since this was a classroom where knowledge
building is a central focus, the students have gained a disposition to partake and contribute to
discussions.
Growth in Multiplicative Comparison and Operations and Grouping Language.
Findings also indicate that proportions of discourse units involving multiplicative
comparisons, multiplicative operations, and grouping language were all greater in lesson 4 than
lesson 1 indicating more multiplicative reasoning displayed in the discourse by the time the
121
KBSI2013
Papers
intervention was complete. Counting by language increased slightly, multiplicative action and
fraction language both decreased which can be observed as being due to the nature of the lessons.
Lesson 1 involved discussion on showing that Shorty was half of Longy and thus involved folding
strategies and a discussion on how he is 1 out of 2 in fraction form. Halving language also
decreased which can be expected since the handover to discrete/ numerical proportionality would
have encouraged less emphasis on “half” or “halving” and more on multiplicative and divisional
operations. These values can be viewed in Table 2. Overall, the students became more
multiplicative in their reasoning. Particularly impressive was the way students began to use the
language of multiplicative operations by the 4th lesson because in this class the students had no
formal instruction in either multiplication or division. The use of multiplicative comparison
language- that students refer to two separate multiplicative relations in a single explanation –
revealed a sophistication of reasoning pointing to a deep understanding of the proportional
relations in the problems.
Table 2
Proportion of Discourse Units Coded with Multiplicative Reasoning
Multiplicative Reasoning Type
Lesson 1
Lesson 4
Multiplicative Action (ma)
13%
0%
Multiplicative Comparison (co)
6%
31%
Multiplicative Operation (mo)
3%
28%
Fraction Language (fl)
14%
6%
Counting By (cb)
1%
8%
Grouping Language (gl)
3%
11%
Halving Language (hl)
14%
8%
Within and Between-Variable Reasoning.
As stated in the introduction, Fernandez et al. (2009) assert that a deep understanding of
proportional reasoning is evident in the use of both within and between-variable relationships.
The difference between them can be illustrated with an example; if one can purchase 2lbs of
cherries for $8, and one wishes to purchase 5lbs, to determine the cost one could use within or
between reasoning; to determine the cost using ‘within-variable’ reasoning relates lbs to lbs (2lbs
to the 5lbs desired (2:5)) and then one can apply this ratio to the cost. If one engages in betweenvariable reasoning, one compares lbs to dollars (2lbs to the $8 cost (1:4)).
In this study, we analyzed the use of within and between-variable reasoning in lesson 4. Our
analysis revealed that the group came up with three different ways of explaining within-variable
reasoning and two different ways of explaining between-variable reasoning when solving the
candy cane problem. An example of a within-variable explanation is as follows, “I know that
three…ten times three is thirty and five times three is 15 so it must be 15.” Here the student
compares cost to cost (10 times three is 30) and number of candy canes to number of candy canes
(5 times three is 15). An example of a between-variable explanation is as follows, “um it's like
two ways… one is half because that (points to five candy canes) is half of ten.” Interestingly, one
child used another strategy outside of within and between reasoning, “I realized that um if you ...
it's two, each candy cane is two cents and half of 30 is 15.” This child used the strategy of
122
KBSI2013
Papers
unitizing – determining how much one candy cane costs and applying this unit price to the new
situation. The more difficult fish and pellet question yielded two different within-variable
descriptions and a between-variable description. A student who was reasoning within-variables
stated, “I looked and saw that there's two and if you divided this (8 fish) by two it's four and I did
four times five is 20.” This student used the 2:8 or 1:4 relationship to reason. Between-variable
reasoning was stated as follows, “so we saw that two fish need five pellets so two fish make five
then two more need 10, two more 15, and two more 20 (2:5 relationship).” One child even
explained why he thought another child came to a different answer, “so 2 is 5 so you go five, 10,
15, 20 so you just count by fives except you go like that so you don't do 5, 10, 15, 20, 25, 30, 35,
40, 'cause I think that's what Theo and Harrison did 'cause they didn’t look at it's 2 fish equal 5.
These students were making great use of discourse and verbalizing their thinking, but one can
also see that they have come to very advanced understandings of discrete proportions for children
of their age, having used so many different strategies.
Potential Benefit of KB for Multiplicative Reasoning
Although it cannot be said for sure, it is suggested that the knowledge building context had
great influence on this outcome of such multiplicative thinking. The network of coding—
knowledge building and multiplicative reasoning codes—displays a noteworthy enhancement
between lesson 1 and lesson 4. Despite the different participation structure in lesson 2 (small
group discussions), we noticed students were making use of both build-ons and were using more
accurate multiplicative reasoning; although the actual analysis compares lesson 1 and 4 due to the
similar KB circle structure of the lessons, the network is also displayed from lesson 2 which
shows an appropriate middle-ground between lesson 1 and 4. It must also be noted that not all the
small group discussions were captured in lesson 2. Figure 2 displays the connections among
these codes from lessons 1, 2, and 4; thicker lines indicate more frequent co-occurrences within
the same discourse units.
123
KBSI2013
Papers
Figure 2.This analysis looked at the co-occurrence of knowledge building behaviours and
multiplicative reasoning in lessons 1, 2 and 4. Multiplicative comparisons (mc) and
multiplicative operations (mo) are particularly associated with the KB behaviours in lesson 4.
124
KBSI2013
Papers
In lesson 1 the salient connections are between extensions, fraction language, and
multiplicative comparisons and also between build-ons, halving language, and multiplicative
actions. These are noteworthy since they involve both KB behaviour and multiplicative
reasoning, however there is a lack of cohesiveness and overall connectedness. Notice that
multiplicative operations are not connected to any other code in lesson one; this means students
were not using ‘multiplied by’ or ‘divided by’ language at this point while using other reasoning
strategies and knowledge building behaviours.
In lesson 2, build-ons took a central role in the discourse as one can see in Figure 2. Thick
lines indicate strong connections between build-ons and extensions, halving language,
multiplicative operations, fraction language, and multiplicative comparisons. The students have
begun using extensions that are also classified as build-ons (whereas before an extension may be
merely presenting the first idea to the teacher’s question, now students are advancing the groups
knowledge by presenting new ideas) while also incorporating multiplicative operations. An
example from the discourse that represents a build-on, extension, multiplicative comparison, as
well as halving language is as follows, “because if Shorty is half of Longy, then he'll always have
less pe- ... half of the number of pellets that Longy has.” His new idea is a generalization that had
not been suggested at this point, but he is also building onto the conversation. Multiplicative
operations became integrated; for example, with these quotes, “but you can't divide 100 by 40,
because you can't divide 10 by 4 and so you can't divide …” and “you're dividing it by 4 because
baby is... baby...you can have four Babies to equal Longy.” Here multiplicative operations are
being used in conjunction with build-ons, extensions, multiplicative comparisons, and fraction
language.
Finally, lesson 4 displays a noteworthy web of connections between build-ons, extensions,
collaborations, multiplicative comparisons, and multiplicative operations. Here is an example, “I
did it on the back of the sheet I did 10 cents equals five 20 cents is two tens 20, and then five plus
ten and then 30 another five 15.” This student is presenting a new idea, building on the
conversation, making a multiplicative comparison, and is using multiplicative operations. The
students came to make use of the knowledge building behaviours to foster their multiplicative
reasoning. The thicker lines between the mentioned five codes which indicate that the knowledge
building strategies and the multiplicative reasoning are associated which supports the hypothesis
that the knowledge building culture of the lessons may be responsible for the advanced,
sophisticated outcomes.
The lessons began with an intuitive, continuous depiction of proportional reasoning that
young children have been shown capable of understanding. Since an intuitive model was explored
first, the connections to discrete representations were made more easily through verbal reasoning.
To date research shows that young children have great difficulty understanding proportionality
when it is presented in the form of numerical applications. The present study demonstrates that an
understanding of proportion is possible for children as young as six-years-old when approached
appropriately. Furthermore, as outlined in the literature, mathematical discourse is an emphasized
and important feature of math learning. However, there are many challenges reported for both
students and teachers in math talk classrooms. We speculate that the extent and quality of math
discourse would be greatly enhanced if we used a knowledge building framework for the
introduction to proportional reasoning. Our results reveal that a knowledge building discourse
structure appeared to support students in making gains in their understanding of proportion. The
students in the present study made use of knowledge building discourse which resulted in the
sharing and refinement of their knowledge (Chiarotto, 2011). The analysis of the transcripts
reveals that the knowledge building discourse structure encouraged participation from all
students. Based on the large number of extensions noted in the transcripts, epistemic
responsibility was held by the students to share their ideas and build on them. In summary, the
125
KBSI2013
Papers
knowledge building environment, coupled with the intuitive-to-numerical learning context are
likely to have been factors leading to these gains in children’s understanding.
Conclusion
It is well known in the research literature that proportional reasoning can be challenging to
students of all ages. In addition, it is known that while a math discourse classroom is highly
desirable to enhance students’ mathematics learning, this kind of discourse class is challenging to
achieve. The advanced use of multiplicative reasoning and students’ abilities to solve extension
problems shown by these grade one students reveal that in suitable circumstances, even young
students can reason proportionally. In addition, the degree of interaction and student input into the
class discussions that were discovered in this study support the benefits of a knowledge building
framework. Finally, the association between the multiplicative reasoning and the knowledge
building behaviour suggests that they do tend to occur together and perhaps knowledge building
behaviours foster multiplicative reasoning. However, there were limitations to this study. Since
we did not have a control group and did not pre-test the children, it is difficult to make claims
about the growth of their understanding. We also cannot know whether different types of school
settings would yield the same results. Further research might explore the relationship between
knowledge building and mathematics learning.
Acknowledgements
I’d like to thank my supervisor and colleague of this project, Dr. Joan Moss for her
continued support and guidance. She has taught me lot about conference preparation, the research
process and about the literature on proportional reasoning and the importance of discourse in
mathematics. I’d also like to extend thanks to the members of Joan’s research lab who helped
with the data collection.
Thanks also to JICS grade one teacher, Zoe Donoahue for teaching the lessons and for
allowing us to collect data in her classroom. The research could not have been possible without
her and her students.
A special thanks also to Jun Oshima and Yoshiaki Matsuzawa who guided us through analyses
using KBDeX, as well as Dr. Marlene Scardamalia and Dr. Carl Bereiter for their professional
input that contributed to the project.
Relevant Conference Themes
Intellectual Engagement
Sustained Work with Ideas
References
Baxter, J., Woodward, J., & Olson, D. (2001).Effects of reform-based mathematics instruction on
low achievers in five third-grade classrooms. Elementary School Journal, 101, 529–549.
Boyer, T., Levine, S.C. & Huttenlocher, J. (2008). Development of proportional reasoning:
Where young children go wrong. Developmental Psychology, 44, 1478-1490.
Bruce, C.D (2007). Student interaction in the math class: Stealing ideas or building
understanding. Research Monograph #1.
Cazden, C. B. (2001). Classroom discourse: The language of teaching and learning (2nd ed.).
Portsmouth, NH: Heinemann.
126
KBSI2013
Papers
Empson, S. (2003). Low performing students and teaching fractions for understanding: An
interactions analysis. Journal for Research in Mathematics Education, 34, 305-343.
Goswami, U. (1989). Relational complexity and the development of analogical reasoning.
Cognitive development, 4, 251–268.
Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence.
NewYork: Basic Books.
Jeong, Y., Levine, S. C., & Huttenlocher, J. (2007). The Development of Proportional Reasoning:
Effect of Continuous Versus Discrete Quantities. Journal of Cognition and Development,
8(2), 237–256.
Kazemi, E. & Stipek, D. (2001).Promoting conceptual thinking in four upper elementary
mathematics classrooms. The Elementary School Journal 102(1), 59–81.
Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping
children learn mathematics. Washington, DC: National Academy Press.
Koellner-Clark, K. & Lesh, R. (2003).Whodunit? Exploring Proportional Reasoning through the
Footprint Problem. School Science and Mathematics.103, 92–98 doi: 10.1111/j.19498594.2003.tb18224.x
Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical
framework for research. In F. Lester (Ed.), Second handbook of research on mathematics
teaching and learning, (pp. 629-666). Reston, VA: National Council of Teachers of
Mathematics.
Lampert, M. (1990). When the problem is not the question and the solution is not the answer:
Mathematical knowing and teaching. American Educational Research Journal, 27, 29-64.
Lanius, C. S., & Williams, S. E. (2003).Proportionality: A unifying theme for the middle grades.
Mathematics Teaching in the Middle School, 8(8), 392–396.
Martino, A. M., & Maher, C. A. (1999). Teacher questioning to promote justification and
generalization in mathematics: What research practice has taught us. Journal of Mathematical
Behavior, 18, 53–78.
Ministry of Education (2005). The Ontario Curriculum Grades 1-8: Mathematics.
Ministry of Education (2012). Paying Attention to Proportional Reasoning K-12: Support
Document for Paying Attention to Mathematical Education.
Mitchelmore, M., White, P., & McMaster, H. (2007).Teaching ratio and rates for abstraction. In J.
Watson & K. Beswick (Eds.), Mathematics: Essential research, essential practice
(Proceedings of the 30th annual conference of the Mathematics Education Research Group
of Australasia, pp. 503-512). Adelaide: MERGA.
Mix, K.S., Huttenlocher, J. & Levine, S. C. (2002).Quantitative development in infancy and early
childhood. New York: Oxford.
Moss, J. (2005) Pipes, tubes, and beakers: Teaching rational number. In J. Bransford and S.
Donovan (Eds.), How Children Learn: History, Science, and Mathematics in the Classroom.
National Academy Press. pp 309-351.
Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: A new
model and an experimental curriculum. Journal for Research in Mathematics Education,
30(2), 122–147.
Moss, Comay, Stephenson, and Halewood (manuscript in preparation).Proportional reasoning
learning in early years classrooms: Integrating continuous and discrete representations.
National Council of Teachers of Mathematics. (2000). Principles and standards for school
mathematics. Reston, VA: National Council of Teachers of Mathematics.
National Research Council. (2001). Adding it up: Helping children learn mathematics. In J.
Kilpatrick, J. Swafford, & F. Bradford (Eds.), Mathematics Learning Study. Center for
Education, Division of Behavioral and Social Sciences and Education. Washington, DC:
National Academy Press.
127
KBSI2013
Papers
Chiarotto, L. (2011). Natural Curiosity: A Resource for Teachers. Building Children's
Understanding of the World through Environmental Inquiry. Oshawa, Ontario: Maracle Press
Ltd.
Oshima, J., Oshima, R., & Matsuzawa, Y. (2012). Knowledge Building Discourse Explorer: a
social network analysis application for knowledge building discourse. Educational
Technology Research and Development, 60, 903-921.
Piaget, J., & Inhelder, B. (1975).The origins of the idea of chance in children. New York: Norton.
Scardamalia, M., & Bereiter, C. (2003). Knowledge Building. In Encyclopedia of Education. (2nd
ed., pp.1370-1373).New York: Macmillan Reference, USA.
Schlottmann, A. (2001). Children’s Probability intuitions: Understanding the expected value of
complex gambles. Child Development, 71, 103–122.
Sherin, M. G. (2002). A balancing act: Developing a discourse community in a mathematics
classroom. Journal of Mathematics Teacher Education, 5, 205-233.
Sophian, C. (2000). Perceptions of proportionality in young children: Matching spatial ratios.
Cognition,75, 145–170.
Sophian, C., & Wood, A. (1997). Proportional reasoning in young children: The parts and the
whole of it. Journal of Educational Psychology, 89, 309–317.
Van de Walle, J., & Lovin, L.A. (2006). Teaching student-centered mathematics: Grades 5-8.
Boston, MA: Allyn & Bacon.
Van Dooren, W., De Bock, D., & Verschaffel, L. (2010).From addition to multiplication… and
back. The development of students‟ additive and multiplicative reasoning skills. Cognition
and Instruction, 28(3), 360-381.
Walshaw, M. & Anthony, G. (2008). The Teacher's Role in Classroom Discourse: A Review of
Recent Research into Mathematics Classrooms Review of Educational Research 78: 516
originally published online 28 August 2008.
Zhang, J., Hong, H.-Y., Scardamalia, M., Teo, C. L., & Morley, E. A. (2011). Sustaining
Knowledge Building as a Principle-Based Innovation at an Elementary School. Journal of the
Learning Sciences, 20(2), 262–307. doi:10.1080/10508406.2011.528317.
128
KBSI2013
Papers
A Knowledge Building Journey: Reflections of New Zealand Senior
Secondary Teachers
Kwok-Wing Lai, Centre for Distance Education and Learning Technologies
University of Otago College of Education, New Zealand
Email: [email protected]
ABSTRACT: This paper documents some initial reflections of eight teachers who
participated in a two-year Knowledge Building project in New Zealand senior
secondary classes in 2012. As a researcher-practitioner project, this project has a
specific focus on how the Knowledge Building approach could be successfully
integrated into the existing curriculum and implemented in the normal day-to-day
classes. As a case study, teachers were interviewed three times in 2012 and a
thematic analysis was undertaken to understand the issues related to the
implementation process. This paper contributes to a better understanding of some
of the practical issues that teachers face in using the Knowledge Building
approach and Knowledge Forum in their senior secondary classes in New Zealand.
Introduction
A two-year project was undertaken in nine New Zealand senior secondary classes (four onsite, five at a distance) in 2012-2013, with a specific focus on how the Knowledge Building
community model (Scardamalia & Berieter, 2006) could be successfully integrated into the
school curriculum. This paper documents some initial reflections of the eight participating
teachers (one teacher took two classes) after they have completed the first year of the project, and
its focus is on integration and implementation. It is noted that Knowledge Building research
conducted in the last three decades primarily focused at the primary level (e.g., Bielaczyc & Ow,
2010; Oshima, et al., 2006; So, Seah, & Toh-Heng, 2010; Zhang, Scardamalia, Lamo, Messina, &
Reeve, 2007), and it is not clear how the knowledge building approach and Knowledge Forum
can be effectively integrated into the senior secondary school curriculum where teachers have to
meet externally imposed assessment requirements. There is also a concern that Knowledge
Building communities may not be effectively established in distance classes since students have
limited or no face-to-face communications. This paper aims at contributing to a better
understanding of some of the practical issues that teachers face in using the Knowledge Building
approach and Knowledge Forum in their senior secondary classes.
Participants
The eight participating teachers (four male, four female) came from different parts of New
Zealand. While only three of them had some prior knowledge of the Knowledge Building
pedagogy with two of them having used Knowledge Forum before joining this project, this group
of teachers was very much “pre-disposed towards actually using Knowledge Forum and
Knowledge Building” (Teacher K). They were experienced computer users and most of them
were also leaders of their schools (there were three ePrincipals and two assistant/deputy
principals in the group). Two of the teachers did a postgraduate course on Knowledge Building in
2012. A researcher-practitioner community was developed in 2012 with face-to-face and
video/audio-conferencing meetings held regularly to support the participating teachers.
Teachers participating in this project all aspired to improving their teaching. While all the
teachers had some understanding of the constructivist and inquiry-based learning models, they
were attracted to the Knowledge Building pedagogy because they wanted to shift towards a more
129
KBSI2013
Papers
student-centred style of teaching, as reflected by the following teachers when asked why they
participated in this project:
I‘m sad to say…it’s not what I want to be but the reality is, yes, I am a knowledge
transmitter…it just needs to become a lot more learner centred and greater
participation…devolving of control (Teacher CO).
[students are] too dependent on me to give information, to learn. I want them to be
independent learners and independent of me to an extent…I am the one who’s writing all the
material they’re reading (Teacher TA).
Of the nine classes in the first year of this project, four of them were on-site classes, and five
were distance classes. The on-site classes were located in two main cities and a provincial town,
and the distance classes were offered by the New Zealand Virtual Learning Network, with most
of the students coming from rural areas. In the distance classes, students met one hour a week via
video-conferencing, and they had three additional hours per week to conduct independent study.
Teachers typically spent one school term (ten weeks) with their Knowledge Building classes
(refer Table 1).
Table 1: Summary of participating teachers and classes in Year 1
Subject/Class
Year
Biology
11
1
9
Art History
13
1
9
Economics (Class 1)
12
1
8
Economics (Class 2)
12
1
9
Economics
13
1
13
Physics
13
1
13
Accounting
12
1
16
Classics
13
1
25
English
11
Total
Classroom
based
Videoconferencing
1
4
Number of
students
23
5
124
Data collection
A case study approach was used in this study. The participating teachers were interviewed
individually twice in 2012, at the beginning and end of the year. In addition, a group meeting was
held at the end of the year for teachers to reflect individually and as a group on the process and
outcomes of their Knowledge Building classes. As a design-based project, these reflections were
used to help re-design the Knowledge Building classes that teachers would teach in the second
year of the project. Following Yin (2009), a thematic analysis was undertaken on the interview
transcripts to understand the issues related to the implementation process, and to address the
following research question:
130
KBSI2013
Papers
How can a knowledge building community be designed and effectively integrated into the
New Zealand senior secondary classes, both in the classroom-based and distance learning
contexts? What factors will affect the roles of the teachers and what teaching strategies and
design principles do teachers use to support students’ advancement of knowledge?
Findings
A real pedagogical shift
Using the Knowledge Building approach in teaching requires a huge pedagogical shift for
senior secondary teachers. As expressed by Teacher M,
for me this Knowledge Building and Knowledge Forum is a true pedagogical approach that
requires a real knowledge shift…it’s actually for real. I’ve done things before and it’s just like,
ohh yeah, ho hum but…this actually causes something quite significant to shift.
Teachers in this project had difficulties in articulating how the Knowledge Building model
was different from the other inquiry based learning models. For example, after a year of working
with their students in Knowledge Building, when asked how they communicated the Knowledge
Building pedagogy to their colleagues, one teacher responded:
[teachers] will think it’s just another example of inquiry learning…so it’s nothing new to
them…I’ll find it quite hard to explain to them that Knowledge Building is more than just inquiry
learning…(Teacher CO).
It took time for teachers to develop their own understanding of the Knowledge Building model
and their understanding would affect how they taught their classes. For example, for Teacher CO,
his initial understanding of Knowledge Building was that “a big part of this Knowledge Building
is asking the right questions, you need to ask the right question”, so in his class, the emphasis was
not so much on ideas improvement, but asking the right questions and providing the right
answers. Eventually after discussing with other teachers and the researchers, his understanding of
Knowledge Building has changed, and he began to ask more facilitating type of questions.
Similarly, for Teacher S, Knowledge Building is not so much about developing new idea, as
“knowledge building is very much the way I teach anyway. I’m about the kinds and them
exploring to find the answers and working together”.
In contrast, Teacher TO put a huge emphasis on ideas improvement. In the opening note of
one of his Knowledge Forum views, he wrote:
We are doing great so far but we can do better. We are functioning as a knowledge building
community pretty well already. To further enhance our knowledge creation, we need to be
thinking more about how useful our contributions are to the rest of the community.
Teachers had to spend time and efforts to understand the application of this pedagogy. For
Teacher M, it has been a long journey:
I need to spend a lot of time with it before I throw it out to students…it feels like the more I
learn, the more I need to know and the shift and the changes in my thinking have been really,
really interesting and quite profound, I think…a real intense investment in thinking really deeply
and it is interesting.
It is the same for Teacher D,
It took quite a long time to get my head around the practical application and how was it going
to work in the classroom and I certainly, right from the get-go, was really keen and understood
the approach…I might say my understanding developed over time.
131
KBSI2013
Papers
It is also important that teachers are conversant with Knowledge Forum and it takes time for
teachers to know how to Knowledge Forum to support discourse effectively. As reflected by
Teacher D:
It’s one of those tools, the more you use, and the deeper you dig, the more understanding you
develop…like Knowledge Building itself, I think there’s still quite a bit more for me to learn. It’s
really just a matter of continuing to use it.
One teacher waited until the third term before she introduced Knowledge Forum to her class.
By then she had lost the confidence of using it and she ended up not using it at all in her class.
If you’re using it, it becomes really familiar and you can work out the, the tweaks of it but I
waited until…halfway through term two before I started and I’d forgotten…so much and so
therefore I lost my confidence… (Teacher CA)
Teachers could have a great influence of how students used Knowledge Forum in their classes.
For example, Teacher S didn’t like Knowledge Forum, so her students by and large didn’t like it
either. Teacher S confessed:
It never helps if your teacher doesn’t either…I think that’s always going to influence them.
And I just came across as a nag…if the teacher hates (laughs), they are not going to push it with
the kids.
In the first year of the project, there was not sufficient time for the teachers to use the
scaffolding tools effectively, and none of them had used the rise above notes with their students.
Teachers also found that it was important to provide a navigational structure for their students to
move around from one view to the other, and to provide a structure for discussion, including the
expectation of how often and what to contribute by the students.
The role of the teacher
Similar to what has been reported in the literature (Lee, Chan, & van Aalst, 2006), teachers in
this study felt that it is essential to develop a collaborative learning culture and a safe
communication environment in the class (both on-site and distance) in order to prepare their
students to participate in the Knowledge Building process. One distance teacher established the
following “ethos” with her students (Lai et al., 2012):
1.
2.
3.
4.
5.
6.
7.
Safety of the participants
Trust of and in the community and the facilitator
High expectations
Engagement with subject matter and the community
Good Communication
Netiquette of emails, knowledge forum, internet and video conferencing
Encouragement to foster discussion therefore increasing knowledge and advancement of
understanding
8. Transferrable skills
9. Regular participation
Teachers had difficulties in deciding how much they should be involved in the Knowledge
Forum discussions. Table 2 provides a few examples of the amount of contribution of questions
by teachers and students in some selected views. For Teacher CO, he just fell back to what he
knew best as a teacher, and was deeply involved in asking and answering questions. In contrast,
Teacher M used a more hands-free approach, supporting her students to become self-regulated
learners. Other than being a distance teacher, she also used the Knowledge Building principles in
her on-site class (not part of the project):
132
KBSI2013
Papers
…because I’d been introducing this language about Knowledge Building…getting that student
to work with that student or how about talk to them about their ideas and see what you come up
with…in that first part of the year…having to step back…but quite quickly I saw the students fill
that gap, whereas I hadn’t seen like in other years…[they] are in a situation where they learn
really effectively from each other and produce really good work out of it…because of an
understanding of the Knowledge Building principles.
Table 2: Teachers and students’ contributions to question in selected views
Class
View
No
tes
Contribut
ors
W
hat Q
(T)
Why/H
ow Q (T)
W
hat Q
(S)
Why/H
ow Q (S)
Teache
r TO
3rd
problem
39
14
0
1
11
5
Teache
r CO
Cause
s of econ
growth
56
6
11
5
2
1
Teache
rM
Best
theory
32
7
0
0
3
3
Knowledge Building has created a different class dynamic. As a teacher who used to lecture in
his classes, Teacher TO felt that he was redundant.
…the first time that I felt redundant in the classroom…it is quite weird…But now that’s what I
want, all the time, because then I can get in amongst the kids, you know.
Teacher M has changed her way to talk to her students in her distance class:
The way that I would sort of lead and prompt a discussion has changed. Like a student might
start to explain an idea and then sort of second-guess themselves, I’m able to jump in and say, all
of the ideas are important.
The tension of assessing students
In New Zealand, there is a national curriculum and it was revised in 2007. The importance of
building students’ capacity as knowledge creators is emphasized in this revised curriculum
(Ministry of Education, 2007) and students are encouraged to acquire the competency of
becoming “competent thinkers and problem solvers, [who] actively seek, use, and create
knowledge” (p. 12). So in terms of using the Knowledge Building approach in teaching there
should not be an issue, in theory, as pointed out by one of the teachers,
In term of the New Zealand curriculum, I think it has actually integrated quite nicely with
those sort of key principles of the New Zealand curriculum…in terms of Classics…it has fit in
really nicely (Teacher D).
However, in practice, how assessments are done may be a problem. In New Zealand, formal
schooling starts at the age of 5, and there are six years of primary (Years 1-6), two years of
intermediate (Years 7-8), and five years of secondary school (Years 9-13). In the last three years
of secondary school (Years 11-13), students are assessed internally and externally, in preparation
for entrance to tertiary institutions. The New Zealand's National Certificates of Educational
133
KBSI2013
Papers
Achievement (NCEA) are national qualifications for senior secondary school students introduced
nationally in 2002. There are three levels in NCEA, each has its achievement standards (AS),
assessed through internal and external assessments. Depending on how well students meet these
standards, they will gain either achieved, merit or excellence credits. There are also scholarship
examinations taken by high achieving students in a number of subjects. NCEA is administered by
the New Zealand Qualifications Authority (NZQA).
These achievement standards are driving the curriculum and course content and how teachers
teach in senior secondary classes. As commented by Teacher K,
assessment in senior secondary is always the elephant in the room and if you don’t figure
out…how can we do it differently [using the Knowledge Building approach] which actually
challenges the conventional sort of formatively and summatively evaluating what’s going on…
There is a tension between NCEA content and the Knowledge Building approach. The NCEA
content is very prescriptive. In contrast, the Knowledge Building approach encourages students to
generate and develop ideas and ask questions which may not be related directly to the curriculum.
Teacher CO had some doubts of whether Knowledge Building was compatible with the
curriculum.
…with the current assessment approach taken by NZQA, other than for internal assessment, I
don’t see us being able to use Knowledge Forum currently as assessment evidence…external, no;
internal, yes. There’s a long way to go in that the learning culture [culture of investigation] that
we have at the moment that has developed with our students is not one that assist with
Knowledge Building…they’re so used to the transmission model…it can be quite frustrating for
them because there’s no immediate answer or right and wrong as far as they’re concerned…time
was an issue.
Teacher M agreed with this observation:
The NCEA style of thinking…teaching is fitting, matching the exam…it’s almost like here’s
the knowledge, memorise it whereas Knowledge Building is about what is the important
knowledge? How can we learn about that? How can we work together to find out what’s
important? So there is a huge mismatch…Even for the excellence level, it feels like it’s funneling
down rather than opening up.
Knowledge Building is about developing ideas within a community, which comes into direct
conflict with an examination system which measures individual achievements, as pointed out by
Teacher K:
There is this quite strong tension between that individual and sort of community action and
achievement…this ‘answer’ culture that knowledge is sort of factual rather than knowledge is
something which is improvable…The Standards at Level one, are quite neat and defined, that’s
problematic…
In a credit gaining culture, students could see the Knowledge Building approach as a waste of
time, as noted by Teacher CO,
I did have a couple of boys who refused to engaged and said it was a waste of time…this
culture in secondary schooling of about getting credits…and they look at them as covering
content and answering questions correctly. That’s how they see how learning happens…they
want to know how does this discussion ensure that I get credits in my end of year exams.
While Teacher agreed that there are constraints in using the Knowledge Building approach
with NCEA assessment, teacher K was optimistic,
134
KBSI2013
Papers
[NCEA] doesn’t constrain the context and the direction where you’re trying to prompt kids to
look or go…it’s more a matter of being sufficiently imaginative, I think, to actually almost spark
those energetic questions or to recognize those energetic questions which will actually attract the
attention of, things that actually do align with curriculum demands.
In fact, in a meeting with a NZQA assessment leader to discuss how assessments could be
embedded in the Knowledge Building environment, he assured our teachers that NCEA had
sufficient flexibility in both its internal and external assessments to accommodate the Knowledge
Building approach.
So how was assessment being undertaken in the first year of the project in the Knowledge
Building classes? In these nine classes assessments were done in three different ways.
In Teacher TO class, his Knowledge Building class was an extension class for high achieving
Year 13 physics students, with some of them intended to sit for the scholarship examination. He
used a problem-based approach and students were asked to solve four problems related to
curriculum content. Since students already had a good understanding of the content, they were
asked to generate ideas to deepen their understanding and develop new solutions to the problems,
as a preparation for external assessment. The teacher has always had an extension class with high
achieving students so the Knowledge Building class was not seen as an ‘add-on’ to the
curriculum and he was under no stress to cover new materials. No internal assessments were done
during his Knowledge Building class.
All the other teachers (except one) tied their Knowledge Building classes with some external
assessment standards. For example, for Teacher TA, her Knowledge Building class was a Year 11
English class and the topic of study was a Visual Text achievement standard 1.2 (external
assessment) to study the film Social Network. In a school term (10 weeks) students had two
periods a week using computers in the library to work with Knowledge Forum, individually and
in groups. There were also two in-class periods per week where students discussed as a class of
what they have done online, clarifying ideas and developing learning techniques via movie and
class based activities (Lai at al., 2012). Students were asked to write assignments to demonstrate
their understanding in meeting the achievement standard, as a kind of formative assessment, and
also served as a ‘practice exam’, in preparation for the external exam held at the end of the year.
Teacher D was the only teacher in the group who tied an NCEA internal achievement standard
with the Knowledge Forum discussion. At the end of the project he went over all the notes
contributed by the students and assessed each student individually. He found it difficult to assess
in this way.
NCEA, the nature of standard base assessment made it quite difficult…being reasonably
prescriptive…it’s quite difficult to go thru students’ work and grade it…I don’t like the idea of
grading what they’ve done because it defeats the purpose of it to some extent. So it didn’t fit that
well into NCEA.
He was planning to do assessment in a different way in the second year of the project. Instead
of going through all the notes contributed by each student, he would grade a final product
produced by the students, and it shouldn’t be done as a special project, but “more integrated with
the normal day to day sort of functions of the class”.
Teacher M felt that Knowledge Building could be used more effectively with those students
who were heading towards the scholarship exams because the NCEA standards seemed to fit in
more with the open-ended questions that students would be getting at the scholarship level.
Teacher D agreed:
135
KBSI2013
Papers
When I think about external assessment for Classics, it’s fairly content focused whereas
Scholarship, the questions are more analytical and they’re more open-ended and far broader, so
that would work really well with those sorts of questions.
Knowledge Building in distance classes
One unique feature of this project was that five of the nine classes were distance classes. How
to provide support for students to use Knowledge Forum at a distance and how to develop a
collaborative learning culture are two key issues for these classes. For students who have not
done any VC classes before, they not only have to know how to use the VC equipment, but also
Knowledge Forum. For Teacher CA, who had a large number of immigrant students (with 15
Year 12 students in her class, there were 14 nationalities), it was technically too challenging, so at
the end she chose to use Google doc which the students had already knew how to use as the
platform for discussion.
In face-to-face classes social interactions may be taken for granted but in online classes the
provision of social support and community is important. As pointed out by Teacher K, “if you
haven’t got participation, you haven’t got community and you can’t do Knowledge Building”.
However, it seems that Knowledge Forum is not a good software to support the social aspect of
communication. As commented by this teacher,
When I think of situations where I’ve been in genuine Knowledge Building, they’ve always
been a social community of “Hey look, we’re in this together”…but the technology [Knowledge
Forum] itself doesn’t seem to support that very well…I notice certainly [Teacher M] has had a
Facebook sort of page going there.
Without having a community in distance classes, Knowledge Building is not possible.
I started the official module…they did a Ghandi on me, the passive resistance came out, and
they just refused to participant, they’d come to the VC, we’d have the discussion…I had to
respect their agency, I guess…they don’t like it, in an online environment, you’ve got a bigger
challenge…two loners and they were desperate to engage…put notes out and then nothing came
back… (Teacher K)
In distance classes, we understand that while sometimes extra efforts have to be put in
providing technical support and developing a community, it is by no means that it can not be
done, and in fact, there may be some positive factors in using Knowledge Forum in distance
classes as distance students tend to be more conversant with the use of technologies to support
learning.
Infrastructural and technical issues
A multiple-site license was purchased for the project and a central server was used to host the
Knowledge Building databases. Except for one class, students found it difficult to access the
enhanced version of Knowledge Forum both from school and at home. Most students thus had to
settle with the basic version which they didn’t like.
[students] just found that the website [the basic mode] was very 1980…They’re far used to
something that looks flasher and so I think the dislike for it was more aesthetic than it was
practical…it wasn’t intuitive to start with…they’ve had to learn and I find that sometimes when it
comes to using online tools, they prefer something that’s relatively intuitive…(Teacher TA)
136
KBSI2013
Papers
Even for the enhanced version where Teacher TO’s students could access in school, they
didn’t like it:
In terms of the pedagogy, it’s brilliant but the tool, Knowledge Forum tool is a bit of a dog, to
be honest. It’s great what it does but it’s not that easy sort of get the kids on to it and I think it’s
just really a function of it being quite old…and it’s just all these extra bits and pieces that have to
be in place…
Three teachers complained that Knowledge Forum was not used much in their Knowledge
Building classes primarily due to problems of accessibility.
Discussion and conclusion
The first year of the project was a learning journey for the teachers and the researchers. It has
taken teachers a long time to understand the theory and practice of Knowledge Building but it
was definitely a worthwhile experience. Teacher M’s summarises it well (Lai, et al., 2012):
Investigating Knowledge Building this year has been very timely. It allowed me to reflect on
and reframe my own role as an educator and classroom teacher. Moving to the Knowledge
Building paradigm has enabled me to begin restructuring my role as a teacher, which should
allow me to work in a much more sustainable and effective way for the foreseeable future, as well
as enabling students greater control and understanding of their own learning. I am inspired by the
power of Knowledge Building to reveal and destablise outmoded and ineffective educational
practices and structures. For me, it is a truly future-focused, twenty- first century pedagogy.
Teachers also came to an understanding that using the Knowledge Building approach really
couldn’t be a one-off event, as suggested by Teacher K:
It isn’t something we switch on…that you don’t turn it off, on for a topic and then off for a
topic…you are building a whole course…you’re establishing a way of doing which is
fundamentally very different and therefore to actually switch on a class and run it on a fairly
conventional way and then sort of say, okay, then we’re into Knowledge Building. Like it was
always artificial…
Teachers were committed to spend more time with the students in using the Knowledge
Building approach in the second year of the project. With the seven classes that are continuing in
2013, all except one have started their Knowledge Building projects in the first term, and they
will run through the whole year, so that students can develop the “habits of mind” (Teacher CO)
of Knowledge Building. The issues of how to better integrate assessments into a Knowledge
Building environment will be a key focus in the second year of the project.
Acknowledgements
The author would like to thank all the participating teachers, students, and researchers of this
project. Ann Trewern has assisted in data collection, and Fiona Stuart in editing this paper. The
author also wishes to acknowledge the funding support provided by the Teaching and Learning
Research Initiative (TLRI), New Zealand Ministry of Education.
References
Bielaczyc, K. & Ow, J. (June 2010). Making knowledge building moves: toward cultivating
Knowledge Building communities in classrooms. In Proceedings of the 9th International
Conference of the Learning Sciences, Vol 1. International Society of the Learning Sciences.
Retrieved from http://portal.acm.org/.
137
KBSI2013
Papers
Lai, K.W., Bolton, C., Bennett, C., Campbell, M., Kelly, S., Proctor, T.Y., Pullar, K., Sudlow, D.,
& Zaloum, T. (2012). Designing knowledge building communities in New Zealand secondary
schools: Some preliminary reflections. Computers in New Zealand Schools, 24(3), 278-307.
Lee, E, Y, C., Chan,C.K.K., & van Aalst, J. (2006). Students assessing their own collaborative
knowledge building. Computer-Supported Collaborative Learning, 1, 57–87.
Ministry of Education. (2007). The New Zealand Curriculum. Wellington: Ministry of Education.
Oshima, J., Oshima, R., Murayama, I., Inagaki, S., Takenaka, M., Yamamoto, E., & Nakayama,
H. (2006). Knowledge-building activity structures in Japanese elementary science pedagogy.
Computer-Supported Collaborative Learning, 1, 229–246
Scardamalia, M. & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology.
In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 97-118). New
York: Cambridge University Press.
So, H-J., Seah, L., & Toh-Heng, H. (2010). Designing collaborative knowledge building
environments accessible to all learners: Impacts and design challenge. Computers &
Education, 54, 479-490.
Yin, R. (2009). Case study research: Design and methods. Thousand Oaks, CA: Sage
Zhang, J., Scardamalia, M., Lamon, M., Messina,R., & Reeve R. (2007). Socio-cognitive
dynamics of knowledge building in the work of 9 and 10 year olds. Educational Technology
Research and Development, 55,117–145.
138
KBSI2013
Papers
Desarrollo de Habilidades de Pensamiento en la Formación Meta
Cognitiva del Pensamiento Crítico en los Estudiantes de Nuevo Ingreso a la
Licenciatura en Educación Normal
Olga Sara Lamela Rios, Universidad La Salle Puebla
Email: [email protected]
RESUMEN: Con la riqueza de diferentes teorías y con base a modelos en estándares de
competencias para el pensamiento crítico de enfoque constructivista, se condujo un
estudio con una docente a un grupo de 49 estudiantes de nuevo ingreso en la Escuela
Normal “Vicente de Paul”. Puebla.
Se estableció un objetivo general: demostrar la incidencia del taller de desarrollo de
habilidades del pensamiento en la formación metacognitiva del pensamiento crítico en
estudiantes de nuevo ingreso a la Licenciatura en Educación Normal, de la Escuela Normal
“Vicente de Paul”, durante el periodo escolar 2012-2013.
El Trabajo se desarrolló con grupos naturales o intactos y que mostraron interés por tomar
el taller, durante diez sesiones de 2hs semanales se realizaron dos tomas de datos, la primera,
se aplicó un pre test previo al desarrollo del taller y la segunda, se aplicó un pos test
posterior al mismo.
El pre test arrojó un diagnóstico que permitió elaborar un programa de formación con
predominio de la articulación de la teoría con la práctica privilegiando el análisis reflexivo,
crítico y valorativo como un ejercicio sistematizado de las habilidades que se reforzaron en
el desarrollo del taller, una necesidad, que estimula el proceso metacognitivo del
pensamiento crítico, ejercitando una dinámica de trabajo con enfoque constructivista.
El pos-test, permitió reconocer el nivel de dominio de habilidades del pensamiento crítico
logrado por los estudiantes con respecto a las variables: comprensión conceptual: se
evaluaron los conocimientos conceptuales con respecto al pensamiento crítico,
razonamiento, la capacidad de análisis y de comprensión, los resultados se contrastaron
entre los obtenidos en la aplicación del pre test con los del pos test marcándose una mejora
del 31%.
En la variable competencias del pensamiento crítico, se evaluaron, conocimientos,
destrezas y actitudes como, las relaciones de causa-efecto, orientación espacial, silogismos,
transitividad, clasificación, inferencias, sentido lógico de sus expresiones entre otras
necesarias para ejercer su propia actividad en la organización de su trabajo, al comparar las
evaluaciones del pre test con las del pos test, se percibió una mejora del 33%.
En la Variable. Naturaleza formativa: se evalúo la comprensión de los procesos básicos
del pensamiento para ejercitarlos y transformarlos en nuevos conocimientos, enfrentando las
diferentes circunstancias propias de las necesidades del ser humano, generar ideas, cadena
de palabras, frases u oraciones, mejorar ortografía, leyendo y comprendiendo textos.
Haciendo el contraste entre el pre y post test, se notó una mejora de un 49.5%
Se practicaron análisis cuantitativos descriptivos, que muestran que en la primera etapa
los alumnos de nuevo ingreso evidencian conocer significativamente la conceptualización y
características del pensamiento crítico más no piensan críticamente como una herramienta
de formación personal, mientras que en la segunda después de tomar el taller los alumnos,
mostraron un avance significativo en el desarrollo de los estándares de competencia en
habilidades de pensamiento crítico. Diferencia que se observa después del análisis
comparativo que se hizo entre las variables a partir del desempeño de los estudiantes en el
proceso del taller.
139
KBSI2013
Papers
Palabras clave: inteligencia, pensamiento, constructivismo, competencias para el
pensamiento crítico, metacognición.
ABSTRACT
Based on different theories and constructivist competence-standards models for critical
thinking, a research was conducted at Escuela Normal “Vicente de Paul” in Puebla, México.
The participants were a professor and 49 new students.
The general objective for this research was to know the impact of a Thinking Skills
Development Workshop on the critical thinking metacognition of these new students in the
Bachelor program at Escuela Normal “Vicente de Paul”, during the 2012-2013 period.
The work was developed with intact groups of people who showed their interest to take the
workshop for ten two-hour weekly sessions.
Data was collected twice, one with a pretest applied before the workshops, and another one
with a post-test after the workshop.
The pre-text results served to diagnose the possibility to develop a formation program in
which the predominance was the articulation of the theory and practice favoring the
reflective, critical and values thinking as a systematic exercise of the skills which were
reinforced with the workshop, a necessity that stimulates the meta-cognitive process of the
reflective thinking, performing a constructive-based work dynamic.
The post-test led to the identification of the critical thinking skills level reached by the
students regarding the variables:
a) Theory comprehension, knowledge related to critical thinking concepts, reasoning, and
ability to analyze and comprehend were evaluated. The results contrasted with those
obtained in the pretest, indicating an improvement of 31%.
b) Critical thinking competences, in this variable, there was an evaluation of the knowledge,
skills and attitudes such as the cause-effect relationships, spatial orientation, syllogisms,
transitivity, classification, inferences, and sense of their expressions, among others
considered as basic to carry out their duties in the organization of their work. By comparing
these with the results in the pretest, the improvement was 33%.
c) Formative Nature, the comprehension of basic process was evaluated so that they could
be transformed into new knowledge, facing the circumstances of the human beings’ needs
such as the generation of ideas, words, phrases, or sentences chains, improving spelling by
reading and understanding texts. The comparison with the pretest results reveals an
improvement of 49.5%.
After the application of instruments, a descriptive quantitative analysis was carried out. Pretest results show that new students know the concepts and characteristics of critical thinking
to a great extent, but they do not use critical thinking as a personal formation tool. Post-test
results show a significant progress in the development of competence standards regarding
critical thinking skills. The difference is evident after a comparison made between the
variables of the student’s performance during the workshop.
Keywords: intelligence, thinking, constructivism, critical thinking competences,
metacognition.
140
KBSI2013
Papers
INTRODUCCIÓN
El pensamiento crítico, en el campo educativo, bien podría considerarse un fin fundamental
de la educación, que se cristaliza a través del ejercicio académico-didáctico, donde el estudiante
aprende a desarrollar sus habilidades básicas del pensamiento: de comprensión, de reflexión,
solución de problemas, de manera eficiente y eficaz; dándole la oportunidad de centrase en el
pensamiento más que en el aprendizaje de conocimientos.
Desde otro enfoque Facione (2007) sostiene que la tarea educativa tiene el compromiso de
desarrollar un nivel de pensamiento crítico que permita el desarrollo social de las personas;
cultivando a los estudiantes en actitudes, capaces de producir nuevas ideas, formándolos en
sujetos que saben pensar crítica, creativa y libremente, para tomar decisiones y orientar su vida de
acuerdo a lo que descubren como valioso; cuya tendencia fundamental es la búsqueda de la
verdad.
De acuerdo con este modo de concebir el pensamiento crítico, Borgo (2006) sostiene que
“se siente como una necesidad social”, que permite cuestionar los discursos y motivos
políticos, religiosos, conocimientos científicos en diferentes escenarios de modo que se aspire a
una sociedad justa y democrática.
Se entiende que la acción educativa pretende estructurar cambios positivos, y provocar
aprendizajes significativos en los estudiantes, con referencia a los conocimientos que adquieren.
Esto se propone el profesor al ejecutar su clase y lo expresa de manera taxativa en los objetivos.
Se supone que la estrategia metodológica-didáctica también se estructura en ese sentido; más
la experiencia lleva a constatar que el rendimiento escolar denota siempre resultados no acordes
con lo que se desea. Esto puede significar:
Que los objetivos; proponen una meta muy alta que no se llegan a conseguir con las
actividades previstas, o, que el profesor no ejercitó la mediación necesaria; no precisó el
desarrollo cognitivo del conjunto de conocimientos que aspiraba promover en el estudiante, o no
desarrolló las estrategias de aprendizaje que estimularan los procesos mentales o las formas de
cognición necesarios para conseguir una correcta experiencia de aprendizaje.
La realidad que presentaron los estudiantes de nuevo ingreso a la Escuela Normal “Vicente
de Paul” era un limitado desarrollo de la capacidad para pensar críticamente, a la luz de un
trabajo educativo muy teórico donde el poco uso de estrategias de pensamiento, provocaban
argumentaciones de bajo nivel cultural y denotaban la poca práctica de la lectura crítica, y
comprensiva. Corrobora este planteamiento el análisis de los resultados del examen de ingreso a
la Educación Normal.
En la época presente, la educación enfrenta retos y desafíos del mundo globalizado y de la
sociedad del conocimiento, que exige y reclama una educación de calidad, preparar profesionales
competentes y competitivos, provocando cambios de paradigmas en diferentes aspectos
educativos, olvidándose de pensar en el ser humano como un sujeto histórico y como persona
dotada de valores.
Nuestro mundo se caracteriza por una diversidad de estudiantes producto de la masificación
de la educación y de los grandes esfuerzos porque todos la tuvieran, esto amerita una educación
centrada en el humanismo.
Por lo anterior, se realizó un taller: desarrollo del pensamiento crítico en estudiantes de
nuevo ingreso a la Licenciatura en Educación Normal, estuvo orientado por los estándares de
competencia para el pensamiento crítico como marco de referencia para evaluar las aptitudes de
141
KBSI2013
Papers
pensamiento crítico en los estudiantes, permitió determinar que tanto están razonando
críticamente sobre un tema, texto, o una asignatura.
Estos estándares proporcionaron indicadores para identificar hasta donde los estudiantes usan
el pensamiento crítico como la herramienta principal para su aprendizaje. Los que internalizaron
estos estándares de competencias vivieron la experiencia de desarrollar habilidades en su
comunicación y en la resolución de problemas Paul y Elder (2005)
Teniendo en cuenta las exigencias de la Educación Superior contemporánea el taller se
enriqueció con una metodología activa de aprendizaje colaborativo con un enfoque social
cognitivo constructivista, que considera al conocimiento como producto de la interacción social y
de la cultura, poniendo énfasis en los procesos mentales para llegar a conclusiones concretas.
¿Qué es el pensamiento crítico?
Querer saber sobre el pensamiento crítico, es hundirse en la profunda historia de la filosofía
que nos remite a la Grecia de los siglos VII y VI a.C. La Grecia democrática que tuvo como
grandes pensadores a Sócrates, Platón, Aristóteles. Si bien es cierto, que ellos fueron los pioneros
de la filosofía como reflexión racional sistemática sobre el mundo y la vida del hombre, van
también, desarrollando la crítica filosófica y que se fue relacionando y creciendo con la polis de
la Grecia democrática, donde los ciudadanos decidían en debate abierto y a través de muchas
discusiones la forma de gobierno que querían.
Habría que reconocer que la filosofía griega estuvo orientada hacia la búsqueda de la verdad
usando como única estrategia su experiencia personal, la razón y la evidencia misma. Los
pensadores gracias a la crítica, fueron ganando respeto y un lugar en la polis.
Nos enriquece Luzuriaga (1997) diciendo que, con Grecia empieza una nueva era en la
historia de la humanidad, la era de nuestra cultura occidental, de ella se derivan nuestra educación
y nuestra pedagogía, donde destaca el descubrimiento del valor humano del hombre en sí de la
personalidad independiente de toda autoridad política y religiosa; destaca además el
reconocimiento de la razón autónoma de la inteligencia crítica, liberada de algunos dogmas o
consideraciones externas.
En la polis ateniense, manejaban la estrategia de la retórica como el arte de persuasión.
Proponer y comprender críticamente argumentos complejos era una habilidad considerada de
gran valor.
Entendemos que Sócrates quiso imprimir nuevos rumbos a la filosofía griega, centrándose
fundamentalmente en la búsqueda de la naturaleza de la verdad y de la bondad verdaderas. El
método socrático, para Paul (2005) constituye la más conocida estrategia de enseñanza de
pensamiento crítico y revela la importancia de lograr en procesos de pensamiento tanto claridad
como consistencia lógica,
Opina, Bunge (2010) que el pensamiento crítico, supera a lo mágico, como a lo religioso, a
las ideologías tradicionales, seudociencias y a las seudofilosofías como la fenomenología y el
existencialismo, todas estas son doctrinas dogmáticas y que todas ellas merecen la crítica del
pensador crítico, el que exige al teólogo que pruebe la existencia de Dios; al neoliberal, que
pruebe que el libre comercio elimina la pobreza y que si las elecciones bastan para asegurar la
democracia; estas interrogantes no las puede hacer cualquier persona pero sí pensadores críticos
con conciencia crítica y no simples repetidores de conocimiento.
Explica, Paul (2005) en los últimos años ha habido un despertar y reconocimiento del
pensamiento crítico, empezaron primero en los Estados Unidos en la década de los treinta, y
luego en diferentes espacios en los cincuenta, sesenta y setenta. En los ochenta y noventa
142
KBSI2013
Papers
alcanzaron su máxima difusión pública. Sin embargo, a pesar de toda la información que existe
sobre la importancia y el papel que tiene el pensamiento crítico en la educación, existe una mala
interpretación; es más ilusión que realidad.
Nel Nodding. (2005) profesora de la Universidad de Stanford, plantea, que “los filósofos y
los educadores coinciden, en la importancia del pensamiento crítico; pero no han podido ponerse
de acuerdo sobre en qué consiste y mucho menos concuerdan en cómo enseñarlo”. Así mismo
ofrece en su obra: El Pensamiento Crítico en el Aula (2007) una serie de recursos para trabajar en
el aula que ayudan a desarrollar esta capacidad en los estudiantes de Educación Básica y Media,
utilizando como estructura articuladora para estos, las 6 destrezas intelectuales para el
pensamiento crítico identificadas por el panel de expertos, cuyo consenso se publicó bajo el título
del Informe Delphi (The Delphi Report). Las seis destrezas articuladoras son: interpretación,
análisis, evaluación, inferencia, explicación y auto regulación.
Paul y Elder (2005) presentan una guía para los educadores: Estándares de Competencia para
el Pensamiento Crítico, incluyen indicadores para identificar hasta donde los estudiantes emplean
el pensamiento crítico como la herramienta principal para el aprendizaje.
La autora, Priestley (2009) nos manifiesta que las habilidades del pensamiento son básicas
para el proceso de aprendizaje, pero ¿pueden los estudiantes aprender a desarrollarlas y acceder
así a niveles más elevados de discernimiento? La experiencia educativa de la autora, durante casi
dos décadas, tanto en las escuelas de Estados Unidos como de América Latina, le ha demostrado
que no basta con que los alumnos adquieran un cúmulo de conocimientos cuya aplicación
práctica sea poco probable.
Afirma que en la actualidad es palpable la necesidad de que los educandos desarrollen el
pensamiento crítico, y que la enseñanza de sus técnicas y estrategias se incorporen de manera
integral a los programas educativos de todos los niveles.
Conceptualización y características del pensamiento crítico,
Pensar con sentido crítico, nos proporciona la oportunidad de reflexionar y analizar sobre
nuestros propios conocimientos, y nos hace percibir una realidad concreta de manera consciente,
empática y cada vez más generosa, con la responsabilidad a que ésta compromete, para ponernos
en condiciones de poder cambiar y romper las estructuras que nos limitan en nuestra propia
formación personal y profesional, con la finalidad de ser partícipes en la conformación de una
sociedad justa, armónica e integrada socialmente.
El pensamiento crítico según Facione (2007), se puede considerar como un pensamiento de
excelente calidad para una mejor calidad de los aprendizajes y de la vida.
En esta consideración, Scriben y Paul (2004, citado en Durón y Limbach 2006) explican que
pensar es parte de nuestra naturaleza, pero que el sujeto que piensa ha estado por mucho tiempo
abandonado en sí mismo y a su suerte, se tenía de él una información parcializada, a menudo
sesgada y prejuiciada. Es necesario reconocer que cuando pensamos no lo hacemos en vacío, el
pensar está siempre relacionado con contenidos o temas de nuestro interés; pero cuando no lo
hacemos de manera responsable caemos en errores con consecuencias muchas veces insalvables,
de la calidad de nuestros pensamientos depende la orientación que demos a nuestras vidas y a
todo aquello que es parte de nuestro entorno, por eso es de rigor cultivar de manera sistemática el
ejercicio de un pensamiento de calidad, es decir crítico.
Por su parte, Norris y Ennis (1990, citados en Nava 2005), definen al pensamiento crítico
como razonable y reflexivo, que está enfocado hacia el decidir en qué creer o qué hacer.
Considera que se debe ser consciente y responsable de lo que pretende asumir, buscar la verdad.
143
KBSI2013
Papers
Argumenta, López (2006), que hay que comprender a la criticidad como la tendencia
fundamental del hombre a buscar la verdad, y el pensamiento crítico como el pensar claro,
sistemático y ordenado, orientado hacia esta búsqueda.
La criticidad hay que entenderla como el dinamismo o potencial; que se ejercita a través el
pensamiento crítico.
Además hay que considerar que los procesos cognitivos se acompañan de la inteligencia
emocional, para Goleman (1999), la Inteligencia emocional es: Conciencia, valoración,
confianza en sí mismo.
Toda persona aspira a pensar bien durante todos los momentos de su vida, pensar no es
solamente propio de los inteligentes, exitosos o sabios, el mundo actual demanda que los sujetos
deben adaptarse a la dinámica social, que exige mayor preparación, mayores conocimientos, y el
desarrollo de habilidades que permitan pensar bien.
Teniendo en cuenta lo anterior, pensar críticamente cobra importancia fundamental en la
cultura de la época en la primera mitad de la década de los 70, se tenía bastante claro que el
desarrollo de la educación tenía que soportarse en uno de sus pilares: el desarrollo de la
“criticidad”.
La corriente liberadora del educando-educador propuesta por Paulo Freyre, pasaba por la
concepción de que educar era desarrollar la “conciencia crítica” centrada en el diálogo de los
sujetos. En este sentido tenemos que aceptar que la educación, juega un papel muy importante al
tener que comprometer a los docentes a enseñar a sus estudiantes a analizar, problematizar y
participar como actores comprometidos con su contexto.
Lippman (1990 citado en López, M. 2006), propone tres características fundamentales de
pensamiento crítico:
•
•
•
Es autocorrectivo, capaz de ir descubriendo sus propias deficiencias e ir reflexionando y corrigiendo sus propios procesos. Es sensible al contexto; por tanto, sabe discernir cómo y en qué momento expresar sus juicios para que sean realmente útiles en el contexto en el que afirman. Se refiere a un parámetro, que es claro en cuanto a los marcos de referencia, los alcances y limitaciones del juicio que emite. Ante las versiones expuestas se impone el desarrollo de una metodología que nos pruebe la
hipótesis que se plantea bajo el rigor de un diseño de investigación pre-experimental de un solo
grupo, de pre-test - pos- test.
HIPÓTESIS
A mayor aplicación del taller: desarrollo de habilidades del pensamiento, mayor formación
metacognitiva del pensamiento crítico en estudiantes de nuevo ingreso a la Licenciatura en
Educación Normal, de la Escuela Normal “Vicente de Paul” durante el periodo 2012-2013
METODOLOGÍA
En atención al problema planteado en este artículo, se presenta una investigación con enfoque
de corte cuantitativo descriptivo y con soporte cognoscitivo constructivista, realizado con
estudiantes de nuevo ingreso a la Escuela Normal “Vicente de Paul”. El estudio reviste un interés
especial cuando se comprende que es conveniente la intervención de un taller que desarrolle las
144
KBSI2013
Papers
habilidades de pensamiento en la formación metacognitiva del pensamiento crítico, como una de
las formas de perfeccionar el perfil profesional.
En el taller se pudo combinar el aprender a conocer con el aprender a hacer para
aprovechar desarrollar las competencias del pensamiento crítico en un ambiente de colaboración
aprendiendo a convivir desarrollando su comprensión con otros y aprendiendo a ser para que
florezca su propia personalidad estimulando su autonomía y responsabilidad personal en la
construcción de saberes desarrollando su coraje intelectual.
El taller se aplicó durante diez intervenciones de dos horas cada una, bajo la mediación de
la docente; con el propósito de responder a las preguntas planteadas y para lograr el objetivo de
estudio.
Los sujetos de estudio fueron conformados por el universo de 49 estudiantes de nuevo
ingreso, como grupo natural o intacto.
El instrumento: pre prueba-pos prueba, se elaboró teniendo como referencia los estándares
de las competencias para evaluar las aptitudes de pensamiento crítico, diseñando previamente un
cuadro de especificaciones para tres variables: Comprensión conceptual, Competencias del
pensamiento crítico, Naturaleza formativa, de acuerdo al estudio, por cada variable se anotaron
algunos indicadores y preguntas que evalúan las competencias que deben dominar los estudiantes
para desarrollar el pensamiento crítico; quedando estructurado el instrumento inicialmente por 41
items, después de haber sido sometido al jueceo de dos expertos, un metodólogo, un asesor de
tesis, y de haberse realizado el pilotaje por cinco alumnas y después de haberse analizado las
observaciones y sugerencias, se hicieron los cambios correspondientes, se enriqueció el
instrumento y quedó conformado con 35 preguntas de gran rigor académico.
Resultados de propuesta, al finalizar el desarrollo de la propuesta, y después de la aplicación
del post test, se notó un cambio positivo en los estudiantes reflejando mayor énfasis en el
desarrollo de su atención y escucha, lee y emite mensajes y conceptos en diferentes contextos,
sustenta la lógica de sus respuestas ante una pregunta de estructura lógica, argumenta, utiliza con
facilidad referentes teóricos y metodológicos. Sigue instrucciones y procedimientos de manera
reflexiva, comprendiendo cómo cada uno de sus pasos contribuye al alcance de un objetivo.
Discusión
Reconociendo que las habilidades de pensamiento crítico se construyen paulatinamente
y que abarcan diferentes niveles de complejidad; debe incorporarse en el plan curricular de la
educación superior, con la intención de que el desarrollo del pensamiento crítico se de en el
proceso de formación de los estudiantes de nuevo ingreso, considerándolo como un componente
fundamental en su perfil de egreso.
CONCLUSIÓN
Un hallazgo importante detectado en este estudio: los alumnos conceptualizaban al
pensamiento crítico e identificaban sus elementos, pero no sabían pensar críticamente; sin
embargo durante el desarrollo del taller como algo importante se les facilitó las inferencias
lógicas y se notó el esfuerzo por mejorar sus modos de pensar, el avance del estudio mostró que
la educación debe comprometerse con el concepto y desarrollo del pensamiento crítico, dándole
un lugar preferencial en el curriculum, o manejándose de manera transversal y permanente en
cada una de las asignaturas para evitar se quede en la oscuridad brindándole al estudiante la
oportunidad de centrarse en el pensamiento más que en el aprendizaje de conocimientos.
Se debe valorar al pensamiento crítico como una necesidad permanente y consustancial a
la vida de las personas.
145
KBSI2013
Papers
Se logró en alguna medida que los estudiantes tomen conciencia que pensar críticamente es
seguir un proceso reflexivo, justo, que analiza, autorregula el pensamiento, organiza la
información de acuerdo con categorías, jerarquías y relaciones. En la variable comprensión
conceptual se observó una mejora de un 31 %, un 33% en la variable competencias del
pensamiento crítico y un 49.5% en la variable naturaleza formativa.
Se manejó la pregunta como poderosa herramienta de formación del pensamiento, en
cuatro niveles propuestos por García (2010) Literales, que hacen referencias a los datos que se
obtienen en las fuentes de información. Exploratorias, que involucran el análisis y
descubrimientos de los propios pensamientos o inquietudes. De procesos, que se refieren a los
procesos del pensamiento necesarios para resolver y analizar situaciones complejas.
Metacognitivas, consideradas como un atributo clave para el pensamiento formal.
Agradecimientos
El Presente estudio se ha podido llevar a cabo gracias a la ayuda que se ha recibido.
En primer lugar agradezco de manera muy especial a los directivos de la Escuela Normal
“Vicente de Paul”, por facilitar se ejecute el proyecto de intervención.
Al Dr. Oscar Hernández López, Dr. Edgar Gómez Bonilla, Dr. Julio Allende Hernández, por
su invaluable asesoría en el desarrollo de esta investigación, y a los estudiantes participantes que
mostraron mucha voluntad para participar en este proyecto.
Lista de temas del summer Institute en los que puede ser inducido el trabajo:
Más allá en buenas prácticas en el trabajo del conocimiento
BIBLIOGRAFÍA
Borgo, A. (2006, agosto.). Pensamiento crítico: ¿necesidad o lujo académico?. Segundo congreso
Iberoamericano de pensamiento crítico, realizado en Lima, Perú: Versión electronica.
Extraído el 02.02.2010.
Bunge (2010) Pensamiento crítico vs. Macaneo. Mensaje enviado a la Primera Conferencia
Iberoamericana en Arghentina sobre Pensamiento Crítico desde Montreal. Canadá.
Durón, R. & Limbach B. (2006). Marco de pensamiento crítico para cualquier disciplina.
Versión electrónica. Revista internacional de la Enseñanza y el aprendizaje en la educación
superior. 1-9. Extraído el 11.01.2010.http://www.isetl.org/ijtlhe/12.01. 2010.
Http.//manuelgross.bligoo.com/content/view/190786/
Ennis, R. (1.987). A taxonomy of critical thinking dispositions and abilities. In J.
Facione P. (2007). Pensamiento crítico. ¿Qué es y por qué es importante? Versión electrónica.
Extraído 02.02.2010.
Goleman, D. (1999). La inteligencia emocional, Buenos Aires, Argentina : Verlap.
González H. (2006. en prensa). Pensamiento Crítico y El proyecto educativo de la Universidad
Icesi..
López, M. (2006). Pensamiento Crítico y Creatividad en el Aula. México: Trillas.
Luzuriaga, L. (1997). Historia de la Educación y la Pedagogía. Argentina: Losada.
Lippman, M. (2001).Pensamiento Complejo y Educación. Madrid: ediciones de la Torre.
Nel Nodding (2007).El pensamiento crítico en el aula. Publicación en Eduteka: agosto 01 de 2007
Paul, R., Elder, L. (2005) Estándares de Competencia para el Pensamiento Crítico. EE.UU.
Fundación para el pensamiento crítico.
Priestley, M. (2009). Técnicas y Estrategias del Pensamiento Crítico. México: Trelles.
Nava, J. (2005).Leer y escribir para ser sujeto. México: KCS.
146
KBSI2013
Papers
“Drawing Out” Students’ Voices: Students’ Perceptions about Learning Science
Through Ideas First, a Knowledge Building Approach
John Ow, National Institute of Education, Nanyang Technological University, Singapore
Email: <[email protected]>
Katerine Bielaczyc, Hiatt Centre for Urban Education, Clarke University, USA
Email: <[email protected]>
ABSTRACT: This study presents students’ perspectives of Ideas First, a
Knowledge Building approach to learning science in an elementary school. This
approach was designed to enact shifts in how classrooms viewed ideas as conceptual
artifacts, developed epistemic agency and fostered collective cognitive
responsibility, when learning science. These shifts highlight the difference between
traditional classrooms and classrooms that are on a trajectory consistent with
Knowledge Building Communities. Drawings from 815 students were analyzed to
gather insights into the perspectives of students about learning science through the
approach. Results from the analysis provide a sense of the shifts that took place in
classrooms learning science through Ideas First. They also shed light on the
complex nature of Knowledge Building in classrooms making the shifts, which is
akin to a “patchwork” of activities taking place through different social
arrangements threaded together by the goal of students’ collective work to improve
ideas.
Keywords: Knowledge Building, Knowledge Building Communities, Ideas First,
student drawings
Introduction:
“I guess the children have no problem…they actually find out about what they know what
they do not know and they try to build on that …So the children take responsibility which is a
good skill to have because they don’t get spoon fed by teachers.”
A teacher articulates the above in response to a question about how students in her grade 4
class learn science through Ideas First (Bielaczyc & Ow, 2010), an approach for learning science
based on the socio-techno determinants of a Knowledge Building Community (Scardamalia,
2002). In her response we find the teacher highlighting the students’ agency for idea
improvement while learning Science through Ideas First. This and many other quotations from
our conversations with teachers, provide us, the design researchers with a good sense of student
learning in classrooms, from the perspectives of teachers. This though may not be how students
see themselves learning science through the approach.
The perspectives of students are important in developing a multi-perspectival understanding
of learning through Ideas First. Teachers’ perspectives can provide insights into the pedagogic
innovations co-designed to enact Knowledge Building in Ideas First classrooms as well as
feedback on the design of Ideas First when implemented in classrooms. These perspectives are
valuable in understanding teachers’ enactment of Ideas First in classrooms. However, as design
researchers, we are also interested in students’ perspectives of learning through Ideas First.
Students’ perspectives can provide insights into the students’ experience of learning in
classrooms, potentially uncovering aspects of Ideas First significant and meaningful to students
when learning through the approach. Their perspectives also provide important feedback about
our design for Ideas First. The focus of the paper is to examine students’ perspectives of learning
147
KBSI2013
Papers
science through Ideas First. This program was co-designed with primary school teachers and has
been operating in grade 3 and grade 4 classrooms since 2006 (Bielaczyc & Ow, 2007; Ow &
Bielaczyc, 2007). The program is based on the vision of a knowledge building community where
students work to advance the science understanding of the classroom community by engaging in
collectively building knowledge.
Knowledge Building Communities
The Knowledge Building Communities (KBCs) model and its associated technology
Knowledge Forum have been in the field of CSCL for over 20 years (Berieter, 2002; Berieter &
Scardamalia, 1993; Scardamalia, 2002; Scardamalia & Berieter, 2006). The vision of classrooms
as knowledge building communities is for students to build collective knowledge with “fidelity to
the ways work with ideas is carried out in the real world” (Scardamalia, 2002, p.6). The aim of
the classroom community is to advance the frontiers of their knowledge. In KBCs, students work
to identify problems of understanding, create theories, carry out research and investigations in
order to refine their theories over time, revise their problems and strategies, and share and
monitor the progress of the community towards its goals. The central ideas of the KBC model are
captured in 12 knowledge building principles, which include “real ideas, authentic problems,”
“epistemic agency,” and “community knowledge collective responsibility” (Scardamalia, 2002;
Zhang, et al., 2011).
One of the central challenges faced in the creation of KBC classrooms, is that the KBC
model is often enacted in classrooms with an existing culture for learning. This culture for
learning can be very different from that of KBCs. Hence bringing the KBC model to life in K-12
classrooms involves designing for shifts in the classroom culture from one that is more
traditionally focused on individual learning to another where the emphasis is on the progressive
improvement of ideas and collective efforts towards common goals of understanding. Three
specific shifts highlight the difference between traditional classrooms and classrooms that have a
trajectory consistent with KBCs: ideas as conceptual artifacts, developing epistemic agency and
fostering collective cognitive responsibility (Bereiter, 2002; Scardamalia, 2002; Scardamalia &
Bereiter, 2006). In KBCs, treating ideas as conceptual artifacts involves treating ideas as public
objects, available to the community for its knowledge building endeavors. Developing epistemic
agency in KBCs involves students assuming agency to set goals, make plans and carry out the
plans to understand the community’s problems. Fostering a sense of collective cognitive
responsibility among members of KBCs involves students taking social responsibility to advance
not only their knowledge but also that of the community. Designing for these shifts is a long term
process.
Despite the importance of designing classrooms as KBCs, little is known about actual
designs of classrooms as KBCs. The efforts of Caswell and Bielaczyc (2001) provide valuable
insights into the structure of learning activities within the classroom to support student inquiry. In
their study, they outline the notion of “…knowledge-building activities – ways students can work
with ideas and with each other to deepen their understanding in a particular area of inquiry”
(p.282). Van Aalst and Truong (2011) provide further details in their design to support
knowledge creation in an Asian elementary classroom. They re-surfaced the practice of using the
knowledge wall to foster a sense of safety when sharing ideas and to allow students practice with
knowledge creation discourse. In their design, they also introduce the practice of “Quality Circle
Time” to support whole-class talk. Our design research focuses on the construction of
implementation paths or on the design of trajectories that students and teachers can traverse in
order to navigate these desired shifts (Bielaczyc, 2006, 2013; Bielaczyc & Collins, 2006).
We believe that an important design consideration is the social infrastructure of the learning
environment. One way to think about the design for the necessary classroom social infrastructure
is through the lens of the Social Infrastructure Framework (Bielaczyc, 2006). This framework
148
KBSI2013
Papers
brings attention to the culture and beliefs of the classroom, the practices of the classroom, the
arrangements of people around technology and connections to communities external to the class.
Attending to these dimensions of the social infrastructure, we have designed an approach for
learning science, Ideas First, with supportive tools and practices to help classroom communities
navigate shifts that put them on a trajectory consistent with KBCs. Through our design research,
we seek to deepen understanding for designing classrooms as KBCs.
Ideas First
Ideas First is an approach for learning science based on the KBCs model. It has been
implemented in all grade three and four science classes of a Singapore elementary school since
2006. Students of all learning abilities learn science through this approach.
Prior to the implementation of this approach, science lessons were scheduled in 30-minute
periods where topics were segmented into short presentations based on material in textbooks and
activities guided by activity books. Given the high stakes nature of the Singaporean exam system,
this approach ensured that focus tended toward “coverage” of key topics and practice on examtype questions with “model answers.” In order to move toward knowledge building, we redesigned the school-based curriculum for science in grades 3 and 4. The science content was
arranged to support inquiry into specific problems. The resulting structure of Ideas First involves
students working together on four problems across each year in Grades 3 and 4. One major
problem guides each 10-week term, with a total of eight terms across Grades 3 and 4. This
problem oriented focus facilitated students’ extended inquiry and collective efforts to advance the
classroom community’s understanding of the problems. During extended inquiry, students carried
out investigations in science laboratories and the school gardens; as well as used the Internet and
library resources to collect evidence for their collective work to advance understanding on
problems. Knowledge Forum was used to share and support the students’ work.
In addition, we also designed technologies such as Think Cards, Sun Charts and Hypothetical
Game Configurations to help classroom communities navigate the shifts from more traditional
classrooms to classrooms on a trajectory consistent with KBCs as well as support students’ work
with ideas where the technology of Knowledge Forum was unavailable e.g. in classrooms and
science labs (Bielaczyc & Ow, 2007; Bielaczyc & Kapur, 2010; Ow & Bielaczyc, 2007).
Our design of Ideas First, consequently, places students’ ideas and their collective work with
ideas, in a KBC as the centerpiece of the curriculum.
Student drawings
Just as students’ ideas are the focus of Ideas First, we seek similarly to bring to the fore
students’ perceptions about learning science through Ideas First. Central to finding out students’
perspectives about the learning of science through “Ideas First” are efforts to give a voice to the
students. One way to do this is through the use of student drawings. Student drawings can be an
alternative way to document educational change, providing young children (Golomb, 1992) and
nonverbal communicators (Tovey, 1996) opportunities to shared their perspectives. Based on a
three year study of school reform across schools, Haney, et al. (2004), found that the analysis of
student drawings “... was a simple and powerful way to document changes in the educational
ecology of schools.”(p.244). In addition, they also found that they were able to analyze reliably
the features that appeared in student drawings.
The use of student drawings though is not widespread in educational research. A body of
research exists in science education that investigates students’ images of scientists using the draw
a scientist test (Chambers, 1983). Aside from this, student drawings have been used on occasions
to elicit students’ conception of schools (Selwyn, Boraschi & Ozkula, 2009; Wang & Tsai, 2012),
school experiences (Einarsdottir, 2010) and learning (Lodge, 2007). Student drawings have also
been used to assess learning following learning interventions (Bowker, 2007; Chapman,
149
KBSI2013
Papers
Greenfield, & Rinaldi, 2010; Cainey, et al., 2012). Although student drawings are not widely
used, the researchers who do use them argue for student drawings as a valid way of understanding
students’, especially young children’s views about educational issues.
The use of student drawings we feel provides us a way to “draw out” students’ perspectives
about learning science through Ideas First. Student drawings have been used in a South Asian
elementary school context to understand students’ conceptions of traditional classrooms (Wang &
Tsai, 2012). This study found that when students in traditional South Asian classrooms were
asked to draw themselves learning, students depicted themselves sitting and listening to lectures.
Although we are beginning to see glimpses of knowledge building in South Asian classrooms van
Aalst & Truong (2011). Little is known about how students in South Asian classrooms see
themselves learning through a Knowledge Building approach.
Objectives
The purpose of this study is to present the largely under-represented perspective of students
about learning science through the Ideas First approach. In this paper we seek to answer the
following questions:
·
How do students perceive learning science through the Ideas First approach?
·
How do students perceptions inform the design of Ideas First, a knowledge building
approach for learning science?
Methods
This study presents students’ perceptions of Ideas First through the analysis of grade three
and four students’ drawings (n=815) collected in the second and fourth years of implementing the
approach
Data collection
We carried out student drawing activities in the second and fourth years of implementing the
approach. The student drawing activity was carried out in the second year of implementation to
gather information about students’ perceptions of learning science during the initial period of
implementation. The drawing activity was not carried out in the first year of implementation
because teachers were still new to the approach and the design-researchers were still in the
process of refining and iterating the design of Ideas First. The subsequent student drawing
activity was carried out in the fourth year of implementing the approach. During the fourth year
of implementation, there were minimal design changes to the approach and teachers were
increasingly familiar with the practices and the underlying principles of Knowledge Building
Communities. The student drawing activity carried out during the fourth year allowed us to gather
information about students’ perception of learning science through Ideas First in the later stages
of implementation.
In the second year of implementing Ideas First, students were tasked with a drawing activity.
At the commencement of the drawing activity, students were given an instruction sheet with the
prompt, “Think about your science class this year. Think about the kinds of things you do when
you learn science. Draw a picture of yourself learning science in your science class.” The prompt
was also read aloud to the students in English. This prompt was developed based on the prompt
used by Haney, et al. (2004) and modified based on accounts by Chapman, et al. (2010) about the
confusion from English Language learners regarding the use of “the camera” in the original
prompt, hence the omission of the phrase. Students were given an hour to complete their
drawings. The drawings were collected from students at the end of the hour. All students present
in the grade three and four science classes participated in the activity. This activity was carried
out in the third term of the school academic year before the commencement of the term break.
We chose to carry out the drawing activity in the third term to allow students to experience
150
KBSI2013
Papers
learning science through the Ideas First approach for at least three terms in the academic year.
The drawing activity was also carried out during this term to minimize the possible influence of
school examinations on classroom practices. In Singapore elementary schools, classroom
practices in the fourth term typically shift in order to prepare students for the end of the school
academic year examinations.
In the fourth year of implementing Ideas First, students were tasked with a similar drawing
activity. The instruction sheet given to students was modified to foreground Ideas First as the
approach for learning science. The prompt used was “We want to tell other schools about how we
are learning science with Ideas First. We want you to help by drawing a picture that helps people
understand how you learn science with Ideas First.” As per the previous drawing activity, this
prompt was read out loud to students and they were similarly given an hour to complete the
activity. The drawings were collected at the end of the hour. Although we attempted to implement
the drawing activity in term three as per the previous drawing activity, scheduling constraints in
the school prevent us from carrying this out in term three. Consequently, we implemented the
drawing activity at the end of term four after the end of the year examinations to reduce the
potential effect of the examinations on students’ perceptions of learning science through Ideas
First.
To enhance the credibility of our attempts to understand students’ perception of learning
science through Ideas First, we carried out triangulation across data methods (Creswell, 2013)
and embedded ourselves in Ideas First classrooms for the duration of the project. We were
present for the science lessons of four classes in the first two years of implementation and two
classes during the next two years of implementation. In addition to the use of student drawings,
we also interviewed teachers, collected videotape data of science lessons and recorded notes of
the lessons in our field journals to help us understand students’ perspectives of learning science.
Consequently, we were able to observe, record, reflect and better acquaint ourselves with student
learning; enhancing the credibility as well as the confirmability of data gathered.
Coding drawings
We employed an emergent analytic coding procedure (Charmaz, 2006; Haney, et al., 2004) to
code the drawings. One researcher examined 75 drawings and made a checklist of features that
appeared through the drawings. Two research assistants then repeated this process. The research
assistants examined the 75 drawings independently using the checklist created and coded the
drawings for the presence or absence of the features on the checklist. In addition, features that
were not present were added to the checklist. After this activity, the research team came together
to discuss and finalize the features on the checklist.
Based on the finalized checklist of features, we identified 29 variables across 6 different
categories. These categories included the presence of teachers, the presence of students, student
activities, the arrangement of students around tables, the arrangement of students around Learning
Technologies and representations in science lessons. Using the final checklist of 29 variables
aggregated into 6 categories, the researchers and research assistants then coded all the student
drawings.
Results
The six categories and associated variables identified from the analysis of the student
drawings are presented in the following sections. We analyzed 246 student drawings from grade 3
in year 2, 148 student drawings from grade 3 in year 4, 217 student drawings from grade 4 in year
2 and 204 student drawings from grade 4 in year 4. The frequency counts of variables in student
drawings are presented along with the percentages of the variables calculated in relation to the
total number of student drawings from the respective grades and years. The results are presented
151
KBSI2013
Papers
to facilitate comparisons between the second and fourth years of implementation for grade 3 and
grade 4.
Presence of teachers
The category “Presence of teachers” examined the presence and location of the teacher when
students were learning science through Ideas First. The results of the analysis are presented in
Table 1. Less than half the student drawings showed the presence of teachers. We noted that for
the student drawings from grade 3, the presence of the teacher was depicted in a smaller
percentage of student drawings from the fourth year compared to the second year. Student
drawings from grade 3 also depicted teachers in front of students and at the whiteboard or screen
in a smaller percentage of student drawings from the fourth year compared to the second year. It
was encouraging to note a larger percentage of student drawings from grade 3 depicted teachers
with students in the fourth year compared to the second year.
A different pattern was observed in the student drawings from grade 4. Student drawings
from grade 4 showed the presence of teachers in a slightly larger percentage of drawings in the
fourth year compared to the second year. A larger percentage of drawings from grade 4 showed
teachers in front of students and at the whiteboard or screen in the fourth year compared to the
second year. Student drawings depicting teachers with students also decreased in the fourth year
compared to the second year. These patterns about the presence of teachers in grade 4 are in
contrast to those observed in grade 3.
TABLE 1
Presence of teachers
Grade 3
Grade 4
Second year of
implementing
“Ideas First”
Fourth year
of
implementing
“Ideas First”
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Teacher present
(104) 42.3%
(32) 21.6%
(89) 41.0%
(89) 43.6%
In front of
students
(92) 37.4%
(25) 16.9%
(72) 33.2%
(74) 36.3%
Whiteboard or
screen
(82) 33.3%
(22) 14.9%
(64) 29.5%
(72) 35.3%
With Students
(2) 0.8%
(3) 2.0%
(12) 5.5%
(8) 3.9%
Presence of students
The category “Presence of students” examined the presence of students and how students
were grouped in the student drawings. The results of the analysis are presented in Table 2. Not all
student drawings had the presence of students. Although a large percentage of student drawings
depicted the presence of students. We note that students were depicted in a smaller percentage of
152
KBSI2013
Papers
student drawings from the fourth year compared to the second year for both grades 3 and 4. It is
encouraging to observe that there was a smaller percentage of student drawings depicting
individual students learning science in the fourth year compared to the second year for both
grades 3 and 4.
TABLE 2
Presence of students
Grade 3
Grade 4
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Presence of
students
(235) 95.5%
(137) 92.6%
(213) 98.2%
(168) 82.4%
Individuals
(138) 56.1%
(61) 41.2%
(114) 52.5%
(74) 36.3%
Groups
(35) 14.2%
(18) 12.2%
(53) 24.4%
(58) 28.4%
Class
(29) 11.8%
(21) 14.2%
(41) 18.9%
(44) 21.6%
We observed that in grade 4, there was a higher percentage of student drawings in the fourth
year depicting students learning in groups compared to the second year. An opposite pattern was
observed in grade 3, there was a smaller percentage of student drawings in the fourth year
depicting students learning in groups compared to the second year. It is interesting that the results
also showed a larger percentage of drawings depicting students learning science as a class in the
fourth year compared to the second year for both grades 3 and 4.
Student activities
The category “Student activities” refers to the activities that students carried out while
learning science through Ideas First. These included listening and watching the teacher, reading
and writing, presenting, carrying out experiments, doing work on the computer, working on
Knowledge Forum and participating in group activities. The difference between the student
activities “doing work on the computer” and “working on Knowledge Forum” is illustrated by
providing some examples. Examples of students’ depictions of doing work on the computer
include carrying out a search on Google and doing word processing on a computer. Examples of
students’ work on Knowledge Forum included depictions of students writing notes on Knowledge
Forum and students working in the communal space of Knowledge Forum. The results of the
analysis of student activities depicted in student drawings are presented in Table 3.
We were encouraged to note that the following student activities, presenting, group activity,
working on Knowledge Forum were depicted in a higher percentage of student drawings from the
fourth year compared to the second year in both grade 3 and grade 4. We noted that a smaller
percentage of student drawings depicted students learning science by listening and watching; in
drawings form the fourth year compared to the second year for both grades 3 and 4. It was
153
KBSI2013
Papers
interesting that there was a higher percentage of student drawings that showed students reading
and writing in the fourth year compared to the second year for both grades 3 and 4.
Students doing experiments were frequently depicted in student drawings. A higher
percentage of student drawings from grade 4 showed students doing experiments compared to
year two. Student drawings from grade 3 showed the opposite. There was a smaller percentage of
drawings in year four depicting students doing experiments compared to year 2.
When we looked at the analysis of student drawings showing work on computers we noted
that the pattern observed from student drawings showing the use of Knowledge Forum was not
repeated for drawings showing the use of computers for other purposes. There was a higher
percentage of student drawings from the fourth year of grade 3 depicting students working on the
computer compared to the second year of the same grade. This pattern was reversed for grade 4.
There was a lower percentage of student drawings from the fourth year of grade 4 depicting
students working on the computer compared to the second year of the same grade.
TABLE 3
Student Activities
Grade 3
Grade 4
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Second
year of
implementing
“Ideas First”
Fourth year
of implementing
“Ideas First”
Doing
Experiments
(101) 41.1%
(44) 29.7%
(95) 43.8%
(94) 46.1%
Listening &
Watching
(55) 22.4%
(28) 19.0%
(71) 32.7%
(63) 30.9%
Reading &
Writing
(28) 11.4%
(47) 31.8%
(11) 5.1%
(42) 20.6%
Presenting
(9) 3.7%
(10) 6.8%
(2) 1.0%
(4) 2.0%
Group activity
(12) 4.9%
(39) 26.4%
(17) 7.8%
(43) 21.1%
On comp
(6) 2.4%
(37) 25.0%
(44) 20.3%
(24) 11.8%
On KF
(13) 5.3%
(26) 17.6%
(30) 13.8%
(42) 20.6%
Arrangement of students around tables
The category “Arrangement of students around tables” refers to how students were arranged
around tables while learning science. The results of the analysis of student drawings are presented
in Table 4.
154
KBSI2013
Papers
TABLE 4
Arrangement of students around tables
Grade 3
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Grade 4
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Tables for 1-1
(101) 41.1%
(36) 24.3%
(79) 36.4%
(44) 21.6%
Tables for
groups
(40) 16.3%
(11) 7.4%
(65) 30.0%
(76) 37.3%
Rows of tables
(9) 3.7%
(7) 4.7%
(29) 13.4%
(7) 3.4%
We were encouraged to note that the percentage of student drawings depicting tables
arranged for an individual student or “Tables for 1-1” was lower in the fourth year compared with
the second year in both grade 3 and grade 4. The student drawings in grade 3 and grade 4 showed
two distinct patterns with regards to the arrangement of tables for groups and tables arranged in
rows. We noted that in grade 4, there was a smaller percentage of student drawings showing
tables arranged in rows in the fourth year compared to the second year. There was also a higher
percentage of student drawings that depicted tables arranged for groups. In grade 3, a different
pattern was evident. There was a higher percentage of student drawings showing tables arranged
in rows in the fourth year compared to the second year. There was also a lower percentage of
student drawings in the fourth year showing tables arranged for groups compared to the second
year.
Arrangement of students around Learning Technologies
The category “Arrangement of students around Learning Technologies” refers to how
students were arranged around various technologies used in learning science. These include
worksheets, the whiteboard or screen and the computer. We provide examples to illustrate the
various variables in this category. When student drawings depicted “worksheets 1-1” the
drawings showed one student working on one worksheet. Similarly, when student drawings
depicted “worksheets many-1” they illustrated a group of students working on one worksheet.
This worksheet could take the form a communal artifact like a Sun Chart or a concept map. An
example of students’ depiction of “Whiteboard/ screen many-1” was a group of students in front
of a whiteboard or computer screen. The illustration of “computer 1-1” is exemplified by the
depiction of a drawing of one student working in front of a computer. The results of the analysis
are presented in Table 5.
We observed that there was a higher percentage of student drawings depicting “worksheets 11”, “whiteboard Many-1” and “computer 1-1” in the fourth year compared to the second year in
both grades 3 and 4. We also observed a smaller percentage of student drawings depicting
“worksheet many-1” in the fourth year compared to the second year for both grades 3 and 4.
155
KBSI2013
Papers
TABLE 5
Arrangement of students around Learning Technologies
Grade 3
Grade 4
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
(54) 22.0%
(33) 22.3%
(35) 16.1%
(65) 31.9%
Worksheets
Many-1
(11) 4.5%
(5) 3.4%
(7) 3.2%
(4) 2.0%
Whiteboard/
Screen
(36) 14.6%
(28) 18.9%
(58) 23.6%
(82) 40.2%
(14) 5.7%
(43) 29.0%
(53) 24.4%
(60) 29.4%
Worksheets
1-1
Many-1
Computer
1-1
Representations in science lessons
The category “Representations in science lessons” refers to how ideas and information were
represented when students learn science through Ideas First. Ideas and information can be
represented as a list, a classification diagram, a flow chart, a communal space of ideas on
Knowledge Forum or a worksheet e.g. a Sun Chart; and a note on Knowledge Forum or Think
Card. The analysis of this category is presented in Table 6.
In general, a small percentage of student drawings had illustrations of representations. It is
interesting to note the higher percentage of the following representations, communal space of
ideas in Knowledge Forum, the Sun Chart, the personal note in Knowledge Forum and the Think
Card depicted in drawings from the fourth year compared to the second year of implementation,
in both grades 3 and 4. Other observations of note are the smaller percentage of drawings
depicting lists in the fourth year compare to the second year in grade 4; and the smaller
percentage of student drawings depicting classification diagrams, flowcharts and concept maps in
the fourth year compared to the second year in grade 3.
156
KBSI2013
Papers
TABLE 6
Representations in science lessons
Grade 3
Grade 4
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
Second year of
implementing
“Ideas First”
Fourth year of
implementing
“Ideas First”
List
(3) 1.2%
(2) 1.4%
(15) 6.9%
(3) 1.5%
Classification
diagrams
(23) 9.3%
(2) 1.4%
(0) 0%
(15) 7.4%
Flow Charts
(10) 4.1%
(2) 1.4%
(3) 1.4%
(4) 2.0%
Concept maps
(6) 2.4%
(2) 1.4%
(4) 1.8%
(3) 1.5%
Communal
Space of ideas
(KF)/ Sun
Chart
(4) 1.6%
(8) 5.4%
(16) 7.4%
(20) 9.8%
Personal Note
(KF)/ Think
Card
(4) 1.6%
(18) 12.2%
(5) 2.3%
(16) 7.8%
Discussion
The analysis of student drawings allowed us to examine students’ perspectives of learning
science through Ideas First. The study suggests that students’ drawings depict a general shift over
time in the culture of classrooms learning science through Ideas First. This is perhaps
exemplified by the contrast between the drawings of a student in grade 3 learning science (Figure
1) in the second year of implementation and that of another student in grade 3 learning science in
the fourth year of implementation (Figure 2).
157
KBSI2013
Papers
Figure 1. Student drawing from grade 3 depicting learning science in the second year of Ideas
First.
In the figure 1, we see a depiction akin to a “traditional” South Asian representation of
learning (Wang & Tsai, 2012). A student is learning science by sitting at a table listening to the
teacher. In figure 2, we see a more complex representation of learning science. The student
explains in his write-up about the drawing that he was writing his ideas in Knowledge Forum. He
then shared his ideas with his classmates. These ideas were written down. The student then read
books to get more information and then shared the information with his friends. The selected
drawings provide a visualization of the overall sense of shift in the learning of science as depicted
by students. We discuss students’ perceptions of learning science by re-visiting the three critical
shifts, which were the focus of our design, between traditional classrooms and classrooms that are
on a trajectory consistent with KBCs: ideas as conceptual artifacts, developing epistemic agency
and fostering collective cognitive responsibility.
158
KBSI2013
Papers
Figure 2. Student drawing from grade 3 depicting learning science in the fourth year of Ideas
First.
“Fostering collective cognitive responsibility when learning science”
The student drawings in general show an emerging sense of collective cognitive
responsibility. We noted a decrease in students’ perceptions of learning science as an individual
pursuit. This was evident by the decrease in student drawings that depicted students learning
science by themselves as well as tables configured for use by only one student. At the same time
we also observed an increase in illustrations of group activities. This observation together with
the decrease in student drawings that depict students learning science by themselves, suggest an
increasing focus on group activities for learning. The group activities in Ideas First can take the
form of informal discussions or more deliberately designed student practices supported by
communal artifacts (Figure 3). In Figure 3, the drawing depicts student participating in a group
pull-together on a Sun Chart, which supports students working together on problems. This small
group activity of a pull-together foreshadows students’ later participation in a larger communal
space of ideas, in Knowledge Forum, where they work on ideas of other students in the class.
159
KBSI2013
Papers
Figure 3. Student drawing depicting students working to pull together ideas using a Sun Chart.
It is interesting to note that student drawings showed an increase in the percentage of students
depicted as a class. Student drawings also showed an increase in the percentage of students
gathered around the whiteboard or screen. These observations appear to suggest a lecture mode of
teaching science. Something akin to “Knowledge Telling” by the teacher. However, we would
like to bring attention to the increase in the percentage of student drawings depicting
representations of the communal space and notes on Knowledge Forum. Many of these
illustrations were projected onto screens or put up on whiteboards (Figure 4). Teachers used these
representations to support classroom discussion of the ideas in the communal space as well as the
knowledge building moves enacted in the communal space. Thus these observations appear to be
consistent with the emerging sense of collective cognitive responsibility depicted in student
drawings.
160
KBSI2013
Papers
Figure 4. Student drawing of the teacher at the screen pointing to a note from Knowledge
Forum
“Treating ideas as conceptual artifacts when learning science”
Student drawings provide evidence that suggests students were beginning to treat ideas as
conceptual artifacts when learning science. We noted an increase in the percentage of student
drawings depicting students working on Knowledge Forum. Consistent with this observation,
there were increases in the percentage of student drawings depicting notes on Knowledge Forum
and Think Cards; as well as the communal space of a view in Knowledge Forum and the Sun
Chart. Knowledge Forum is the technological support for Knowledge Building. One way that
Knowledge Forum supports Knowledge Building is by making ideas of the members in the
community public and available for Knowledge Building endeavors. An example of students’ use
of Knowledge Forum for learning science is shown in figure 5. The student explained that she
was typing her ideas in Knowledge Forum to allow other students to read and improve on her
idea. She adds that this helps her friends understand more than they were learning. This drawing
demonstrates the beginnings of the student’s understanding of ideas as conceptual objects, that
ideas can be made public, shared with and worked on by a community to improve understanding
of a problem. In Ideas First, we have also designed technologies such as the Think Card and Sun
Chart that serve a similar function. The use of these technologies though are limited to the initial
six months of grade 3 and helps to bridge the culture of traditional classrooms and classrooms on
a trajectory consistent with KBCs. Students’ illustrations of science learning, specifically the
activity of working on Knowledge Forum, is perhaps indicative of a shift in ways classrooms
enacting Ideas First treat ideas as conceptual artifacts.
161
KBSI2013
Papers
Figure 5. Student drawing depicting a student working on Knowledge Forum
“Developing epistemic agency when learning science”
Student drawings provide indications that students are beginning to develop epistemic agency
when learning science. Developing epistemic agency requires students to make efforts to
understand the community’s work on common problems of understanding. One way to do this is
by engaging in Knowledge Building on Knowledge Forum, which enables the community to
visualize the current state of understanding of the problems. We note an increase in the
percentage of student drawings depicting work on Knowledge Forum, suggesting students’
increased participation in an activity that develops epistemic agency.
In addition to taking efforts to understand the state of the community’s work on problems,
developing epistemic agency also requires students to undertake activities that help advance their
understanding of the problem. The student drawings have depicted some of these activities. They
include doing experiments, listening and watching the teachers, reading and writing; and carrying
out research on computers. These activities are no different from those found in traditional
classrooms learning science. But an important distinction to make is that these activities take
place in the context of working to improve ideas and advance the community’s understanding of
problems.
Learning from our design for learning science through Ideas First
Emerging from our analysis of student drawings is the visualization of the weaving of
activities and different social arrangements that support students’ work with ideas. Designing for
classrooms as KBCs, requires thoughtful considerations of offline learning activities that support
work with ideas on Knowledge Forum (Caswell & Bielaczyc, 2001; van Aalst & Truong, 2011).
Berieter & Scardamalia (2010) acknowledge that traditional learning activities have their place
within the context of a larger Knowledge Building framework, but also caution that they cannot
be the central focus.
Moving forward we suggest visualizing students’ work with ideas as an intricate “patchwork”
of activities taking place in many different social arrangements woven tightly together by a single
thread representing the focus of students’ principle-based collective efforts to improve ideas. This
162
KBSI2013
Papers
visualization does not depart from the central focus of Knowledge Building, students taking
collective cognitive responsibility for idea improvement. At the same time there is recognition of
carefully considered activities, resources and social arrangements put together to support this
focus. These should vary depending on the community’s needs as KBCs. The results of our
analysis reflect the diverse patterns of student activities and configurations.
We illustrate our notion of a Knowledge Building “patchwork” in figure 6. This drawing
depicts a student’s efforts to learning science through Ideas First. This drawing demonstrates the
complex nature of learning science through a Knowledge Building approach. We note a variety of
activities in the illustration, but with a focus on explaining a problem. This “patchwork” of
activities includes “pieces” such as existing cultural practices, the presence of the teacher at the
front of the classroom, teaching students. This practice is appropriated however to support
students’ work with ideas. We see the teacher using the whiteboard to introduce some phrases to
scaffold students’ Knowledge Building discourse during group discussion. Other “pieces” that
contribute to the activities also includes students’ use of cultural artifacts that are consistent with
“epistemic forms” (Collins & Ferguson, 1993) used by the larger scientific community to
communicate ideas; and cultural artifacts such as pen and paper, technologies found in most
classrooms to engage in the work of making explicit, contributing and improving ideas.
Figure 6. Student drawing depicting Knowledge Building activities.
Conclusion
This study highlights the use of student drawings to describe shifts in elementary classrooms
learning science through Ideas First, a Knowledge Building approach. Through the analysis of
the drawings, we sense shifts in the culture of classrooms in relation to how ideas are treated as
conceptual artifacts, epistemic agency is developed and collective cognitive responsibility is
fostered. The student drawings demonstrate the possibility of designing for social infrastructure
supportive of KBCs, albeit over a period of time.
The student drawings can overwhelm the observer seeking to proceduralize the approach with
its diverse illustrations of learning science through Ideas First. However, the diversity of
163
KBSI2013
Papers
illustrations only supports the case for the Knowledge Building approach to be viewed as a
principle based educational innovation (Zhang, et al. 2011). When viewed as such, the enactment
of our designs for Knowledge Building reflects the different trajectories taken by different
communities dependent on their developing understanding of the principles. Based on the
analysis of the student drawings, we suggest that a way to visualize and bring coherence to the
activities in classrooms learning science through Ideas First is to view them as an intricately
woven “patchwork” of activities threaded together by a focus on idea improvement and collective
cognitive responsibility.
References
Bereiter, C. & Scardamalia, M. (2010). Can children really create knowledge? Canadian Journal
of Learning and Technology, 36(1).
Bereiter, C. (2002). Education and Mind in the Knowledge Age. Mahwah, NJ: Lawrence Erlbaum.
Bereiter, C., & Scardamalia, M. (1993). Surpassing ourselves: An inquiry into the nature and
implications of expertise. Chicago: Open Court.
Bielaczyc, K. (2006). Designing social infrastructure: critical issues in creating learning
environments with technology. Journal of the Learning Sciences, 15(3), 301-329.
Bielaczyc, K. (2013). Informing Design Research: Learning From Teachers' Designs of Social
Infrastructure, Journal of the Learning Sciences, 22(2), 258-311
Bielaczyc, K. & Collins, A. (2006). Implementation paths: Supporting the trajectory teachers
traverse in implementing technology-based learning environments in classroom practice.
Educational Technology, 46(3), 8-14.
Bielaczyc, K., & Kapur, M. (2010). Playing Epistemic Games in Science and Mathematics
Classrooms. Educational Technology, 50(5), 19-25.
Bielaczyc, K. & Ow, J. (2007). Shifting the social infrastructure: Investigating transition
mechanisms for creating knowledge building communities in classrooms. In
Proceedings of the International Conference for Computers in Education.
Bielaczyc, K., & Ow, J. (2010, June). Making knowledge building moves: toward cultivating
knowledge building communities in classrooms. In Proceedings of the 9th International
Conference of the Learning Sciences-Volume 1 (pp. 865-872). International Society of the
Learning Sciences.
Bowker, R. (2007). Children’s perceptions and learning about tropical rainforests: an analysis of
their drawings. Environmental Education Research, 13(1), 75-96.
Cainey, J., Bowker, R., Humphrey, L., & Murray, N. (2012). Assessing informal learning in an
aquarium using pre- and post-visit drawings. Educational Research and Evaluation: An
International Journal of Theory and Practice, 18(3), 265-281.
Caswell, B., & Bielaczyc, K. (2001). Knowledge Forum: altering the relationship between
students and scientific knowledge. Education, Communication & Information, 1,(3), 281-305.
Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and
strategies for guiding inquiry. Educational Psychologist, 28(1), 25-42.
Charmaz, K. (2006). Constructing grounded theory. London: Sage.
Chambers, D.W. (1983). Stereotypic images of the scientist: The draw a scientist test. Science
Education, 67(2), 255-265.
Chapman, L., Greenfield, R., & Rinaldi, C. (2010). “Drawing is a Frame of Mind”: An
Evaluation of Students' Perceptions About Reading Instruction Within a Response to
Intervention Model. Literacy Research and Instruction, 49(2), 113-128.
Creswell, J. W. (2013). Qualitative inquiry and research design: choosing among five
approaches. Thousand Oaks, California: Sage.
Einarsdottir, J. (2010). Children’s experiences of the first year of primary school. European Early
Childhood Education Research Journal, 18(2), 163-180.
164
KBSI2013
Papers
Golomb, C. (1992). The child’s creation of a pictorial world. Berkeley: University of California
press.
Haney, W., Russell, M., & Bebell, D. (2004). Drawing on education: Using drawings to
document schooling and support change. Harvard Educational Review, 74(3), 241-271.
Lodge, C. (2007). Regarding Learning: Children's drawings of learning in the classroom.
Learning Environments Research, 10, 145-156.
Ow, J. & Bielaczyc, K. (2007) Epistemic perturbations: Using material artifacts to cultivate a
knowledge building culture in classrooms. In Proceedings of the International Conference for
Computer-Supported Collaborative Learning.
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In
B. Smith (Ed.) Liberal education in the knowledge society. (pp. 67-98). Chicago: Open Court.
Scardamalia, M. & Bereiter, C. (2006). Knowledge building: Theory, pedagogy and technology.
In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 97-115).Cambridge
University Press.
Selwyn, N., Boraschi, D., & Ozkula, S.M. (2009). Drawing digital pictures: an investigation of
primary pupils’ representations of ICT and schools. British Educational Research Journal,
35(6), 909-928.
Tovey, R. (1996). Getting kids into the picture: Student drawings help teachers see themselves
more clearly. Harvard Education Letter, 12(6), 5-6.
Van Aalst, J., & Truong, M. S. (2011). Promoting knowledge creation discourse in an Asian
primary five classroom: Results from an inquiry into life cycles. International Journal of
Science Education, 33,(4), 487-515.
Wang, H. Y., & Tsai, C. C. (2012). An exploration of elementary school students' conceptions of
learning: a drawing analysis. The Asia-Pacific Education Researcher, 21(3), 610-617.
Zhang, J., Hong, H-Y., Scardamalia, M., Teo, C.L., & Morley, E.A. (2011). The Journal of the
Learning Sciences. 20, 262-307.
165
KBSI2013
Papers
La Identidad Cultural en la Educación Superior: El Caso de la
Licenciatura en Educación Primaria para el Medio Indígena UPN-211
Eugenia Ramos Hipolito, Universidad La Salle Puebla
Email: [email protected]
RESUMEN: Con la abundancia de diferentes teorías y con base en distintas formas de
abordar la identidad cultural desde la educación, se condujo un estudio con una docente a
un grupo de alumnos de séptimo semestre de la Licenciatura en Educación Primaria para
el Medio Indígena Plan 90 de la Unidad 211 de la Universidad Pedagógica Nacional de
Puebla-México.
Se construyó un objetivo general: Encontrar una explicación de raíz sobre el rechazo
consciente o inconsciente de la valoración de la lengua y cultura que presentan en forma
natural los alumnos de la licenciatura en su participación en el desarrollo de sus clases
durante el mes de febrero de 2013. Se realizó un cuestionario con preguntas cerradas y
otras utilizando escala Likert. Se practicó análisis cuantitativo para conocer
significativamente la conceptualización y características de la identidad cultural con los
alumnos participantes de la licenciatura. Las evidencias mostraron dos significados,
identidad personal e identidad personal y social a partir de tres variables: Identidad
personal y social, lengua y cultura y valoración del plan y programa, todo ello nos permite
la explicación de la identidad cultural en la educación superior.
Palabras clave: Identidad personal y social, lengua y cultura, identidad cultural en
educación superior.
ABSTRACT: With the abundance of different theories and based on different approaches
to cultural identity from education, we conducted a study with a teacher to a group of
students from seventh semester of the undergraduate studies on Primary Education for
Indian environment plan 90 Unit 211 of the National Pedagogical University of Puebla,
Mexico. We constructed a general objective: Finding a root explanation of conscious or
unconscious rejection of the valuation of the language and culture that occurs naturally
undergraduate students in their participation in the development of their classes during the
month of February 2013. A questionnaire was used with closed questions and others using
Likert scale. Quantitative analysis was performed for significantly conceptualization and
characteristics of the cultural identity of the participating students. The evidence showed
two meanings, personal identity and personal and social identity based on three variables:
personal and social identity, language and culture and evaluation of plans and programs,
all of which allows us the explanation of cultural identity in higher education.
The research contributes to the development of the field by demonstrating that theories
developed by Bourdieu, (1972), Berger y Luckmann (1968), Vygotzky (1934), Habermas
(2003), Bonfil (1991), Oliveira (1992), Morin (2007) and Stufflbean (1985) are
confirmed. The purpose of this study is answering the following questions: how personal
and social identity of university pedagogy students for primary indigenous education is
strengthened? The questions that guided the study are: is it possible to generate the
transformation of education from the valuation of personal and social identity of students
taking a degree? Is it feasible that students transform their teaching from the
characterization of the language and culture of indigenous education as a teacher? Is the
involvement of social identity contributes to achieve high-quality education? How relevant
is the development of identity in a multicultural country for high-quality teaching
practice? A quantitative approach was used to understand the processes of teacher
166
KBSI2013
Papers
education. The results showed the verification of some aspects developed by the theorists:
personal and social identity; a greater characterization and importance of the personal
identity; minimal presence of social identity; language and culture as a variable; Spanish
emerges as the reference language; variable curriculum: the pedagogical sensitivity
motivates the student an appreciation of the culture from the family, school and
community.
Keywords: personal and social identity; language; culture.
Introducción
La identidad cultural en el campo educativo, conforme al desarrollo del hombre es un perfil
fundamental en la educación, que se forma a través de las relaciones que se establecen entre la
triangulación del origen del estudiante, su contexto y el plan de estudios, donde el estudiante
valora lo propio y ajeno de la cultura y lengua, el aprecio así mismo, el trabajo organizativo y la
autoevaluación para asumir un rol con su profesión. Vygotsky (1934), sostiene que la mente no
existe fuera de las prácticas socioculturales, el enfoque no es el individuo como tal, sino el
individuo en acción.
El individuo se forma a partir de su entorno de lo que se va apropiando al ir aprendiendo con
las relaciones que establece en familia, amigos y comunidad. En la educación tiene que apropiase
de nuevas formas de hacer las cosas, de un trabajo más tecnificado y de formas científicas que lo
hacen un sujeto que prende, de un perfil de egreso para desempeñarse profesionalmente. Estas
formas las reproduce y las mejorar para su beneficio. El individuo es, resultado de esas prácticas
sociales que establece con los otros. Para estar en relación con los demás se implica con una
lengua, cultura y forma de ver el mundo deseado desde el hogar, la escuela y comunidad.
De acuerdo con este modo de concebir la identidad cultural Berger y Luckman (1988) afirma
que la construcción de identidades es un fenómeno que surge entre el individuo y la sociedad, por
tanto el aprendizaje es una parte integral de la práctica social en el mundo vivido. Las personas
participan de muchas maneras diferentes, algunas adoptan pautas y valores dominantes, otras las
rechazan, otras los transforman, de cualquier forma los individuos desarrollan identidades dentro
de las cuales se relacionan con las pautas imperantes en una variedad de maneras complejas. La
identidad cultural en la educación busca construir a un ciudadano del mundo que reconozca lo
diferente y que valore la diversidad cultural y social como una riqueza de convivencia para una
sociedad democrática.
Se entiende que la educación instituye cambios positivos en los individuos y provoca
reflexión y propuestas en los estudiantes con referencia a su perfil de egreso. Esto también se
debe proponer el profesor al contextualizarr su clase y expresar de manera determinante los
objetivos que desarrolla.
Se supone que la estrategia –metodológica también se estructura en ese sentido, mas la
experiencia lleva a constatar que las lenguas indígenas se están perdiendo, lo que denota que el
perfil de egreso no es acorde con lo que se desea, esto puede significar:
Que los perfiles proponen una meta de egreso que no se llega a conseguir con los perfiles de
ingreso, o que las actividades previstas por el profesor no toman en cuenta la lengua y la cultura
del alumno y no ejercitan la identidad personal y social tan necesaria para formar la identidad
cultural del alumno en su profesión. La realidad que mostraron los estudiantes del séptimo
semestre de la Unidad 211 de la Universidad Pedagógica Nacional, es que identifican las
características personales, pero las sociales están ausentes. A la Luz de un trabajo académico, se
muestra muy ajeno al uso de una lengua indígena, lo que provoca en los alumnos la indiferencia a
167
KBSI2013
Papers
las lenguas originarias y denota la poca valoración de la cultura de los grupos étnicos existentes
en el estado de Puebla.
La educación actual afronta luchas y desafíos del mundo globalizado y de la sociedad del
conocimiento que exige y reclama una educación intercultural, preparar profesionales
competentes y competitivos provocando cambios de paradigmas humanos con aspectos
educativos inclusivos que denoten valores de convivencia.
El mundo educativo se caracteriza por una diversidad de estudiantes con una diversidad
lingüística y cultural, en consecuencia producto de la masificación de la educación y resultado de
la marcha de paradigmas homogeneizantes para que todos tuvieran una educación, se olvidó de
hacer una educación contextualizada centrada en el humanismo.
Por lo anterior, se realizó un cuestionario a los estudiantes de séptimo semestre de la
Licenciatura en Educación Primaria para el Medio Indígena orientado por las categorías de
identidad personal, identidad social, lengua, cultura, conocimiento sobre el plan de estudios, que
tuvo como marco de referencia, para conocer y determinar la Identidad cultural en los estudiantes
de educación superior, lo que permitió determinar el grado de identidad cultural que tienen a su
egreso de la licenciatura.
Estas categorías proporcionaron indicadores para delimitar hasta donde los estudiantes tienen
identidad personal y social como instrumento principal para el desarrollo de su profesión. Los
estudiantes que dieron respuesta a las preguntas solicitadas, manifestaron que sin el referente de
la lengua y la cultura es imposible implicarse con los otros y tener una identidad cultural.
¿Qué es la identidad cultural?
Identidad cultural es de alcance mundial, nacional y local, ha sido estudiado desde contextos
marcados por la globalización, tomando como punto de partida la educación. La identidad se
sustentó en las relaciones humanas y mientras estuvieron sustentadas en la cohabitación, en el
contexto mutuo, la identidad no fue preocupación en el pasado, pero en la actualidad la identidad
es un problema en la educación, ya que existen estudios que muestran las asimetrías educativas,
culturales y lingüísticas en los alumnos.
Filosóficamente los postulados de identidad cultural parten de la existencia de una
vinculación profunda entre los pueblos con su territorio, lengua, cultura y trabajo, por tanto, su
supresión por la educación agrava las divisiones sociales y destruye lentamente la cohesión
social. De acuerdo a Bourdieu (1979) los campos sociales son la historia objetiva, cada uno es en
su espacio multidimensional de posiciones, definido por la distribución de las formas de capital.
De esta manera se identifica que el concepto de identidad está caracterizado de acuerdo a
contextos específicos como lo ejemplifica Taylor (1991) en sus investigaciones cuando promueve
una identidad compartida, a lo que le llama el secreto de la historia personal. Esto explica, la
identidad desde el origen, la personalidad, la familia, el trabajo, el hacer cotidiano. Por tanto, la
identidad se puede caracterizar como prácticas simples, prácticas rutinarias, prácticas sofisticadas
relacionadas con la creación intelectual y que suponen cambios en las posibilidades de
construcción de lazos sociales que desafían la reflexibilidad laboral, la inestabilidad y la
desregulación profunda de las relaciones laborales, lo que muestra que la identidad personal y
social es una construcción realizada por el ser humano.
Salling, (2008) en su indagación habla de la identidad profesional para referirse a un esfuerzo
subjetivo de aprendizaje y de identificación de la vida por medio del cual los individuos con sus
historias de vida, su género adquiere el conocimiento ya existente y al mismo tiempo que
desarrollan de forma colectiva una identidad individual y de grupo para afianzar su propia
práctica e identidad. En educación para la formación de formadores, lo que se ha abordado en los
programas es sobre lengua y cultura y se dio por hecho que la identidad se vería favorecida.
168
KBSI2013
Papers
Desde la mirada de las investigaciones educativas en el mundo sobre identidad sobresalen las
Universidades de Barcelona, Granada, Malaga de España realizado por autores como: Coll
(2009), el cual, analiza que se ha puesto en duda la educación de los estados multinacionales al
homogeneizar la educación y conformar una identidad nacional común entre toda la ciudadanía.
Por ello, en el análisis de la evolución de las políticas educativas y lingüísticas en México, desde
la afirmación del modelo de una sola lengua o sea un modelo que valora solo el español, hasta la
actual defensa de la diversidad cultural como medio de legitimar la importancia de los distintos
grupos étnicos y sus lenguas en un mercado lingüístico sometido a la hegemonía del Español.
Actualmente se ha realizado cambios en los artículos: 2º, 3º, 4º, 5º, de la Constitución
Mexicana, (2010) con la intención de atender el problema de identidad en México, los cuales
manifiestan los derechos a la pluralidad, educación, multiculturalidad, cuidado de la salud,
profesión o trabajo y educarse en la lengua materna.
El Plan de Estudios de Educación Básica (2011) en su perfil de egreso actual propone que los
alumnos logren utilizar un lenguaje oral y escrito con claridad, fluidez y adecuadamente, para
interactuar en distintos contextos sociales, a fin de reconocer y apreciar la diversidad
lingüística del país. Otro ejemplo, es el de Wright, (2012) quien ha promovido el establecimiento
de programas bilingües en minorías indígenas en Camboya. El estudio refiere sobre la
capacitación a nativos para hacer la función docente y alfabetizar, enseñar a su gente mediante la
elaboración de libros con los participantes de la lengua y cultura a fin de valorar la identidad y
cosmovisión de cada etnia. Hernández, I. (2012), en Argentina informa que se está atendiendo a
las comunidades indígenas (caso mapuche) para lograr la atención de los pueblos originarios a
través del pluralismo de programas educativos a fin de articularlos en la aldea global.
Entendemos que la identidad al sustentarse en las relaciones humanas, de territorio, contexto
mutuo, comunicación, formas de organización, trabajo, aprendizaje, no se evidencia problema
alguno, pero si genera falta de aprecio a la persona, omisión de su lengua y cultura de origen,
imposición de lengua ajena a la suya, promoción del individualismo para obtener un bien ya es un
problema de aprendizaje y a la vez educativo. Berger y Luckmann (1997) nos invita a negociar
que es importante convenir para continuar con el desarrollo humano, llevar esto a cabo es tomar
en cuenta nuestro origen, y dar continuidad con nuestro desarrollo, es construimos en sociedad e
historia. El ser humano, es parecido a un artefacto, por así decir, es un producto de la civilización
entrenado a hablar y actuar de formas extrañas a su naturaleza, por tanto es el logro de la cultura.
Explica Bourdieu (1993) que la identidad cultural es un producto social e histórico, empleó
conceptos como campo social, para capturar la interrelación entre el contexto social y la persona.
Siguiendo la idea del autor, el individuo nace en relación con los otros, en consecuencia vive en
ella, todo lo que hace es producto de la relación con otros, su trabajo, creatividad, esta realidad
asumida la hace interesante cuando se implica en roles, asumiendo un papel en determinado
campo de la vida cotidiana, como lo es la profesión. En los últimos años ha habido el
acercamiento de la educación a los grupos étnicos, en la década de los sesenta se buscaron nativos
para atender las etnias del país, siendo negativo el resultado debido a que en lugar de valorar su
lengua, se promovió el uso del español con la creencia de que con ello se lograría el desarrollo del
país, 20 años después se promueve el bilingüismo en las escuelas de educación básica, pero ante
la carencia de materiales lo que se realizó fue una traducción literal de los programas de español
en lugar de hacer un modelo educativo para fortalecer la acción comunicativa en forma bilingüe
de acuerdo a cada lengua y conservando la cultura.
Es hasta 1994 que un movimiento chiapaneco hace voltear las miradas de las Instituciones a
los grupos empobrecidos y se empieza a legislar sobre lengua y cultura, a fin de modificar la
Constitución de los Estados Unidos Mexicanos y en 2003 se promulga la ley de derechos
lingüísticos en donde se reconoce que todas las lenguas indígenas son nacionales, así como la
modificación del artículo 4º de la Constitución Mexicana, reconociendo que México tiene una
169
KBSI2013
Papers
identidad multicultural y plurilingüe. Sin embargo a pesar de varios intentos sobre la importancia
de una identidad personal y social. Existe una falta de educación pertinente, contextuada, que
valore lo diverso desde la lengua y la cultura originaria de los estudiantes. Es más un espejismo
que realidad.
Ha habido teóricos mexicanos como Aguirre (1970), que impulso programas educativos con
castellanizadores nativos de los grupos étnicos, Bonfil (1991) con la teoría del control cultural
sobre lo propio y lo ajeno, ha demostrado que cada cultura posee conocimientos, materiales,
saberes en salud, símbolos culturales, reglas en las lenguas, todo sobre la importancia de conocer
la identidad cultural. Schmelkes (2001) proponer una educación intercultural y bilingüe, con
programas a municipios, atención educativa a migrantes en contextos urbanos, materiales
realizados por los alumnos que dan a conocer su cultura.
Los teóricos educativos, antropólogos, sociólogos, psicológicos y la constitución misma de
México, coinciden en una serie de propuestas y recursos para abordar la Identidad Cultural, pero
no han podido hacer mella aunque ha habido movimientos sociales.
Las tres formas articuladoras para abordar la identidad cultural, lengua y cultura en el aula,
segundo identidad personal y social desde el programa de formación docente y tercero, la
valoración de lo propio en el campo social.
La Dirección General de Educación Indígena (2011) presenta un programa sobre la
valoración de las lenguas indígenas: desde la valoración de la educación en Mesoamérica,
definición del lenguaje, la diversidad del lenguaje, propósitos de la asignatura, organización de
los contenidos generales, perfil del docente. Este programa nos manifiesta que las habilidades
comunicativas y culturales son básicas para el aprendizaje con identidad, pero ¿pueden los
estudiantes desarrollar una identidad personal y social y así acceder a una identidad cultural
profesional?
La experiencia de la licenciatura en Educación Primaria para el medio Indígena nos muestra
que durante dos décadas tanto los alumnos de estados del norte y del sur de México han
demostrado que no basta que estén cursando ésta licenciatura, su identidad es poco probable.
Los autores analizados y los programas implementados en México, muestran que en la
actualidad está presente la necesidad de fortalecer la identidad y que la valoración de la lengua y
la cultura en la educación es urgente e ineludible para todas las escuelas formadoras de docentes
para que incorporen de manera integral la identidad cultural a todos los programas educativos.
Conceptualización y caracterización de la identidad cultural.
Pensar con identidad cultural es reflexionar y analizar sobre nuestra propia cultura y lengua, y
nos hace percibir una realidad de manera consciente, empática, comunicativa, y cada vez
desprendida con el otro, con la responsabilidad a que esta se compromete, para ponernos en
condiciones de valorar lo diverso y poder construir una democracia cada vez más humana y
destruir las estructuras que limitan la convivencia armónica y profesional, con la finalidad de
implicarse y ser partícipes en la conformación de una sociedad más justa.
La identidad cultural es palpable y necesaria para que los educandos desarrollen el aprecio
sobre lo propio y que la enseñanza sea contextuada e incorporen de manera integral valoraciones
sobre lo propio y ajeno en todas las profesiones.
Fornet, (2005) motiva a que las instituciones se impliquen a atender las identidades reales y
manifiesta que la preparación de un docente tendría que estar articulada al mismo tiempo con
movimientos sociales ligados a otros posibles, la identidad exige una vida diaria y necesita un
mundo propio para hacer del pensamiento una conversación social.
170
KBSI2013
Papers
En esta consideración Morin, (2007) propone abordar la identidad terrenal como fenómeno de
individualidad y de colectivo, así la unidad humana es compartir y ayuda mutua, porque es parte
de su naturaleza, porque el sujeto con identidad es de acuerdo a su cultura y se comunica de
acuerdo a su lengua de origen. La identidad cultural se puede considera como una imagen de
figura pública en la que todo es aprendizaje de él y con los que se relaciona. Para ello es necesario
reconocer que cuando nos presentamos ante los otros, no lo hacemos sin referentes, nuestra
imagen está relacionada con nuestra historia, nos comunicamos con los contenidos de nuestra
cultura, pero no lo hacemos de forma valorada, lo hacemos más de forma irresponsable y
discriminamos con efectos que hieren a los demás, pero eso depende de la formación que
recibimos y todo aquello que nos forma. Es viable formar en la identidad personal y social desde
la valoración de la cultura y lengua propia.
Stufflebeam, (1987) con su modelo global sobre evaluación asegura que un modelo educativo
de acuerdo al perfil de ingreso, contexto, objetivos de sus programas y perfil de egreso utilizando
la evaluación formativa y sumativa como diagnóstico y propuesta, es de rigor analizar y tomar en
cuenta las necesidades de los estudiantes y de la sociedad, una de ellas es, cultivar la identidad
cultural de manera sistemática, el ejercicio de una identidad cultural profesional, para ser
ecuánimes con la diversidad humana.
La identidad cultural de la educación superior tiene que tener una imagen de sí misma y en
ella reflejarse para comprender que tiene que entender y atender que un solo modelo educativo
con la importancia de una sola lengua y cultura ya no es viable, México tiene un capital de
lenguas y culturas que ya quisieran otros países del mundo, la realidad existente supera los
modelos de una sola cara, y para ello hay que abrir una fisura para formarse como persona y
poder lograr la convivencia tan necesaria para educar en lo humano. Sin embargo para lograrlo
hay que reproducir la cultura, lengua y formas positivas de ver el mundo que sirvan a la
humanidad actual. Un producto social e histórico, es que en la escuela se valore la sabiduría y
desarrollo de prácticas comunitarias de tal manera que se fortalezca la identidad personal y social
del individuo.
Además hay que profundizar sobre la identidad cultural, es buscar a través de la historia de la
filosofía que nos remite al origen del hombre en la cual la identidad no era conceptualizada, pero
a medida que evoluciona da origen a la identidad territorial y en la actualidad a la identidad
cultural en la educación superior.
Todo ser humano, al nacer ya está en un ambiente familiar o un espacio en donde se
congregan personas que están a su alrededor y se ocupan de él, llega a la escuela y con las
relaciones del profesor y compañeros aprende las miradas que le dan a conocer para que mire lo
que otros ven y con ello se va formando imágenes para mirar de forma parecida, hasta comparte
significados, que él lleva y a medida que se forma en relación con otros profundiza su mirada
para ver lo que le dijeron que viera.
Teniendo en cuenta lo anterior, pensar con identidad cultural cobra importancia fundamental
en la educación justamente en el Plan Nacional de Desarrollo 2000- 2005 se tenía bastante claro
la importancia de la identidad cultural, la educación en México se determina más por sexenios
políticos que por necesidades de formación de los mexicanos.
La UNESCO (2000) propone se aborde la cultura desde la educación porque el sujeto posee
rasgos distintivos de su grupo de origen que refieren a:
• Espiritualidad. Creencias específicas sobre las cosas, principalmente sobre la tierra,
lugares sagrados que él ha conferido lo sea.
• Materiales. Las cosas que crea, como la artesanía,
• Intelectuales. Formas de cultivar la tierra y atender los animales.
• Afectivos. Atención de respeto a los padres, abuelos, hermanos, matrimonio.
171
KBSI2013
Papers
Todo lo anterior son elementos que caracterizan a una sociedad y que abarca las artes y las
letras, las tradiciones y formas de vida, las maneras de vivir juntos. En el estado de Puebla,
México, existen 7 grupos étnicos, náhuatl que es el mayoritario, hñahñu, totonaco, masateco,
mixteco, ngigua y tepehua, los cuales poseen lengua y cultura que los caracteriza.
Metodología
Con el cuidado que merece el problema en este artículo, se presenta una investigación con
enfoque cuantitativo explicativo con soporte transversal, realizado con estudiantes de la unidad
211 de Puebla de la Universidad Pedagógica Nacional. El estudio esta cobijado por una
importancia meticulosa cuando se analiza que es conveniente la atención de los grupos étnicos
porque poseen una lengua y cultura y se comprende que un estudiante en formación desarrolle el
aprecio hacía lo propio como una de las maneras para afinar su perfil profesional.
La investigación se realizó por tener la oportunidad de que los alumnos reconozcan que
atienden y que también poseen una lengua y cultura y que había que formarlos para la
convivencia, que el egocentrismo sobre lo propio nos trajo una visión positiva y que si miramos
la riqueza que poseemos todos nos hace más humanos y nos preparamos para la convivencia.
El estudio se aplicó durante un día con una intervención de hora y media, bajo la mediación
de la docente; con el propósito de responder a las preguntas planteadas y para lograr el objetivo
de estudio propuesto, esto implicó el desarrollo de una metodología que prueba la hipótesis que se
plantea bajo el diseño no experimental porque no se construye ni se manipula el sujeto, se eligió a
un grupo intacto.
Hipótesis: La falta de éxito del trabajo docente se debe a la ausencia de identidad cultural en la
educación superior. A mayor uso de la lengua y la cultura, mejor fortalecimiento de la identidad
personal y social.
Los sujetos de estudio fueron 26 estudiantes de séptimo semestre de un grupo intacto.
El instrumento fue un cuestionario que se elaboró teniendo como referencia el perfil de
egreso de la licenciatura, diseñado previamente mediante un cuadro de especificaciones para tres
variables: imagen, ejemplos y formas de localización de la identidad cultural. De acuerdo al
estudio, por cada variable se anotaron algunos indicadores y preguntas que permiten determinar la
situación de la identidad cultural. Después de haber sometido al jueceo de dos expertas, un
metodólogo, un asesor de tesis y haberse realizado el pilotaje, por cinco alumnos y después de
haberse analizado las observaciones y sugerencias, se hicieron los cambios correspondientes, se
enriqueció el instrumento y quedo conformado por 20 preguntas todas construidas con rigor
académico.
Resultados de la investigación. El 100% de los estudiantes reflejan mayor énfasis en las
características de identidad personal, el 15% habla una lengua indígena, grupo de origen, el 100%
manifestó la importancia sobre su proyecto personal y el 50% sobre los valores de grupo. El
100% comprende la importancia de valorar su profesión y que se caracterice por tener una
distinción propia.
Un hallazgo importante es que en el grupo el 75% sólo habla español, el otro 25% que habla
una lengua indígena se intimidan ante la mayoría de sus compañeros.
Discusión
Reconociendo que la identidad personal y social se construye de la valoración de la lengua y
la cultura y que abarca diversos niveles de complejidad debe incorporarse en el plan curricular de
la educación superior, con el objetivo de que la formación del estudiante que egresa, lleve las
herramientas que le permitirán valorar lo propio y ajeno de su cultura para desarrollar la
convivencia en su perfil de egreso.
172
KBSI2013
Papers
Conclusión.
La identidad personal y social es tan necesaria que es pertinente buscar un intento de
reflexión positiva en alumnos de formación docente, manifiestan que la lengua y la cultura son
sustantivas para la formación de una identidad fortalecida, principalmente la identidad social que
está en relación con la identidad laboral.
Valorar la identidad cultural como una necesidad permanente de las personas y mucho más
en un ambiente laboral.
Agradecimientos
El presente estudio se ha podido llevar a cabo gracias a la ayuda que ha recibido la autora.
También se agradece profundamente en primer lugar a los directivos de la Unidad 211 de la
Universidad Pedagógica Nacional por facilitar se desarrolle el proyecto de investigación.
Al Dr. Oscar Ernesto Hernández López, Dr. Edgar Gómez Bonilla, Dra. Fabiola Moreno
Benítez, por su invaluable asesoría y a mi compañera de estudio y amiga Olga Sara Lamela que
me motivo a participar, y a los estudiantes que tuvieron mucha voluntad en participar en el
proyecto.
Temática: Cruzando el abismo de la educación, más allá de la transformación educativa
Bibliografía
Bourdieu, (2001) La reproducción. Editorial Popular, España, 2001.
Berger, Peter, y Thomas Lukmann, (1968). La construcción social de la realidad. Buenos Aires.
Amorrortu Editores.
Bonfil, B. A. (1991). Pensar nuestra cultura. México D. F.: Alianza.
Fornet-Betancoutr, R. (2004). Sobre el concepto de interculturalidad. México: Coordinación
General de Educación Intercultural y Bbilingue.
Habermas, J. (2003). La ética del discurso y la cuestión de la verdad. Barcelona: Paidós.
Habermas, J. (1981). Teoría de la acción comunicativa, II. México: Taurus.
Morín, E. (2007). Los siete saberes necesarios para la educación del futuro. París: UNESCO.
Oliveira, R. C. (1992). Etnicidad y Estructura Social. México: CIESAS.
Vygotsky, L. S. (1934). Pensamiento y lenguaje. México: Alfa y Omega.
173
KBSI2013
Papers
Effect of Formative Feedback on Enhancing Ways of Contributing to a
Explanation-Seeking Dialogue in Grade 2
Monica Resendes, OISE/University of Toronto
Email: <[email protected]>
Abstract: This research explores the extent to which a new assessments can help
students to enhance their ways of contributing to explanation-seeking discourse, and
also investigates the extent to which expanding contribution repertoires helps students
to advance community knowledge as a whole. To this end, this study tested both
pedagogical and technological supports designed to raise the level of students’
dialogue. Repeated “meta-discourse sessions” were integrated in students Knowledge
Building inquiry as a form of pedaogigical support, and students were also exposed to
three forms of automated feedback that included Word Clouds, a “MetaDiscourse” bar
graph, and Word Network visualizations that displayed important aspects of their
discourse. Results indicate that the MetaDiscourse bar graph is particularly conducive
to helping students expand their contribution repertories in targeted areas and that
repeated meta-discourse sessions are valuable for aiding students in advancing group
knowledge in general.
Introduction
The ability to produce new knowledge can be described as a capacity for “productive work
that advances the frontiers of knowledge as these are perceived by [a] community” (Bereiter &
Scardamalia, 2003). Increasingly, societal capacity for innovation and the creation of new
knowledge is required to address the sorts of complex problems that characterize the 21st century,
such as accelerating climate change, widespread financial downturns, and global political unrest
(David & Foray, 2003; Homer-Dixon, 2000). The research reported in this study is concerned
with increasing society’s capacity to create new knowledge by testing educational innovations
aimed at enhancing students’ abilities to contribute to knowledge creation processes. Given that
new knowledge is generated through the discourse that characterizes a particular knowledge
community, this study focuses on testing pedagogical and technological supports that can help
students expand the ways they contribute to collaborative explanation-seeking discourse.
This research uses a Knowledge Building approach, which is a pedagogy that is uniquely
suited to research for developing students’ capacity to work creatively with knowledge.
Knowledge Building can be described as “the production and continual improvement of ideas of
value to a community” (Scardamalia & Beretier, 2003, p. 1370). Knowledge Building pedagogy
is dedicated to immersing students in a culture of knowledge creation that places the advancement
of community knowledge as the explicit and shared goal (Scardamalia & Bereiter, 2003). A key
aspect of Knowledge Building is the commitment to engaging students in sustained explanationseeking or “progressive discourse” (Beretier, 1994), which can be described as collaborative
dialogue that advances through continued efforts to deal with puzzling facts. The Knowledge
Forum (KF) online environment is the technology that supports the pedagogy. This environment
is specially designed to support knowledge creation processes, the emergence of big ideas and
principle-based learning (Scardamalia, 2004).
Given that advancing community knowledge is premised on improving the quality of shared
discourse (Bereiter, 2010), the questions for educators and researchers working to help build
students’ capacities for creating new knowledge ask: how can we boost students’ capacities for
“making good moves” in explanation-seeking discourse? How can we help them make diverse
contributions that are “on course” and work to advance community knowledge? A growing body
of literature shows that a prerequisite for productive collaborative classroom dialogue includes a
174
KBSI2013
Papers
dynamic interaction of various contributor roles (de Bono, 1985; Anderson, Holland, & Palinscar,
1997; Hogan, 1999; Webb & Mastergeorge, 2003). Similarly, research has shown that an
important indicator of productive and progressing explanation-seeking discourse is the presence
of diverse contributions to the shared dialogue (van Aalst, Chan, Wan, & Teplovs, 2010;
Matsuzawa, Oshima, Oshima, Niihara, & Sakai, 2011; Oshima et al., 2012).
In efforts to identify and chart the particular contribution types that help to carry a knowledge
building discourse forward, Authors, (2011a), developed a comprehensive inventory of ways of
contributing to explanation-seeking dialogue that charts a range of contribution types one can
expect to encounter in the shared discourse of elementary school students. This inventory
includes six main contribution types, including “asking thought provoking questions”,
“theorizing”, “obtaining information”, ”working with information”, “synthesizing and
comparing”, and “supporting discussion”, as well as 24 subcategories corresponding to these
main types. Studies that identify meaningful contribution types to collaborative discourse provide
a means to assess students’ dialogue and to earmark important contribution types that can serve as
targets for innovative design work. For example, using this inventory to explore the work of
Knowledge Building students in Grades 1-3, Authors (2011b) identified “asking thoughtprovoking questions” and “theorizing” as the two main contribute types young students engaged
most often in their naturally-occurring work, while “obtaining information”, “working with
information” and “synthesizing and comparing” were lacking and thus require additional support.
The study reported in this paper builds off of this research by targeting low-level contribution
types and testing pedagogical and technological supports geared to help primary aged students
expand their ways of contributing to explanation-seeking discourse.
New Assessments for Explanation-Seeking Discourse
With respect to pedagogical supports, this study explores how repeated “meta-discourse”
discussions embedded within a Knowledge Building inquiry can help students keep their
discourse progressing. “Meta-discourse” can be described as discussion about discussion, and
calls for community members to take a “meta-perspective” on their own dialogue. Meta-discourse
serves as a type of formative evaluation that can help a knowledge creating community both
assess their achievement up to the current point and decide on a future plan of action. In Bereiter
and Scardamalia’s (2010) structural model of Knowledge Building discourse, “meta-discourse”
represents a discourse move that is peripheral to the “central path” of the dialogue and as such, is
often neglected in practice (p. 4) and lacking in online discussion (Scardamalia & Bereiter, 2006).
However, the benefits of meta-discourse to Knowledge Building work have been repeatedly
documented. For instance, van Aalyst (2009) identifies meta-discourse as a key condition of an
innovation ecology that can enable knowledge creation. Studies also show that meta-discourse
can help students in a range of important ways, such as recognizing shared knowledge advances,
identifying setbacks, setting goals, connecting ideas, and articulating new questions (Zhang &
Messina 2010; Zhang, Hong, Scardamalia, Teo, & Morley, 2011).
In terms of technological supports, the development of new automated assessments to boost
students’ capacity to contribute productively to explanation-seeking discourse represents a goal
shared by a growing number of research programs (Teplovs, Donoahue, Scardamalia, & Philip,
2007; Van Aalst, et. al, 2010; Yang, van Aalst & Chan, 2012). The study reported here shares this
objective, and experiments with automated feedback that helps students get a “bird’s eye view” of
their own dialogue and that targets both the contribution makeup and content of students’
emergent discourse. The feedback supports tested in this study include Word Clouds, a new tool
featured in Knowledge Forum called the MetaDiscourse tool (Chen & Resendes, 2012), and
Word Network visualizations produced by KBDeX (see Oshima, Oshima, & Matsuzawa, 2012).
Each type of feedback is discussed in more detail below:
(a) The MetaDiscourse tool: To explore ways to expand students’ contribution repertoires
175
KBSI2013
Papers
using automated feedback, we tested visualizations produced by the “MetaDiscourse” tool. This
tool allows students to monitor the types of discursive moves that are being made by their
community at any given time (see Figure 1 on next page). The bar graph measures correspond to
the verbal scaffolds that are featured in the note interfaces in Knowledge Forum (e.g. “My
Theory”, or “I need to understand”, etc.). These scaffolds underlie important epistemological
processes and help to frame students’ thinking and encourage contribution types conducive to
idea improvement. We choose to use this tool to not only facilitate “meta-discourse sessions” but
to help introduce two new scaffolds to students that target low-level contribution types—“This
information is important because” and “Our improved theory”. The former maps onto the
contribution category “obtaining information” and the latter to “synthesizing and comparing”,
both of which have been identified as contribution types that require extra support in the
discourse of primary level students (Chuy et al., 2011).
Figure 1. MetaDiscourse tool visualization showing bar graph of scaffold use.
It is important to note here that automated assessments that are built to guide the most
important dimensions of Knowledge Building practice visualize data in simple representations
that are easy for both students and teachers to use in practice, but are also powerful enough to
help boost both the socio-behavioural and cognitive processes necessary for knowledge creation
to occur (Yang, van Aalst, & Chan, 2012). The simple graph produced by the MetaDiscourse
Tool is accessible to students from a range of ages and provides a simple yet powerful visual to
facilitate reflection on important attributes of shared dialogue, for instance, whether a particular
discourse is saturated with questions but relatively few ideas, or whether there is an abundance of
outside information but no connections between facts and students’ own theories. Furthermore,
As van Aalyst (2006) points out, it is critical that students possess an understanding the nature of
explanation-seeking discourse in order for automated assessments to be meaningfully integrated
within the routines of their knowledge building work. The MetaDiscourse tool can help foster
deep understanding of the nature of explanation-seeking discourse by presenting group-level data
that can be used to initiate and facilitate whole class, reflective discussions about the contribution
types that make up the community’s discourse at any given time in the inquiry, including why
different contribution types might be important at different times. By detecting and displaying
contribution patterns, feedback provided by the MetaDiscourse tool can help to highlight
underrepresented contribution types and bring neglected elements of the discourse to the forefront
of students’ attention (Scardamalia, Bransford, Kozam, & Quellmalz, 2012).
(b) Word Clouds: To help facilitate meta-discourse discussions, a series of different word
clouds were created visualizing key terms and concepts relevant to various streams of inquiry that
emerged in students’ own discourse. Word clouds refer to representations of textual data that are
176
KBSI2013
Papers
based on schemes of significance or popularity expressed through visual properties like font size,
color, position, or weight (Bateman, Gutwin, & Nacenta, 2008). Word clouds have been shown to
be educationally beneficial in a number of ways. For example, Word Clouds can act as
“suggestive device[s]” for underlying phenomena in source data (Xexéo, Morgado & Fiuza,
2009), can illuminate implicit or hidden relationships in unstructured data (Koutrika, Zadeh, and
Garcia- Molina, 2009), and can aid in semantic exploration and comprehension of data by users
(Bateman, Gutwin, & Nacenta, 2008).
In this study, two different types of Word Clouds were used, including “Concept Clouds”
and “Word Networks” (see Figure 2). With respect to “Concept Clouds”, three different types
were used: Clouds that depicted the most frequent terms that the students were using in their
Figure 2. Concept Clouds including “Our Words”, “Experts’ Words” and “Our Shared
Words”
naturally-occurring dialogue over time (“Our Words”); clouds that depicted key words that
experts frequently used when talking about those same phenomena (“Expert Words”); and clouds
that allowed students to assess the extent to which the words characterizing their discourse
mapped onto those used in the expert dialogue, by means of colour-coding (“Our Shared
Words”). These visualizations were geared to help students gain a sense of the semantic field of
their discourse, and to enable the community to trace the use and longevity of new terms in their
discourse over time. Furthermore, lack of common vocabulary between students and authoritative
sources, as evidenced in the “Our Shared Words” cloud, could show limits of student
understanding while also depicting terms that could help them to fruitfully expand their inquiry in
new directions. Lastly, feedback that displayed the semantic connections students were making
between important terms in their discourse would be displayed via Word Network visualizations
(see Figure 3 on next page). These visualizations not only highlight the key words in a dialogue
but make explicit the connections and relationships students are making between these words in
their discourse.
177
KBSI2013
Papers
Figure 3. Word Network visualization produced by KBDeX
Research Questions
Embedding both meta-discourse and exposure to formative feedback within the regular
Knowledge Building practices of a primary grade classroom provides an authentic context to test
the extent of each support for building students’ capacity to engage diversely and productively to
dialogue oriented to knowledge creation. Accordingly, the main objectives for this study are as
follows: to explore the extent to which new supports can help students expand their ways of
contributing to collaborative explanation-seeking discourse, and to determine whether expanding
contribution repertoires helps students to advance community knowledge as a whole by (a)
engaging students in repeated meta-discourse discussions coupled with exposure to contentoriented feedback (b) engaging students in repeated meta-discourse sessions coupled with
exposure to both content and contribution-oriented feedback.
METHOD
Participants
Participants for this study include 64 Grade 2 students (34 boys, 32 girls) from three
consecutive Grade 2 classes that took place during the 2011, 2012 and 2013 school years. The 21
students from the Grade 2, 2011 class (10 boys, 11 girls) comprise the comparison group for this
study, as they received no experimental treatments. The Grade 2, 2012 class (12 boys and 10
girls) were split up into two groups—Group A and Group B. The students in both of these groups
comprise the first experimental cohort for this study. Each of these groups received slightly
different treatments. The second experimental cohort consisted of 22 students (11 boys and 11
girls) from the Grade 2, 2013 class. All students in this class received the same set of treatments.
Table 1 summarizes the different treatments each group received.
178
KBSI2013
Papers
Table 1. Outline of treatments for the comparison and experimental groups.
Group
2011 class (comparison)
Pedagogical
Treatment
Technological Treatment
No treatments
No treatments
2012 class – Group A
(experimental)
Meta-discourse sessions
Concept Clouds
2012 class – Group B
(experimental)
Meta-discourse sessions
Concept Clouds + New
“Obtaining Information”
Scaffold + MetaDiscourse
Tool
Meta-discourse sessions
Concept Clouds + Word
Networks + New “Our
Improved Theory” +
MetaDiscourse Tool
2013 class (experimental)
Classroom Context
All students across all three years completed a three-month Knowledge Building bird study
and followed this up with another three-month inquiry on salmon. All classes examined similar
artifacts, such as owl pellets, nests and feathers during their respective inquiries, and all classes
participated in the “Lake Ontario Salmon Restoration Program” as part of their salmon study. The
same teacher taught all three classes. The Grade 2s typically had one 45-minute session a week
dedicated to Knowledge Building. In these sessions, the classes were split up into two groups in
which half the students went to the library and the other half engaged in inquiry. Group A and B
in the 2012 class correspond to these groups, which were chosen randomly by the teacher. An
important component of the inquiries in all classes were “KB talks”, which were whole-group
discussions in which students posed questions, introduced ideas and examined artifacts as a
group. These talks were generally followed up by 20 minutes of individual work on the
Knowledge Forum database.
In the 2012 and 2013 experimental classes, regular “KB” talks included a series of metadiscourse sessions that were embedded throughout the inquiry. Students in these classes were also
exposed to the various forms of feedback in the context of these reflective discussions.
Integrating feedback visuals into meta-discourse sessions was designed to help position them as
objects of public discourse that helped to make explicit important elements of the online dialogue
as it emerged, and to serve as artifacts that the community could rally around during periods of
reflection.
Dataset
The dataset for the study consists of student work as generated on three distinct Knowledge
Forum databases and include the following: i) Grade 2, 2011—240 notes across four views, from
both the bird study (111 notes, 3 views) and salmon units (129 notes, 1 view); ii) Grade 2, 2012—
203 notes across eight views from the bird (175 notes, 7 views) and salmon units (90 notes, 1
view) units; i) Grade 2, 2013—259 notes across eight views from their bird (117 notes, 1 view)
and salmon databases (143 notes, 1 view).
179
KBSI2013
Papers
Plan of analysis
Data analysis focused on two main aspects, as described below:
i.) Contribution Measures: The “Ways of Contributing to Explanation-Seeking Discourse”
coding guide was used to analyze all student notes, which includes 6 main categories and 24
subcategories (see Chuy, Resendes, Tarchi, et al., 2011). If a note exhibited more than one form
of contribution, for example, “asking an explanatory question” and “proposing a theory”, that
note was coded as displaying two distinct contribution types. Two raters coded all databases.
Agreement rates are as follows: 2011 class—97.85%; 2012 class—98.48%; 2013 class—99.34%.
ii.) Knowledge Advancement: Notes from the online discourse that were coded under the
“theorizing” category were selected and subject to further analysis to assess community
knowledge advancement, which was evaluated using scales for “scientificness” and “epistemic
complexity” (Zhang, Scardamalia, Lamon, Messina, & Reeve, 2007). Each scale has four levels
that trace both increasing levels of scientific accuracy, as well as extent of explanatory
elaboration as evident in student work. Overall, agreement rates for “scientificness” and
“epistemic complexity” are as follows: 2011 class—94.95% and 89.94%; 2012 class—81.45%
and 90.76%; 2013 class—89.13% and 84.77%, respectively.
Results
i.) Did the experimental groups contribute more diversely than their peers in the comparison
group?
One-way ANOVA comparisons were conducted to test for differences in contribution
repertories among the four groups. Significant differences were found for “theorizing”, F(3, 60) =
2.79, p < .05, and “obtaining information”, F(3, 60) = 3.32, p < .05. Post-hoc tests (TukeyHSD)
show that Group B contributed significantly more than the 2013 class with respect to “theorizing”
(p < .05, Cohens’ d = 2.86). Differences were also found for a subcategory of “theorizing”,
namely “proposing an explanation”, F(3, 60) = 4.82, p < .01. As post-hoc tests show, Group B
outperformed the 2011 (p < .05, Cohen’s d = 1.89) and 2013 class on this measure (p < .01,
Cohen’s d = 2.32). Similarly, Group B outperformed all other three groups on “obtaining
information” (p < .05, Cohen’s d = 1.62). More specifically, significant differences were found on
the subcategory “introducing a new fact from a source” F(3, 60) = 4.79, p < .01, with post hoc
tests revealing that Group B outdid the 2013 class on this measure (p < .01, Cohen’s d = 1.73).
Significant differences were also found for “reporting experimental results” F(3, 60) = 3.69, p <
.05, with post hoc tests showing that both the 2013 class and Group B did better on this measure
than the 2011 class (p < .05, Cohen’s d = 0.59) (see Figure 6 on next page).
Figure 4. Contribution patterns for “Ways of Contributing” main categories
180
KBSI2013
Papers
Figure 5. Contribution patterns for “Ways of Contributing” subcategories
These results indicate that students who were exposed to the pedagogical support along
with both kinds of automated feedback—including both content (Word Clouds) and contributionoriented (MetaDiscourse bar graph) visualizations—expanded their contribution repertoires in
statistically significant ways. Among the two experimental groups who were exposed to both
forms of automated feedback (Group B and the 2013 group), Group B stands out as showing the
most gains. This group expanded their repertoires with respect to contribution types
corresponding to “obtaining information” which was targeted, as well as “theorizing”, which was
unanticipated. Their performance could be explained in part by two factors: First, this group spent
more time explicitly discussing the contribution category of “obtaining information” due to the
introduction of the new scaffold, “This information is important because”, in their database. This
scaffold was present in the note interfaces in this year, was subsequently depicted on
MetaDiscourse bar graphs, and was directly discussed in select group meta-discourse sessions.
Thus, talking explicitly about scaffolds directly targeting “obtaining information” helped students
to enhance their engagement in the targeted area. While the new scaffold “Our
Figure 6. Significant differences between groups on “Ways of Contributing” categories
improved theory” was engaged in a similar manner during the inquiry work performed by the
experimental group in 2013, the scaffold was used mainly to support collective contributions that
emerged from group discussions, and as such these contributions were not included in analysis,
181
KBSI2013
Papers
which focused only on individually authored notes. Thus, the fact that the 2013 class did not
show any significant gains in this contribution type may be more reflective of a weakness in the
study design than any deficiency or failure in student work. However, that the 2013 class also
demonstrated significant advancements with respect to the contribution type “reporting
experimental results” indicates that students can still benefit and raise lower-level contribution
types with the support of content and contribution-oriented feedback and without necessarily
engaging in explicit discussion about any one particular way of contributing over another.
ii.) Did the experimental group achieve greater knowledge advancement?
One-way ANOVA comparisons were also conducted on knowledge advancement measures.
Results showed a number of significant differences between groups on both “scientificness” F(3,
57) = 8.51, p < .0001 and “epistemic complexity” F(3, 57) = 3.35, (p < .05) (see Figure 7 on
next page). Posthoc tests show that the 2011 class was outperformed by all three experimental
groups (p < .01, Cohen’s d = 0.62) for “scientificness” of explanations as well as “epistemic
complexity” (p < .05, Cohen’s d = 0.46). Among the experimental groups there were no
significant differences. These findings suggest that conducting repeated meta-discourse sessions
throughout an inquiry that include reflection on automated feedback that helps give students a
“bird’s eye view” of their own discourse can have a positive effect on primary aged students’
Knowledge Building work, and can help them write more scientifically accurate notes and
articulate more elaborate scientific explanations.
Figure 8. Knowledge advancement scores (M) across four groups
Discussion and Conclusions
In this study, we tested both pedagogical and technological supports designed to help students
enhance their ways of contributing to explanation-seeking discourse. We focused on “metadiscourse sessions” as a pedagogical component and experimented with various forms of
automated supports, including content (Word Clouds) and contribution-oriented (the MetaDiscourse bar graph) feedback. Meta-discourse allows students to discuss the progress and
setbacks in their inquiry on the whole, while automated visualizations that present formative
feedback to students about the ways they are participating help students gain a meta-perspective
on the semantic and contribution makeup of their own dialogue. Four groups participated in this
study, including one comparison group and three experimental groups, each of which were
exposed to a different combination of supports.
Results of analysis showed that the MetaDiscourse bar graph in particular is productive for
helping students to expand their contribution repertories, as the two experimental groups that
were exposed to this feedback both showed significant gains in one or more targeted contribution
types. Findings also show that focusing attention on particular contribution types can help trigger
182
KBSI2013
Papers
increased engagement with those ways of contributing to a significant degree, as the experimental
group who utilized a new scaffold targeting “Obtaining information” boosted the presence of this
contribution type as well as its corresponding subtypes more than any other group in the study.
Furthermore, findings reveal that meta-discourse sessions that were facilitated by one or both
kinds of feedback proved valuable for helping students to reflect on their ideas and to gain a
broader perspective of their inquiry, and consequently to advance group knowledge to a greater
degree than those students who did not participate in such sessions. Indeed, all three experimental
groups who engaged in these reflective discussions showed significantly higher performance
scores for knowledge advancement than the group that did not, regardless of the type of feedback
visual they were exposed to. The positive effects of these forms of embedded assessments, both
technological and pedagogical, was evident in all experimental groups, and support the assertion
that these designs reflect examples of productive new assessments to support Knowledge
Building work.
References
Anderson, C., Holland, J., & Palinscar, A. (1997). Canonical and Sociocultural Approaches to
Research and Reform in Science Education: The Story of Juan and His Group, The
Elementary School Journal, (97)4, The University of Chicago.
Authors, (2011a)
Authors, (2011b)
Bateman, S., Gutwin, C., & Nacenta, M. (2008). Seeing things in the clouds: The effect of visual
features on tag cloud selections. Proceedings of HT ’08, June 19-21, 2008. Pittsburgh, PA.
Bereiter, C., (2010). How to Make Good Knowledge-Building Discourse Better. Institute for
Knowledge Innovation and Technology. Knowledge Building Summer.
Bereiter, C., & Scardamalia, M. (2003). Learning to work creatively with knowledge. In E. De
Corte, L. Verschaffel, N. Entwistle, & J. van Merriënboer (Eds.), Powerful learning
environments: Unraveling basic components and dimensions. (Advances in Learning and
Instruction Series). Oxford, UK: Elsevier Science, p. 55-68.
Chen, B., & Resendes, M. (2012). Inviting Students to Reflect: Meta-Discourse Tool in
Knowledge Forum / Amener l’apprenant à réfléchir : un outil de méta-discours dans
Knowledge Forum. Paper presented at The Canadian Society for the Study of Education
Annual Conference (CSSE2012), Waterloo, Canada, May 2012.
David, P. A., & Foray, D. (2003). Economic fundamentals of the knowledge society. Policy
Futures in Education, 1(1), 20-49.
de Bono, E. (1985). Six thinking hats. Boston: Little, Brown.
Hogan, K. (1999). Sociocognitive roles in science group discourse. International Journal of
Science Education, 21(8), 855-882.
Homer-Dixon, T. (2000). The ingenuity gap: Facing the economic, environmental, and other
challenges of an increasingly complex and unpredictable world. New York: Knopf.
Matsuzawa, Y., Oshima, J., Oshima, R., Niihara, Y., Sakai, S. (2011). KBDeX: A platform for
exploring discourse in collaborative learning. Procedia - Social and Behavioural Sciences,
198-207. DOI: 10.1016/j.sbspro.2011.10.576
Oshima, J., Oshima, R., & Matsuzawa, Y. (2012). Knowledge building discourse explorer: A
social network analysis application for knowledge building discourse. Educational
Technology Research and Development, 60(5), 903–921.
Scardamalia, M. (2004). CSILE/Knowledge Forum. In Education and technology: An
Encyclopedia (pp.183-192). Santa Barbara: ABC-CLIO.
Scardamalia, M., & Bereiter, C. (2003). Knowledge building. Encyclopedia of education, 2, New
York; NY: Macmillan, 1370-1373. Scardamalia. M. & Bereiter, C. (1992) Text-based and
knowledge based questioning by children. Cognition and Instruction, 9(3), 177–199.
183
KBSI2013
Papers
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology.
In R. K. 1131 Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 97–115).
New York, NY: 1132 Cambridge University Press.
Scardamalia, M. & Bereiter, C. (2010). Good moves in knowledge-creating dialogue: Preliminary
sketch of a model. Online.
Scardamalia, M., Bransford, J., Kozam, B. and Quellmalz, E. (2012) New Assessments and
Environments for Knowledge Building, In P. Griffen, B. McGaw, & E. Care (Eds.),
Assessment and Teaching of 21st Century Skills. Springer: New York, 231-300.
Teplovs, C., Donoahue, Z., Scardamalia, M., & Philip, D. (2007). Tools for concurrent,
embedded, and transformative assessment of knowledge building processes and progress,
Rutgers, The State University of New Jersey.
Web. N.M., & Mastergeorge, A.N. (2003). Promoting effecting helping in peer-directed groups.
Educational Researcher, 39, 73-97.
van Aalst, J. Chan, Y., Chan, C., Wan, W., Teplovs, C. (2010). Development of Formative
Assessment Tools for Knowledge Building. Paper presented at Development of Formative
Assessment Tools for Knowledge Building Workshop, the Knowledge Building Summer
Institute, New Assessments and Environments for Knowledge Building. Ontario Institute for
Studies in Education OISE/UT, Toronto, Canada. August 3rd-6th.
van Aalst, J. (2009). Distinguishing between knowledge sharing, knowledge construction, and
knowledge creation discourses, 4(3) International Journal of Computer-Supported
Collaborative Learning, 259-287.
Xexéo, G., Morgado, F., & Fiuza, P. (2009). Differential tag clouds: Highlighting particular
features in documents. Proceedings of 2009 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology. Milano, Italy.
Yang, Y., Van Aalst, J. & Chan, C. (2012) Exploring patterns of interaction in Knowledge Forum
databases using Knowledge Connections Analyzer (KCA). Paper presented at the Knowledge
Building Summer Institute, Institute for Knowledge Innovation and Technology (IKIT),
Toronto, Canada. August 7th-10th.
Zhang, J., Hong, H. Y., Scardamalia, M., Teo, C. L., & Morley, E. A. (2011). Sustaining
knowledge building as a principle-based innovation at an elementary school. The Journal of
the Learning Sciences, 20(2), 262–307. Taylor \& Francis.
Zhang, J., & Messina, R. (2010). Collaborative productivity as self-sustaining processes in a
Grade 4 knowledge building community. In K. Gomez, J. Radinsky, & L. Lyons (Eds.),
Proceedings of the 9th International Conference of the Learning Sciences(pp. 49-56).
Chicago, IL: International Society of the Learning Sciences.
Zhang, J., Scardamalia, M., Lamon, M., Messina, R., & Reeve, R. (2007). Socio-cognitive
dynamics of knowledge building in the work of nine and ten year-olds. Educational
Technology Research and Development, 55:2, 117– 145.
184
KBSI2013
Papers
Responsabilidad compartida a través de la implementación de
webquest en los alumnos de primer grado de Telesecundaria
Yolanda Ruiz Cervantes,
Email: [email protected]
Oscar Hernández López
Universidad Iberoamericana, Puebla, Mexico
Email: [email protected]
RESUMEN: En esta investigación se diseñan actividades bajo los principios de
Knowledge Building, para aplicarse manejado con webquest para que los
aprendizajes resulten ser más significativos.
Además, el trabajo colaborativo en el cual los distintos protagonistas del proceso de
enseñanza-aprendizaje pueden interactuar entre sí de forma instantánea, en cualquier
momento, se mejora gracias a las herramientas para hacer efectivas sus respectivas
tareas.
El presente trabajo de investigación tiene como objetivo: Determinar el impacto de la
implementación de webquest como andamios para logar desarrollar competencias
investigativas a través del desarrollo del trabajo colaborativo y el principio
colaboración compartida para el conocimiento comunitario, uno de los doce
principios de la pedagogía Knowledge Building, el estudio se realizó con los alumnos
de primer grado grupo “A” de telesecundaria”Dr. Gustavo Baz Prada” de la
comunidad de Capula, municipio de Sultepec, Estado de Mèxico.
Los resultados de la investigación consideramos especialmente los siguientes: En el
grupo en el cual se implementó el recurso didáctico Webquest, el 100% de los
alumnos participó obteniendo un alto desarrollo de competencias investigativas.
La evaluación de la webquest, demuestra que el proceso de diseño, implementación y
gestión de la Webquest siguiendo principios de Knowledge Building, proporciona a
los estudiantes las posibilidades de innovar sus tareas de aprendizaje, permitiendo la
incorporación activa de las TICs en la educación y de esta manera desarrollar
competencias investigativas.
Introducción:
En la sociedad del siglo XXI llamada también la "era del conocimiento", la riqueza de las
sociedades dependen cada vez más de su capacidad para innovar de forma creativa con el
conocimiento, la innovación debe ser parte integrante de lo cotidiano. Esto presenta un reto
considerablemente nuevo en el ámbito educativo no solamente en la cotidianidad, sino desde la
vida escolar para que los alumnos sean capaces de participar en la creación de nuevos
conocimientos como parte normal de su vida. ¿Pero cómo logarlo?
No existen métodos probados de educar a la gente a ser productores de conocimiento.
Debemos pensar en una trayectoria de desarrollo que vaya desde la curiosidad natural del niño a
la creatividad disciplinada del productor de conocimiento maduro (científico o investigador). El
desafío, entonces, es conseguir que los estudiantes se incorporen en esa trayectoria.
Por tal motivo, el objetivo de realizar esta investigación es introducir el kb y observar y
contrastar cómo se construye conocimiento de manera colaborativa (Scardamalia, 2003), en
alumnos de primer grado de telesecundaria en una la comunidad rural de Capula, municipio de
Sultepec, estado de México, México.
185
KBSI2013
Papers
Tendencias teóricas:
Para Scardamalia (2003), el conocimiento es socialmente construido y se desarrolla mejor a
través de colaboraciones diseñadas de tal manera que los participantes compartan conocimiento y
aborden proyectos que incorporen características de los equipos de trabajo de los adultos con
contenidos del mundo real y utilicen fuentes de información válidas, confiables y variadas.
El valor cognitivo de las actividades prácticas aparece dependiendo del rol de esas
actividades en el sistema completo de todas las actividades. Es esencial que la participación en
actividades concretas no sea considerado como un fin en sí misma sino incluido bajo metas de
más alto nivel que incluyan la reflexión, el avance del conocimiento y la comprensión
(Hakkarainne, en Bereiter y Scardamalia, 2004).
Un buen ambiente Knowledge Building proporciona los medios para iniciar a los estudiantes
en -crear conocimiento-crear cultura- y hacer que se sientan parte del esfuerzo de largo plazo de
la humanidad por entender su mundo y tomar un cierto control sobre su destino. Si lográramos
un consenso sobre cómo debe ser la educación en la Sociedad del Conocimiento, probablemente
esta se encontraría en un conjunto de términos que abundan en el discurso: aprendizaje para toda
la vida, flexibilidad, creatividad, habilidades de pensamiento superiores o habilidades de
pensamiento de orden superior, colaboración, experticia distribuida, organizaciones que
aprenden, innovación, alfabetismo tecnológico y muchas más de ese estilo. Aunque en algunos
casos estas parecen palabras vacías, pero también pueden ser vistas como esfuerzos por expresar
una intención que aún no ha sido formulada de manera suficientemente clara para ser útil en la
generación de diseños y políticas educativas.
Es necesario determinar cómo pueden ser aplicados tales conceptos para generar un tipo de
educación que realmente enfrente los nuevos retos de una manera novedosa (Bereiter y
Scardamalia, 2002).
Para identificar un problema es necesario observar con detenimiento, plantearse preguntas
sobre lo que se observa, ¿qué?, ¿cómo?, ¿para qué?, ¿dónde? … y para que surjan ideas es
necesario comprender las relaciones entre los elementos observados buscando respuestas a las
puntos de vista de los compañeros, especialmente los que son muy diferentes a los propios.
De forma similar a la revolución copernicana, el cambio de paradigma de la educación
centrada en actividades a uno centrado en ideas tiene un carácter de todo o nada. La mayoría de
los profesores creen que ya ponen las ideas en el centro.
La construcción de conocimiento es una forma de enseñanza para la comprensión y es como
Bereiter (2002) lo deja claro, constructivista. Pero también radicalmente distinta.
Expone doce ideas que combinadas hacen un aula de construcción de conocimiento
profundamente diferente.
Crear un recurso intelectual compartido y un punto de encuentro para el trabajo comunitario
ayuda a proporcionar una alternativa a las tareas, lecciones, proyectos y otros motivadores del
trabajo diseñados por expertos, reemplazándolos con un sistema de interacciones alrededor de las
ideas que lleva al continuo mejoramiento de estas.
o Muchas ideas enriquecen y ofrecen múltiples opciones de solución.
o ¿Cómo se puede demostrar que se está abierto a las ideas de los compañeros
especialmente de los que difieren mucho de las opiniones propias?
Responsabilidad colectiva para el conocimiento comunitario. Este principio se fundamenta en
las siguientes premisas:
•
El conocimiento generado en la comunidad es mayor que la suma de sus partes.
186
KBSI2013
Papers
• El conocimiento comunitario es propiedad intelectual compartida.
• Todos en la comunidad se hacen responsables del avance de la comprensión unos de
otros.
• Escuchar cuidadosamente la comprensión creciente de los otros.
• Tomar la iniciativa para hacer consciente a la comunidad de las confusiones y las lagunas
en la comprensión.
• Animar a los tímidos a participar.
• Referenciar las ideas de otros cuando se utilicen para construir sobre ellas.
Cada miembro compartirá la responsabilidad de aplicar procedimientos, por saber lo que
tiene que saberse y asegurarse que los demás también lo sepan. Esto es lo que quiere decir
responsabilidad cognitiva compartida.
En las escuelas la responsabilidad cognitiva es una de las razones principales de su existencia.
Encuadre Metodológico:
El trabajo de investigación se trabajó bajo un enfoque evaluativo con datos tanto cualitativos
como cuantitativos con los cuales se llegara a realizar propuestas de mejora. Enfoque mixto con
una etapa cuantitativa y una evaluativa, se realizaron cuestionarios que nos arrojaron datos
cuantitativos y para la obtención de los datos evaluativos consideramos los aportes de las
entrevistas y las observaciones realizadas ya que estas nos proporcionaron los elementos de
desarrollo de la webquest, como los comportamientos y actitudes que toman los alumnos, si
desarrollaron trabajo colaborativo y el desarrollo de competencias investigativas.
El método fue la observación de tipo descriptivo y la investigación-acción participante, el
investigador participó poniendo en práctica el proyecto en su propia aula, sobre cuestiones de
diseño empírico de contextos educativos específicos, realizó la función de un coinvestigador que
trabaja con y para la mejora de la realidad de sus alumnos.
La reflexión, se encuentra al comienzo del ciclo, en la planeación y en la evaluación o
seguimiento de la acción instaurada para transformar la práctica. Dicho proceso se siguió como
se menciona en seguida:
Se puso en práctica la WEBQUEST “calentamiento global” que con anterioridad se elaboró,
cuya metodología de aplicación con objetivos precisos y cumpliendo con los contenidos
educativos del nivel, además de contribuir al desarrollo de la responsabilidad compartida para el
conocimiento comunitario, uno de los principios de la pedagogía Knowledge Building para la
construcción del conocimiento por parte del alumno y también del propio maestro (Scardamalia,
2003).
En esta investigación se elaboró la Webquest “CALENTAMIENTO GLOBAL” y se aplicó
durante cuatro meses, con la finalidad de contribuir a la formación de competencias para la
investigación en los estudiantes del primer grado de nivel medio básico (secundaria) en su
modalidad de telesecundaria. El trabajo docente se complementó con la utilización herramientas
tecnológicas existentes en el aula de clases (video cámara, DVD, computadoras, internet, pantalla
plana, cañón) y el desarrollo presencial de los contenidos en las aulas y como apoyo el principio 7
(responsabilidad compartida para el conocimiento comunitario).
En otro momento de dicho proceso se registraron las observaciones de lo que sucede cuando
se desarrollen estas prácticas educativas en las aulas de clase, específicamente las que se trabajan
en el aula del investigador para ver los efectos que estas tienen en el contexto escolar, en esta
parte no solamente se registraron las observaciones de lo que sucedía en el salón de clases sino
también de los productos elaborados por los alumnos y también se obtuvieron a través de videos.
187
KBSI2013
Papers
El estudio fue un estudio de caso paralelo debido a que las técnicas cuantitativas y evaluativas
se emplearon al mismo tiempo.
Investigación descriptiva: Por lo cual nuestro trabajo de investigación fue de tipo descriptivo
debido a que queremos especificar rasgos y características importantes de la aplicación de las
WEBQUEST como herramientas en el salón de clases y saber si a través de estas herramientas se
logra el desarrollo de competencias investigativas.
De esta forma la metodología Webquest, fue implementada con los estudiantes a través del
trabajo colaborativo, en cuya área debieron investigar, plasmar y elaborar una serie de ejercicios
que les permitieron obtener las destrezas necesarias en cuanto al uso de la programación, las
estrategias didácticas para la resolución de problemas y el desarrollo de un proyecto educativo,
para ello, debieron realizar diferentes investigaciones, y el docente debió facilitar gran material a
fin de que el estudiante no confundiera la información dada, siendo entonces de esta manera que
los estudiantes desarrollaran competencias de investigación.
Resultados y discusión de resultados.
La dimensión de trabajo colaborativo, se ha trabajado mediante las subdimensiones:
responsable del proceso, proceso grupal y aporte individual.
12 (interacción a-a)
2
4. Nula
12
3. Escasa
2. Frecuente
1. Intensa
9
0
0%
39.10%
52.20%
8.60%
Tabla que muestra la frecuencia absoluta y relativa a la pregunta 12 interacción alumnoalumno en el cuestionario de Webquest
Los alumnos en un 52 % consideran que si hay interacción entre compañeros muy frecuente
aunque solamente el 39.1% considera que esta interacción es intensa y un 8.6% que esta es
escasa, pero también cabe destacar que no existen alumnos que consideran que esta no se da.
De manera general lo más común en la que se presentó en todos los datos fue 2 que es la
media en el cuestionarios de Webquest y 4 en la de competencias que está por arriba de la media
aritmética por lo cual podemos inferir que los alumnos si consideran se han desarrollado
competencias
188
KBSI2013
Papers
Cada miembro compartirá la responsabilidad de aplicar procedimientos, por saber lo que
tiene que saberse y asegurarse que los demás también lo sepan. Esto es lo que quiere decir
responsabilidad cognitiva compartida (Scardamalia, 2002).
El coeficiente de asimetría positiva ya tiene una ligera asimetría por lo que los datos se
suavizan hacia la derecha y se concentran a la izquierda; lo cual quiere decir que en la escuela
telesecundaria los alumnos del primer grado grupo ”A” los alumnos se sienten contentos con esta
estrategia y desarrollan a su vez competencias.
Analizando la teoría Johnson (1993) realmente origina la construcción de conocimiento
porque obliga al individuo a activar el pensamiento individual, a buscar formas de investigar sea
en forma independiente o en grupo, y promueve valores en forma semiconsciente como la
cooperación, la responsabilidad, la comunicación, el trabajo en equipo, la autoevaluación
individual y de los compañeros.
La colaboración propicia la comunicación, que se genere un lenguaje común, pues se
establecen normas de funcionamiento grupal y se disminuye el temor a la crítica y a la
retroalimentación, con esto disminuyen también los sentimientos de aislamiento y gracias a ello
puede darse una mejora de las relaciones interpersonales entre personas, pueblos, grupos, de
diferentes culturas, profesiones, etnias, etc.
Por tal motivo el conocimiento generado en la comunidad es mayor que la suma de sus partes
(Bereiter, 2002)
En el pretest aplicado con anterioridad a la implementación de la webquest los alumnos
contestaron a la interrogante si les gusta el trabajo en equipo.
Por lo que respondieron que solamente el 16% de ellos respondieron que siempre no les
gustan los equipos de trabajo.
En el cuestionario posterior a la implementación de la webquest solamente a dos de los
alumnos no les gusta el trabajo en equipo.
Revisando la teoría Johnson (1993) nos menciona que con el trabajo colaborativo se impulsa
el desarrollo de habilidades sociales al exigir la aceptación de otra persona como cooperante en la
labor común de construir conocimientos, en el grupo y/o equipo y al apreciar a los demás como
origen para evaluar y desarrollar nuevas habilidades de aprendizaje.
Crea una interdependencia efectiva, abarcando las condiciones de la organización y de
funcionamiento que deben darse al interior del grupo. Los miembros del equipo se necesitan unos
a otros y confían en el entendimiento y éxito de cada sujeto.
Analizando la teoría Johnson (1993) nos refiere que el trabajo colaborativo valora la
contribución individual dado que cada miembro del grupo asume íntegramente su responsabilidad
en la tarea, a la vez que al socializarla recibe las contribuciones del grupo.
También estimula habilidades personales y de grupo al permitir que cada individuo
participante desarrolle y potencie las habilidades personales y grupales como: escuchar,
participar, liderar, coordinar actividades, realizar seguimiento y evaluar el trabajo colaborativo
estimula habilidades personales y de grupo al permitir que cada individuo participante desarrolle
y potencie las habilidades personales y grupales como: escuchar, participar, liderar, coordinar
actividades, realizar seguimiento y evaluar.
189
KBSI2013
Papers
Evaluación de producto:
Competencias
investigativas de
alumnos
El 88% de los alumnos que trabajaron con la webquest de calentamiento
global obtuvieron resultados entre excelente y satisfactorio, mientras el 12%
restante se encontró en un rango de bien y ninguno en mejorable, lo que
significa que se han logrado los resultados que queríamos.
Herramienta del
docentes
La herramienta de webquest tiene grandes beneficios de acuerdo a los
aportes de los docentes quienes encuentran en dicha herramienta sus grandes
beneficios.
Aportación de los
padres de familia
Los padres consideran que la forma en que sus hijos aprender es mejor
que algunas formas diferentes que sus hijos han trabajo anteriormente. “Yo
no sé mucho de educación pero así como han trabajado nuestros hijos me
pareció mejor que como habían trabajado en otras ocasiones en donde
solamente copian de algunos libros o de internet sin darle importancia a lo
que copean” (padre de familia)
Conclusiones:
El objetivo fue: Determinar el impacto de la implementación de webquest como andamios
para logar desarrollar competencias investigativas a través del desarrollo del trabajo colaborativo
y el principio 7 (colaboración compartida para el conocimiento comunitario) de la pedagogía
Knowledge Building en los alumnos de primer grado grupo “A” de telesecundaria.
La presentación de los resultados de la investigación se realizó de la siguiente manera:
1º Resultados de la encuesta pretest.
2º Resultados de la encuesta a maestros.
3º Resultados de las rubricas de la implementación de las webquest.
4º Resultados de las encuesta aplicadas a padres de familia.
5º análisis de videos
• Los principales resultados del diagnóstico preliminar (antes de la aplicación de la
Webquest) indicaron que los estudiantes tenían dificultades básicas en el dominio de las Tics. La
mayoría de estudiantes expresaron no tener una computadora en casa y tampoco conexión a
Internet; asimismo, manifestaron que no les era tan aceptable el trabajar con algunos compañeros
en equipo.
• La “Webquest de calentamiento global” fue elaborada con la finalidad de facilitar a los
estudiantes el desarrollo de sus investigaciones. Cada equipo de estudiantes elaboró un video
sobre el tema, para lo cual consultó básicamente la Webquest, dado que allí se alojó la
información básica requerida.
• Las principales competencias para la investigación que se desarrollaron en los estudiantes
con la implementación de la webquest fueron: la búsqueda, procesamiento y aplicación de la
información; la identificación y formulación de problemas; presentación, exposición y defensa
de ideas; elaboración de comentarios, propuestas y evaluación; lectura y redacción y respeto a
los aportes de otros autores todo ello a través de la idea de responsabilidad compartida.
• De 25 estudiantes que iniciaron la experiencia, la totalidad se encuentran en dicho proceso.
•Todos están utilizando la Webquest, en el aula, presentan y sustentan sus investigaciones
con información publicada en la “Webquest de calentamiento global”.
190
KBSI2013
Papers
•Hemos obtenido que el 88% de los alumnos de primer grado grupo “A” de la escuela
telesecundaria adquirieran competencia investigativas entre excelente y sobresaliente.
• Se considera en esta investigación que los referentes teóricos coinciden con las
competencias que se encuentran trabajando en el aula con los estudiantes del primer grado de
telesecundaria, la concreción de las competencias se materializan con los procesos de
investigación que se encuentran en proceso con la implementación de la webquest “calentamiento
global”.
•Las opiniones de los estudiantes respecto al desarrollo de competencias para la Investigación
en la implementación de la webquest “calentamiento global” la han recibido con mucho
entusiasmo, aunque para algunos (2 alumnos) es una pérdida de tiempo el trabajar en equipos.
•Los resultados que estamos recibiendo confirman el efecto positivo que se está obteniendo
con esta experiencia pedagógica enriquecida con un proceso de investigación mediado por las
TIC, específicamente con la aplicación de una Webquest y los principios de la pedagogía
Knowledge Building.
Las principales competencias consideradas para efecto de observar resultados en esta
investigación a partir de las opiniones de los estudiantes son:
• Identificación y formulación de problemas de investigación.
• Búsqueda, procesamiento y aplicación de la información
• Presentación, exposición y defensa de ideas.
• Elaboración de comentarios, propuestas.
• Trabajo colaborativo.
Síntesis de las ventajas de utilizar la webquest bajo los principios kb para desarrollar
habilidades investigativas:
1. Se implementa la Webquest, escenario que permite mejorar el desarrollo de competencias
investigativas.
2. Se comprueba la eficacia de la práctica pedagógica del método de Webquest, en el
aprendizaje. Esto se vio reflejado en los resultados arrojados por los resultados de los alumnos,
según los cuales existieron diferencias significativas entre los rendimientos alcanzados con las
pruebas mencionadas.
3. Se destaca la aplicación del aprendizaje significativo, en la metodología de la Webquest
que se puede utilizar en la educación.
4. Se establece la ineficacia de los métodos tradicionales de enseñanza, basados en la
transmisión de conocimientos sin el concurso de actividades didácticas y de investigación y sin
tomar en consideración el hecho de que, cada alumno representa una realidad única e irrepetible
con características biológicas, psicológicas, sociales y espirituales particulares que inciden en su
proceso de aprendizaje.
5. Las Webquest, tiene utilidad didáctica para el desarrollo del aprendizaje significativo, en
alumnos.
6. La Webquest: “calentamiento global” se constituye como una actividad didáctica que
propone una tarea factible y atractiva para los estudiantes basada en técnicas de trabajo con
responsabilidad compartida en la investigación con actividades básicas de enseñanza-aprendizaje,
que posibilita el desarrollo del aprendizaje significativo y desarrollo de competencias
investigativas.
191
KBSI2013
Papers
7.- Los niños comprendieron la importancia de buscar información para aclarar las dudas.
Aprendieron que la escucha y respeto al otro nos ayuda no sólo a construir conocimiento sino a
mantener relaciones armoniosas entre los miembros de una comunidad.
Los niños al escoger el problema real están más motivados a conocer sobre él ya que el
interés los mantiene adheridos a él, es decir la búsqueda del conocimiento se hace de manera
significativa y alegre.
Se logró la construcción de conocimiento de manera colectiva.
Los alumnos se auto apropiaron de ideas y conceptos claros sobre el problema real.
En conclusión podemos resumir que el trabajo realizado con la implementación de webquest,
resulta ser una novedosa estrategia con la que los alumnos pueden adquirir competencias
investigativas sólidas máxime cuando se potencia la utilización del principio de responsabilidad
compartida.
Bibliografía:
1.- Bereiter, C. & Scardamalia, M. (2002). La escolaridad y el crecimiento del conocimiento
intencional: Ayudar a los niños hacerse cargo de sus propias mentes. En B.Smith. Chicago:
La educación liberal en la sociedad del conocimiento.
2.- Bereiter, C. (2002). Diseño de investigación para la innovación sostenida. Estudios
Cognitivos. Boletín de la Sociedad de Ciencia Cognitiva Japonesa.
3.- Dodge, B. (1995). Webquest: Una técnica de aprendizaje basado en Internet. Distancia
Educador. Recuperado el 17 de febrero de 2010 en: webquest.sdsu.edu/about_webquests.html
(Hakkarainnen et al, 2004).
4.- Dodge, B. (2002). Algunos pensamientos sobre WebQuest. Recuperado el 5 de mayo de 2010
en: http://edweb.sdsu.edu/courses/EdTec596/About_WebQuests.html
5.-Johnson, D.W. Johnson, R.T.,& Holubec, E.J. (1999). El aprendizaje cooperativo en el aula.
Barcelona: Paidos.
6.- Johnson, C. (1993). Aprendizaje Colaborativo, referencia virtual del Instituto Tecnológico de
Monterrey, México recuperado el 5 de mayo de 2010 en: http://campus.gda.itesm.mx/cite
7.- Scardamalia, M.& Bereiter, C (2003). Knowledge building. En Enciclopedia de educación,
segunda edición. New York: Macmillan.
192
KBSI2013
Papers
Farmtasia: A Case Study of Knowledge Building Processes in GameBased Learning
Cherry Rose Tan, OISE/University of Toronto
Email: <[email protected]>
ABSTRACT: This essay analyzes the effectiveness of three-dimensional digital gamebased learning (3D-DGBL) environments in supporting knowledge building processes.
Scardamalia and Bereiter (2003) define knowledge building as the “production and
continual improvement of ideas of value to a community,” resulting in gains in cultural
capital. Previous research has linked game-based learning to greater student
engagement, multidisciplinary connections, and skill delivery in schools, but less is
known about its capacity for innovation (Barab et al., 2005; Gee, 2003). This paper
analyzes the first educational game created for knowledge building, known as
Farmtasia, a virtual world in which players act as managers to individually run farms
(Cheung et al., 2008). This essay argues that Farmtasia does support knowledge
building processes using three in-game features: pedagogical scaffolding, situated
learning, and communal debriefings. Furthermore, this paper suggests that 3D-DGBL
environments are the key to reducing the “educational chasm,” the inequalities that
occur from barriers to knowledge and skill attainment, such as geography and wealth.
By adopting 3D-DGBL environments as educational problem spaces, knowledge
building can be made accessible to all communities regardless of physical or economic
barriers.
Keywords: game-based learning, knowledge building, educational chasm, situated
learning, informational scaffolds
Three-dimensional digital game-based learning (3D-DGBL) is the use of virtual
environments in education, which encompasses literary-historical spaces for interacting with
other players, non-player characters (NPCs), and subject content (Neville & Shelton, 2010).
Players are represented in the virtual space by avatars, graphical placeholders that symbolize
identity and allow interaction using actions that players select (Barab, Thomas, Dodge, Carteaux,
& Tuzun, 2005; Bolter & Grusin, 1999). Avatars can be customized with abilities and items,
allowing users to develop unique appearances and to experiment with identities (Barab et al.,
2005). Avatars can interact with one another to create complex social networks in-game, with the
purpose of achieving specific goals or sharing common interests.
In 3D-DGBL, these literary-historical spaces provide unique opportunities for experiential
learning, as they can “emulate remote or inaccessible real-world sites, recreate vanished
environments, and lend substance to literary spaces” (Thomas, 2004). 3D-DGBL is often
delivered through role-playing games (RPGs), in which the player adopts a role within the game
context and completes meaningful goals within a storyline (Barab et al., 2005). For example,
Quest Atlantis is a role-playing game targeted towards children aged 9 to 15 years old (Barab et
al., 2005). Players are tasked to rebuild the Arch of Wisdom, a magical structure containing the
knowledge of the Atlantian people. The Arch was destroyed by tyrannical rulers, who were
obsessed with technological progress and drove Atlantis into environmental, moral, and social
ruin. The Atlantian Council assigns quests, which are entertaining and educational tasks
containing scaffolds for exploring and experiencing subject content, such as literacy, science, and
social studies. As students complete quests, they learn to address similar, real-life issues, such as
environmental awareness and personal agency. Therefore, by empowering students to contribute
193
KBSI2013
Papers
in virtual environments, game-based learning has been linked to greater student engagement,
multidisciplinary connections, and skill delivery in schools (Barab et al., 2005; Gee, 2003).
While game-based learning has been connected to problem solving and inquiry-based
learning, less is known about its connection to higher-order processes, such as knowledge
building. According to Scardamalia and Bereiter (2003), today’s industry is characterized as the
“knowledge age,” in which the success of societies is dependent on the capacity to innovate.
Innovation entails not only the sharing and modification of knowledge, but the ability to create
new knowledge to meet changing needs. To create knowledge, people must engage in knowledge
building, the “production and continual improvement of ideas of value to a community, through
means that increase the likelihood that what the community accomplishes will be greater than the
sum of individual contributions and part of broader cultural efforts” (Scardamalia & Bereiter,
2003).
Knowledge building is a social process involving the gathering of information, the designing
of experiments, and the evaluation of progress towards the growth of cultural capital. Ideas are
treated as objects of inquiry and improvement, which are shared in a public space in order “to be
discussed, interconnected, revised, and superseded” (Scardamalia & Bereiter, 2003). To make
ideas meaningful, people must work with authentic problems, issues that are experienced and
relevant in order to make sense of the world (Scardamalia & Bereiter, 2006). However, since
ideas must build upon each other to create new knowledge, ideas must be shared with others so
that idea improvement becomes sustainable (Scardamalia & Bereiter, 2006). Therefore,
knowledge advancement is distinguished from individual achievement, and the design of the
problem space is critical towards achieving innovation (Scardamalia & Bereiter, 2006).
Historically, the sharing of knowledge occurred through threaded discussion, in which
authors post messages to a discussion site, which are listed in chronological order (Scardamalia &
Bereiter, 2006). This problem space is an impairment to higher-level thinking, as information is
displayed in a downward-branching tree structure. As a result, while forums allow ideas to be
shared in a public domain, users are unable to make meaningful connections between multiple,
simultaneous messages. Therefore, traditional tools such as forums limit the potential for
knowledge building discourse.
Recently, the Centre for the Advancement of Information Technology in Education (CAITE)
has released Farmtasia, an educational video game targeted towards knowledge building (Cheung
et al., 2008). Farmtasia is a massively multiplayer online game (MMOG), set in a 3D-DGBL
virtual space in which players act as managers to individually run farms. Students must learn
about cultivation, horticulture, and pasturage in order to develop effective investment and
operational strategies. Students must also integrate traditional subject areas, such as literacy,
science, and social studies, to form multidisciplinary, sustainable solutions to problems. Success
is determined by each player’s financial gain and public reputation, so investments must be
mindful of sustainable development and environmental protection. Along the way, students deal
with changing conditions in the virtual world, such as natural disasters and neighbourly
competition, to be successful. Therefore, students are immersed in a world embodying realistic
scenarios that allow for situated learning.
This essay analyzes the effectiveness of Farmtasia as a knowledge building environment and
suggests that Farmtasia deviates from other educational games, such as Quest Atlantis.
Furthermore, this paper argues that Farmtasia is an excellent problem space for knowledge
building because it contains three features: pedagogical scaffolding, situated learning, and
communal debriefings. In alignment with Scardamalia’s (2002) principles of knowledge building,
this essay claims that pedagogical scaffolding encompasses authoritative sources and improvable
ideas, that situated learning promotes authentic problems and epistemic agency, and that
communal debriefings encourage collective responsibility and democratizing knowledge.
Additionally, this essay investigates the impact of game-based learning on the Matthew effect, the
phenomenon that “the more you know, the more you can learn” (Scardamalia & Bereiter, 2003).
194
KBSI2013
Papers
Therefore, by fulfilling these knowledge building principles, 3D-DGBL environments like
Farmtasia bridge the “educational chasm,” the inequalities that occur from barriers to knowledge
and skill attainment, such as geography and wealth.
Pedagogical Scaffolding
Pedagogical scaffolding is the use of interactive tools for feedback to support individual and
group contributions (Zhang, Hong, Scardamalia, Teo, & Morley, 2011). As previously stated, one
of the problems surrounding knowledge building is the educational chasm. For knowledge
building to be successful, knowledge must be shared, modified, and created as a community. The
process of idea improvement implies that there must be a knowledge base with which to build on
(Scardamalia & Bereiter, 2003). However, Scardamalia and Bereiter (2003) note that at all stages
of understanding, people are creating knowledge that is useful to themselves. Therefore,
knowledge building is not necessarily the creation of radically new ideas, so long as ideas are
authentic and novel to their creators.
In Farmtasia, multidisciplinary scaffolds provide cheap, accessible sources to authoritative
knowledge, such as teachers. At the beginning of the game, teachers convey preliminary
information and provide learning resources needed to move onto the next learning phase (Jong,
Shang, Lee, & Lee, 2010). One of the learning resources found in-game is the Knowledge
Manual, a searchable resource bank containing eight knowledge domains: natural environment,
biology, government, economics, technology, production systems, natural hazards, and
environmental problems. These domains relate to scenarios or problems encountered in the game,
and players can access the manual at any time. In dire situations, a game character named Wise
Genie appears and gives hints to struggling players (Cheung et al., 2008).
Additionally, Farmtasia has an administrator console for teachers to analyze and prepare data
for debriefing lessons. One of the console’s features is the record-and-replay function, which
allows teachers to replay any gaming action as a video clip (Jong et al., 2010). Scaffolds can be
customized to learner needs, since teachers can identify interesting, problematic, or critical
situations to present as case studies with the class. These case studies can be shared using the
built-in blogging platform, which allows students to reflect and share their gaming experiences
with others (Jong et al., 2010).
Based on Scardamalia’s (2002) knowledge building principles, Farmtasia’s pedagogical
scaffolding encompasses constructive uses of authoritative sources and improvable ideas.
Constructive uses of authoritative sources is critical to knowledge building because people must
know a domain in order to advance the knowledge within it. By having awareness of this
knowledge, people can critically analyze ideas and advance them. Additionally, the provision of
such knowledge through scaffolds leads to idea diversity, which claims that “to understand an
idea is to understand the ideas that surround it, including those that stand in contrast to it” (Zhang
et al., 2011). When ideas are plentiful, meaningful connections can be made between ideas,
leading to new and more refined forms of knowledge. Therefore, Farmtasia’s pedagogical
scaffolding provides a large, accessible source of knowledge for users, allowing communities
(regardless of geographical or economic status) to work with and build on ideas in meaningful
ways.
Situated Learning
Situated learning is the use of “missions, tasks, and problems that are generative and openended, and there is no prescribed solution” (Jong et al., 2010). Social responsibility is embedded
in player decisions, since actions can affect the rest of the virtual space (Jong et al., 2010). To
make effective decisions, students must piece together subject-specific knowledge learned from
virtual spaces and pedagogical scaffolds. Success in these tasks require problem solving skills
applied to many contexts, and there are numerous solutions to solving the same problem.
195
KBSI2013
Papers
Therefore, to be competitive in Farmtasia requires the creation, evaluation, and modification of
optimal strategies.
To make the game realistic, Farmtasia has three types of sudden events around contingency
and emergency: farm, market, and mass-decision (Cheung et al., 2008). Farm events are
contained in farms and will not affect the rest of the virtual world, such as fire accidents and
worker strikes. Market events are local or global, such as price fluctuations on products, leading
to consequences on all farms. Mass-decision events involve cooperation and collaboration among
players to succeed, such as the building of a dam. Furthermore, teachers can use their console to
add natural disasters, making the game challenging and unpredictable.
Based on Scardamalia’s (2002) knowledge building principles, Farmtasia’s situated learning
promotes authentic problems and epistemic agency. Real ideas and authentic problems are
necessary for knowledge building because ideas are created when learners work with relevant
problems that are experienced and understood (Scardamalia, 2002). When problems are authentic,
the knowledge created is also authentic and useful to themselves and their community
(Scardamalia & Bereiter, 2003). As a result, the knowledge produced becomes meaningful and
part of a greater societal effort to create progress and innovation (Scardamalia & Bereiter, 2006).
Additionally, when students solve authentic problems, they develop epistemic agency, the
ability to “set goals, assess their work, engage in long-range planning, monitor idea coherence,
use contrasting ideas to spark and sustain knowledge advancement, and engage in high-level
knowledge work normally left to the teacher” (Zhang et al., 2011). By allowing students to make
decisions and to experience their consequences, teachers demonstrate trust and belief in students’
potential for high-level knowledge work (Zhang et al., 2011). Thus, as players experience situated
learning, students engage in meaningful decision making in the solving of authentic problems,
leading to the empowerment and validation of students through epistemic agency.
Communal Debriefings
Communal debriefings are public reflections of player experience using Farmtasia’s blogging
platform or in-person discussions. As students complete each stage of gaming, they blog their
reflections, acting as a formative assessment used to guide later instruction (Jong et al., 2010). To
make the reflections meaningful, students are given journal templates or hard scaffolds, which
contain prompts or questions to guide discussion. Questions involve decompressing feelings,
describing facts, drawing comparisons, and suggesting improvements (Jong et al., 2010). To tie
these reflections together, students complete a summative report at the end of the game, giving
advice to Mr. Lam, a fictitious character whose farm is closing down (Jong et al., 2010). These
blogs are public, so that all students can view and reply to each other, allowing for more selfreflection and discussion amongst players. These reflections can be used by teachers to identify
“debriefable moments,” which are memorable actions or scenarios used as case studies in class
(Jong, Lee, & Lee, 2011). As a result, this blogging platform serves as a public space to share,
modify, and create new knowledge, allowing for sustainable knowledge building through the
collective effort of many players.
Based on Scardamalia’s (2002) knowledge building principles, Farmtasia’s communal
debriefings encourage collective responsibility and democratizing knowledge. When players
share their contributions and achievements, they share ideas of value to others, allowing the
knowledge to be advanced as a whole by the community (Scardamalia, 2002). Furthermore,
through this discussion space, players can work together as a community to achieve broader and
more global goals, such as environmental sustainability. This effort allows players to share the
responsibility of idea advancement, leading to more valuable and meaningful outcomes. Since
players are working in a public space where ideas are made transparent and accessible,
democratizing knowledge is also achieved. As a result, players can transcend geographical and
economic barriers, gaining and working with the knowledge necessary to make knowledge
advances as a community (Scardamalia, 2002). As ideas are treated as communal objects, the
196
KBSI2013
Papers
diversity of players becomes strengths, offering multidisciplinary sources of information for idea
advancement (Scardamalia, 2002). Therefore, Farmtasia’s communal debriefings provide
universal accessibility to knowledge, allowing students to build on ideas as a community and to
take responsibility for those outcomes.
Discussion
This essay has analyzed three of Farmtasia’s features with regards to knowledge building
processes, which are: pedagogical scaffolding, situated learning, and communal debriefings. As
noted earlier, one of the major criticisms of knowledge building has been its perceived exclusivity
due to the Matthew effect (Scardamalia & Bereiter, 2003). In a knowledge-based economy,
knowledge is a valuable commodity, and the accessibility of knowledge becomes an influential
factor in the ability to compete with other communities.
In alignment with Scardamalia and Bereiter (2003), this paper has offered support for the
benefits of 3D-DGBL environments in bridging the educational chasm. Online educational games
such as Farmtasia help disseminate both specific and multidisciplinary knowledge in authentic
and usable forms, so that it can be applied to real-world problems. Teachers are not only able to
provide scaffolds that contain preliminary knowledge of a domain, but students themselves are
able to use each other as knowledge resources using blogging. Furthermore, Farmtasia is a roleplaying game that allows players to encounter and manage realistic scenarios such as natural
disasters, making the gameplay intuitive through its storyline. As a result, there is a low threshold
of skill in order to elicit participation, inviting players of all backgrounds to engage in the
knowledge building process.
Conclusion
In conclusion, 3D-DGBL environments provide a powerful, dynamic platform with which to
initiate and maintain the knowledge building process. This essay has studied the role-playing
game called Farmtasia, an educational game created specifically for knowledge building.
Embedding principles of agriculture, government, and finance, students draw from subject areas
such as literacy, science, and social studies, creating multidisciplinary strategies to realistic
problems.
Based on this analysis, Farmtasia supports the knowledge building process using three
features: pedagogical scaffolding, situated learning, and communal debriefings. First, pedagogical
scaffolding encompasses constructive uses of authoritative sources and improvable ideas, since
teachers provide a knowledge base that becomes continually discussed and improved upon in a
public domain. Second, situated learning promotes authentic problems and epistemic agency,
since students work in a dynamic environment involving plausible events such as natural
disasters. By solving these problems in context, students immerse themselves in the problem
solving process, empowering students through the creation of usable knowledge for themselves
and their community. Third, communal debriefings encourage collective responsibility and
democratizing knowledge, since students are able to access, reflect, and build on the learning
experiences of peers and teachers. With the blogging platforms, students are able to work with
ideas and to turn diversity into assets, advancing knowledge as a community and sharing
responsibility for it. Therefore, through accessible, immersive, and engaging environments like
3D-DGBL games, communities can overcome barriers and develop their cultural capital through
the process of knowledge building.
Acknowledgements
The work in this paper was generously supported by Dr. Marlene Scardamalia, Susana La
Rosa, Bodong Chen, and the rest of the knowledge building team at the Institute for Knowledge
Innovation and Technology (IKIT), University of Toronto.
197
KBSI2013
Papers
Conference Themes
This essay was written for the 17th annual Knowledge Building Summer Institute called
Crossing the Educational Chasm: From the Basics to Creative Work with Ideas. With regards to
design-based research, my paper covers the following themes: parallel advances in basic and
advanced knowledge work, sustained work with ideas, and knowledge building partnerships.
With regards to knowledge building optimization, my essay analyzes assessment tools for
knowledge creation, especially the role of teachers in tracking, accommodating, and scaffolding
student progress.
References
Barab, S., Thomas, M., Dodge, T., Carteaux, R., & Tuzun, H. (2005). Making learning fun: Quest
Atlantis, a game without guns. Educational Technology Research and Development, 53(1),
86-107.
Bolter, J., & Grusin, R. (1999). Remediation: Understanding new media. Cambridge, MA: The
MIT Press.
Cheung, K. K. F., Jong, M. S. Y., Lee, F-L., Lee, J. H. M., Luk, E. T. H., Shang, J., & Wong, M.
K. H. (2008). Farmtasia: An online game-based learning environment based on the VISOLE
pedagogy. Virtual Reality, 12, 17-25.
Gee, J. P. (2003). What video games have to teach us about learning and literacy. New York,
NY: Palgrave Macmillan.
Jong, M. S. Y., Lee, F-L, & Lee, J. H. M. (2011). A case study of an academic achievementoriented student in game-based learning. IEEE International Conference on Advanced
Learning Technologies, 3(4), 7-11.
Jong, M. S. Y., Shang, J., Lee, F-L, & Lee, J. H. M. (2010). An evaluative study on VISOLE—
Virtual Interactive Student-Oriented Learning Environment. IEEE Transactions on Learning
Technologies, 3(4), 307-318.
Neville, D. O., & Shelton, B. E. (2010). Literary and historical 3D digital game-based learning:
Design guidelines. Simulation & Gaming, 41(4), 607-629.
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In
B. Smith (Ed.), Liberal education in a knowledge society (pp. 67-98). Chicago, IL: Open
Court.
Scardamalia, M., & Bereiter, C. (2003). Knowledge building. In J. W. Guthrie (Eds.),
Encyclopedia of Education (pp. 1370-1373). New York, NY: Macmillan Reference.
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology.
In K. Sawyer (Ed.), Cambridge Handbook of the Learning Sciences (pp. 97-118). New York,
NY: Cambridge University Press.
Thomas, W. (2004). Computing and the historical imagination. In S. Schreibman, R. Siemens, &
J. Unsworth (Eds.), A companion to digital humanities (pp. 56-68). Oxford, UK: Blackwell.
Zhang, J., Hong, H-Y., Scardamalia, M., Teo, C. L., & Morley, E. A. (2011). Sustaining
knowledge building as a principle-based innovation at an elementary school. The Journal of
the Learning Sciences, 20, 262-307.
198

Documentos relacionados