A New Approach of Tertiary Plays in a Multidisciplinary Framework

Transcripción

A New Approach of Tertiary Plays in a Multidisciplinary Framework
AAPG International Conference: October 24-27, 2004; Cancun, Mexico
CHAVEZ VALOIS, VICTOR M. *, MA. DE LOURDES CLARA VALDÉS.*, JUAN I.
JUÁREZ PLACENCIA *, IVÁN ALOR ORTIZ*, MARTA MATA JURADO*,
RICARDO VILLAGRÁN YÁNEZ*, MERCEDES GUERRERO TRISTÁN.*, (*Pemex
Exploración y Producción); and SANTOSH GHOSH, (Consultant, Ontario, Canada).
A New Approach of Tertiary Plays in a Multidisciplinary Framework:
Sureste Basin, Tabasco, México. **
The purpose of this work it was an integrated synthesis and evaluation of the oil potential
of Tertiary siliciclastic sequence in an important area in the Sureste Basin of México.
This area is known as Activo de Exploración Reforma-Comalcalco (AERC) (Figure 1).
350,000
400,000
450,000
500,000
550,000
600,000
2’100,000
CUENCA DEL GOLFO DE MÉXICO
Reserva Probada Original: 240,000 MMBPCE
Producción Acumulada: 160,000 MMBPCE
REGIÓN SUR
2’050,000
Reserva Original 3P: 22016 MMBPCE
Producción Acumulada: 14296 MMBPCE
Reserva Remanente: 7720 MMBPCE
CD. DEL CARMEN
PUCTE
TROJE FRONTERA
TIZON
LAG.ATASTA
MALACHE
ESPADAÑAL
LUNA
PUERTO CEIBA
MARBELLA
STA.ANA
ROD.
RABON GRANDE
2’000,000
PAIL.
PAJONAL
STA.ROSA
NVO. TEAPA
VENTA
BURRO
CHIPILIN
TUCAN
OTATES
C.AGATA
MOLOACAN
LACAMANGO
C.ACALAPA
BLASILLO
SOLDADOS
C.CUICHAPA
CONCEPCION
CHIRIVITAL
CARRIZO
JOBILLO
RIO NUEVO
TAPIJULAPA
TEPATE
ARTESA
1’950,000
COMOAPA
CAFETO
C.MORALES
AGAVE
SABANCUY
ACAHUAL
FTA.NACIONAL
MACUSPANA
C.IRIS
JIMBAL
TEPETITAN
MANGLE
C. MACUSPANA
CARACOL
ACUYO
C.GIRALDAS
MEDELLIN
TEAPA
.TOPEN
CARMITO
SUNUAPA
CHIAPAS
TERCIARIOS DE ACEITE
GAUCHO
SECADERO
TEAPA
MUSPAC
CERRO NANCHITAL
JACINTAL
GUANAL
SARLAT
FENIX
COPANO
GUIRO
VERNET
AMATE
HUIMANGUILLO
ROSARIO
BITZAL
VILLAHERMOSA
PLATANAL
JUSPI
COBO
VIENTO
PIGUA
NISPERO
CACTUS
ZARAGOZA
HORMIGUERO
GUSANO
SAMARIA
PAREDON
JACINTO
CENTRAL
BACAL
MANGAR
ALMENDRO
CANTEMOC
CHICHICASTE
OXIACAQUE
C.CRISOL
JOLOTE
CARDENAS
JUJO
CHAMIGUA
FILISOLA
TRES PUEBLOS
CUNDUACAN
EDEN
CARDENAS
TEPEYIL
ARROYO
.PRIETO
EL PLAN
BELLOTA
MORA
TABACO
TECOMINOACAN
OGARRIO
TAMULTE
AYAPA
TINTAL
TASISTE
SAN ROMAN
USUMACINTA
TASAJERO
PALANGRE
MAGALLANES
PALMI.
IXHUATLAN
IXHUAPAN
B. DEL RIO
ESCUINTLE
MECOACAN
SEN
COMALCALCO
YAGUAL
CHINCHORRO
GURUMAL
PARAISO
C.MARAÑON
NARVAEZ
CAPARROSO
CARDO
TUPILCO
EL GOLPE
SAN RAMON
CARACOLILLO
C.NVOS.LIRIOS
PIJIJE
CASTARRICAL
SANTUARIO
SAN ALFONSO
CINCO PDTES.
C.FARO
TORTUGUERO
LAG.ALEGRE
CHOCHAL
PALAPA
MANEA
ESCARBADO
MAYACASTE
GUAYO
XICALANGO
POM NORTE
COSTERO
CHIRIMOYO
TERCIARIOS DE GAS
CATEDRAL
CHINTUL
0
10
20
30
MESOZOICOS DE ACEITE
Kilómetros
Figure 1. Study Area
The Sureste Basin is one of the most important petroleum provinces in Mexico; it
contains highly prolific source rocks, different reservoirs in almost the whole sedimentary
column and excellent seals. All these elements create a highly efficient petroleum system.
Many Mesozoic and Tertiary oil and gas fields, ranked from super giants to small have
been discovered (Figure 1).
The petroleum exploration in the Sureste Basin started in the early twentieth century. The
first commercial discoveries related to Tertiary rocks were made in the decade of 1950’s.
Drilling of mainly structural objectives up to early nineteen seventies resulted in the
discovery of 30 oilfields. With the discoveries in 1972 of very important accumulations
in Mesozoic carbonate rocks, the exploration was directed almost exclusively to these
objectives. Since then, the Tertiary siliciclastic rocks have been practically “ignored” for
almost thirty years.
Our recent multidisciplinary study establishes that the Tertiary sequence in the Sureste
basin shows a gradual shallowing upward trend (Figure 2). The Paleogene-Middle
Miocene paleogeography was characterized by retrogradational bathyal environment.
Copyright © 2004, AAPG
AAPG International Conference: October 24-27, 2004; Cancun, Mexico
Uniform deep-water conditions dominated the scene, with the development of basinal and
slope facies. Dark organic-rich shales with abundant planktonic fauna is the dominant
lithology of this sequence. Debris-flows and breccias were deposited in the slope
environment, derived from the adjacent Cretaceous carbonate platforms.
The compressional Chiapaneca phase uplifted the Chiapas Massif generating large
volumes of terrigenous detritus, favoring rapid progradation of the platform during late
Middle Miocene. During the end of Late Miocene, the area was dominated by shelf and
paralic environments.
GOLFO DE
MÉXICO
A
L. S. 33.8 M. a.
D
OCEANO
PACÍFICO
L. S. 11.7 M. a.
?
0
Ambientes batiales y depósito de lutitas en talud y cuenca con
abundancia de fauna y ricas en materia orgánica. Posibles
brechas derivadas de plataformas preexistentes.
10
20
30
Kilómet ro s
Avance de la plataforma por fuerte caída en el nivel del mar.
Intercalación de lutitas y arenas turbidíticas. Facies
deltáicas al centro-sureste
0
10
20
30
Kilómetros
E
F
L. S. 5.73 M. a.
L. S. 3.89 M. a.
CONTINENTAL
TRANSICIONAL
NERÍTICO INTERNO
NERÍTICO MEDIO
NERÍTICO EXTERNO
BATIAL SUPERIOR
BATIAL MEDIO
BATIAL INFERIOR
ARCILLA
AUSENTE / SIN DATOS
CANAL SUBMARINO
ARENAS
DISPERSIÓN SEDIMENTOS
POZO
FALLA NORMAL
Lutitas y limos arcillosos con abundante bioturbación y materia
orgánica, con intercalación de arenas de plataforma y turbiditas.
Ambientes desde plataforma muy somera (transicional-nerítico
interno) hasta cuenca (batial medio-superior).
0
10
20
Kilómetros
30
Secuencias limo-arcillosas en ambientes transicionales y de
plataforma interna-media. Franca implantación de los ambientes
deltaicos en la mayor parte del área. En la porción sur-occidental
todavía prevalece los ambientes batiales.
0
10
20
30
Kilómetros
Figure 2. Tertiary paleogeogrpahic and paleoenviromental framework in the stud
ied
y area.
area
The strandplain to shelf facies assemblage of the Late Miocene persisted during the
Pliocene. The shallowing upward trend continued in the Pleistocene when the
paleoenvironment became aggradational to fluvio-deltaic in nature. Lithologically the
Middle Miocene section comprises of interbedded fine to medium grained sandstone and
shale, whereas the Mio-Pliocene sequence is essentially sandy in character, with minor
intercalations of mudstone and siltstone. Grain size, in general, varies from very fine
(distal turbidites) to coarse, to even gravel size in continental facies.
Neogene sandstones constitute good reservoirs, where significant potential exists for new
hydrocarbon discoveries, comparable to those already found productive in several plays
in the study area.
Copyright © 2004, AAPG
AAPG International Conference: October 24-27, 2004; Cancun, Mexico
A detailed petrographic study of the Tertiary Plays in the Reforma – Comalcalco area
permitted the analysis of mineralogical composition of the sediments and their diagenetic
evolution (Figure 3).
Sandstones are mainly fine to very fine-grained arkoses to subarkoses, with some minor
lithic arkoses – litharenites. The detrital components were derived from local highs and
tectonically active terrains such as the Sierra de Chiapas and the Chiapas Massif (Figure
3 A).
The diagenetic history of the Tertiary Plays comprises the following main events:
compaction, cementation, dissolution of feldspars, and fracture development (Figure 3
B). Physical compaction resulted in the reduction of primary porosity during burial.
Early carbonate cementation following by dolomitization, silica, siderite, and kaolinite
cements resulted in additional porosity occlusion. Another important diagenetic event is
the partial or complete dissolution of plagioclase and K - feldspars. Fracturing and grain
dissolution resulted in porosity and permeability enhancement in the reservoir facies.
Thus the final porosity is a combination of both primary and secondary interparticle,
intraparticle, moldic and fracture porosity.
POROSIDAD (%)
B0
A
10
20
30
SECUENCIA PARAGENÉTICA
40
50
1
2
Porosidad Inicial = 40%
TECOMATE-1
Q
TUPILCO-129
TUPILCO-132
Compactación -15% 1
CUARZOARENITA
5%
JAGUACAPA-1
CARRIZO-25
GOLPE-78
SUBARCOSA
2
SUBLITARENITA
Cementación Dolomita (1a etapa) 20%
3
4
LUNA-18
25%
LUNA-201
Disolución Dolomita +17%
SUBARCOSA
LÍTICA
SARAMAKO-1
BARRA DE TUPILCO
N-5
RÍO GRIJALVA
3
N-2
Disolución de Feldsp. y Volc. +5%
RÍO GONZÁLEZ
4
5
6
7
8
Cementación Dolomita (2a etapa) -1%
ARCOSA
5
LITARENITA
Cementación Calcita -1%
N-1
ARCOSA
LÍTICA
LITARENITA
FELDESPÁTICA
6
N-6
N-3
N-4
Cementación Caolinita -1%
7
F
L
Fracturamiento +1%
F. González , R. Villagrán y S. Gosh, 2002. Adaptado de: Mc Bride, 1963
8
Porosidad Actual = 25%
Figure 3. A. Tertiary sandstone compositional classification of Cuenca del Sureste; B. Diagenetic processes that influence the porosity.
Photomicrographs show the paragenetic sequence in El Golpe-78 well.
Hydrocarbon migration and accumulation coincided favorably with the late diagenesis
when additional porosity and permeability development enhanced the reservoir quality,
such as observed in Golpe–78, Tupilco–129, Tupilco–132, Tecomate–1, Luna–201, and
Saramako-1.
The interaction between the North American and Pacific plates and tangential collision
with the Chortis Block in the south, constitute the engine for the events affecting the
geologic evolution of the basin.
The tectonic events comprise two compressional phases: The “Laramide phase” and the
“Chiapaneca phase” (Figure 4). A final extensional stage, resulting from uplift of the
Copyright © 2004, AAPG
AAPG International Conference: October 24-27, 2004; Cancun, Mexico
Sierra de Chiapas, was represented by regional gravitational sliding. The contractional
events created the fold and thrust belt, whose structures form some of the most important
fields in México. The extensional event is responsible for the formation of the Neogene
Comalcalco and Macuspana Sub-basins, where tremendous amounts of clastics
accumulated. They include several Tertiary Fields discovered to date. The last two events
overlap each other.
K
PALEÓGENO
SUP. PALEOCENO
M. a.
65
54.8
EOCENO
NEÓGENO
OLIGOCENO
33.7
Q
MIOCENO
PLIO. PLE.
23.8
23.8
COMPRESIÓN
“FASE LARAMÍDICA”
5.32
11.7
1.64
2.56
?
COMPRESIÓN
“FASE CHIAPANECA”
11.7
5.73
DESLIZAMIENTO
GRAVITACIONAL
MARGEN PASIVO
Figure 4. Tertiary history of Sureste Basin identifies three main
tectonic-sedimentary phases: Paleogene Compression; Neogene
Compression and Plio-Pleistocene Extension (by gravity sliding).
Victor M. Chavez Valois / 2002
The development of the Comalcalco Sub-basin is associated with massive evacuation of
Jurassic salt and deposition of an expanded Neogene section.
The formation of the Macuspana Sub-basin involved the displacement and evacuation of
large volumes of Oligocene-Miocene over pressured shales creating diapiric ridges and
domes. The combined effect of uplift of the Sierra de Chiapas, occurrence of major
gravity sliding, and deposition of a thick Plio-Pleistocene sequence created a major
depression where the sub-basin established.
Although the geothermal gradient is moderate, rapid burial history during the Tertiary
provided favorable conditions for the generation and expulsion of hydrocarbons from the
Upper Jurassic Tithonian source rock (Figure 5). A wide variety of traps, which includes
structural, stratigraphic and combined have been recognized.
Molecular characterization of oils and gases indicates that hydrocarbons have been
sourced from very rich, Type II Tithonian rocks. Maturity levels range from early to peak
oil window (0.4 – 0.8 Ro%). Oil gravity ranges from 17 ° to 50° API, indicating a mature
thermal process as well as secondary alteration (biodegradation). In addition, segregation
and/or evaporative fractionation processes have been observed in both the light oils
trapped in Eocene breccias and the gas encountered in Miocene rocks.
Geochemical modeling of hydrocarbons indicates, that the first generation phase occurred
29 m. y. ago (Figure 6), towards the end of the Laramide phase, which coincides with
an initial stage of structuration and a period of major sediment input, associated with
significant subsidence. During Late Miocene Chiapaneca phase, structures continue to
Copyright © 2004, AAPG
AAPG International Conference: October 24-27, 2004; Cancun, Mexico
grow, faults are reactivated and erosion occurs over localized areas. In Plio- Pleistocene
as the Sierra de Chiapas is uplifted, a large supply of siliciclastics occurs, creating
unstable conditions and favoring gravitational sliding. Under these conditions, favorable
migration routes are created, which in turn facilitate vertical movement of hydrocarbons
capable of charging Miocene to Pleistocene sand bodies.
2’100,000
350,000
400,000
450,000
500,000
550,000
600,000
R. G. TITHONIANO. K II-IIS
MARINO CARBONATADO
R. G. CRETÁCICA. K I-IIS
HIPERSALINO
2’050,000
R. G. MIOCENO INF. K II-III
MARINO DELTÁICO
XICALANGO
POM NORTE
COSTERO
CD. DEL CARMEN
PUCTE
MEZCLA DE ACEITES
TITHONIANO – MIOCENO
TROJE FRONTERA
TIZON
PUERTO CEIBA
STA.ANA
RABON GRANDE
PAJONAL
STA.ROSA
NVO. TEAPA
PALANGRE
TUCAN
OTATES
C.AGATA
LACAMANGO
C.ACALAPA
BLASILLO
SOLDADOS
C.CUICHAPA
CONCEPCION
CARDENAS
CHIRIVITAL
JIMBAL
TEPETITAN
ACAHUAL
SARLAT
FENIX
TEPATE
ARTESA
COMOAPA
1’950,000
JACINTAL
GUANAL
CAFETO
C.MORALES
AGAVE
SABANCUY
FTA.NACIONAL
MACUSPANA
MANGLE
C. MACUSPANA
C.IRIS
CARACOL
ACUYO
C.GIRALDAS
COPANO
GUIRO
CHILAPILLA
VERNET
AMATE
TAPIJULAPA
HUIMANGUILLO
ROSARIO
BITZAL
J.COLOMO
PLATANAL
RIO NUEVO
JUSPI
COBO
VIENTO
PIGUA
VILLAHERMOSA
NISPERO
CACTUS
JACINTO
ZARAGOZA
HORMIGUERO
GUSANO
CARRIZO
JOBILLO
SAMARIA
PAREDON
JUJO
CHAMIGUA
BACAL
MANGAR
ALMENDRO
CANTEMOC
CHICHICASTE
OXIACAQUE
C.CRISOL
JOLOTE
CENTRAL
FILISOLA
TRES PUEBLOS
CUNDUACAN
EDEN
CARDENAS
TEPEYIL
ARROYO
.PRIETO
EL PLAN
BELLOTA
MORA
TABACO
TECOMINOACAN
OGARRIO
TAMULTE
AYAPA
TINTAL
CHIPILIN
PALMI.
IXHUATLAN
IXHUAPAN
MOLOACAN
TASISTE
SAN ROMAN
USUMACINTA
TASAJERO
MAGALLANES
VENTA
BURRO
ESCUINTLE
MECOACAN
ALAMEDA
YAGUAL
CARACOLILLO
NARVAEZ
B. DEL RIO
SEN
COMALCALCO
CHINCHORRO
GURUMAL
2’000,000
ROD.
SAN RAMON
PAIL.
C.NVOS.LIRIOS
PIJIJE
CAPARROSO
CARDO
PARAISO
C.MARAÑON
SANTUARIO
SAN ALFONSO
CHOCHAL
PALAPA
MANEA
CASTARRICAL
TUPILCO
EL GOLPE
LAG.ALEGRE
ESCARBADO
MAYACASTE
GUAYO
TORTUGUERO
MALACHE
ESPADAÑAL
LUNA
MARBELLA
CINCO PDTES.
C.FARO
LAG.ATASTA
MEDELLIN
TEAPA
.TOPEN
CARMITO
SUNUAPA
CHIAPAS
GAUCHO
TERCIARIOS DE ACEITE
SECADERO
MUSPAC
CERRO NANCHITAL
CHIRIMOYO
TERCIARIOS DE GAS
CATEDRAL
CHINTUL
0
10
20
MESOZOICOS DE ACEITE
30
Kilómetros
MODIFICADO DE MLCV/CAMPOS.PRE/99
Figure 5. Although has been recognized at least three different tipes of source
rocks in the Sureste Basin, the most important is the Upper Jurassic Tithonian
TABACO-1
APOMPO-1
GUINEO-1
BOQUIAPA-1 AMATITÁN-1
AZTLÁN-1 ESCUINTLE-1
MACACO-1
29 M. a.
MACACO-1
La materia orgánica (M.
O.) de la roca generadora
(R. G.) del Tithoniano
muestra condiciones de
inmadurez
AZTLÁN-1
TABACO-1
GUINEO-1
APOMPO-1
ESCUINTLE-1
AMATITÁN-1
BOQUIAPA-1
25 M. a.
A fines del Oligoceno la
R. G. inicia su proceso
de transformación
térmica (tonos verdes).
11.7 M. a.
El aporte sedimentario y la
subsidencia aumentan las
condiciones térmicas en la
subcuenca de Macuspana.
El área del pozo Guineo es
incipientemente madura.
3.89 M. a.
El aporte de sedimentos y la
subsidencia en las subcuencas
de Comalcalco y Macuspana
induce una mayor madurez de
la R. G. del Tithoniano.
TABACO-1
APOMPO-1
GUINEO-1
BOQUIAPA-1 AMATITÁN-1
AZTLÁN-1 ESCUINTLE-1
MACACO-1
0 M. a.
Ambas subcuencas alcanzan
una transformación mayor de
la Materia Orgánica. El Alto
de Jalpa se muestra
incipientemente maduro
L. Clara; M. Guerrero; J. Winterhadler, 2002
Figure 6. Organic Matter transformation of Upper Jurassic Tithonian source rock through time.
Our work shows that the characteristics of sedimentary facies are one of the main
controls of oil accumulation in these fields. Three principal depositional facies act as
reservoirs in the area:
1. Neogene siliciclastic turbidites in large submarine fans or of mini basin origin.
2. Mio-Pliocene shelf margin delta deposits and associated continental and shallow
marine facies.
3. Eocene carbonate debris flows of slope origin, sourced from pre-existing Cretaceous
platform deposits.
Copyright © 2004, AAPG
AAPG International Conference: October 24-27, 2004; Cancun, Mexico
Nine extensive play fairways were identified in five distinct structural provinces (Figure
7): Deltaic sands associated with Mio-Pliocene shelves; Strandplain deposits developed
on the flanks of shale diapirs during the Pliocene; Miocene turbidites confined in mini
basin settings; Proximal-medial turbidites of Middle Miocene - Pliocene submarine fans;
Mio-Pliocene distal turbidites; Eocene carbonate breccias of debris-flow origin; PlioPleistocene fluvial sands and coastal bars; Plio-Pleistocene fluvio-deltaic sands and PlioPleistocene continental sands.
The play fairways were ranked based on their remaining hydrocarbon reserves and future
economic potential.
400,000
450,000
A
500,000
550,000
600,000
2’050,000
GOLFO DE
MÉXICO
OCEANO
PACÍFICO
LUNA-301
PUERTO CEIBA
TRES PALMAS
MELOCOTÓN
GUAYO-2
EL GOLPE
SANTUARIO
CASTARRICAL
MARAÑON-1
MECOACÁN
SEN
ALAMEDA
AYAPA
TINTAL
GIRASOL
YAGUAL-1
2’000,000
CARACOLILLO
TUPILCO
TAMULTÉ
CRISOL
SAMARIA
PIGUA
CARRIZO
PLATANAL
RÍO NUEVO
SARAMAKO
AGAVE
1’950,000
ARTESA
0
10
20
30
Kilómetros
B
S UBCUE NC A DE M ACUS P AN A
PLIOCENO
S
M
I
Arenas
FluvioDeltáicas
PliocenoPleistoceno
Arenas
Transicionales
Plioceno
Turbiditas
Confinadas
Mioceno
Med.-Sup.
MIOCENO
M
OLIGOCENO
S
S
SUBCUENCA DE COMALCALCO
Arenas
Arenas
Deltáicas
Deltáicas
Mioceno
Mioceno
SuperiorPlioceno
Plioceno
Arenas
Fluviales y
Barras
Plioceno Pleistoceno
Turbiditas
Distales
Mioceno
MedioPlioceno
SUBCUENCA DE
HUIMANGUILLO
Turbiditas
Proximales
y Medias
Mioceno
MedioPlioceno
ALTO DE
JALPA
Arenas
Fluviales
Plioceno
Pleistoceno
I
M
I
EOCENO
S
M
I
PALEOCENO
Figure 7.
A: Spatial
distribution of the
nine Corredores
de Plays.
B: Time
development of
the Corredores
and its relative
position in each
sub-basin.
C E N O Z O I C O
P ALE OG ENO
NEOGENO
PLEISTOCENO
Brechas
Calcáreas
Eoceno
S
M
I
*(los plays individuales pueden presentarse en una o varias cuencas y/o migrar temporalmente)
ACKNOWLEDGMENTS
This summary was based on an extensive internal report named “Identificación,
Definición y Delimitación de los Plays Terciarios en el Activo de Exploración ReformaComalcalco”. We appreciate the support and guidance provided by General Management
of the Subdirección de la Coordinación Técnica de Exploración and specially to the
Management of the Activo Regional de Exploración, Región Sur of PEMEX
EXPLORACIÓN Y PRODUCCIÓN.
Copyright © 2004, AAPG

Documentos relacionados