Abstract of thesis entitled

Transcripción

Abstract of thesis entitled
Title
The localization of E. coli persistent gene products
Advisor(s)
Huang, J; Zhou, Z
Author(s)
Miao, Yuanying.; 缪元颖.
Citation
Issued Date
URL
Rights
Miao, Y. [缪元颖]. (2010). The localization of E. coli persistent
gene products. (Thesis). University of Hong Kong, Pokfulam,
Hong Kong SAR. Retrieved from
http://dx.doi.org/10.5353/th_b4555479.
2010
http://hdl.handle.net/10722/143999
The author retains all proprietary rights, (such as patent rights)
and the right to use in future works.
Abstract of thesis entitled
The Localization of E. coli Persistent
Gene Products
Submitted by
Miao, Yuanying
for the Degree of Doctor of Philosophy
at the University of Hong Kong
in December 2010
Despite the genomes of many organisms being completely sequenced, the
functions of a large proportion of their genes still remain unknown. Having
knowledge of the subcellular localization of proteins should provide insights
into their functions. Visualization of fluorescent protein labeled proteins in live
cells using fluorescence microscope became an effective method to determine
the localization of proteins. Recombineering technology allows the efficient
integration of transformed linear double stranded DNA, which contains short
homologous regions (35-55 bp), into the chromosome. In order to produce the
EGFP fusion proteins under the control of the endogenous promoter of the
target gene, double stranded DNA targeting cassettes generated by PCR is
transformed into the E. coli strain that contains the recombineering system by
electroporation. This PCR product contains the coding region of EGFP and a
selectable marker and 50 bp homologous sequences to the chromosome regions
immediately upstream and downstream of the insertion site. The correct
EGFP-tagged strains are selected by selective medium and confirmed by
colony PCR. The localization pattern of target gene product is determined by
observing the fluorescence signal under fluorescence microscope. All 611
persistent genes of E. coli have been tried to tag and localize. Among the 611
genes, 189 genes have been tagged successfully and 139 gene products have
been located successfully. After overnight cell growth, 115 of these proteins
were diffusely located in the cell, 12 were located at foci at one or both poles
or the center of the cell, and 8 were located at the membrane, 4 proteins
localized diffusely throughout the cytoplasm as well as in 1–4 foci.Several
proteins show different localization pattern from previous research results.
Analysis of the dynamic distributions of the tagged proteins provided fresh
insights into the functions of the persistent genes. EGFP-tagged strains show
different fluorescence intensity under different growth conditions, suggesting
that the tagged strains may be a potential resource for the study of gene
expression level. Several proteins were identified to have different subcellular
locations during different growth phases, suggesting that the growth phase of
strain should be considered when the localization patterns of proteins are
determined. Other researchers may access the data through the E. coli
persistent proteins localization database we established.
(http://www.biochem.hku.hk/huanglab/Colilo/index.php)
(Words: 367)
The Localization of E. coli Persistent
Gene Products
by
Miao, Yuanying
(缪元颖)
B.Sc. Sichuan University
M.Sc. Chengdu Institute of Biology, Chinese Academy of Science
A thesis submitted in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy at The University of Hong Kong
December 2010
Declaration
I declare that the thesis and the research work there of represents my
own work, except where due acknowledgement is made, and that it
has not been previously included in a thesis, dissertation or report
submitted to this University or to any other institution for a degree,
diploma or other qualifications.
Signed: …………………………………………………
Miao, Yuanying
i
Acknowledgements
I would like to express my greatest gratitude to my supervisor, Dr. Jiandong
Huang, for giving me an invaluable opportunity to study in his laboratory and for
his patience and guidance. I will never forget those informative and useful
discussions with him; I will never forget his authentically encouragement when I
feel puzzle and depression.
I would like to thank my co-supervisor, Dr. Zhongjun Zhou, for his guidance
and helpful advice.
Special thanks Professor Antoine Danchin for his invaluable advice to my
project. I also want to thank Dr. Rory M. Watt and Dr. Jing Wang for their selfless
help when I start my PhD project.
I am also grateful to Dr. Ye Jin and Ms. Suisui Dong for their selfless help and
discussion. Many thanks to all my labmates, Dr. Yanxiang Ni, Dr. Guixia Zhu, Dr.
Zai Wang, Dr. Linyu Lu, Dr. Shing-Yan Huen Michael, Mr. Song Lu, Ms. Shuang
Qi, Ms. Mei Yang, Mr. Chenli Liu, Ms. Huiyan Gan, Ms. Ju Cui, Mr. Bin Yu, Mr.
Raozhou Lin, Ms. Lei Shi, Ms. Songyue Zheng, and other friends for their help. I
would like to thank Mr. Hari Krishna Yalamanchili for helping me solve problems
when I upload data to our database. I am also thanksful to my friend, Mr. Kai
Huang, thank you for your help and discussion. I would also like to thank Ms.
Chan Ling Chim, Jess and other technicians for their technical support and all of
the administrative staff members of Department of Biochemistry for their help.
ii
I thank my friend, Dr. Nina L Cheung, for helping me with my English
writing.
Thanks to The University of Hong Kong for offering me a postgraduate
studentship (2006-2010) and thanks to CRCG for offering me a conference grant.
I would like to thank my parents and my sister. I cannot complete my PhD
study without their support and encouragement. Your love will encourage me to
achieve my goal in life.
Last but not least, I thank my wife for her support and tolerance. I apologize
for not being stay with you in these years.
iii
Table of Content
Declaration……………………………………………………………i
Acknowledgements…………………………………………………..ii
Table of Content……………………………………………………..iv
List of Figures……………………………………………………...viii
List of Tables………………………………………………………...x
1
Chapter 1: Introduction
1.1 Protein localization and function
1
1.1.1 Protein subcelluar localization
1
1.1.2 Methods to determine protein subcellular
3
localization
1.1.3 Protein subcelluar localization in eukaryote
6
1.1.4 Protein subcelluar localization in prokaryote
8
1.2. Essential genes and persistent genes
11
1.3.Homologus recombination and recombineering
13
1.3.1 Homologous recombination
13
1.3.1.1 Homologous recombination in E. coli
13
1.3.1.2 Homologous recombination in eukaryotes
16
18
1.3.2 Recombineering
1.3.2.1 Concept and mechanism of recombineering
iv
18
1.3.2.2 Application of recombineering
20
1.4 Green Fluorescent Protein (GFP)
21
1.4.1 Properties of GFP and its variants
21
1.4.2 The application of GFP in prokaryotes
24
1.4.3 The application of GFP in eukaryotes
27
28
1.5 Aims of the Project
Chapter 2: Materials and Methods
30
30
2.1 Materials
2.1.1 Bacterial strains
30
2.1.2 Plasmid and primers
30
2.1.3 Agarose, Antibiotic and Culture Medium
32
32
2.2 Experiment methods
2.2.1 Preparation of component cells for
32
plasmid amplification and plasmid transformation
2.2.2 Plasmid DNA purification
33
2.2.3 Amplification of linear dsDNA targeting
33
cassettes by Polymerase Chain Reaction (PCR)
2.2.4 PCR Product Purification
34
2.2.5 Restriction Enzymes Digestion of plasmids
34
of purified PCR product
2.2.6 λ-Red mediated dsDNA recombination
35
protocol
2.2.7 PCR screening of recombinant clones
v
35
36
2.2.8 Fluorescence microscopy
2.2.8.1 Cell culture condition
36
2.2.8.2 Staining chromosome with DAPI
36
36
2.2.9 Time–lapse experiment
38
Chapter 3: Results
3.1 Construction of an EGFP-tagged library of
38
persistent genes
3.1.1 Preparation of the tagging cassette by PCR
38
3.1.2 Tagging CDS of persistent genes in
40
chromosomal and positive clones selection
3.2 Subcellular localization of E. coli persistent
43
proteins and subcellular localization of ribosomal
subunit proteins of E. coli
3.3 Cell cycle and growth phase-specific protein
57
localization pattern
3.4 ColiLo: an on-line catalogue of protein
60
localization database for E. coli persistent proteins
Chapter 4: Discussion and Perspective
62
4.1 Organization of the proteome
62
4.2 Relationship of protein localization and function
64
4.3 The dynamic of protein localization
68
4.4 Conclusions and perspective
70
vi
73
References
Appendix 1 The fluorescence images of successfully
tagged E. coli persistent genes
99
Appendix 2 The list of all 611 persistent genes of
135
E. coli
Appendix 3 Primers used in the study of protein
localization of E. coli
vii
163
List of Figures
Figure 1 Map of plasmid used as PCR template for producing
the tagging cassette ………………………………………31
Figure 2 Purified PCR product of targeting cassette......... 39
Figure 3 The strategy used to create chromosomal C-terminal
fluorescent fusion proteins using a combination of λ - Red
mediated homologous recombination and Cre/LoxP mediated
site-specific recombination, as exemplified by the
construction of suhB-EGFP……………………………….41
Figure 4 PCR screening of correct recombinant spoT EGFP
tagged clones………………………………………………42
Figure 5 Typical fluorescence microscopy images of live,
immobilized E. coli DY330 cells containing a 3' EGFP
coding sequence fused to a persistent gene on the
chromosome……………………………………………….54
Figure 6 (A) Time-lapse microscope image of E. coli with
EGFP-tagged rpsO (B) A schematic diagram of the change of
the RpsO protein localization pattern during cell division
…………………………………………………………….56
viii
Figure 7 Change of localization pattern at different growth
phases……………………………………………………...59
Figure 8 The homepage and search result pages (GroS protein
localization page as an example) of ColiLo database …….61
Figure 9 The localization pattern of the EGFP tagged recA
gene product……………………………………………….64
Figure 10 The localization pattern of RpsO-EGFP at different
growth temperatures……………………………………….67
ix
List of Tables
Table 1 There different protein tagging locations……..........5
Table 2 Experimental results of gene tagging and protein
localization ………………………………………………...45
Table 3 E. coli fluorescent protein localization……………45
Table 4 List of localization pattern of the succeed localized
proteins…………………………………………………….46
Table 5 Localization patterns of EGFP-tagged ribosomal
subunit proteins (rsp)………………………………...........55
x
Chapter 1: Introduction
1.1 Protein localization and function
Following the development of genome sequence technology, many whole
genome sequencing projects have been completed. One of the important results
of the genome sequencing projects is that many new proteins have been
discovered. The next and the most important step, is to discover the functions
of their genes and the functional protein networks within the cell. In order to
perform their function, proteins must be located to the appropriate
compartment in the cell. In general, proteins can be found in four
compartments of E.coli: cytopalsm, periplasm, inner membrane and outer
membrane. In cytoplasm, two major types of localization patterns are found:
diffusion or form foci. The typical example of relationship between protein
subcelluar localization and its function is the dynamic localization of FtsZ, one
of the proteins involved in cell division. It is found that FtsZ is diffusely
located in the cell before cell division. However, it localizes to the mid-point of
the cell and forms a ring (FtsZ-ring) as a scaffold for the recruitment of other
cell division protein, after the cell begins to divide (1). Since a protein‟s
function is closely related to its subcellular localization, studying protein
localization should provide invaluable information about the protein‟s function.
1.1.1. Protein subcelluar localization
Compartmentalization is very important to maintain normal physiologic
function of a cell because it provides different microenvironments that makes
enzymes and their substrates physical proximity and thus beneficial to the
compartment special metabolic reactions. Due to different metabolic activities
are carried out in different compartment, the proteins in each corresponding
cell compartment are involved with their own unique metabolic activities.
Unlike eukaryotic cells that are subdivided into functionally compartments,
such as cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic
1
reticulum (ER), etc, bacterial cells lack nucleus and membrane-bound
organelles. However, protein localization in prokaryotes is still an important
aspect for the normal functions of a protein.
One of the methods in studying protein functions is to identify their
subcellular localization since the functioning of cellular processes and
pathways requires individual proteins to be at defined sites at the correct time.
In bacterial cells, following synthesis in cytoplasm, the proteins stay in
cytoplasm or are directed to the target location with several different transport
systems. These transport systems include Type I secretion system, which
transports new synthesized proteins directly from the cytoplasm to the
extracellular space; Type II secretion system, which inserts proteins into or
translocation across the cytoplasmic membrane; Type III secretion system,
which involves injecting virulence proteins of pathogenic bacteria into host
cells directly; Type IV secretion system, which transport bacterial protein or
DNA effector molecules into a eukaryotic cell directly; Type V secretion
system, which involves self-translocating across the outer membrane of
Gram-negative bacteria (2). In eukaryote, following synthesis in cytoplasm,
secretory proteins have special sequence in their precursor protein which
transports into Endoplasmatic Reticulum (ER) and then move to other target
compartments or stay in the ER. Other proteins that are produced on free
cytoplasmic ribosomes are transported to the target organelle under the
direction of the N-terminal signal sequences which will be cleaved by special
peptidases. It is essential to its function that the correct protein is transported to
the targeted organelles (3). For example, membrane proteins are a series of
proteins that are attached to the cell membrane and play important roles in
immune response and transportation. In order to locate them on the membrane,
a signal peptide that lead protein to the membrane can be found at the
N-terminal portion of these membrane proteins. The close relationship between
protein localization and its functions shows the important of studying protein
functions.
2
1.1.2 Methods to determine protein subcellular localization
There are two major research methods on determining protein localization:
experimental
and
computational.
The
experimental
methods
include
biochemical separation method and tagging method. The former method is
purification of different compartments (or organelles) with biochemical
technology, like density gradient centrifugation and then analysis the proteins
in this compartments (or organelles) by various technological means, such as
two dimensional gel electrophoresis and MS, LC-MS (4-6). The advantage of
this method is that it doesn‟t interfere with the normal expression of the
proteins and give the complete protein localization information. But the biggest
challenge of biochemical separation method is the production of pure cell
organelles without contamination from other parts of the cell because the
contaminating proteins will affect the accuracy of the localization results (4, 5).
The tag method involves labeling target proteins with short peptides (e.g.
epitope) or proteins (e.g. Green Fluorescent Protein, GFP) at the N- or Cterminus. These peptides or proteins can be detected by biochemistry (e.g.
Western blot analysis) or biophysical methods (e.g. GFP by fluorescence).
Many epitope tags have been developed to label proteins for various
purposes, like protein purification and protein localization. The most used
epitope tags include V5-tag, c-myc-tag, HA-tag, and etc. The disadvantage of
using epitope tags is the complex and time-consuming process of detecting the
epitope. With development of various fluorescent proteins, determing
localization of proteins by using fluorescent proteins as tags has become the
main method. The advantages of fluorescent proteins, for example, no need for
an additional substrate for its expression, and easy detection by appropriate UV
illumination, made it popular in the study of protein localization. Agaton et al
reported another protein localization method in a mammalian cell. The
monospecific polyclonal antibodies are generated by cloning and expressing
selective proteins fragments (PrESTs) against corresponding proteins. These
antibodies are successfully used to generate protein profiles and protein
localization data by immunohistochemistry (7). On the basis of this method,
Uhlen et al construct a protein atlas for expression and localization profiles
3
with 700 antibodies against human proteins from normal and cancer tissues (8).
In tagging method, the tags can be inserted into different locations of target
proteins: internal, N-terminus and C-terminus. The differences of three tagging
locations are shown in Table 1 (9-14). The C-terminal tagging method is the
easiest and it is also the method that causes least disruption to the function of
target proteins among these three methods. In my study, I choose to tag the
proteins at C-terminus.
4
Table 1 Three different protein tagging locations
Tagging
location
Schematic diagram
Tagging method
Disadvantages
Easy to disrupt the function of target
Internal
Transposon
proteins
The introduction of a tag between the
promoter and the coding sequence may
lead to alteration in gene expression
Homologus
N-terminal
Recombination
level and change the subcellular
localization;
disturb
the
protein
localization due to interference with
the signal sequence; sometimes disrupt
protein function.
Homologus
C-terminal
Recombination
5
Sometimes disrupt the target protein
function
The computational method is the new localization technique which
developed recently through the generation of massive amount of sequence data.
Any one or combination of overall protein amino acid composition, known
target sequences, sequence homology, sequence motifs can become the basis of
computational methods (2). Computational methods have been widely used in
predicting protein localization of both eukaryotes and prokaryotes. PSORT,
which predict protein localization based on overall protein amino acid
composition and the N-terminal targeting sequence and motifs, was the first
localization prediction method developed for bacteria (2). Other typical
computational methods include: TargetP, the most comprehensive method
based on N-terminal targeting sequence (3, 15) and Cello, which can predict
five subcelluar localizations in Gram-negative bacteria (3, 16), for example.
The disadvantages of computational protein subcellular localization predict
methods are: the limitations on the number of predicted location; number of
proteins
which
contain
signal
peptide
sequences
or
with
prior
structural/functional information; and the inability to represent the entire
proteomes (17). This thesis will use the experimental method in obtaining more
information about the protein subcellular localization.
1.1.3 Protein subcelluar localization in eukaryote
In eukaryotic cells, compartmentalization is an important approach to
achieve restricted protein localization. Membrane-bounded organelles such as
the nucleus, mitochondria, Golgi complex, and endoplasmic reticulum are key
compartments to restrict protein localization. As one of the model organisms,
many research works on yeast protein localization have been carried out by
using various tagging methods. By using immunofluorescence, Burns et al
identified 245 lacZ-fusion Saccharomyces cerevisiae proteins with rabbit
anti-β-gal
antibody
and
donkey
anti-rat
antibodies
linked
to
fluoresceinisothiocyanate (18). Similarily, another research team labeled the
genome of Saccharomyces cerevisiae with HAT tag using transposon-tagging
strategy
and
1,340
diploid
strains
6
were
examined
by
indirect
immunofluorescence with antibodies directed against the HA-epitope. Of these
examined strains, 415 are located successfully and tagged proteins can be
found at various compartments, i.e. mitochondria, nucleolus, plasma membrane,
etc (19). In order to characterize the subcellular localization of more yeast
proteins, Kumar et al employed high-throughput methods of epitope-tagging
and immunofluorescence analysis and determined the localization of more than
3300 proteins, about 55% of the yeast proteome (20).
Determining the protein localization by labeling target proteins with proteins,
like lacZ HAT, is not a direct localization method because it needs to detect
tagging proteins with another protein. However, with the observation of Green
Fluorescent Protein (GFP) under fluorescence microscopy, the localization of
labeled proteins can be determined directly, making it easier and less costly.
Niedenthal et al constructed N-terminal GFP-fusion expression vector
(pGFP-N-FUS) and C-terminal GFP-fusion expression vector (pGFP-C-NUS)
and transformed the fused pGFP-N-FUS into yeast cells after the insertion of
three genes into the pGFP-N-FUS vector. The localization of these three
N-labeled proteins is determined by observing fluorescence signal under
fluorescence microscopy. Although it cannot exclude the possibility of
GFP-fusion proteins causing an error, the researchers concluded GFP as an
invaluable tool in analyzing protein localization pattern in yeasts via the three
tagged proteins mentioned in the above experiment (21).
Unlike labeling specified protein, a 3‟ end GFP-fusion genomic DNA
library of yeast Schizosaccharomyces pombe is established by Ding et al,
plasmids isolated from 516 transformants shows distinct fluorescence
localization patterns, and 250 independent genes are determined by DNA
sequencing. Some new intracellular structural components were found in this
work and the dynamics of a GFP labeled protein was also observed by a
time-lapse experiment. The most important section from the research are the
factors authors mentioned that may influence the correct of localization results
by analysis of the GFP-fusion genomic DNA library: First, the bias exists due
to the sequenced 512 clones only containing 250 genes while other genes have
7
not been cloned due to several reasons as in the fusion of GFP disturbing the
localization of the labeled proteins and that the C-terminal tagging truncates
the localization signal, for example. Secondly, the linker between GFP and the
target gene also affect the protein localization. The authors conclude that
tagging GFP directly to the target protein or with a linker made up of
heterocyclic aromatic amino acids may destroy the intracellular localization of
target proteins. These factors all should be considered when determining
protein localization of proteins using the labeling method (22). Similarly,
another research team determined the localization of 4431 proteins, which is
about 90% of the Schizosaccharomyces pombe proteome by integrating
pDUAL-YFH1c vector that contain ORF-YFP into the chromosome (23). GFP
tagged method also can be used in the study of proteins localization of other
yeast species. Huh et al inserted PCR cassettes containing GFP directly onto
the C-terminus of a targeted gene on the chromosome of the budding yeast
Saccharomyces cerevisiae and identified subcellular localization of 4156
proteins, which represents about 75% of yeast genome, of which 70% were not
localized previously. Importantly, they found that co-localization strongly
correlates with biological function. These research results further confirmed
that the protein localization can be one of the effective methods in determining
protein function (24).
1.1.4 Protein subcelluar localization in prokaryote
Although prokaryotic cells do not have such complex structures as in
eukaryotes, their cellular spaces are also highly organized. Identifying all the
proteins from different subcellular structures is a key step towards a
comprehensive understanding of cellular biology. In the study of prokaryotes,
as the model organism, most research work has focused on E. coli. But little
research has been on global proteins‟ subcelluar localization; with more works
concentrating on the subcellular localization of some special proteins. For
example, ftsk gene is essential to the division of E. coli. By tagging FtsK with
GFP, Yu et al determined that FtsK is located on the septum and also found
8
that the N-terminal region determines the correct location of FtsK. A single
amino acid mutation at the N-terminal region can inhibit the FtsK location at
the septum (25).
Up til now, several approaches have been reported on the localization of E.
coli proteins on a larger scale. Ellison and colleagues biochemically
fractionated E. coli cells into cytosol, periplasm, inner membrane, and outer
membrane components. They then determined protein identity, location,
abundance, modification state, apparent isoelectric points, and molecular mass
using high resolution two-dimensional electrophoresis protein gels and tandem
mass spectrometry (6). Bailey and Manoil reported a method for genome-wide
tagging of bacterial proteins based on a broad–host range transpson which
contain HA epitope and a hexahistidine sequence, which can be detected and
the labeled proteins can be purified by metal affinity method (26). In the study
of global protein localization of E. coli, a Japanese research group has done a
lot of work, which is a branch of Genome Analysis Project. They inserted ORF
of E. coli into N-terminal of GFPuv4 in a pCA24N plasmid and then
transformed this plasmid into E. coli K-12 W3110 strain.The localization of
inserted proteins are determined by observing fluorescence signal under
fluorescence microscopy. The 4351 ORF of E. coli have been tagged and 3982
proteins are located. These proteins can be located in a whole cell, on a
membrane, or at the nucleoid. There are some other proteins which form foci in
the cell. All these localization data can be searched on the Genobase database
(http://ecoli.naist.jp/gb6/WGB/intro.html) (27).
Large-scale visualization of protein localization in E. coli has been
dependent on transposon-mediated random internal tagging and plasmid-based
overexpression of epitope-tagged proteins as described above. However,
internal tagging can easily interrupt protein functions. Plasmid-based
overexpression of proteins may saturate intracellular localization mechanisms,
leading to abnormal localized proteins. Viewing all the protein tagging and
localization work so far, no chromosomal tagging of prokaryotic proteome
with GFP has been reported. For the best studied prokaryote, E. coli,
9
recombination between its chromosome and foreign linear dsDNA is a rare
event, mainly due to the presence of linear-dsDNA exonuclease, thus
becoming a bottleneck in tagging protein on chromosome of E. coli
chromosome directly. But recently, with the development of a new technology,
recombinogenic engineering, or recombineering methodologies (28) , things
have changed. Recombineering mediates the efficient integration of
transformed linear dsDNA, containing short regions homologous to the target
locus, into the chromosome. Watt et al used recombineering method to position
a selection of fluorescent protein genes immediately preceding the stop codon
of a representative subset of CDSs of diverse function on the E. coli
chromosome. These tagged proteins are expressed from their endogenous
promoters. They were subsequently able to determine the intracellular
localization of 21 (out of 23) E. coli proteins targeted. At the same time, the
localization pattern and dynamic localization of some special proteins also can
be traced and the relationship between localization and function is further
proved (29).
Although GFP is a useful reporter for E. coli protein localization, there are
some limitations noted. As reported by Feilmeier et al, GFP can‟t be folded
correctly in the periplasmic space, so for those proteins who located in the
periplasmic space, GFP is not an ideal reporter (30).
In addition to wet lab approach, some computational methods also are used
in predicting protein subcelluar localization of E. coli, such as amino acid
composition-based methods; integration of various protein characteristics
methods; sequence homology-based methods and a mixed method combine
one-versus-one (1-v-1) SVM model with a structural homology approach (6).
10
1.2. Essential genes and persistent penes
Protein localization provides a useful way to study the function and
interactions of proteins, As we all know, the amount of genes have been
discovered is very large and they are not all essential to the life of an organism.
From an economical and efficiency standpoint, protein localization should first
focus on those genes important to the life of an organism.
There are about 4270 genes in E .coli genome. The functions of these
genes are different from each other. Some genes play important role in cell
metabolism, like accd and asd, while other genes are involved in cell division,
like ftsz and ftsk and still others that control the mobility of E. coli namely
cheA, cheB, cheC genes. Among these 4270 genes of E. coli, part of them are
important to the growth of E. coli and the cell will die once they are lost,
thus,named the“essential genes” (31). On the other hand, nonessential genes
refer to those that are not lethal to the cell when knocked out of them. It is
found that those essential genes are more conserved than nonessential genes
(32). There are several methods which have been used to determine essential
genes, as in Gerdes et al who defined that 620 ORFs are essential in E. coli via
the genetic footprint technique (31). The essential genes also can be designated
by their function. For example, considering that the ribosomal proteins are
indispensible to the growth of E. coli, those ribosomal genes are essential
genes. But other genes, whose products play a role in cell motility or
chemotaxis, are not as necessary to cell growth thus, thought to be nonessential
genes. The essential genes are thought of as potential targets for antibiotics.
The most commonly used methods on identifying essential genes for
antibiotics targets are conditional mutagenesis. There are several approaches to
conditional mutagenesis which include temperature-sensitive mutations (33),
antisense mutants (34), change amber mutations to a temperature-sensitive
phenotype by using temperature-sensitive tRNA (35), and/or using a promoter
to control the target gene (36). To overcome the disadvantages of the above
mentioned methods, Herring et al employed a new conditional mutation system
11
in E.coli, which is a plasmid to produce an amber suppressor tRNA regulated
by the arabinose promoter. They tried to make conditional lethal mutations in 8
essential genes of E.coli and 7 of them were successful (37).
Different approaches may give different amount of essential genes. The
essentiality of a gene is only meaningful in certain experimental conditions.
Thus, the spectrum of essentiality changes in different growth conditions. For
example, in laboratory conditions, bacteria usually grow on solid rich
media.When cultured cells on rich media contain enough amino acids,
nucleobases and vitamins, those genes in charge of synthesizing these product
are not thought of as essential genes. But once transferred to a media lacking
these compounds, the cell requires producing them de novo, and thus the same
genes will be classified as essential genes. In addition to the media component,
the physical growth conditions of the bacterial cell also change the essentiality
spectrum,
such
as
temperature,
metal
concentration,
etc.
So
the
„„essential‟‟genes should be carefully viewed as in the context (38).
Different experiment approaches give different essential genes pool. Some
experiment methods evenly are argued misestimate the amount of essential
genes. It is quite different for a cell to survive in a laboratory compared to its
natural setting when it competes for limited resources. Therefore, more genes
are likely needed for a cell to survive naturally. Danchin et al focused on the
persistence to explore gene essentiality by comparing 55 genomes of
Firmicutes and Gamma-proteobacteria, which identified 611 genes in E. coil
that are persistent among genomes, showing the characteristics of
experimentally essential genes. In fact, the experimentally essential genes of E.
coli constitute a subset of persistent genes with only a few exceptions. The
results show that most of the persistent essential genes are involved in
information transfer class, while most of the genes in charge of maintenance
and stress response are persistent nonessential genes. This analysis strongly
supports the hypothesis that wet lab experiment cannot detect all essential
genes especially those only function in the situation of stress or starvation (39).
12
These results suggest that more research need to focus on these persistent
genes.
1.3. Homologus recombination and recombineering
Now the dominant wet-lab method in protein localization is labeling target
genes with short peptides or report proteins. In plasmid-based protein
localization method, the reporters are inserted into the N or C-terminus of
target proteins in expression plasmid by restriction enzyme and ligase. But the
most employed way in labeling target gene in chromosome directly is
homologous recombination.
1.3.1 Homologous recombination
Homology recombination is a biological process that is essential to all
organisms. It uses sequence homology to promote DNA exchange, leading to
new combinations of sequences. This biological process is conserved in all life
forms, even in viruses. The functions of homology recombination are from
sexual reproduction to generation of genetic diversity, and the maintenance of
genomic integrity. Unveiling the detailed mechanism of homology
recombination that all proteins use is important to understanding life.
1.3.1.1 Homologous recombination in E. coli
Genetic recombination was discovered in E.coli by Lederberg and Tatum
(40). In 1964, Robin Holliday describes the basic model of recombination (41).
According to Holliday model, the first step is initiation. The recognition of one
base sequence by another must be involved in this step in order to keep the
accuracy of recombination. There are three possible interactions with the
double-stranded DNA: single-strands with single-strands; single-strands with
13
double-strands, and double-strands with double-strands. These interactions
results in the formation of heteroduplex DNA adjacent to one or more Holliday
junctions. The amount of heteroduplex DNA will be increased or decreased by
branch-migration when a Holliday junction is formed. The second step calls for
the repair of mismatched information. Mismatch correction enzyme will work
once mismatch has been generated within the heteroduplex DNA due to the
fact that two recombining partners are not identical. The last step involves
resolution. This step can be done in many ways based on the intermediate and
the enzyme activities available. In this step, Holliday junction is resolved in
two specific directions to produce recombinant progeny (42).
There are many proteins involved in homology recombination, including
RecA
protein,
RecBCD
enzyme,
RecFOR
proteins,
single-stranded
DNA-binding protein (SSB protein), DNA polymerase I, DNA gyrase, and
DNA ligase, as well as the RuvA, RuvB, and RuvC proteins or the RecG
protein, etc (42).
But not all these proteins are in need of the entire recombination process.
The specific proteins involved are determined by both the genetic background
of the strain and by the type of recombination event being monitored. In E. coli,
homologous recombination runs by two pathways based on two different kinds
of substrates (43). Although same proteins are involved in the migration and
the resolution of a Holliday junction steps, there are different proteins found at
the first two steps of homologous recombination at dsDNA ends and ssDNA
gaps in E. coli. At dsDNA ends, RecBCD degrade DNA until it encounter a chi
site, then a 3‟ended ssDNA to which it loads RecA is produced by
helicase-nuclease activity of RecBCD. But at gaps, RecJ, the 5‟ ssDNA
exounclease, extends the single-stranded DNA region and RecFOR (RecF,
RecO, and RecR) promote RecA binding to SSB-coated DNA.
The biochemical activities of the RecA protein have been extensively
studied. The bacterial RecA is a highly conserved protein. RecA protein of
14
E.coli plays important roles in many biological processes, like induction of the
SOS response to DNA damage, SOS mutagenesis, and recombinational DNA
repair, +. In different biological processes, RecA play several roles. For
example, in SOS induction, RecA binds to DNA form filament to facilitate an
autocatalytic cleavage of the LexA repressor. In SOS mutagenesis, RecA is
essential to stimulate DNA polymerase V. The kinetics of RecA binding to
single-stranded DNA is more rapid than to double-stranded DNA. RecA
protein promotes a DNA strand exchange reaction which is stimulated by the
single-stranded DNA binding protein of E. coli. RecA is also a
DNA-dependent ATPase, which is useful to recombination because some
aspect of the DNA strand exchange reaction need ATP hydrolysis. Although
ATP hydrolysis is not required to promoter the basic process of DNA strand
exchange, it is necessary in some ways. ATP hydrolysis allows the reaction to
go to completion and renders the DNA strand exchange reaction unidirectional
(44, 45). In addition, ATP hydrolysis is required for any DNA strand exchange
involving two duplex DNAs (45, 46). In addition to autoregulation by the
C-terminus itself, RecA is also regulated by other proteins, like single-strand
DNA binding protein (SSB) and RecFOR proteins. SSB plays a complex role
in RecA reaction. On one hand, if SSB is allowed to bind to the DNA prior to
RecA, RecA filament nucleation is inhibited (47, 48). But this inhibition can be
overcome in the bacterial cell by two other proteins: RecO and RecR (49,
50).The RecFOR are essential to load RecA protein onto SSB-coated DNA at
single-strand gap, and RecF play arole in targeting this process to the ends of
ssDNA gaps (51, 52).
In addition to RecA and its regulatory proteins mentioned above, there are
some other proteins involved in recombination process, such as the RecBCD,
which is an ATP-dependent exonucleaase and helicase. It binds to the ends of
dsDNA and unwinds the strands as it moves to the centre. RecBCD also
cleaves DNA when it passes though the DNA. RuvABC complex is involved
in resolving Holliday junction in E. coli. The RuvA and RuvB proteins
promote ATP-dependent branch migration of the holliday junction, while
15
RuvC introduces nicks in two DNA strands allowing resolution of the Holliday
junction to recombinant DNA molecules (53).
1.3.1.2 Homologous recombination in eukaryotes
One of the important properties that distinguish eukaryotes from
prokaryotes is meiosis which plays important role in genetic exchanges and
crossovers. Recombination not only occurs in mitotic cells from yeast to
mammals but performs its highest frequency and complexity in meiosis (54).
At least in the first meiotic division, recombination plays a crucial role in the
segregation of chromosomes (55).
There is at least one recombination event that happens for every pair of
chromosome homologues in the nucleus. The event occurs more than five
times for large human chromosomes. In meiosis, chromosome pairing is
viewed and mediated by genome-wide searching for homology. Double-strand
breaks (DSBs) happen in the early meiosis I phase in yeasts to promote
chromosome pairing and recombination to proceed. Wu et al reported that the
chromatin structure determine DSB site and a nonspecific enzyme cleaves it,
which is different from χ site that is cleaved by a specific sequence (56).
Another big difference between eukaryotes and prokaryotes in homology
recombination is the enzymes involved in. As mentioned above, one of the
essential enzymes of homology recombination in prokaryotes is RecA.
However, in eukaryotes, two other proteins, Dmc1 and Rad51, play the same
role as RecA. It has been reported that if only one mutation occurs with Dmc1
or Rad51, the recombination is reduced (57, 58). But, once the function of
these two proteins are lost at the same time, defective in recombination will
happen. Dmc1 is essential in the repair of meiosis-specific DSBs (58). Rad51
promotes homologous pairing and strand exchange between two DNA
molecules to mediate homology recombination. Dmc1 and Rad51 share about
16
30% amino acid identities to RecA protein, with the difference at the amino
and carboxyl termini region. In yeasts, Rad51 can bind to ssDNA and dsDNA
(59) and it can mediate ATP-dependent homologous DNA pairing and strand
exchange, like the roles of RecA in E. coli (60). Ristic et al found that Rad51 is
dynamic with the active exchange of free and bound DNA- form (61). Other
Rad51 like proteins also were identified in various eukaryotes which includes
the product of the REC2 gene in Ustilago maydis (62), a RecA homologue
from lilium and Rad51 homologue in mouse (63) and human cells (64). These
findings support that the homology recombination and the main involved
protein is a common phenomenon in nature.
In eukaryotes, in addition to Dmc1 and Rad51, other proteins also can be
found in Homology Recombination process. Rad52, a protein which binds to
Rad51 (65), plays a role in promoting some reactions that controls the entry
and exit of recombination substrates into different recombination pathways (66,
67). Some experiments confirmed that three other genes namely RAD54,
RAD55, RAD57 are required to provide an approach to chromatin regions in
order to make a combination available (68). In the process of Homology
Recombination, strand transfer activities need some proteins to take part in it.
Strand Exchange Protein 1 (SEP1) and Strand Transfer Protein (STPβ) are two
proteins in eukaryotes which promote the formation of joint molecules from
homologous linear duplexes and circular single strands. This process is Mg2+
requiring and ATP-independent (55). More experiment discloses that DNA
damage signaling proteins, Nbs1 and ATR, also play roles in Homology
Recombination of eukaryotes (69).
Recently, a new tool based on the homologous recombination and three
recombination proteins of λ phage has been developed and has been widely
used in many study fields, like protein localization, gene function, etc. This
technology is named Recombineering, Recombination-mediated Genetic
Engineering.
17
1.3.2 Recombineering
1.3.2.1 Concept and mechanism of recombineering
Recombineering, a new in vivo genetic engineering has been developed for
use in E .coli. Due to its precision, efficiency, and simplicity, it may replace
traditional in vitro cloning techniques. This technology works by generalized
recombination function produced by phage proteins. It allows the efficient
integration of transformed linear dsDNA (usually PCR generated), which
contains short regions (ca. 35-55 bp) homologous to the target locus at both
ends, into the chromosome without the necessity of restriction enzymes or
DNA ligase. Recombineeing also can be used to clone or modify genes carried
on plasmids, bacterial artificial chromosomes (BACs). Recombineering
provides a method that permits rapid and precise in vivo manipulations of
DNA and has become a new research tool in functional genomic analyses.
There are two kinds of Recombineering based on the different phage
proteins,
which
include
RecE/RecT
from
Rac
prophage
and
Red
exo/beta/gamma from lambda bacteriophage (70, 71) with the latter being used
usually. This introduction will focus mainly on Red exo/beta/gamma from
lambda bacteriophage.
There are three important proteins in Red exo/beta/gamma from lambda
bacteriophage. The first is λ-Exo protein, which degrades linear dsDNA in a
5‟to 3‟direction from both ends. The degradation rate is around 10 to 30 bases
per s in vitro (72-74), although has also been reported with a high rate of 1000
bases per s (75). The dsDNA ends are required for it to initiate digestion and
remains bound to the dsDNA when it degrades one strand. If 5‟P is absent, the
efficiency of the initiating reaction is low. In the presence of 5‟P, Exo binds to
a dsDNA end and move along the 3‟ended single strand, resulting in a
3‟overhang (73, 76). In addition, λ-Beta is another enzyme essential to
18
Recombineering, which is a protein that binds to ssDNAs of >35 bp (77) and
protect ssDNA from digestion by single-strand nucleases (78, 79). The λ-Beta
protein also plays a role in promoting pairing or annealing between
complementary ssDNAs (78-80). Some experiments confirmed that Exo and
Beta form a complex in vivo (81, 82). It is not difficult to understand that when
Exo degrades a dsDNA and generates an ssDNA overhang, then the Beta binds
to this ssDNA overhang and pairs it with a complementary ssDNA target. A
similarly model is also reported between RecBCD and RecA actions (83). It is
essential for regulating the nuclease activity to limit DNA digestion to the
needed amount for recombination that combine a specific exonuclease with its
special
annealing
protein
(84).
Interestingly,
this
combination
has
homospecific, pairs of RecE-Beta or Exo-RecT will cause the recombination to
fail (85). This may be caused by their protein-protein interaction specificities.
RecBCD destroys any linear dsDNA and rolling-cycle replication products in
the cell and inhibit recombination. In order to inhibit the activities of RecBCD,
the third protein λ-Gam binds stoichiometrically to the RecBCD (86, 87). It is
reported that λ-Gam also inhibits another enzyme, SbcCD endonuclease, which
repairs double-strand breaks (88).This implies that λ-Gam inhibits enzymes
involved in the double–strand-break-dependent recombination. But the
problem in applying recombineeing to operate on plasmid caused by the
characteristics of λ-Gam is that the inhibition of λ-Gam to RecBCD will
produce abnormal rolling-circle replication of plasmids in the cell because
RecBCD also destorys rolling-circle replication products (89).
In conclusion, three enzymes, Exo, Beta and Gam, play different but
important roles in recombineering. Exo and Beta are needed to handle the
DNA prior to recombination, and Gam can protect the linear dsDNA from
degradation by the RecBCD or SbcCD nuclease.
19
1.3.2.2 Application of recombineering
Due to the high efficiency and short homology needed, recombineering
has been widely used in molecular biology. It can be used in inserting foreign
fragment into plasmid, bacterial chromosomal DNA or BACs; and it can be
used to insert reporters (e.g.GFP,LacZ) or site-specific recombinases
(e.g.Flp,Cre) or selectable markers (e.g. chloramphenicol gene) into
chromosomal directly. It also can be used in making mutations in bacterial
chromosomes directly (90). Watt et al labeled 23 genes of E. coli with
Enhanced Green Fluorescent Protein (EGFP) and determined the intracellular
localization of 21 proteins targeted by recombineering protocol (29). They also
found that the PyrH protein localized dynamically to one cell pole and was
asymmetrically segregated between daughter cells during cell division.
Compared with other plasmid-based localization method, the advantage of
recombineering label method is the expression of target - reporter fusion
protein is under the control of the promoter of target genes, so reflection of the
true picture of target protein would be guaranteed as far as possible. Due to its
convenience and low cost, more researchers are applying recombineering to
construct fusion protein library in bacterial. By recombineering technology,
Butland
and
co-workers
detected
the
expression
of
648
chromosomally-encoded affinity-tagged CDSs, in their large-scale „tandem
affinity purification‟ (TAP) protein interaction network analysis in E. coli,
from a total of 857 successfully constructed strains. They found many new
interactions and gave new clues to discover the function of previously
uncharacterized proteins (91). Recently, Hu et al generated a network of 5,993
putative physical interactions among 1,757 E. coli proteins, including 451
function unannotated proteins, in E. coli by analysing the multiprotein complex
isolated by an optimized Sequential Peptide Affinity (SPA)-tagging system
based on recombineering technology. These protein interaction information are
very useful to understand the function of these unannotated proteins (92).
Recently, Taniguchi et al quantified the E. coli proteome and transcriptome by
using libraries generated by recombineering technology (93). Recombineeing
makes research work more efficient, for example, Chan et al constructed 96
20
conditional knockout targeting vectors simultaneously with recombineering
technology (94).
Although recombineering is gradually becoming a useful tool in bacterial
research, it still has some limitations. First, the incorrect recombination
between unwanted sequences can easily occur due to the short regions of
homology that is needed for recombination. The second limitation is the
foreign DNA fragment used in recombineering to be produced by PCR. Thus
sequencing is important to ensure no mutation in the PCR cassette. Thirdly the
recombineeing-based method is mainly used in few prokaryotes: E.coli,
Salmonella (95), and Yersinia (96). Much research work is needed to apply this
method to more and more prokaryotes.
In the study of protein localization by tagging method, in addition to
appropriate technology that is used to label target protein, another important
consideration is what tag should be selected. As noted above, there are two
kinds of tags that have been used in protein localization: short peptides and
proteins. Both of these tags have their advantages and disadvantages. Now,
fluorescent proteins, especially green fluorescent protein, have been widely
used in the study of protein localization.
1.4 Green Fluorescent Protein (GFP)
1.4.1 Properties of GFP and its variants
Bioluminescence is found in many organisms in nature from vertebrate
to microorganisms and it plays important roles in the life of these organisms.
Organisms use bioluminescence to help deter predators or help in predation or
communicate with each other (97, 98). Organisms produce bioluminescence by
luciferase (enzyme) and luciferin (substate).The latter can emit light when
reaction with oxygen, and luciferase is a catalyst to speed up this reaction.
With the discovery of the physical and biochemical characteristic of various
21
bioluminescences, it not only plays a role in the life of organisms, more being
applied in biological research work. Bacterial lux genes, which encode the
bacterial luciferase, have been used as reporters in many research works, such
as visualizing gene expression in Streptomyces (99).
Green Fluorescent Protein (GFP), one of the bioluminescence, becomes a
star as a tool for biological research. It was first isolated from the jellyfish
Aequorea Victoria (100). GFP converts the blue chemiluminescence of other
proteins to green fluorescent light (101). The wild-type fluorescence
absorbance/excitation peak is at 495nmwhile the normal emission peak of GFP
is at 508nm (102). By computing and observing the absorption spectra of the
fluorophore at different pH and other experiments, it is suggests that the
protonated nitrogen composes an important factor in the function of GFP (103).
There are other important characteristics which relate to the application in
biological research identified by physical and chemical studies of purified GFP.
The experiment shows that GFP is very resistant to denaturation (104); the
elucidation of its 3D structure (105, 106); and the discovery of fluorescent
proteins with varied emission and excitation or other origins based on the
predicted changes in the structure that has expanded its application in biology.
One of the advantages of GFP as an ideal reporter of gene expression is its high
level of stability. The stability of GFP is determined by its special
three-dimensional structure, which also presents as a new protein class, named
β-can. In β-can, 11 β-strands surround and protect the chromophore that is
positioned near the center of β-can. Both ends of the can are capped by small
sections of loops and irregular α-helices (106).
The structure of Aequorea GFP chromophore was first disclosed by
Shimomura (107), which is a hexapeptide. It is reported that the hexapeptide
between Renilla reniformis and Aequorea has similar identity except that
Val68 and Gln69 are replaced by Asp and Arg, respectively. The chromophore
of GFP consists of residues 65-67 (Ser - Tyr - Gly), the principle fluorophore
of the proteinwhich does not remain static. Some chromophore variants of GFP
have been isolated and has been reported that Serine at site 65 has been
22
replaced by Thr,Ala,Cys,Leu, and gly and that Tyrosine at site 66 has been
replaced by Phe,Trp and His (108, 109).
The excitation maximum of GFP is close to the ultraviolet range. Because
ultraviolet light requires special optical considerations and can damage living
cells, it is a disandvantage to apply GFP onto live cell imaging with
fluorescence microscopy. To biology researchers, another important aspect of
applying GFP to the cellular and other related research fields is the brightness
of GFP. If the expression of GFP is controlled under a strong promoter, the
fluorescence image is enough to observe. But, in most situations of biology
research, the GFP is controlled by a weak promoter, often giving disappointing
results. So developing brighter GFPs can help in the future success in the field
of biology research. There are many ways in improving the brightness of GFP,
like improving codon usage, removing GFP-containing inclusion bodies, etc.
Presently, most research focus on overcoming the mentioned above two
bottlenecks by using mutant amino acids of GFP. The mutation methods
include random mutagenesis by chemical mutagens, error-prone PCR,
deliberate site-directed mutations, DNA shuffling, directed evolution, etc (110).
The excitation maximum of green fluorescent protein is successfully shifted to
488 nm by introducing a single point mutation altering the serine at position 65
into a threonine residue. Enhanced Green Fluorescent Protein (EGFP), a
brighter Green Fluorescent Protein, has also been produced by mutation
method. Cormack et al reported that they produce a yeast-Enhanced Green
Fluorescent Protein (yEGFP) by optimizing encoding codons and introducing
two
amino
acid
changes
(S65G;
S72A)
(111).
By
using
Fluorescence-Activated Cell Sorting (FACS) select library of random amino
acid mutations in the twenty amino acid flanking the chromophore Ser-Tyr-Gly
sequence, Comack et al find variants of GFP that fluoresce between 20-and
35-fold more intensely than wild type when excited at 488 nm (112). Based on
these research results, a more extensive and effective application of GFP to
biological research has been achieved.
23
Based on the knowledge of the GFP crystal structure and amino acids
components of GFP fluorophore, several GFP variants that can produce
different colors have been provided by corresponding amino acids mutation of
GFP. The first point mutation of GFP (Ser65Thr) reported by Roger Tsien has
higher fluorescence intensity and photostability than the widetype GFP (113).
YFP, Yellow Fluorescent Protein, is a group of GFP variants with Thr203Tyr
mutation. This substitution causes the most dramatic red shift (114). YFP has
different versions, like mCitrine (115), Venus (116), and EYFP, etc. These
YFP variants have different excitation wavelength, emission wavelength,
brightness and photostability between each other (117). CFP, Cyan Fluorescent
Protein, is a group of GFP variants with Tyr66Trp. CFP also has different
versions, they include mCFPm (118), Cypet (119), etecetra. BFP, Blue
Fluorescent Protein, is a group of GFP variants with Tyr66His (120). Different
BFP
has
different
brightness,
for
example,
the
double
mutant
Tyr66His/Tyr145Phe has almost the twice brightness of single mutant
Tyr66His (121). The fouth GFP variant is Red Fluorescent Protein, like
mCherry (122), DsRed, etc. These different GFP variants provide more choices
in the study of proteins. But these Fluorescent Protein variants are most widely
used in Fluorescence Resonance Energy Transfer (FRET) experiment, which
used to study the interaction between proteins that are labeled with different
fluorescent proteins (123). Based on the previous research result of our lab (29)
and the resources we have, the EGFP is selected as tag in this project.
1.4.2 The application of GFP in prokaryotes
The advantages of GFP allow it to be used as reporters of gene expression
and dynamic processes during bacterial growth, and even the behavior of
single bacteria in group and environments. In most research work using GFP as
reporter in bacterial, multicopy plasmids containing GFP gene is employed
(124, 125).Tombolini et al and other researchers also express GFP in
Pseudomonas sp. by single copy fusions with strong promoters (126). In this
work, they found that weaker fluorescence signal can be found during the
24
exponential growth phase in individual bacteria and maximal fluorescence
signal is achieved until stationary growth phase. Another way it is used
involves the insertion of GFP gene into the chromosome of bacteria directly.
This method has its unique advantages in that it can paint a clearer picture of
the target genes although sometimes the fluorescence signal cannot be detected
due to the weak promoter of the target genes. With the development of new
recombination technology, recombineering, plays a more important role in the
study of gene function, protein localization and protein interaction of bacterial.
In the field of bacterial development and cell biology, GFP has been
widely used. Arigoni et al located SpoIIE of Bacillus subtilis, an important
protein in triggering the development of progeny after cell division, to a area
close to the pole of sporangia prior to septum formation by labeling it with
GFP (127). Another example is SpoIVFB localization in Bacillus subtilis.
SpoIVFB is proposed to be a proteolytic activator of a mother-cell-specific σk
and previous immunofluorescece location method is difficult to apply to this
protein because purifying adequate anti-SpoIVB antibodies is difficult.
Resnekov et al overcome the problem and located the SpoIVB successfully by
SpoIVB-GFP fusion method. The localization of SpoIVB support the model
couples development in the forespore to mother cell transcription (128). In E.
coli, GFP plays an important role in studying the localization and
characteristics of two bacterial division proteins: FtsZ and FtsA. First, the
localization of these two proteins is determined in living bacteria by using GFP
fusions (129). FtsZ-GFP and FtsA-GFP localize to the division site. FtsA-GFP
also can be found on membrane and at ring structure in the division plane at
both early and late stages of septum formation. At the same time, Cormack et
al visualize the formation of the division ring in actively dividing cells (112).
The roles of N-terminal and C-terminal in the function of FtsZ also are
disclosed by fusing different lengths of FtsZ to GFP (129). Thus, it is
confirmed that FtsZ directly interacts with FtsA by introducing FtsA-GFP and
FtsZ-GFP into the same cell.
25
Besides being applied to the study of proteins in cells, GFP is used in
studying the interactions between bacterial and host. In this field, GFP has its
advantages in stable fluorescence signal, reducing potential interference with
surface contact between bacteria and host cells. Kain et al observe the
rearrangement of host cell actin induced by S.tyhimurium invasion using
GFP-tagged bacteria (130). GFP can be used to trace GFP expressing strain in
the tissues of infected animals. Up to 5 weeks postinfection of M.marinum,
Valdivia et al observed fluorescence signal of M.marinum expressing GFP in
cryosections of chronically infected frog spleens (131).
Another useful application of GFP in prokaryotes is the ability to
separate bacteria on the basis of the relative fluorescence intensities. The name
of this technology is Fluorescence-Activated Cell Sorting (FACS), a
specialized type of flow cytometry. This technology allow determination of the
levels of gene expression for every bacterial cell in the population and separate
them on the basis of different levels of gene expression by reading the
fluorescence intensity of each particle that passes through the laser sensing area.
With FACS, a mixed population of mycobacteria containing transcriptionally
weak and strong gene GFP fusions has been separated (125). In theory, any
GFP containing bacteria with absolute fluorescence intensity can be
specifically separated with FACS. Thus, FACS in combination with GFP can
be used in different research experiments, such as identifying genes induced
under different conditions.
26
1.4.3 The application of GFP in eukaryotes
Green Fluorescent Protein (GFP) has also gained widespread application
invarious research works involving yeasts, which includes the study of
organelle structure, function and inheritance, the localization of proteins, DNA,
RNA and liquid, and the disclosing of protein-protein interactions.
GFP fusion proteins are valuable tools for intracellular compartments in
studies of yeast organelle structure, function and inheritance. Organelles can be
visualized with GFP in two ways: first with the fusing of GFP to the proteins
that are located exclusively to the organelle, and second with the fusing of GFP
to the signal peptides of the corresponding organelles. By labeling well-located
ER protein Sec63P with GFP, Prinz et al studied the dynamic structure of ER
in S.cerevisiae (132). To observe the structure and to determine factors
influencing the mitochondrial morphology, a mitochondrial localized GFP
(mtGFP) is constructed by fusing the corresponding localizing signal peptide at
the N-terminal of GFP (133, 134).
Localization research is another important area in which GFP comes into
its own. In the field of yeast protein localization, it can be found that the
application of GFP from static location to dynamic protein movement and
trafficking to localization of individual protein to localization of global
proteome. It is reported that the Msn2p-GFP and Msn4p-GFP are localized to
the cytoplasm in normal situations but they will gather rapidly in the nucleus
when the cell is under stress (135). As two stress-response transcription factors,
it is not difficult to understand the localization pattern change of these two
proteins. By combining the use of GFP and other GFP derivative YFP (Yellow
Fluorescent Protein), CFP (Cyan Fluorescent Protein), various results have
been achieved. Browning et al studied the in vivo movement of cargo protein
Tea2p kinesin along microtubules in S.pombe by observing fluorescence signal
of Tea2p-YFP and tubulin-CFP in the same cell with time-lapse fluorescence
microscopy (136). By tagging DNA-bindings proteins or RNA-binding
27
proteins, the localization of corresponding DNA and RNA have been
determined (137-140).
A new technology, named Fluorescence Resonance Energy Transfer
(FRET), became a useful tool for protein interactions research. During FRET,
the excited donor fluorophore directly transfer energy to the acceptor
fluorophore and the FRET can be detected by measuring emission from
acceptor. The direct interaction between two tagged proteins can be determined
with FRET because FRET only occurs when the donor and acceptor are very
close in space. With FRET, Damelin et al identified the interaction between
nuclear pore proteins and nuclear transport receptors (141). The characteristics
of motif required for oligomerization of G-protein coupled receptor (GPCR)
also can be demonstrated by using this method (142).
1.5 Aims of the project
The aim of my study is to tag all the persistent genes of E. coli genome
with EGFP by recombineering method. Specifically, I want to achieve the
following:
(1) Resources development: Generate EGFP-tagged E. coli persistent gene
products library for systematic analysis of E. coli proteins. In this study,
DY330 was chosen to construct the EGFP-tagged E. coli persistent gene
products strain library since DY330 is essentially the wild type (W3110)
except an integrated defective λ prophage. Successfully tagged strains will be
prepared from independent colonies and stored in -80°C with glycerol stock.
(2) Functional analysis: Characterization of the subcellular localization and
dynamics of the E. coli proteome. Colonies for each of the successfully tagged
CDS will be analyzed by fluorescence microscopy for subcellular protein
localization. The successfully tagged CDS will be examined in at least two
conditions: during the log or stationary phases. Some tagged strains will be
selected to study dynamic protein expression and distribution in details. The
28
dynamic changes in expression and localization of these proteins will be
monitored by video fluorescent microscopy throughout the cell cycle.
(3) Bioinformatics: Establish an E. coli proteins localization database to
provide a resources sharing platform for the scientific community. A database
will be constructed and a web-based user interface will be designed for the
database. The information of this database include tagging primer sequence,
description, images, videos that are used to assign protein localizations in this
study and the database will be integrated with existing E. coli database.
In summary, this project is the first for genome-scale determination of
prokaryotic protein subcellular localization using chromosomal EGFP-tagging.
The determination of the dynamic subcellular localization of the E. coli
proteome is vital for the understanding of prokaryotes. By accomplishing the
objectives of this project, the experimental and informational resources
founded in the study will be a helpful tool in the scientific community for the
complete understanding of the structure and function of the living cell.
29
Chapter 2: Materials and Methods
2.1 Materials
Sequence data, gene annotations and associated information were obtained
from
the
Colibri
(http://genolist.pasteur.fr/Colibri/)
and
Genobase
(http://www.ecolihub.org/GenoBase) databases. The list of tagged genes can be
found in Appedix 2.
2.1.1 Bacterial strains
E. coli DY330 (W3110_lacU169gal490 [λcl857_ (cro–bioA)]) was used for
these experiments.
2.1.2 Plasmid and primers
The source of the fluorescent domain was the EGFP (Enhanced Green
Fluorescent Protein) coding sequence. The plasmid used for producing the
tagging cassettes was pEGFP-loxp-Cm-loxp (Figure 1). All oligonucleotides
were purchased from Techdragon (Hong Kong), Invitrogen (Hong Kong) and
Sunbiotech (Beijing) as the salt-free form. Linear dsDNA targeting cassettes
were synthesized by PCR using the appropriate pair of primers (forward
primers also encoded a short peptide linker (-LEGSG-) to separate the CDS
and
fluorescent
protein
domains)
and
plasmid
templates
(pEGFP-loxP-Cm-loxP). All primers used in this project are list in Appendix 3.
30
Figure 1 Map of plasmid used as PCR template for producing the tagging
cassette. This plasmid is constructed by inserting loxp-Cm-loxp sequence
downstream of EGFP gene of commercial pEGFP plasmid (BD bioscience).
Forward primer used to produce linear dsDNA targeting cassettes is
complimentary to N-terminal of EGFP and reverse primer used to produce
linear dsDNA targeting cassettes is complimentary to the second loxp sequence.
This plasmid map is created using PlasMapper.
31
2.1.3 Agarose, Antibiotic and Culture Medium
LB (Luria-Bertani) medium: 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl .
pH was adjusted to 7.0 with 5 M NaOH .
LB (Luria-Bertani) agarose medium: 10 g/L tryptone, 5 g/L yeast extract, 5 g/L
NaCl, 15 g/L agar. pH was adjusted to 7.0 with 5 M NaOH.
The stock concentration of antibiotic are: Chloramphenicol, 50 mg/ml in
methonal; Ampicillin, 50 mg/ml; Kanamycin, 10 mg/ml. Antibiotic stock
solutions were aliquot into microfuge tubes and kept at -20°C.
Antibiotic agar plate: CM plate, 12.5 μg/ml Chloramphenicol; Amp plate, 50 –
60 μg/ml Ampicillin; Kan plate, 15 μg/ml Kanamycin.
2.2 Experiment Methods
2.2.1 Preparation of component cell for plasmid amplification
and plasmid transformation
400 μl overnight cultures (2-3ml LB medium inoculated from single
colonies, grown at 37°C for 18 h at a speed of 220 rpm) was expanded into 45
ml of LB medium in a 250 ml Erlenmeyer flask, and incubated at 37°C for
2–3h (until OD600 of ca. 0.4–0.6) at a speed of 220 rpm. Flasks were cooled to
0°C as rapidly as possible in iced water. After 15–20 min, cells were harvested
by centrifugation at 0°C (4000 g, 5 min). Cell pellets were carefully washed
three times with sterilized ice-cold water (2×50 ml, then 1×1.5 ml) then
re-suspended in 200 ml of ice-cold water. Competent cells (50 ml) were
transformed with 50–200 ng of plasmid using a BioRad electroporator (1.8 kV,
25 mF, 200 W). LB medium (1 ml) was added to the transformed cell mixture,
which was incubated at 37°C, for 1-2 h. Cells were collected by centrifugation,
supernatant media was discarded, and then the resuspended cells were plated
onto LB agar containing the appropriate antibiotic to select for resistant
colonies.
32
2.2.2 Plasmid DNA purification
Plasmid extraction is carried out by using QIAprep® Miniprep kit of Qiagen.
A single colony was picked from a freshly streaked selective plate and
inoculated a culture of 5 ml LB medium containing the appropriate selective
antibiotic. Incubate for 16 h at 37°C with vigorous shaking.
The bacterial
cells were harvested by centrifugation at 4000 rpm in a conventional
microcentrifuge for 5 min at room temperature. Pelleted bacterial cells were
reuspended in 250 μl Buffer P1, and then the mixture was transfered to a
microcentrifuge and mixed thoroughly by inverting the tube 4–6 times. 350 μl
Buffer N3 was added, and then mixed immediately and thoroughly by
inverting the tube 4–6 times.This mixture was centrifuged for 10 min at 13,000
rpm (~17,900 x g) in a table-top microcentrifuge. The supernatants were
applied to the QIAprep spin column by decanting or pipetting and centrifuged
for 30–60 s. The flow-through was discarded. The QIAprep spin column was
washed by adding 0.5 ml Buffer PB and centrifuged for 30–60 s. The
flow-through was discarded. QIAprep spin column was washed by adding 0.75
ml Buffer PE and centrifuged for 30–60 s. The flow-through was discarded,
and centrifuged for an additional 1 min to remove residual wash buffer. The
QIAprep column was placed in a clean 1.5 ml microcentrifuge tube. To elute
DNA, 30μl water was added to the center of each QIAprep spin column, let
stand for 1 min, and was centrifuged for 1 min.
2.2.3 Amplification of linear dsDNA targeting cassettes by
Polymerase Chain Reaction (PCR)
Each PCR reaction included 0.5μl Expand Hi-Fidelity DNA polymerase
(Roche) and 1×PCR buffer, 300mM of each dNTP, 5 ng of plasmid template,
300nM of each primer and sterilized water to 50μl. The typical PCR program
used was 95°C for 60s, 5 cycles of (95°C for 20 s, 56°C for 20 s, 72°C for 180
s), 25 cycles of (95°C for 15 s, 52°C for 15 s, 72°C for 120s), 72°C for 720 s.
PCR products were excised from 1.0% agarose gels (in 1×TAE) and purified
33
using a Qiagen Gel Extraction kit, eluting with 50 ml of double distilled H2O.
For some PCR programs, an additional step of DpnI digestion was performed
prior to gel purification. A 50 μl PCR reaction typically yielded enough DNA
for one chromosomal targeting experiment.
2.2.4 PCR product purification
PCR product purification was carried out by using QIAquick® spin kit of
Qiagen. The DNA fragment was excised from the agarose gel with a clean,
sharp scalpel. The gel slice was weighed in a colorless tube. 3 volumes of
Buffer QG were added to 1 volume of gel (100 mg ~ 100 μl). The mixture was
incubated at 50°C for 10 min (or until the gel slice has completely dissolved).
To help dissolve gel, the mixture was mixed by vortexing the tube every 2–3
min during the incubation. After the gel slice has dissolved completely, 1 gel
volume of isopropanol was added to the sample and mix (when DNA
fragments are <500 bp and >4 kb). A QIAquick spin column was placed in a
provided 2 ml collection tube. To bind DNA, the sample was applied to the
QIAquick column, and centrifuged for 1 min. The flow-through was discarded
and QIAquick column was placed back in the same collection tube. 0.5 ml of
Buffer QG was added to QIAquick column and the QIAquick column was
centrifuged for 1 min. To wash, 0.75 ml of Buffer PE was added to QIAquick
column and the QIAquick column was centrifuged for 1 min. The flow-through
was discarded and the QIAquick column was centrifuged for an additional 1
min at 17,900 x g (13,000 rpm). The QIAquick column was placed into a clean
1.5 ml microcentrifuge tube. To elute DNA, 30 μl water (pH 7.0–8.5) was
added to the center of the QIAquick membrane and the QIAquick column was
centrifuged for 1 min.
2.2.5 Restriction enzymes digestion of plasmids of purified PCR
product
For some reasons, plasmid can‟t removed fully by PCR product purification
step. So DpnI digestion is necessary to every purified PCR product. The
34
digestion reaction system including 17 μl purified PCR product, 1μl DpnI
enzyme (New England Biolabs Inc), 2μl 10×NEBuffer 4. Incubate at 37°C for
3 hours. Then purify the enzyme digested PCR product using QIAquick® spin
kit of Qiagen. The purified PCR products are ready for transforming to DY330
component cell.
2.2.6 λ-Red mediated dsDNA recombination protocol
400 μl from overnight cultures [2-3ml LB medium inoculated from single
colonies, grown at 32°C for 18 h at a speed of 220 rpm] was expanded into 45
ml of LB medium in a 250 ml Erlenmeyer flask, and incubated at 32°C for 2–3
hours (until OD600 of ca. 0.4–0.6) at a speed of 220 rpm. Flasks were
transferred to a shaking water bath at 42°C and incubated for 14–15 min,
before cooling to 0°C as rapidly as possible in iced water. After 15–20 min,
cells were harvested by centrifugation at 0°C (4000 g, 5 min). Cell pellets were
carefully washed three times with sterilized ice-cold water (2×50 ml, then
1×1.5 ml) then re-suspended in 200 ml of ice-cold water. Competent cells (50
μl) were transformed with 50–200 ng of (gel purified) linear dsDNA targeting
cassette using a BioRad electroporator (1.8 kV, 25 mF, 200 W). LB medium (1
ml) was added to the transformed cell mixture, which was incubated at 32°C,
for 1-2 hours. Cells were collected by centrifugation, supernatant media was
discarded, and then the resuspended cells were plated onto LB agar containing
the appropriate antibiotic [chloramphenicol (Cm, cat)] to select for resistant
colonies.
2.2.7 PCR screening of recombinant clones
Colony PCR was used to confirm the correct integration of the fluorescent
protein gene and the adjacent „floxed‟ antibiotic-resistance gene, using two
pairs of primers to separately amplify the 3'- and 5'- junctions with the
chromosome. Each PCR reaction included 1μl ExTaq polymerase and 1× PCR
buffer, 300 mM of each dNTP, 300nM of each primer and sterilized water to
50μl. The reaction program is 95°C for 180 s, 30 cycles of (95°C for 60 s,
35
55°C for 60s, 72°C for 120s) and 72°C for 600 s. PCR products were checked
by running 1.0% agarose gels (in 1×TAE) and corresponding clones with
positive PCR results were selected as positive tagged clones.
2.2.8 Fluorescence microscopy
Fluorescent microscopy was performed with a Leica microscope using an oil
immersion ×100 objective lens, a Spot CCD camera and Spot Advance
software. EGFP fluorescence was measured as excitation / emission at 450-490
/ 520 nm. The exposure time is different from every labeled protein. In total, 4
seconds exposure was sufficient to capture a strong fluorescent signal, but
observing labeled proteins of weak fluorescence from more than 8 second
exposure may be necessary. The fluorescence images were recorded and
analysed using Advancespot and Photoshop software.
2.2.8.1 Cell Culture Condition
Wild Type DY330 cells and EGFP-tagged DY330 cells were cultured in LB
Broth (USB), EGFP-tagged DY330 cells were also cultured in LB Broth (USB)
supplemented with 12.5μg/ml Chloramphenicol. Wild Type and EGFP-tagged
DY330 cells were collected at different growth phases. 32°C was used for all
cultures unless otherwise indicated to avoid the activation of the three
recombineering related genes exo, beta and gam.
2.2.8.2 Staining chromosome with DAPI
Cells treated with DAPI (1:1 with 1mg/ml DAPI) before being immobilized
on glass slides coated with a partially dehydrated aqueous 1% agarose pad
immediately prior to analysis. The culture was examined as excitation /
emission wavelength 365 / 397 nm. The chromosome was stained bright blue
with DAPI.
2.2.9 Time–lapse experiment
For time-lapse microscopy observations, a glass slide filled with LB Broth
36
(USB) containing 1% agarose was used. Samples (5µl) of culture were
removed during the mid-log phases and immobilized on a slide. Cells were
visualized and photographed using a microscope (Zeiss) equipped with a
camera. The photos are taken at 5-minute intervals for 120 minutes. System
control and image processing were performed using supplied software
(Ultraview ERS software, Perkin Elmer).
37
Chapter 3: Results
3.1 Construction of an EGFP-tagged library of
persistent genes
3.1.1 Preparation of the tagging cassette by PCR
Six hundreds and eleven persistent genes within E. coli were systematically
tagged using λ-Red mediated recombineering technology (15 of them have
been tagged and located previously in our lab by Watt et al (29)). For each
gene, a pair of oligonucleotides was synthesized that included 51 bases
homologous to the regions immediately up or downstream of the desired
chromosomal insertion site, adjacent to 21 bases homologous to the plasmid
template (which included an EGFP gene and antibiotic resistance cassette as a
selectable marker). A five amino acid spacer coding sequence was positioned
between the target gene and fluorescent protein coding domains, to ensure that
they were spatially-separated, thus reducing the possibility of steric
interference with the native function of the target protein. The tagging cassettes
were amplified by PCR with template, plasmid pEGFP, and primers mentioned
above. Correct PCR products were gel purified with Gel Cleanup Kit. The
original and purified PCR products were tested by running 1.0% agarose gels.
The length of the PCR product (tagging cassette) is about 2.3kb, including two
homologous arms at each end of the cassette, an EGFP gene, a
chloramphenicol-resistance gene which is flanked by two loxp sites. Due to the
length of homologous arms being the same to each target gene, there is no
difference between various target genes on the length of PCR product.
Representative examples for frR, ftsI and spoT genes are shown in Figure 2.
Restriction enzyme DpnI was used to digest the potential remains of plasmid
template in purified PCR products.
Not all tagging cassette of target genes are produced by PCR successfully.
Some tagging cassette producing PCR failed, probably due to the incorrect
PCR primers or PCR reaction conditions (Appendix 2).
38
M
1
2
3
Figure 2 Purified PCR product of targeting cassette. PCR primers each
included 51 bases homologous to the chromosome immediately upstream and
downstream of the desired insertion point. To every target gene, the main
sequences of targeting cassette is the same, only the sequence of 51 bases
homologous arm is different between different target genes.
M: 1Kb DNA ladder
1-3: Purified PCR product of targeting cassette for labeling three different
genes: frR, ftsI, spoT.
39
3.1.2 Tagging CDS of persistent genes in chromosomal and
positive clone selection
PCR products (dsDNA targeting cassettes) for each persistent gene were
electroporated into E. coli DY330 according to published protocol (143). In
general, 10-20 colonies can be found on selective plates after incubating for 24
hours at 32℃. 4-6 colonies were selected for each strain, and were screened by
colony PCR using primers that flank the junctions created with the
chromosome, to confirm that the exogenous cassette (EGFP loxP-Cm-loxP)
had been accurately inserted at the 3' end of the target genes (Figure 3, Figure
4). There are two pair of primers and three PCR reactions employed in
screening. The first pair of primers is forward primer 1 and reverse primer 2
with the forward primer 1 complimentary at the 3‟ end of the target gene and
reverse primer 2 complimentary at the 5‟ end of the EGFP gene. This pair of
primer is used to amplify the junction region of the target gene and EGFP gene.
The second pair of primers is forward 3 and reverse primer 4 with the forward
primer 3 complimentary at the 3‟ end of the EGFP gene and reverse primer 4
complimentary at the 5‟ end of the intracistronic region of the target gene. This
pair of primers is used to amplify the junction region of the EGFP
loxP-Cm-loxP cassette and the intracistronic region of the target gene. In order
to confirm the whole tagging cassette is inserted into the chromosome correctly,
the full tagging cassette is also amplified with forward primer 1 and reverse
primer 4. The length of theses primers is from 19mers to 26mers. The positive
clones are confirmed only when all these three PCR products are the same as
expected. In general, the efficiency of tagging is high and one positive clone
can be picked out of every third clones on selective plates. Stocks of each of
the successfully tagged strains were prepared and stored at -80C after adding
glycerol to 20%.
In total, 189 genes can be tagged successfully, meaning the positive
colonies can be selected. 422 genes are tagged failed, this including 194 genes
that no colonies can be found on selective plates after recombineering. All
tagging results are list as Appendix 2.
40
Figure 3 The strategy used to create chromosomal C-terminal fluorescent
fusion proteins using a combination of λ-Red mediated homologous
recombination and Cre/LoxP mediated site-specific recombination, as
exemplified by the construction of suhB-EGFP. (Modifed diagram of Watt et al
(29))
41
M
1
2
3
Figure 4 PCR screening of correct recombinant spoT EGFP tagged clones.
Colony PCR was used to confirm the correct integration of the target cassette
which contains fluorescent protein gene and adjacent antibiotic-resistance gene,
using two pairs of primers to separately amplify the 3‟and 5‟junctions with in
the chromosome.
M: 1Kb DNA ladder
1: Confirm PCR product with spoT Sense Primer (forward primer 1)
complimentary at the 3‟ end of the spoT gene and EGFP 5'-Reverse Primer
(reverse primer 2) complimentary at the 5‟ end of the EGFP gene.
2: Confirm PCR product with EGFP 3'-Forward Primer (Forward primer 3)
complimentary at the 3‟ end of the EGFP gene and spoT Antisense Primer
(reverse primer 4) complimentary at the 5‟ end of the intracistronic region of
the spoT gene.
3: Confirm PCR product with spoT Sense Primer (forward primer 1)
complimentary at the 3‟ end of the target gene and spoT Antisense Primer
(reverse primer 4) complimentary at the 5‟ end of the intracistronic region of
the spoT gene.
42
3.2 Subcellular localization of E. coli persistent proteins
and subcellular localization of ribosomal subunit
proteins of E. coli
One hundred and eighty-nine genes were successfully tagged with the
EGFP coding sequence, representing 31% of the 611 persistent CDSs in E. coli
(Table 2). Strains containing tagged genes were inoculated into Luria Broth
(LB) and log phase or stationary phase cells were collected and immobilized
on agarose pads on glass sides for fluorescence microscopy. 139 of the EGFP
fusion proteins could be located in cultures of the 189 successfully-constructed
E. coli strains grown under these conditions. The localization pattern fall into
three categories: cytoplasm, membrane, and focus (foci) at pole(s). Typical
examples of every localization pattern are shown in Figure 5 and all
fluorescence images of successfully located proteins are given as Appendix 1.
Combined with the previous protein located results in our lab by Watt et al (29),
the majority of these (115) were located in the cytoplasm, while 12 (~9% of the
localized proteins) were concentrated predominantly or exclusively at one or
two foci within the cytoplasm, and 8 (~6%) were positioned predominantly at
the membrane (Table 3, Table 4). No fluorescence signal could be detected for
the products of the remaining 50 tagged genes.
Compared with previous reported E. coli protein localization results, most
proteins show the same localization patterns in this study. But different
localization results are also found. Some ribosomal subunit proteins have
unexpected localization. 53 ribosomal subunit proteins have been tried to tag.
RpsO, which encodes the 30S ribosomal subunit protein S15, was found to
localize predominantly within foci at both poles of the cell. This is quite
different from the diffuse intracellular distribution previously reported for
RpsO (27). Six other ribosomal subunit proteins (RpsP, RpsQ, RpsU, RplC,
RplT, and RplW) had polar localization patterns analogous to RpsO, but the
other 1 ribosomal subunit proteins examined had diffuse (cytoplasmic)
distributions (Table 5). In order to further investigate the subcellular
43
localization pattern of ribosomal subunit proteins, RpsO is selected as research
object to do further research. It was reported that some proteins localize to
different subcellular location in different growth phases (144). I also found
that the localization pattern of SuhB protein is different at various growth
phases (Fig 7). These observations prompt me to study how the RpsO protein
moves in different phase of an E. coli cell cycle. First, RpsO-EGFP strains are
cultured and collected at different growth phase (i.e. lag phase, log phase, and
stationary phase) and are observed under a fluorescence microscope. It is found
that there is no change of the localization pattern of RpsO at these three cell
growth phases. Then the intracellular distribution of RpsO-EGFP was
monitored during the process of cell division (i.e. throughout the cell cycle) by
capturing time-lapse images every few minutes, to see whether it exhibited
variable localization patterns. Initially RpsO-EGFP accumulated within focal
points at each cell pole, and then another focal point formed at the mid-cell
during the initiation of cytokinesis. After cell division was completed, two
RpsO-protein focal points formed at the poles of each of the daughter cells. As
the next cell division step began, an RpsO focal point again formed at the
mid-cell (Figure 6).
44
Table 2 Experimental results of genes tagging and protein localization
Category
Proteins
Tagged and located successfully
Total
139
189
Tagged successfully but no fluorescence signal
50
Unsuccessful tagging due to colonies not being found
on the selective plates
194
422
Unsuccessful tagging due to failure of confirmatory
†
PCR or other reasons
228
‡
611
†:
Other reasons: False positive results due to plasmid contamination, tagging cassette production PCR
failure, etc.
‡:
These genes includes 15 genes that have been tagged and located previously in our lab by Watt et al
(29)
Table 3 E. coli fluorescent proteins localization
Localization
Proteins
Cytoplasm
115
Membrane
8
Total
139
†:
Foci at pole(s) or center
12
Cytoplasm or Foci
4
†
Includes 13 genes that have been tagged and located previously in our lab by Watt et al (29)
45
Table 4 List of localization pattern of the succeed localized proteins
CDS
Tag
Strain
Description/Function
Cellular
Localization
D-methionine transport
abC
EGFP
DY330
Diffuse(weak)
ATP-bindingprotein
Acetyl-coenzyme
accD
aceF
EGFP
EGFP
DY330
DY330
A carboxylase carboxyltransferase
subunit beta
Dihydrolipoyllysine-residue
acetyltransferase
Two foci at
two poles
Diffuse
Component of pyruvate dehydrogenase
complex
#
DsRed2
EL250
mRFP1
DY380
Adenylate kinase
adK
apaH
EGFP
DY330
Bis(5'-nucleosyl)-tetraphosphatase,
symmetrical
aroB
EGFP
DY330
3-dehydroquinate synthase
aroC
EGFP
DY330
Chorismate synthase
Diffuse
One focus at
pole (Log phase);
Diffuse(Stationary
phase)
Diffuse
Diffuse
F1 sector of membrane-bound
atpG
EGFP
DY330
ATP synthase
Membrane
gamma subunit
bioA
EGFP
DY330
Adenosylmethionine-8-amino-7-oxonon
anoate aminotransferase
bioB
EGFP
DY330
Biotin synthase
Diffuse
Two foci at
two poles
bioF
EGFP
DY330
8-amino-7-oxononanoate synthase
46
Diffuse
carA
EGFP
DY330
Carbamoyl phosphate synthetase small
subunit
Diffuse
carB
EGFP
DY330
Carbamoyl-phosphate synthase large
subunit
Diffuse
ccmA
EGFP
DY330
Cytochrome c biogenesis ATP-binding
export protein
ccmB
EGFP
DY330
Heme exporter protein B
Membrane
ccmC
EGFP
DY330
Heme exporter protein C
Membrane
ccmF
EGFP
DY330
Cytochrome c-type biogenesis protein
Membrane
clpB
EGFP
DY330
Protein disaggregation chaperone
crcB
EGFP
DY330
Conserved hypothetical protein; putative
inner membrane protein associated with
chromosome condensation
cysS
EGFP
DY330
Cysteinyl-tRNA synthetase
deF
EGFP
DY330
Peptide deformylase
Diffuse
DNA polymerase III alpha subunit
Diffuse
EGFP
DY330
EGFP
DY330
Disulfide bond formation protein B
Diffuse
EGFP
DY380
1-deoxy-xylulose phosphate synthase
Diffuse
efP
EGFP
DY330
Elongation factor EF-P
Diffuse
enO
EGFP
DY330
Enolase
Diffuse
dnaE
dsbB
#
dxS
#
erA
folB
Diffuse(weak)
Diffuse(weak)
Membrane
Diffuse(weak)
EGFP
DY380
Ras-like GTP-binding protein
Diffuse
EGFP
DY330
Dihydroneopterin aldolase
Diffuse
folD
EGFP
DY330
Bifunctional
5,10-methylene-tetrahydrofolate
dehydrogenase and
5,10-methylene-tetrahydrofolate
cyclohydrolase
folK
EGFP
DY330
2-amino-4-hydroxy-6-hydroxymethyldi
hydropteridine pyrophosphokinase
frR
EGFP
DY330
Ribosome recycling factor
EGFP
DY330
Ferric uptake regulation protein
Diffuse
Diffuse
Diffuse(weak)
Diffuse
fuR
47
gidB
EGFP
DY330
glnS
EGFP
DY330
Glutaminyl-tRNA synthetase
Diffuse
DY330
Serine hydroxymethyltransferase
Diffuse
DY330
Cpn10 chaperonin GroES, small subunit
of GroESL
glyA
groS
EGFP
EGFP
Methyltransferase
Diffuse
One focus
at pole
hemE
EGFP
DY330
Uroporphyrinogen decarboxylase
Diffuse
hemH
EGFP
DY330
Ferrochelatase
Diffuse
hflK
EGFP
DY330
HflA complex cleaves lambda cII
Diffuse
Diffuse
hisA
EGFP
DY330
N-(5'-phospho-L-ribosyl-formimino)-5amino-1-(5'phosphoribosyl)-4-imidazolecarboxamid
e isomerase
hslU
EGFP
DY330
ATP-dependent hsl protease
ATP-binding subunit
Diffuse(weak)
hslV
EGFP
DY330
ATP-dependent protease
Diffuse(weak)
htpG
EGFP
DY330
Chaperone
Diffuse
hupB
EGFP
DY330
DNA-binding protein HU-beta
Diffuse
ileS
EGFP
DY330
Isoleucyl-tRNA synthetase
infB
EGFP
DY330
Translation initiation factor IF-2
Diffuse
kdsB
EGFP
DY330
3-deoxy-manno-octulosonate
cytidylyltransferase
Diffuse
ksgA
EGFP
DY330
Dimethyladenosine transferase
Diffuse
leuS
EGFP
DY330
Leucyl-tRNA synthetase
Diffuse
loN
EGFP
DY330
ATP-dependent protease
Diffuse
lpxA
EGFP
DY330
Acyl-[acyl-carrier-protein]--UDP-N-ace
tylglucosamine O-acyltransferase
Diffuse
lpxC
EGFP
DY330
UDP-3-O-acyl N-acetylglucosamine
deacetylase
Diffuse
48
Diffuse(weak)
maP
#
metF
EGFP
DY330
Methionine amino peptidase
Diffuse
EGFP
DY330
5,10-methylenetetrahydrofolate
reductase
Diffuse
EGFP
EGFP
metK
#
EYFP
ECFP
DsRed2
mRFP1
miaA
EGFP
EL250
DY330
DY380
DY380
Diffuse
EL250
EL250
DY330
mpl
EGFP
DY330
mreC
EGFP
DY330
murB
EGFP
DY330
EGFP
DY330
EGFP
DY380
ECFP
DY380
mRFP1
DY380
EGFP
DY330
#
1-5 foci
S-adenosyl-methionine synthetase
nusA
Delta(2)-isopentenylpyrophosphate
tRNA-adenosine transferase
UDP-N-acetylmuramate:L-alanyl-gamm
a-D-glutamyl-me so-diaminopimelate
ligase
cell wall structural complex
MreBCD transmembrane
component MreC
UDP-N-acetylenolpyruvoylglucosamine
reductase
Transcription elongation protein NusA
Diffuse
Diffuse
Diffuse
Diffuse
2-4 clusters
(co-incident with
nucleoids)
Diffuse
Diffuse
pepA
Aminopeptidase A
(weak)
Diffuse
pepN
EGFP
DY330
Aminopeptidase N
(weak)
pgK
EGFP
DY330
Phosphoglycerate kinase
49
Diffuse
ppA
EGFP
DY330
Inorganic pyrophosphatase
prfC
EGFP
DY330
Peptide chain release factor RF-3
Diffuse
prlC
EGFP
DY330
Oligopeptidase A
Diffuse
prmA
EGFP
DY330
Ribosomal protein L11
methyltransferase
Diffuse
proA
EGFP
DY330
Gamma-glutamylphosphate reductase
Diffuse
proC
EGFP
DY330
Pyrroline-5-carboxylate reductase
Diffuse
psD
EGFP
DY330
Phosphatidylserine decarboxylase
proenzyme
Diffuse
ptH
EGFP
DY330
Peptidyl-tRNA hydrolase
Diffuse
pykA
EGFP
DY330
Pyruvate kinase II
EGFP
DY380
EGFP
DY330
EYFP
DY380
ECFP
DY380
DsRed2
mRFP1
DY380
pyrH
#
Uridine monophosphate kinase
One focus at pole
Diffuse(weak)
1-4 foci (some
highly mobile)
Diffuse
DY380
queA
mRFPm
ars
DY380
RFP
DY380
EGFP
DY330
S-adenosylmethionine:tRNA
ribosyltransferase-isomerase
Diffuse
(weak)
One focus at pole
recA
EGFP
DY330
General recombination
Four-five foci at
and DNA repair protein
poles or at center
#
recG
EGFP
DY330
ATP-dependent DNA helicase
recJ
EGFP
DY330
Single-stranded-DNA-specific
exonuclease
Diffuse
rhO
EGFP
DY330
Transcription termination factor
Diffuse
ribC
EGFP
DY330
Riboflavin synthase alpha subunit
Diffuse
ribD
EGFP
DY330
Riboflavin biosynthesis protein
Diffuse
50
Diffuse
rluD
EGFP
DY330
Ribosomal large subunit pseudouridine
synthase D
rnE
EGFP
DY330
Ribonuclease E
Membrane
rnhA
EGFP
DY330
Ribonuclease HI
Diffuse(weak)
rnR
EGFP
DY330
Ribonuclease R
Diffuse
rpE
EGFP
DY330
Ribulose-phosphate 3-epimerase
Diffuse
rpH
EGFP
DY330
Ribonuclease PH
Diffuse
rpiA
EGFP
DY330
Ribose-5-phosphate isomerase A
Diffuse
rplC
EGFP
DY330
Diffuse
Two foci at
50S ribosomal subunit protein L3
two poles
Two foci at
rplT
EGFP
DY330
50S ribosomal subunit protein L20
two poles
rplU
EGFP
DY330
50S ribosomal subunit protein L21
Diffuse
rplW
EGFP
DY330
50S ribosomal subunit protein L23
Two foci at
two poles
rpoH
EGFP
DY330
RNA polymerase sigma-32 factor
Diffuse
rpoZ
EGFP
DY330
DNA-directed RNA
polymerase omega chain
Diffuse
rpsO
EGFP
DY330
30S ribosomal subunit protein S15
Two Foci at
two poles
Two Foci at
rpsP
EGFP
DY330
30S ribosomal subunit protein S16
two poles
Two Foci at
rpsQ
EGFP
DY330
30S ribosomal subunit protein S17
two poles
Two Foci at
rpsU
EGFP
DY330
30S ribosomal subunit protein S21
two poles
51
rsmB
EGFP
DY330
Ribosomal RNA small subunit
methyltransferase B
secB
EGFP
DY330
Protein-export protein
Diffuse
serA
EGFP
DY330
D-3-phosphoglycerate dehydrogenase
Diffuse
serC
EGFP
DY330
Phosphoserine aminotransferase
Diffuse(weak)
serS
EGFP
DY330
Seryl-tRNA synthetase
Diffuse(weak)
smF
EGFP
DY330
Smf protein
Diffuse(weak)
smpB
EGFP
DY330
SsrA-binding protein
spoT
EGFP
DY330
Guanosine-3',5'-bis(diphosphate)
3'-pyrophosphohydrolase
sspA
EGFP
DY330
Stringent starvation protein A
Diffuse
suhB
EGFP
DY330
Inositol-1-monophosphatase
Foci (Lag phase)
Diffuse (Stationary
phase)
talB
EGFP
DY330
Transaldolase B
Diffuse(weak)
tktA
EGFP
DY330
Transketolase 1
Diffuse
tpiA
EGFP
DY330
Triosephosphate isomerase
Diffuse
EGFP
DY380
Probable tRNA modification GTPase
Diffuse
trpA
EGFP
DY330
Tryptophan synthase alpha chain
Diffuse
trxA
EGFP
DY330
Thioredoxin 1
tufB
EGFP
DY330
Protein chain elongation factor EF-Tu
Diffuse
usG
EGFP
DY330
Stabilizes phage lambda protein
N-NusA-RNAP antitermination comple
Diffuse
DY380
Integral inner membrane
metallo-protease
trmE
Diffuse(weak)
Diffuse
Diffuse(weak)
#
Diffuse(weak)
Diffuse
#
yaeL
EYFP
Beside membrane
yaeN
EGFP
DY330
Putative cell cycle protein mesJ
Diffuse
ybeB
EGFP
DY330
Hypothetical protein
Diffuse
52
ydaO
EGFP
DY330
Hypothetical protein
Diffuse
ydhH
EGFP
DY330
Hypothetical protein
Diffuse
yfgB
EGFP
DY330
Hypothetical protein
Membrane
EYFP
DY380
GTP-binding protein EngA
Diffuse
EGFP
DY330
Hypothetical tRNA/rRNA
methyltransferase
Diffuse
EYFP
DY380
yfgK
#
yfhQ
yfjB
#
Diffuse
NAD kinase
Some clusters
ygcA
EGFP
DY330
23S rRNA (Uracil-5-)-methyltransferase
ygfB
EGFP
DY330
Hypothetical protein
Diffuse
yggW
EGFP
DY330
Hypothetical protein
Diffuse
ECFP
DY330
#
ygjD
Diffuse (weak)
Diffuse
Probable O-sialoglycoprotein peptidase
EGFP
DY380
yhbC
EGFP
DY330
Hypothetical protein
yhbY
EGFP
DY330
Putative RNA-binding protein
yhbZ
EGFP
DY330
Putative GTP-binding factor
yhdG
EGFP
DY330
tRNA-dihydrouridine synthase B
yihA
EGFP
DY330
GTP-binding protein
Diffuse
yjbN
EGFP
DY330
tRNA-dihydrouridine synthase A
Diffuse
yleA
EGFP
DY330
Hypothetical protein
Diffuse (weak)
yqcD
EGFP
DY330
Hypothetical protein
Diffuse
yqgE
EGFP
DY330
Hypothetical protein
Diffuse
yraO
EGFP
DY330
Hypothetical protein
Diffuse
ytfM
EGFP
DY330
Hypothetical protein
Diffuse
Diffuse
Diffuse(weak)
Diffuse
Diffuse
1. The localization patterns of these proteins are observed under fluorescence microscope in the log or
stationary phases of the corresponding E. coli strain.
2.
#
The localization results of these gene products are previous published by our lab (29).
53
Figure 5 Typical fluorescence microscopy images of live, immobilized E. coli
DY330 cells containing a 3' EGFP coding sequence fused to a persistent gene
on the chromosome. All panels are at the same magnification, and show DAPI
fluorescent staining of (nucleoid) DNA (blue), EGFP fluorescence (green) and
a merged image of the cells. From left to right and top to bottom, the images
are of leuS-EGFP and glyA-EGFP which are distributed diffusely in the cell,
groS-EGFP which forms a focus at one pole of the cell, rpsO-EGFP which
forms foci at both poles of the cell, and atpG-EGFP and ccmF-EGFP which
locate at the membrane.
54
Table 5 Localization patterns of EGFP-tagged ribosomal subunit proteins (rsp)
ORF
Description
Subcelluar localization
rplC
50S rspL3
Foci at both poles
rplT
50S rspL20
Foci at both poles
rplU
50S rspL21
Diffuse
rplW
50S rspL23
Foci at both poles
rpsO
30S rspS15
Foci at both poles
rpsP
30S rspS16
Foci at both poles
rpsQ
30S rspS17
Foci at both poles
rpsU
30S rspS21
Foci at both poles
55
A
B
Figure 6 (A) Time-Lapse microscope image of E. coli with EGFP-tagged rpsO.
Images were taken at 2 minute intervals, however, some time points were
omitted due to there being no obvious change. (B) A schematic diagram of the
change of the RpsO protein localization pattern during cell division. At the
beginning, RpsO protein is located at the poles of the cell. When the cells start
to divide, this protein can be found at the center of the cell as well as the poles
of the cell. After division, RpsO protein is again located at the poles of the two
cells.
56
3.3 Cell cycle and growth phase-specific protein
localization patterns
To test if the localization pattern will change with the growth of strain, a few
successful EGFP tagged proteins were selected to observe the localization
pattern at three different growth phases (lag phase, log phase, stationary phase)
of DY330 strain. The samples collection time points correspond to these three
growth phases are selected based on the growth curve of DY330 strain. Among
these proteins, protein SuhB, generally annotated as inositol monophosphatase
exhibited distinct localization patterns during different phases of cell growth.
In the lag and stationary phases, the protein was found diffused throughout the
cell cytoplasm, but it formed two focal points when the cells were in the log
(exponential growth) phase (Figure7). But other proteins, like YhbC, show the
same localization pattern at these three growth phases when are selected to
observe (Figure 3). Considering the EGFP is fused to the C-terminus of target
genes on chromosomes directly and the expression of EGFP is under the
control of the target gene‟s promoter, the results can be viewed as the true
expression pattern of target proteins. Due to the time limitation, not all tagged
proteins in this project have been tested for their localization pattern change at
different growth phase, but it is worth studying in the future.
In addition to observing the change of localization pattern of
EGFP-tagged proteins at different growth phases, the expression level of target
proteins also can be tested. The advantage of applying recombineering
technology to label target genes with fluorescent protein is the expression level
of fluorescent protein that can represent the expression level of target proteins.
Because the expression level of fluorescent protein gene can be determined by
measuring the fluorescence intensity, the expression level of target genes can
be represented by the fluorescence intensity. Several EGFP-tagged proteins
have been selected to observe the fluorescence intensity at three different
growth phases: lag phase, log phase and stationary phase. By comparing the
fluorescence images of samples that are collected at different growth phases, it
57
is found that some proteins, show very different fluorescence intensity between
different growth phases, even the fluorescence signal of several proteins is so
weak that it is difficult to observe at log phase. But other proteins, like YhbC,
show almost the same fluorescence intensity between different growth phases.
This represents that there is no great change in expression level of these genes
between these growth phases.
58
Figure 7 Change of localization pattern at different growth phases. All
panels are at the same magnification and show DAPI fluorescent staining of
(nucleoid) DNA (blue) and EGFP fluorescence (green). From top to bottom the
phases are lag phase, log phase and stationary phase. (A) Fluorescence
microscopy images of yhbC-EGFP E.coli showing the intensity of fluorescence
signal and localization pattern are the same in the three growth phases. (B)
Fluorescence microscopy images of suhB-EGFP E. coli showing differing
localization patterns. In the lag phase and the stationary phase, the SuhB
protein is found in the whole cell, but during log phase it forms foci in the cell.
59
3.4 ColiLo: an on-line catalogue of protein localization
database for E. coli persistent proteins
Our lab has created an on-line database: E. coli Protein Localization
Database (named ColiLo) to store the results and associated data for the E. coli
persistent protein localization experiments described here, and to facilitate its
use by the scientific community. ColiLo allows users to search for genes
through several ways: gene name, localization categories, function, and DNA
or protein sequence. The webpage of every persistent gene whose tagged
protein product could be successfully detected and visualized include two parts:
the basic information of the gene, including synonym, function, description,
DNA sequence, amino acid sequence and linkers to other related databases of
gene and the localization related information, including all primers used for
fluorescent proteinfluorescent protein tagging, the strain, localization category
as well as representative fluorescence microscopy images of intracellular
protein localization. For some selected proteins, experimental video is also
uploaded. In the section of fluorescent microscopy images, a DAPI stain image
and a fluorescence image are provided. A button named ' larger view ' can be
found under each image and a corresponding separated larger image will pop
up when click on it (Figure 8).
ColiLo is open access to anyone who wants to find protein localization
information and the main purpose of establishment of this database is to
provide a research resource to the science community.
The ColiLo database
is accessible at: http://www.biochem.hku.hk/huanglab/Colilo/index.php.
60
A
B
Figure 8 The homepage and search result pages (GroS protein localization
page as an example) of ColiLo database. In the webpage, searches can search
by using a number of criteria, such as name of CDS/gene, subcellular location,
protein function. Search will retrieve tagging primer sequence, description,
images, videos that are used to assign protein localizations in this study.
61
Chapter 4: Discussion and Perspective
4.1 Organization of the proteome
The intracellular localization patterns of the proteins encoded by the 611
persistent genes in E. coli have been studied (15 of them have been tagged and
located previously in our lab by Watt et al (29)). DY330, a derivative of K12
sub-strain W3110, is used as our host organism because it contains a modified
prophage region housing the thermally-inducible λ-Red system (PL promoter)
under the tightly-regulated control of a temperature sensitive cI857 repressor.
As such, it is possible to tag chromosomal genes using a highly-efficient
recombineering approach, within a minimally-modified E. coli strain (143).
189 (~31%) of the 611 persistent genes within E. coli were successfully
tagged at the C-terminus with EGFP, and the intracellular distributions of the
encoded products of 139 of these (~23% of the total) were determined. Due to
these successfully tagged proteins are persistent in E. coli, these C-terminal
fusion proteins must retain at least a proportion of their native functionality.
EGFP fusions of ca. 69% of the target genes could not be successfully
created (Table 1). For 32% of the target genes, no colonies could be found on
the plates of transformed cells; in the remainder, the EGFP-loxP-Cm-LoxP
cassette was incorrectly positioned. A possible reason is that the EGFP protein
might disturb the function of the target protein by disrupting its tertiary or
quaternary structure (145) or the length of the linker between the persistent
protein and EGFP fusion may not be optimal (146). Although EGFP is a widely
used reporter in various organisms including E. coli due to its many advantages,
the influence of EGFP to the correct folding of target proteins still cannot be
excluded. The persistent genes are highly conserved within bacteria and are
therefore likely to be essential under all or certain growth conditions (39).
Their corresponding proteins would be expected to be strongly structurally
conserved and structural perturbation might be more likely to result in lethality
(39). As genes in E. coli are often organized into operons (147), insertion of a
foreign DNA fragment within an operon could influence the transcription
62
and/or translation of downstream genes (i.e. polar effects) resulting in a lethal
condition. There is also the possibility that fusions interrupted binding
sequences for small regulatory RNA molecules.
Fifty persistent genes were tagged successfully, but no fluorescent signal
could be detected. This may be due to the fact that these genes were not
expressed under the culture conditions used, or that the expression levels of the
EGFP fusion proteins were just too low to be detected. In some of these strains,
the selective marker (Chloramphenicol gene) was removed by “Cre-LoxP”
system in order to check the reason for no signal. But there still no
fluorescence signal can be observed after deleting the chloramphenicol gene.
More strains should be tried to confirm if the selective marker is one of the
reasons of no fluorescence signal in the future. Due to GFP that cannot be
folded correctly in the periplasmic space (30), it is possible that the proteins
located in the periplasmic space cannot be observed. One example is CcmE, as
a membrane-anchor periplasmic heme chaperone, the C-terminal of CcmE is
located in periplasm. No fluorescence signal can be detected in CcmE-EGFP
strain (148). One possible solution for locating the CcmE protein is to label
CcmE with EGFP at its N-terminus.The misfold of GFP when fused with other
proteins also lead to failure of detecting fluorescent signal. A new engineered
superfolder fluorescent protein can be employed as a possible solution (149).
Related studies that sought to establish the localization of tagged proteins
within microbial cells (on a genome-wide scale) have reported similar success
rates. For example, researchers using directed topoisomerase I-mediated
cloning strategies and genome-wide transposon mutagenesis were able to
epitope-tag ca. 60% of the Saccharomyces cerevisiae proteome, enabling the
subcellular locations of 45% of all yeast proteins to be determined (150). Given
that the proteins tagged in this previous study were selected from the entire
genome, and were not restricted to a subset of persistent genes of putative
essentiality or importance, our success rate is reasonable.
63
4.2 Relationship of protein localization and function
The protein localizations identified here were, by and large, consistent with
known protein functions. For example, the AtpG protein found located on the
membrane in this projectis consistent with its function as a component of
membrane-bound ATP synthase. Another typical example is RecA protein. As
a DNA repair protein, it should form foci at any position on the chromosome
(151). The localization result of RecA on foci of the RecA-EGFP protein were
found co-incident with nucleoid DNA during different growth phases and at
different points in the cell cycle which is expected according to its function
(Figure 9).
Figure 9 The localization pattern of the EGFP tagged recA gene product.
DAPI fluorescent staining of (nucleoid) DNA (blue) and EGFP fluorescence
(green) are shown. The recA gene product forms foci at a pole of the cell or at
the center of the cell (Left fluorescence image) or near the pole of the cell
(Right fluorescence image).
64
CcmB, CcmC and CcmE are three of the proteins are involved in the
maturation of c-type cytochrome in Gram-negative bacteria (152). Each of
these three proteins play different roles in the maturation of c-type cytochrome
and this determine the different subcellular localization between them. As
membrane-integral component of ABC-transporter, CcmB and CcmC both
have six membrane helices. The N- and C- terminal of them are in the
cytoplasm. Consistent with their function, both these two proteins are located
on the membrane in this project. But to CcmE, it is completely different. The
function of CcmE that binds heme delivered by CcmC and transfers it to
apo-cytochromes determines CcmE is a periplasmic protein that has its
N-terminus attached to the membrane and C-terminus is in the periplasm. This
is reflected in this project that it is failed in determining the subcellular
localization of CcmE protein by labeling it with EGFP at its C-terminus
because EGFP protein cannot be folded correctly in the periplasm. All the data
strongly provide support for the close relationship between protein localization
and function. On the basis of the fact that protein localization is closely related
to its function, proteins showing different localization pattern in this project
may imply other unknown functions.
Several ribosome subunit proteins were found to form foci at the poles of the
cell rather than to distribute diffusely in the cell as previously reported (27).
Previous works show that RpsO, one such protein, is not essential for ribosome
formation and cell growth at 37oC. However, at 25 oC, it appears to be essential
for viability, and a ribosome biogenesis defect is apparent under those
conditions if RpsO is deleted (153). Besides its role as a ribosomal protein,
RpsO is also involved in transcription termination and mRNA turnover and in
particular in the control of RNase III activity (154). It is required for the
optimal synthesis of lipoproteins and mutations in RpsO can selectively affect
the synthesis of exported proteins such as constitutively expressed lipoproteins
and inducible MBP, albeit to different extents, but it has little effect on the
synthesis of OmpA (155). The results here (Figure 4) indicate that the
localization of RpsO varies during cell division, suggesting either an additional
role in this process or that specific steps of RNA degradation are
65
compartmentalized in the cell (156, 157). It is reported that some proteins show
the change of localization pattern at different growth temperature in E. coli
(158). The localization pattern of RpsO at three different growth temperatures
(18℃, 32℃, 42℃) also be observed, but there is no obvious localization
pattern change between different temperature (Figure 10). Combined with the
experiments of last section, it can draw a conclusion that the subcellular
localization RpsO, one of ribosomal subunit proteins, is dynamic in the process
of cell division but it is not changed by growth phase and culture temperature.
But in Bacilllus subtilis, Mascarenhas et al found that ribosomal protein L1
localized around the nucleoids, preponderantly close to the cell pole, in
growing cell but distribute throughout cell in stationary phase by tagging this
protein with blue fluorescent protein (BFP) (159).
66
18℃
32℃
42℃
Figure 10 The localization pattern of RpsO-EGFP at different growth
temperatures. From left to right: 18℃, 32℃, 42℃. At all these temperatures,
RpsO protein forms two foci at the each end of cell.
67
In addition to playing an important role in translation, a number of ribosomal
proteins also have additional functions. For example, the ribosomal protein S16
(RpsP), an essential component of the 30S ribosomal particle, exhibits a
Mg2+/Mn2+-dependent endonuclease activity (160). In eukaryotes, the RpS3
ribosomal protein is involved in DNA repair (161-163). Proteins associated
with cell division, repair and partitioning of the chromosome often form
dynamic, polar or midcell localization patterns (129, 151, 164, 165). It may be
worthwhile, based on the localization patterns reported here, to examine other
ribosomal proteins for these functions.Mascarenhas et al found that ribosomal
protein L1 of Bacilllus subtilis localized around the nucleoids, preponderantly
close to the cell pole, in growing cell by tagging this protein with blue
fluorescent protein (BFP).
Our results confirm that polar and asymmetrical intracellular protein
distributions are not uncommon in E. coli. For example, several proteins (e.g
RpsO, RpsU) were predominantly located at both cell poles, indicating that this
distribution may relate to a currently unknown function of these proteins.
However, misfolded proteins may be deposited at the cell poles due to
aggregation, as evidenced by their association with disaggregating chaperones
(158). If this is the case, tagged protein libraries could provide a way to study
the folding and unfolding of the fusion proteins under different conditions. Due
to the complexity of protein interaction networks, protein interactions also
might influence a protein‟s localization pattern (29, 92).
4.3 The dynamic of protein localization
In general, the dynamic of protein localization happen on those proteins that
form foci in the cell and is related to the special function of these proteins.
Bejerano-Sagie et al reported that DisA, a nonspecific DNA binding protein of
Bacillus subtilis, forms a single focus (166). The time-lapse experiment
demonstrates that this focus move in the bacterial cell and it will stop at sites of
DNA damage. It is also reported that this movement is chromosome integrity
and energy but not DNA dependent. Another reported dynamic pattern is PopZ
protein of Caulobacter crescentus. PopZ, bind to the ParB protein, remains
68
located at the pole of the swarmer cell upon the cell transfer to the stalked cell.
In the stalked cell, PopZ form foci at two poles of the cell until cell division
(144). Unlike DisA protein which moves around the cell and PopZ protein
stays at one pole of the cell, RpsO protein is found to have a fully different
dynamic pattern in this project. RpsO, which encodes the 30S ribosomal
subunit protein S15, form two foci at poles of the cell. When the cell begins to
divide, a focus can be found at the centre of the cell. After the division is
finished, there are two foci that can be found at the poles of the each of the two
new cells again. Although it is failed to observe that RpsO forms a ring
structure at the mid-point of cell, its dynamic pattern is more like that of cell
division proteins, FtsZ, which forms ring at the mid-cell division site.
Another dynamic of protein localization is the change of the localization
pattern at the different growth phases of E. coli. A number of proteins, such as
SuhB, showed distinct localization patterns during different growth phases (Fig
5B), indicating that the growth phase of an organism should be taken into
consideration when determining protein localization patterns. SuhB is also a
protein involved in RNA metabolism, with a function that has not yet been
clearly established, and is most probably not only that of an inositol
phosphatase. In this respect it may be of interest to notice that SuhB is similar
to phosphatase CysQ, specific for degradation of 3', 5‟-adenosine bisphosphate
suggesting a role in phosphorylated nucleosides metabolism.
Fluorescence intensity levels varied among the different EGFP-tagged
proteins, and sometimes for the same protein during different growth phases.
For example, tRNA(Ile)-lysidine synthetase (TilS, YaeN), showed different
fluorescence intensity levels in the exponential and stationary phases: weak
fluorescence signal can be observed in the stationary phase, but it was hardly
observed in the exponential phase. This correlates well with the variation of
abundance of tRNA (Ile) AUA during growth (167, 168).. One advantage of
chromosome-based gene tagging is that the reporter protein signal is much
more likely to accurately reflect the native protein expression levels than a
plasmid-based expression system, since the fusion protein gene is a single copy
69
and under the control of the native promoter. This makes it possible to use the
fluorescence intensity to monitor and quantify the target proteins‟ expression
levels (93).
4.4 Conclusions and perspective
This work has provided detailed information on the intracellular
localization of the protein products in 23% of the persistent genes in E. coli. It
has shown that the growth phase of the cell must be considered in protein
localization studies. Some of the ribosomal proteins may have functions in
addition to those related to protein biogenesis, based on their differences in
intracellular distributions. The techniques in this work have also resulted in
tools and methods that could be used for studies on protein folding and gene
expression. These experimental data and images are freely accessible and
searchable at the ColiLo database. The tagged E. coli strains are freely
available to the scientific community upon requested.
With more and more knowledge about the organism, we are not only
focus on disclosing the life secret but become interested in design and
construction of new biological systems. To construct a new biological system,
the most important is making the persistent genes expression at the appropriate
time and the appropriate cell compartment. It is understandably easy to image
what will happen if a membrane anchored protein is located to cytoplasm when
we designing a new biology system. In order to make proteins, especially those
proteins that essential to cell survival, perform their normal functions in a new
biology system, the correct knowledge of protein localization is necessary.
This project is the first report of the genome-scale protein localization by
labeling proteins on chromosome directly in E. coli as far as I know and the
research source provided in this project can give useful information on it: one
hand, some previous protein subcelluar localization results of E.coli were
further confirmed by labeling proteins on chromosome directly; On the other
hand, some new protein subcelluar localization results also be reported. By
combining our protein localization source with other researcher‟s results, the
70
more accurate protein localization map of E. coli can be described and it will
enable us to understand the protein function and metabolism of E. coli better.
It has been proven in this project that using recombineering method to tag
the coding region of E. coli on chromosome directly can give us some fresh
insight on the function and localization of proteins although not all genes can
be tagged successfully at their C-terminus. In order to tag all persistent gene
products of E. coli successfully, refer to other localization research works, and
the N-terminal EGFP tagging would be tried in the future. Second, due to some
proteins showing different localization pattern from previous results, like some
ribosome subunit proteins, it may represent new function of these proteins, of
which the mechanism is worthy of further research.
In my study, it is found that different proteins show different fluorescence
intensity. Considered with the advantage of recombineering technology that the
expression of EGFP is under the control of the promoter of target gene and it
means the expression level of EGFP represents the expression level of labeled
protein, the recombineering technology can be used as tool of quantitative
analysis of gene expression (93). Quantitative analysis plays important roles in
understanding the celluar behavior. The key point in quantitative analysis is
connecting the fluorescence intensity with the copy number of protein.
Although several algorithm methods have been reported (169,170), more
accurate methods that allow unbiased estimation of copy number of protein
still need to further study.On the other hand, by measuring the fluorescence
intensity, it can be used as an indicator of the change of expression level of
target genes caused by various factors. For example, the intensity of
fluorescence can be a biosensor of the change of corresponding environment
factors when the expression of one gene varies with these factors; if the
expression level variation of genes are influenced by the expression fluctuation
of other gene(s), it is useful in the study of metabolism regulate network. This
successfully constructed C-terminal EGFP-tagging E. coli persistent gene
library and recombineering technology also provides a platform to study the
strength of promoter by quantifying the fluorescence intensity. Now there are
71
several different color fluorescent proteins, like ECFP 、 EYFP、mRFP,
different proteins can be co-labeled different fluorescent proteins in a cell by
recombineering technology to study the interaction between them.
Recombineering has been widely used in E. coli, from protein localization
research by labeling reporter to determine protein interactions by tagging
different reporters (91). In fact, recombineering also can replace some
traditional molecular method. For example, in plasmid construction, using
recombineering is more effective than traditional method using restriction
enzymes and DNA ligase (171). But now recombineering is still only used
focus on several organisms, and it can play a more important role if it can be
introduced into more organisms.
72
References
1.
Erickson, H. P. (1997) FtsZ, a tubulin homologue in prokaryote cell
division, Trends Cell Biol 7, 362-367.
2.
Gardy, J. L., and Brinkman, F. S. (2006) Methods for predicting
bacterial protein subcellular localization, Nat Rev Microbiol 4, 741-751.
3.
Donnes, P., and Hoglund, A. (2004) Predicting protein subcellular
localization:
past,
present,
and
future,
Genomics
Proteomics
Bioinformatics 2, 209-215.
4.
Dunkley, T. P., Watson, R., Griffin, J. L., Dupree, P., and Lilley, K. S.
(2004) Localization of organelle proteins by isotope tagging (LOPIT),
Mol Cell Proteomics 3, 1128-1134.
5.
Dunkley, T. P. J., Dupree, P., Watson, R. B., and Lilley, K. S. (2004)
The use of isotope-coded affinity tags (ICAT) to study organelle
proteomes in Arabidopsis thaliana, Biochemical Society Transactions
32, 520-523.
6.
Lopez-Campistrous, A., Semchuk, P., Burke, L., Palmer-Stone, T.,
Brokx, S. J., Broderick, G., Bottorff, D., Bolch, S., Weiner, J. H., and
Ellison, M. J. (2005) Localization, annotation, and comparison of the
Escherichia coli K-12 proteome under two states of growth, Molecular
& Cellular Proteomics 4, 1205-1209.
7.
Agaton, C., Galli, J., Hoiden Guthenberg, I., Janzon, L., Hansson, M.,
Asplund, A., Brundell, E., Lindberg, S., Ruthberg, I., Wester, K., Wurtz,
D., Hoog, C., Lundeberg, J., Stahl, S., Ponten, F., and Uhlen, M. (2003)
73
Affinity proteomics for systematic protein profiling of chromosome 21
gene products in human tissues, Mol Cell Proteomics 2, 405-414.
8.
Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C. A., Amini, B.,
Andersen, E., Andersson, A. C., Angelidou, P., Asplund, A., Asplund,
C., Berglund, L., Bergstrom, K., Brumer, H., Cerjan, D., Ekstrom, M.,
Elobeid, A., Eriksson, C., Fagerberg, L., Falk, R., Fall, J., Forsberg, M.,
Bjorklund, M. G., Gumbel, K., Halimi, A., Hallin, I., Hamsten, C.,
Hansson, M., Hedhammar, M., Hercules, G., Kampf, C., Larsson, K.,
Lindskog, M., Lodewyckx, W., Lund, J., Lundeberg, J., Magnusson, K.,
Malm, E., Nilsson, P., Odling, J., Oksvold, P., Olsson, I., Oster, E.,
Ottosson, J., Paavilainen, L., Persson, A., Rimini, R., Rockberg, J.,
Runeson, M., Sivertsson, A., Skollermo, A., Steen, J., Stenvall, M.,
Sterky, F., Stromberg, S., Sundberg, M., Tegel, H., Tourle, S., Wahlund,
E., Walden, A., Wan, J., Wernerus, H., Westberg, J., Wester, K.,
Wrethagen, U., Xu, L. L., Hober, S., and Ponten, F. (2005) A human
protein atlas for normal and cancer tissues based on antibody
proteomics, Mol Cell Proteomics 4, 1920-1932.
9.
Gauss, R., Trautwein, M., Sommer, T., and Spang, A. (2005) New
modules for the repeated internal and N-terminal epitope tagging of
genes in Saccharomyces cerevisiae, Yeast 22, 1-12.
10.
Bailey, J., and Manoil, C. (2002) Genome-wide internal tagging of
bacterial exported proteins, Nature Biotechnology 20, 839-842.
11.
Wach, A., Brachat, A., Alberti-Segui, C., Rebischung, C., and
Philippsen, P. (1997) Heterologous HIS3 marker and GFP reporter
74
modules for PCR-targeting in Saccharomyces cerevisiae, Yeast 13,
1065-1075.
12.
Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth,
K., and Schiebel, E. (1999) Epitope tagging of yeast genes using a
PCR-based strategy: More tags and improved practical routines, Yeast
15, 963-972.
13.
Lafontaine, D., and Tollervey, D. (1996) One-step PCR mediated
strategy for the construction of conditionally expressed and epitope
tagged yeast proteins, Nucleic Acids Research 24, 3469-3471.
14.
Swaffield, J. C., Melcher, K., and Johnston, S. A. (1996) A highly
conserved ATPase protein as a mediator between acidic activation
domains and the TATA-binding protein (vol 374, pg 88, 1995), Nature
379, 658-658.
15.
Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. (2000)
Predicting subcellular localization of proteins based on their N-terminal
amino acid sequence, Journal of Molecular Biology 300, 1005-1016.
16.
Yu, C. S., Lin, C. J., and Hwang, J. K. (2004) Predicting subcellular
localization of proteins for Gram-negative bacteria by support vector
machines based on n-peptide compositions, Protein Science 13,
1402-1406.
17.
Lin, H. N., Chen, C. T., Sung, T. Y., Ho, S. Y., and Hsu, W. L. (2009)
Protein subcellular localization prediction of eukaryotes using a
knowledge-based approach, Bmc Bioinformatics 10, -.
75
18.
Burns, N., Grimwade, B., Ross-Macdonald, P. B., Choi, E. Y., Finberg,
K., Roeder, G. S., and Snyder, M. (1994) Large-scale analysis of gene
expression, protein localization, and gene disruption in Saccharomyces
cerevisiae, Genes Dev 8, 1087-1105.
19.
Ross-Macdonald, P., Coelho, P. S. R., Roemer, T., Agarwal, S., Kumar,
A., Jansen, R., Cheung, K. H., Sheehan, A., Symoniatis, D., Umansky,
L., Heldtman, M., Nelson, F. K., Iwasaki, H., Hager, K., Gerstein, M.,
Miller, P., Roeder, G. S., and Snyder, M. (1999) Large-scale analysis of
the yeast genome by transposon tagging and gene disruption, Nature
402, 413-418.
20.
Kumar, A., Agarwal, S., Heyman, J. A., Matson, S., Heidtman, M.,
Piccirillo, S., Umansky, L., Drawid, A., Jansen, R., Liu, Y., Cheung, K.
H., Miller, P., Gerstein, M., Roeder, G. S., and Snyder, M. (2002)
Subcellular localization of the yeast proteome, Genes Dev 16, 707-719.
21.
Niedenthal, R. K., Riles, L., Johnston, M., and Hegemann, J. H. (1996)
Green fluorescent protein as a marker for gene expression and
subcellular localization in budding yeast, Yeast 12, 773-786.
22.
Ding, D. Q., Tomita, Y., Yamamoto, A., Chikashige, Y., Haraguchi, T.,
and Hiraoka, Y. (2000) Large-scale screening of intracellular protein
localization in living fission yeast cells by the use of a GFP-fusion
genomic DNA library, Genes to Cells 5, 169-190.
23.
Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido,
S., Kobayashi, Y., Hashimoto, A., Hamamoto, M., Hiraoka, Y.,
Horinouchi, S., and Yoshida, M. (2006) ORFeome cloning and global
76
analysis
of
protein
localization
in
the
fission
yeast
Schizosaccharomyces pombe, Nature Biotechnology 24, 841-847.
24.
Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W.,
Weissman, J. S., and O'Shea, E. K. (2003) Global analysis of protein
localization in budding yeast, Nature 425, 686-691.
25.
Yu, X. C., Tran, A. H., Sun, Q., and Margolin, W. (1998) Localization
of cell division protein FtsK to the Escherichia coli septum and
identification of a potential N-terminal targeting domain, J Bacteriol
180, 1296-1304.
26.
Bailey, J., and Manoil, C. (2002) Genome-wide internal tagging of
bacterial exported proteins, Nat Biotechnol 20, 839-842.
27.
Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto,
E., Toyonaga, H., and Mori, H. (2005) Complete set of ORF clones of
Escherichia coli ASKA library (A Complete Set of E. coli K-12 ORF
Archive): Unique Resources for Biological Research DNA Research 12,
291-299.
28.
Copeland, N. G., Jenkins, N. A., and Court, D. L. (2001)
Recombineering: a powerful new tool for mouse functional genomics,
Nat Rev Genet 2, 769-779.
29.
Watt, R. M., Wang, J., Leong, M., Kung, H. F., Cheah, K. S., Liu, D.,
Danchin, A., and Huang, J. D. (2007) Visualizing the proteome of
Escherichia coli: an efficient and versatile method for labeling
chromosomal coding DNA sequences (CDSs) with fluorescent protein
genes, Nucleic Acids Res 35, e37.
77
30.
Feilmeier, B. J., Iseminger, G., Schroeder, D., Webber, H., and Phillips,
G. J. (2000) Green fluorescent protein functions as a reporter for
protein localization in Escherichia coli, Journal of Bacteriology 182,
4068-4076.
31.
Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E.,
Daugherty, M. D., Somera, A. L., Kyrpides, N. C., Anderson, I.,
Gelfand, M. S., Bhattacharya, A., Kapatral, V., D'Souza, M., Baev, M.
V., Grechkin, Y., Mseeh, F., Fonstein, M. Y., Overbeek, R., Barabasi,
A. L., Oltvai, Z. N., and Osterman, A. L. (2003) Experimental
determination and system level analysis of essential genes in
Escherichia coli MG1655, Journal of Bacteriology 185, 5673-5684.
32.
Jordan, I. K., Rogozin, I. B., Wolf, Y. I., and Koonin, E. V. (2002)
Essential genes are more evolutionarily conserved than are nonessential
genes in bacteria, Genome Research 12, 962-968.
33.
Schmid, M. B., Kapur, N., Isaacson, D. R., Lindroos, P., and Sharpe, C.
(1989) Genetic analysis of temperature-sensitive lethal mutants of
Salmonella typhimurium, Genetics 123, 625-633.
34.
Forsyth, R. A., Haselbeck, R. J., Ohlsen, K. L., Yamamoto, R. T., Xu,
H., Trawick, J. D., Wall, D., Wang, L. S., Brown-Driver, V., Froelich, J.
M., Kedar, G. C., King, P., McCarthy, M., Malone, C., Misiner, B.,
Robbins, D., Tan, Z. H., Zhu, Z. Y., Carr, G., Mosca, D. A., Zamudio,
C., Foulkes, J. G., and Zyskind, J. W. (2002) A genome-wide strategy
for the identification of essential genes in Staphylococcus aureus,
Molecular Microbiology 43, 1387-1400.
78
35.
Oeschger, M. P., and Woods, S. L. (1976) A temperature-sensitive
suppressor enabling the manipulation of the level of individual proteins
in intact cells, Cell 7, 205-212.
36.
Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight
regulation, modulation, and high-level expression by vectors containing
the arabinose PBAD promoter, J Bacteriol 177, 4121-4130.
37.
Herring, C. D., and Blattner, F. R. (2004) Conditional lethal amber
mutations in essential Escherichia coli genes, J Bacteriol 186,
2673-2681.
38.
D'Elia, M. A., Pereira, M. P., and Brown, E. D. (2009) Are essential
genes really essential?, Trends in Microbiology 17, 433-438.
39.
Fang, G., Rocha, E., and Danchin, A. (2005) How essential are
nonessential genes?, Molecular Biology and Evolution 22, 2147-2156.
40.
Lederberg, J., and Tatum, E. L. (1946) Gene Recombination in
Escherichia coli Nature 158, 558.
41.
Holliday, R. (1964) A mechanism for gene conversion in fungi,
Genetical Research 5, 282-304.
42.
Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D.,
and
Rehrauer,
W.
M.
(1994)
Biochemistry
of
homologous
recombination in Escherichia coli, Microbiol Rev 58, 401-465.
43.
Rocha, E. P., Cornet, E., and Michel, B. (2005) Comparative and
evolutionary analysis of the bacterial homologous recombination
systems, PLoS Genet 1, e15.
79
44.
Jain, S. K., Cox, M. M., and Inman, R. B. (1994) On the role of ATP
hydrolysis in RecA protein-mediated DNA strand exchange. III.
Unidirectional branch migration and extensive hybrid DNA formation,
J Biol Chem 269, 20653-20661.
45.
Shan, Q., and Cox, M. M. (1996) RecA protein dynamics in the interior
of RecA nucleoprotein filaments, J Mol Biol 257, 756-774.
46.
Kim, J. I., Cox, M. M., and Inman, R. B. (1992) On the role of ATP
hydrolysis in RecA protein-mediated DNA strand exchange. II.
Four-strand exchanges, J Biol Chem 267, 16444-16449.
47.
Kowalczykowski, S. C., Clow, J., Somani, R., and Varghese, A. (1987)
Effects of the Escherichia coli SSB protein on the binding of
Escherichia coli RecA protein to single-stranded DNA. Demonstration
of competitive binding and the lack of a specific protein-protein
interaction, J Mol Biol 193, 81-95.
48.
Lavery, P. E., and Kowalczykowski, S. C. (1990) Properties of
Reca441 Protein-Catalyzed DNA Strand Exchange Can Be Attributed
to an Enhanced Ability to Compete with Ssb Protein, Journal of
Biological Chemistry 265, 4004-4010.
49.
Umezu, K., and Kolodner, R. D. (1994) Protein Interactions in
Genetic-Recombination in Escherichia-Coli - Interactions Involving
Reco and Recr Overcome the Inhibition of Reca by Single-Stranded
DNA-Binding
Protein,
Journal
30005-30013.
80
of
Biological
Chemistry
269,
50.
Shan, Q., Bork, J. M., Webb, B. L., Inman, R. B., and Cox, M. M.
(1997) RecA protein filaments: End-dependent dissociation from
ssDNA and stabilization by RecO and RecR proteins, Journal of
Molecular Biology 265, 519-540.
51.
Umezu, K., Chi, N. W., and Kolodner, R. D. (1993) Biochemical
Interaction of the Escherichia-Coli Recf, Reco, and Recr Proteins with
Reca Protein and Single-Stranded-DNA Binding-Protein, Proceedings
of the National Academy of Sciences of the United States of America 90,
3875-3879.
52.
Morimatsu, K., and Kowalczykowski, S. C. (2003) RecFOR proteins
load RecA protein onto gapped DNA to accelerate DNA strand
exchange: A universal step of recombinational repair, Molecular Cell
11, 1337-1347.
53.
West, S. C. (1997) Processing of recombination intermediates by the
RuvABC proteins, Annu Rev Genet 31, 213-244.
54.
Petes, T. D., Malone, R. E., and Symington, L. S. (1991)
Recombination in yeast. In “The Molecular and Cellular Biology of the
Yeast Saccharomyces” (Volume 2) (Edited by Broach, J. R., Pringle, J.
R., Jones, E. W.) pp407-504. Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, NY.
55.
Camerini-Otero,
R.
D.,
and
Hsieh,
P.
(1995)
Homologous
recombination proteins in prokaryotes and eukaryotes, Annu Rev Genet
29, 509-552.
81
56.
Wu, T. C., and Lichten, M. (1994) Meiosis-induced double-strand
break sites determined by yeast chromatin structure, Science 263,
515-518.
57.
Shinohara, A., Ogawa, H., and Ogawa, T. (1992) Rad51 protein
involved in repair and recombination in S. cerevisiae is a RecA-like
protein, Cell 69, 457-470.
58.
Bishop, D. K., Park, D., Xu, L., and Kleckner, N. (1992) DMC1: a
meiosis-specific
yeast
homolog
of
E.coli
recA
required
for
recombination, synaptonemal complex formation, and cell cycle
progression, Cell 69, 439-456.
59.
Akira Shinohara, Ogawa, H., and Ogawa, T. (1992) Rad51 protein
involved in repair and recombination in S. cerevisiae is a RecA-like
protein, Cell 69, 457-470.
60.
Sung, P. (1994) Catalysis of Atp-Dependent Homologous DNA Pairing
and Strand Exchange by Yeast Rad51 Protein, Science 265, 1241-1243.
61.
Ristic, D., Modesti, M., van der Heijden, T., van Noort, J., Dekker, C.,
Kanaar, R., and Wyman, C. (2005) Human Rad51 filaments on doubleand single-stranded DNA: correlating regular and irregular forms with
recombination function, Nucleic Acids Research 33, 3292-3302.
62.
Rubin, B. P., Ferguson, D. O., and Holloman, W. K. (1994) Structure of
Rec2, a Recombinational Repair Gene of Ustilago-Maydis, and Its
Function in Homologous Recombination between Plasmid and
Chromosomal Sequences, Molecular and Cellular Biology 14,
6287-6296.
82
63.
Morita, T., Yoshimura, Y., Yamamoto, A., Murata, K., Mori, M.,
Yamamoto, H., and Matsushiro, A. (1993) A Mouse Homolog of the
Escherichia-Coli Reca and Saccharomyces-Cerevisiae Rad51 Genes,
Proceedings of the National Academy of Sciences of the United States
of America 90, 6577-6580.
64.
Yoshimura, Y., Morita, T., Yamamoto, A., and Matsushiro, A. (1993)
Cloning and sequence of the human RecA-like gene cDNA, Nucleic
Acids Res 21, 1665.
65.
Milne, G. T., and Weaver, D. T. (1993) Dominant-Negative Alleles of
Rad52 Reveal a DNA-Repair Recombination Complex Including
Rad51 and Rad52, Genes & Development 7, 1755-1765.
66.
Dornfeld, K. J., and Livingston, D. M. (1992) Plasmid Recombination
in a Rad52 Mutant of Saccharomyces-Cerevisiae, Genetics 131,
261-276.
67.
Moore, S. P., and Fishel, R. (1990) Purification and Characterization of
a Protein from Human-Cells Which Promotes Homologous Pairing of
DNA, Journal of Biological Chemistry 265, 11108-11117.
68.
Sugawara, N., Ivanov, E. L., Fishmanlobell, J., Ray, B. L., Wu, X., and
Haber, J. E. (1995) DNA Structure-Dependent Requirements for Yeast
Rad Genes in Gene Conversion, Nature 373, 84-86.
69.
Stiff, T., Reis, C., Alderton, G. K., Woodbine, L., O'Driscoll, M., and
Jeggo,
P.
A.
(2005)
Nbs1
is
required
for
phosphorylation events, Embo Journal 24, 199-208.
83
ATR-dependent
70.
Muyrers, J. P. P., Zhang, Y. M., Testa, G., and Stewart, A. F. (1999)
Rapid
modification
of
bacterial
artificial
chromosomes
by
ET-recombination, Nucleic Acids Research 27, 1555-1557.
71.
Zhang, Y. M., Buchholz, F., Muyrers, J. P. P., and Stewart, A. F. (1998)
A new logic for DNA engineering using recombination in Escherichia
coli, Nature Genetics 20, 123-128.
72.
Carter, D. M., and Radding, C. M. (1971) The role of exonuclease and
beta protein of phage lambda in genetic recombination. II. Substrate
specificity and the mode of action of lambda exonuclease, J Biol Chem
246, 2502-2512.
73.
Subramanian, K., Rutvisuttinunt, W., Scott, W., and Myers, R. S. (2003)
The enzymatic basis of processivity in lambda exonuclease, Nucleic
Acids Res 31, 1585-1596.
74.
Van Oijen, A. M., Blainey, P. C., Crampton, D. J., Richardson, C. C.,
Ellenberger, T., and Xie, X. S. (2003) Single-molecule kinetics of
lambda exonuclease reveal base dependence and dynamic disorder,
Science 301, 1235-1238.
75.
Matsuura, S., Komatsu, J., Hirano, K., Yasuda, H., Takashima, K.,
Katsura, S., and Mizuno, A. (2001) Real-time observation of a single
DNA digestion by lambda exonuclease under a fluorescence
microscope field, Nucleic Acids Res 29, E79.
76.
Kovall, R., and Matthews, B. W. (1997) Toroidal structure of
lambda-exonuclease, Science 277, 1824-1827.
84
77.
Mythili, E., Kumar, K. A., and Muniyappa, K. (1996) Characterization
of the DNA-binding domain of beta protein, a component of phage
lambda red-pathway, by UV catalyzed cross-linking, Gene 182, 81-87.
78.
Karakousis, G., Ye, N., Li, Z., Chiu, S. K., Reddy, G., and Radding, C.
M. (1998) The beta protein of phage lambda binds preferentially to an
intermediate in DNA renaturation, J Mol Biol 276, 721-731.
79.
Muniyappa, K., and Radding, C. M. (1986) The homologous
recombination system of phage lambda. Pairing activities of beta
protein, J Biol Chem 261, 7472-7478.
80.
Kmiec, E., and Holloman, W. K. (1981) Beta protein of bacteriophage
lambda promotes renaturation of DNA, J Biol Chem 256, 12636-12639.
81.
Vellani, T. S., and Myers, R. S. (2003) Bacteriophage SPP1 Chu is an
alkaline exonuclease in the SynExo family of viral two-component
recombinases, Journal of Bacteriology 185, 2465-2474.
82.
Yu, D., Sawitzke, J. A., Ellis, H., and Court, D. L. (2003)
Recombineering
with
overlapping
single-stranded
DNA
oligonucleotides: testing a recombination intermediate, Proc Natl Acad
Sci U S A 100, 7207-7212.
83.
Anderson, D. G., and Kowalczykowski, S. C. (1997) The translocating
RecBCD enzyme stimulates recombination by directing RecA protein
onto ssDNA in a chi-regulated manner, Cell 90, 77-86.
84.
Thomason, L. C., Myers, R. S., Oppenheim, A., Costantino, N.,
Sawitzke, J. A., Datta, S., Bubunenko, M., and Court, D. L. (2005)
Recombineering in prokaryotes. In “Phages: Their Role on Bacterial
85
Pathogenesis and Biotechnology” (Edited by Waldor, M. K.,Friedman,
D. I., Adhya , S. L.) pp385. ASM Press, N.W., Washington, D.C.
85.
Muyrers, J. P. P., Zhang, Y., Buchholz, F., and Stewart, A. F. (2000)
RecE/RecT and Redα/Redβ initiate double-stranded break repair by
specifically interacting with their respective partners, Genes Dev 14,
1971-1982.
86.
Karu, A. E., Sakaki, Y., Echols, H., and Linn, S. (1975) The gamma
protein specified by bacteriophage gamma. Structure and inhibitory
activity for the recBC enzyme of Escherichia coli, J Biol Chem 250,
7377-7387.
87.
Murphy, K. C. (1991) Lambda Gam protein inhibits the helicase and
chi-stimulated recombination activities of Escherichia coli RecBCD
enzyme, J Bacteriol 173, 5808-5821.
88.
Cromie, G. A., Millar, C. B., Schmidt, K. H., and Leach, D. R. F. (2000)
Palindromes as substrates for multiple pathways of recombination in
Escherichia coli, Genetics 154, 513-522.
89.
Cohen, A., and Clark, A. J. (1986) Synthesis of Linear Plasmid
Multimers in Escherichia-Coli K-12, Journal of Bacteriology 167,
327-335.
90.
Sharan, S. K., Thomason, L. C., Kuznetsov, S. G., and Court, D. L.
(2009) Recombineering: a homologous recombination-based method of
genetic engineering, Nat Protoc 4, 206-223.
86
91.
Butland, G., Peregrín-Alvarez, J. M., Li, J., Yang, W., Yang, X., and
Canadien, V. (2005) Interaction network containing conserved and
essential protein complexes in Escherichia coli, Nature 433, 531-537.
92.
Hu, P., Janga, S. C., Babu, M., Díaz-Mejía, J. J., Butland, G., and Yang,
W. (2009) Global Functional Atlas of Escherichia coli Encompassing
Previously Uncharacterized Proteins
PLoS Biology 7, e1000096.doi:1000010.1001371/journal.pbio.1000096
93.
Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H., Babu, M., Hearn, J.,
Emili, A., and Xie, X. S. (2010) Quantifying E. coli proteome and
transcriptome with single-molecule sensitivity in single cells, Science
329, 533-538.
94.
Chan, W., Costantino, N., Li, R., Lee, S. C., Su, Q., Melvin, D., Court,
D. L., and Liu, P. (2007) A recombineering based approach for
high-throughput conditional knockout targeting vector construction,
Nucleic Acids Res 35, e64.
95.
Uzzau, S., Figueroa-Bossi, N., Rubino, S., and Bossi, L. (2001) Epitope
tagging of chromosomal genes in Salmonella, Proceedings of the
National Academy of Sciences of the United States of America 98,
15264-15269.
96.
Derbise, A., Lesic, B., Dacheux, D., Ghigo, J. M., and Carniel, E. (2003)
A rapid and simple method for inactivating chromosomal genes in
Yersinia, Fems Immunology and Medical Microbiology 38, 113-116.
97.
Morin, J. G. (1983) Coastal Bioluminescence - Patterns and Functions,
Bulletin of Marine Science 33, 787-817.
87
98.
Hastings, J. W. (1983) Biological diversity, chemical mechanisms, and
the evolutionary origins of bioluminescent systems, J Mol Evol 19,
309-321.
99.
Schauer, A., Ranes, M., Santamaria, R., Guijarro, J., Lawlor, E.,
Mendez, C., Chater, K., and Losick, R. (1988) Visualizing gene
expression in time and space in the filamentous bacterium
Streptomyces coelicolor, Science 240, 768-772.
100.
Shimomura, O., Johnson, F. H., and Saiga, Y. (1962) Extraction,
purification and properties of aequorin, a bioluminescent protein from
the luminous hydromedusan, Aequorea, J Cell Comp Physiol 59,
223-239.
101.
Morin, J. G., and Hastings, J. W. (1971) Energy transfer in a
bioluminescent system, J Cell Physiol 77, 313-318.
102.
Ward, W. W., and Cormier, M. J. (1979) An energy transfer protein in
coelenterate
bioluminescence.
Characterization
of
the
Renilla
green-fluorescent protein, J Biol Chem 254, 781-788.
103.
Voityuk, A. A., MichelBeyerle, M. E., and Rosch, N. (1997)
Protonation effects on the chromophore of green fluorescent protein.
Quantum chemical study of the absorption spectrum, Chemical Physics
Letters 272, 162-167.
104.
Ward, W. W., and Bokman, S. H. (1982) Reversible Denaturation of
Aequorea Green-Fluorescent Protein - Physical Separation and
Characterization of the Renatured Protein, Biochemistry 21, 4535-4540.
88
105.
Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and
Remington, S. J. (1996) Crystal structure of the Aequorea victoria
green fluorescent protein, Science 273, 1392-1395.
106.
Yang, F., Moss, L. G., and Phillips, G. N. (1996) The molecular
structure of green fluorescent protein, Nature Biotechnology 14,
1246-1251.
107.
Shimomura, O. (1979) Structure of the Chromophore of Aequorea
Green Fluorescent Protein, Febs Letters 104, 220-222.
108.
Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and
Tsien, R. Y. (1995) Understanding, Improving and Using Green
Fluorescent Proteins, Trends in Biochemical Sciences 20, 448-455.
109.
Delagrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., and Youvan,
D. C. (1995) Red-Shifted Excitation Mutants of the Green Fluorescent
Protein, Bio-Technology 13, 151-154.
110.
Zacharias, D. A., and Tsien, R. Y. (2006) Molecular Biology and
Mutation of Green fluorescent Protein. In “Green fluorescent protein:
Properties, Applications, and Protocols” (Second Edition) (Edited by
Chalfie M., Kain, S.R.) pp 85-87. John Wiley & Sons, Inc, Hoboken,
NJ
111.
Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S.,
and Brown, A. J. P. (1997) Yeast-enhanced green fluorescent protein
(yEGFP): A reporter of gene expression in Candida albicans,
Microbiology-Uk 143, 303-311.
89
112.
Cormack,
B. P., Valdivia, R. H., and Falkow, S. (1996)
FACS-optimized mutants of the green fluorescent protein (GFP), Gene
173, 33-38.
113.
Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green
fluorescence, Nature 373, 663-664.
114.
Wachter, R. M., Elsliger, M. A., Kallio, K., Hanson, G. T., and
Remington, S. J. (1998) Structural basis of spectral shifts in the
yellow-emission variants of green fluorescent protein, Structure 6,
1267-1277.
115.
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and
Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow
fluorescent protein. Mechanism and applications, J Biol Chem 276,
29188-29194.
116.
Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and
Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast
and efficient maturation for cell-biological applications, Nat Biotechnol
20, 87-90.
117.
Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to
choosing fluorescent proteins, Nat Methods 2, 905-909.
118.
Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002)
Partitioning of lipid-modified monomeric GFPs into membrane
microdomains of live cells, Science 296, 913-916.
90
119.
Nguyen, A. W., and Daugherty, P. S. (2005) Evolutionary optimization
of fluorescent proteins for intracellular FRET, Nat Biotechnol 23,
355-360.
120.
Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength
mutations and posttranslational autoxidation of green fluorescent
protein, Proc Natl Acad Sci U S A 91, 12501-12504.
121.
Heim, R., and Tsien, R. Y. (1996) Engineering green fluorescent
protein for improved brightness, longer wavelengths and fluorescence
resonance energy transfer, Curr Biol 6, 178-182.
122.
Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N.,
Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red,
orange and yellow fluorescent proteins derived from Discosoma sp. red
fluorescent protein, Nat Biotechnol 22, 1567-1572.
123.
Pollok, B. A., and Heim, R. (1999) Using GFP in FRET-based
applications, Trends in Cell Biology 9, 57-60.
124.
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C.
(1994) Green Fluorescent Protein as a Marker for Gene-Expression,
Science 263, 802-805.
125.
Dhandayuthapani, S., Via, L. E., Thomas, C. A., Horowitz, P. M.,
Deretic, D., and Deretic, V. (1995) Green Fluorescent Protein as a
Marker for Gene-Expression and Cell Biology of Mycobacterial
Interactions with Macrophages, Molecular Microbiology 17, 901-912.
126.
Tombolini, R., Unge, A., Davey, M. E., deBruijn, F. J., and Jansson, J.
K. (1997) Flow cytometric and microscopic analysis of GFP-tagged
91
Pseudomonas fluorescens bacteria, Fems Microbiology Ecology 22,
17-28.
127.
Arigoni, F., Pogliano, K., Webb, C. D., Stragier, P., and Losick, R.
(1995) Localization of Protein Implicated in Establishment of
Cell-Type to Sites of Asymmetric Division, Science 270, 637-640.
128.
Resnekov, O., Alper, S., and Losick, R. (1996) Subcellular localization
of proteins governing the proteolytic activation of a developmental
transcription factor in Bacillus subtilis, Genes to Cells 1, 529-542.
129.
Ma, X., Ehrhardt, D., and Margolin, W. (1996) Colocalization of cell
division proteins FtsZ and FtsA to cytoskeletal structures in living
Escherichia coli cells by using green fluorescent protein, Proc. Natl
Acad. Sci 93, 12998-13003.
130.
Kain, S. R., Adams, M., Kondepudi, A., Yang, T. T., Ward, W. W., and
Kitts, P. (1995) Green Fluorescent Protein as a Reporter of
Gene-Expression and Protein Localization, Biotechniques 19, 650-655.
131.
Valdivia, R. H., Hromockyj, A. E., Monack, D., Ramakrishnan, L., and
Falkow, S. (1996) Applications for green fluorescent protein (GFP) in
the study of host-pathogen interactions, Gene 173, 47-52.
132.
Prinz, W. A., Grzyb, L., Veenhuis, M., Kahana, J. A., Silver, P. A., and
Rapoport, T. A. (2000) Mutants affecting the structure of the cortical
endoplasmic reticulum in Saccharomyces cerevisiae, J Cell Biol 150,
461-474.
92
133.
Westermann, B., and Neupert, W. (2000) Mitochondria-targeted green
fluorescent proteins: convenient tools for the study of organelle
biogenesis in Saccharomyces cerevisiae, Yeast 16, 1421-1427.
134.
Messerschmitt, M., Jakobs, S., Vogel, F., Fritz, S., Dimmer, K. S.,
Neupert, W., and Westermann, B. (2003) The inner membrane protein
Mdm33 controls mitochondrial morphology in yeast, J Cell Biol 160,
553-564.
135.
Gorner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F.,
Ammerer, G., Hamilton, B., Ruis, H., and Schuller, C. (1998) Nuclear
localization of the C2H2 zinc finger protein Msn2p is regulated by
stress and protein kinase A activity, Genes Dev 12, 586-597.
136.
Browning, H., Hackney, D. D., and Nurse, P. (2003) Targeted
movement of cell end factors in fission yeast, Nature Cell Biology 5,
812-818.
137.
Pidoux, A. L., Uzawa, S., Perry, P. E., Cande, W. Z., and Allshire, R. C.
(2000) Live analysis of lagging chromosomes during anaphase and
their effect an spindle elongation rate in fission yeast, Journal of Cell
Science 113, 4177-4191.
138.
Hoepfner, D., Brachat, A., and Philippsen, P. (2000) Time-lapse video
microscopy analysis reveals astral microtubule detachment in the yeast
spindle pole mutant cnm67, Molecular Biology of the Cell 11,
1197-1211.
93
139.
Brodsky, A. S., and Silver, P. A. (2000) Pre-mRNA processing factors
are required for nuclear export, Rna-a Publication of the Rna Society 6,
1737-1749.
140.
Beach, D. L., and Bloom, K. (2001) ASH1 mRNA localization in three
acts, Molecular Biology of the Cell 12, 2567-2577.
141.
Damelin, M., and Silver, P. A. (2000) Mapping interactions between
nuclear transport factors in living cells reveals pathways through the
nuclear pore complex, Molecular Cell 5, 133-140.
142.
Overton, M. C., Chinault, S. L., and Blumer, K. J. (2003)
Oligomerization, biogenesis, and signaling is promoted by a
glycophorin A-like dimerization motif in transmembrane domain 1 of a
yeast G protein-coupled receptor, Journal of Biological Chemistry 278,
49369-49377.
143.
Yu, D., Ellis, H. M., Lee, E.-C., Jenkins, N. A., Copeland, N. G., and
Court, D. L. (2000) An efficient recombination system for chromosome
engineering in Escherichia coli, Proc. Natl Acad. Sci 97, 5978-5983.
144.
Bowman, G. R., Comolli, L. R., Zhu, J., Eckart, M., Koenig, M.,
Downing, K. H., Moerner, W. E., Earnest, T., and Shapiro, L. (2008) A
polymeric protein anchors the chromosomal origin/ParB complex at a
bacterial cell pole, Cell 134, 945-955.
145.
Nybo, K. (2009) Protein Methods: In Vitro Expression., BioTechniques
47, 583-585.
94
146. Arai, R., Ueda, H., Kitayama, A., Kamiya, N., and Nagamune, T. (2001)
Design of the linkers which effectively separate domains of a
bifunctional fusion protein, Protein Engineering 14, 529-532.
147.
Jacob, F., and Monod, J. (1962) On the regulation of gene activity,
Cold Spring Harbor Symposia on Quantitative Biology 26, 193-211.
148.
Schulz, H., Hennecke, H., and Thöny-Meyer, L. (1998) Prototype of a
Heme Chaperone Essential for Cytochrome c Maturation, Science 281,
1197-1200.
149.
Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., and Waldo,
G. S. (2006) Engineering and characterization of a superfolder green
fluorescent protein, Nat Biotechnol 24, 79-88.
150.
Kumar, A., Agarwal, S., Heyman, J. A., Matson, S., Heidtman, M., and
Piccirillo, S. (2002) Subcellular localization of the yeast proteome,
Genes Development 16, 707-719.
151.
Renzette, N., Gumlaw, N., Nordma, J. T., Krieger, M., Yeh, S.-p., and
Long, E. (2005) Localization of RecA in Escherichia coli K-12 using
RecA–GFP, Molecular Microbiology 57, 1074-1085.
152.
Page, M. D., Pearce, D. A., Norris, H. A. C., and Ferguson, S. J. (1997)
The Paracoccus denitrificans ccmA, B and C genes: Cloning and
sequencing, and analysis of the potential of their products to form a
haem or apo- c-type cytochrome transporter, Microbiology-Uk 143,
563-576.
153.
Bubunenko, M., Korepanov, A., Court, D. L., Jagannathan, I.,
Dickinson, D., and Chaudhuri, B. R. (2006) 30S ribosomal subunits can
95
be assembled in vivo without primary binding ribosomal protein S15,
RNA 12, 1229-1239.
154.
Bubunenko, M., Baker, T., and Court, D. L. (2007) Essentiality of
ribosomal and transcription antitermination proteins analyzed by
systematic gene replacement in Escherichia coli, J Bacteriol 189,
2844-2853.
155.
Watanabe, T., Hayashi, S., and Wu, H. C. (1988) Synthesis and Export
of the Outer Membrane Lipoprotein in Escherichia coli Mutants
Defective in Generalized Protein Export, Journal of Bacteriology 170,
4001-4007.
156.
Marujo, P. E., Braun, F., Haugel-Nielsen, J., Derout, J. L., Arraiano, C.
M., and Régnier, P. (2003) Inactivation of the decay pathway initiated
at an internal site by RNase E promotes poly(A)-dependent degradation
of the rpsO mRNA in Escherichia coli., Mol Microbiol 50, 1283-1294.
157.
Danchin, A. (2009) A phylogenetic view of bacterial ribonucleases,
Prog Mol Biol Transl Sci 85, 1-41.
158.
Winkler, J., Seybert, A., König, L., Pruggnaller, S., Haselmann, U., and
Sourjik, V. (2010) Quantitative and spatio-temporal features of protein
aggregation in Escherichia coli and consequences on protein quality
control and cellular ageing, EMBO J 29, 910-923.
159.
Mascarenhas, J., Weber, M. H., and Graumann, P. L. (2001) Specific
polar localization of ribosomes in Bacillus subtilis depends on active
transcription, EMBO Rep 2, 685-689.
96
160.
Oberto, J., Bonnefoy, E., Mouray, E., Pellegrini, O., Wikström, P. M.,
and Rouvière-Yaniv, J. (1996) The Escherichia coli ribosomal protein
S16 is an endonuclease, Molecular Microbiology 19, 1319-1330.
161.
Grabowski, D. T., Deutsch, W. A., Derda, D., and Kelley, M. R. (1991)
Drosophila AP3, a presumptive DNA repair protein, is homologous to
human ribosomal associated protein PO Nucl. Acids Res 19, 4297.
162.
Wilson D M , r., Deutsch, W. A., and Kelley, M. R. (1994) Drosophila
ribosomal protein S3 contains an activity that cleaves DNA at
apurinic/apyrimidinic sites. , J. Biol. Chem 269, 25359-25364.
163.
Jung, S.-O., Lee, J. Y., and Kim, J. (2001) Yeast ribosomal protein S3
has an endonuclease activity on AP DNA., Mol Cells 12, 84-90.
164.
Bowman, G. R., Comolli, L. R., Zhu, J., Eckart, M., Koenig, M., and
Downing, K. H. (2008) A Polymeric Protein Anchors the Chromosomal
Origin/ParB Complex at a Bacterial Cell Pole, Cell 134, 945-955.
165.
Lemon, K. P., and Grossman, A. D. (1998) Localization of bacterial
DNA polymerase: evidence for a factory model of replication, Science
282, 1516-1519.
166.
Bejerano-Sagie,
M.,
Oppenheimer-Shaanan,
Y.,
Berlatzky,
I.,
Rouvinski, A., Meyerovich, M., and Ben-Yehuda, S. (2006) A
checkpoint protein that scans the chromosome for damage at the start of
sporulation in Bacillus subtilis, Cell 125, 679-690.
167.
Dong H, N. L., Kurland CG. (1996) Co-variation of tRNA abundance
and codon usage in Escherichia coli at different growth rates, J Mol
Biol 260, 649-663.
97
168.
Berg, O. G., and Kurland, C. G. (1997) Growth rate-optimised tRNA
abundance and codon usage, J Mol Biol 270, 544-550.
169. Zamparo, L., and Perkins, T. J. (2009) Statistical lower bounds on
protein copy number from fluorescence expression images,
Bioinformatics 25, 2670-2676.
170.
Rosenfeld, N., Perkins, T. J., Alon U., Elowitz M. B., and Swain P.S.
(2006) A fluctuation method to quantify in vivo fluorescence data,
Biophysical Journal 91, 759-766.
171.
Sharan, S. K., Thomason, L. C., Kuznetsov, S. G., and Court, D. L.
(2009) Recombineering: a homologous recombination-based method of
genetic engineering, Nature Protocol 4, 206-223.
98
Appendix 1 The fluorescence images of successfully tagged E. coli persistent genes
CDS
abC
Description/Function
D-methionine transport
ATP-binding protein
Acetyl-coenzyme
accD
aceF
A carboxylase carboxyltransferase
subunit beta
Dihydrolipoyllysine-residue
acetyltransferase component of
pyruvate dehydrogenase complex
99
Localization pattern
CDS
apaH
aroB
aroC
Description/Function
Bis(5'-nucleosyl)-tetraphosphatase
3-dehydroquinate synthase
Chorismate synthase
F1 sector of
membrane-bound
atpG
ATP synthase
Gamma subunit
bioA
7,8-diaminopelargonic acid synthase
PLP-dependent
100
Localization pattern
CDS
bioB
bioF
Description/Function
Biotin synthase
8-amino-7-oxononanoate synthase
Carbamoyl phosphate
synthetase small subunit
carA
101
Localization pattern
CDS
Description/Function
Carbamoyl-phosphate
carB
synthase large subunit
ccmA
Cytochrome c biogenesis
ATP-binding export protein
ccmB
Heme exporter protein B
ccmC
Heme exporter protein C
ccmF
Cytochrome c-type biogenesis
protein
102
Localization pattern
CDS
clpB
Description/Function
Protein disaggregation chaperone
Conserved hypothetical protein
crcB
cysS
Putative inner membrane protein
associated with chromosome
condensation
Cysteinyl-tRNA synthetase
103
Localization pattern
CDS
Description/Function
deF
Peptide deformylase
dnaE
DNA polymerase III alpha subunit
dsbB
Disulfide bond formation protein B
104
Localization pattern
CDS
Description/Function
efP
Elongation factor EF-P
enO
Enolase
folB
folD
Dihydroneopterin aldolase
Bifunctional
5,10-methylene-tetrahydrofolate
dehydrogenase and
5,10-methylene-tetrahydrofolate
cyclohydrolase
105
Localization pattern
CDS
Description/Function
folK
2-amino-4-hydroxy-6-hydroxymethy
ldihydropteridine pyrophosphokinase
frR
Ribosome recycling factor
fuR
Ferric uptake regulation protein
Methyltransferase
gidB
106
Localization pattern
CDS
Description/Function
glnS
Glutaminyl-tRNA synthetase
glyA
Serine hydroxymethyltransferase
groS
Cpn10 chaperonin GroES
Small subunit of GroESL
hemE
Uroporphyrinogen decarboxylase
107
Localization pattern
CDS
hemH
Description/Function
Ferrochelatase
hflK
HflA complex cleaves lambda cII
hisA
N-(5'-phospho-L-ribosyl-formimino)
-5-amino-1-(5'phosphoribosyl)-4-imidazolecarboxa
mide isomerase
hslU
ATP-dependent hsl protease
ATP-binding subunit
108
Localization pattern
CDS
Description/Function
hslV
ATP-dependent protease
htpG
Chaperone
hupB
DNA-binding protein HU-beta
ileS
Isoleucyl-tRNA synthetase
109
Localization pattern
CDS
Description/Function
infB
Translation initiation factor IF-2
kdsB
3-deoxy-manno-octulosonate
cytidylyltransferase
ksgA
Dimethyladenosine transferase
leuS
Leucyl-tRNA synthetase
110
Localization pattern
CDS
Description/Function
loN
ATP-dependent protease
lpxA
Acyl-[acyl-carrier-protein]--UDP-N-a
cetylglucosamine O-acyltransferase
lpxC
UDP-3-O-acyl N-acetylglucosamine
deacetylase
111
Localization pattern
CDS
Description/Function
5,10-methylenetetrahydrofolate
metF
reductase
miaA
Delta(2)-isopentenylpyrophosphate
tRNA-adenosine transferase
UDP-N-acetylmuramate
mpL
L-alanyl-gamma-D-glutamyl-me
so-diaminopimelate ligase
112
Localization pattern
CDS
Description/Function
Cell wall structural complex
mreC
MreBCD transmembrane
component MreC
murB
UDP-N-acetylenolpyruvoylglucosami
ne reductase
113
Localization pattern
CDS
Description/Function
pepA
Aminopeptidase A
pepN
Aminopeptidase N
pgK
Phosphoglycerate kinase
114
Localization pattern
CDS
Description/Function
ppA
Inorganic pyrophosphatase
prfC
Peptide chain release factor RF-3
prlC
Oligopeptidase A
115
Localization pattern
CDS
Description/Function
prmA
Ribosomal protein L11
methyltransferase
proA
Gamma-glutamylphosphate reductase
proC
Pyrroline-5-carboxylate reductase
psD
phosphatidylserine decarboxylase
proenzyme
116
Localization pattern
CDS
Description/Function
ptH
Peptidyl-tRNA hydrolase
pykA
queA
recA
Pyruvate kinase II
S-adenosylmethionine:tRNA
ribosyltransferase-isomerase
General recombination
and DNA repair protein
117
Localization pattern
CDS
Description/Function
recJ
Single-stranded-DNA-specific
exonuclease
rhO
Transcription termination factor
ribC
Riboflavin synthase alpha subunit
118
Localization pattern
CDS
Description/Function
ribD
Riboflavin biosynthesis protein
rluD
Ribosomal large subunit
pseudouridine synthase D
rnE
Ribonuclease E
rnhA
Ribonuclease HI
119
Localization pattern
CDS
rnR
Description/Function
Ribonuclease R
rpE
Ribulose-phosphate 3-epimerase
rpH
Ribonuclease PH
rpiA
Ribose-5-phosphate isomerase A
120
Localization pattern
CDS
rplC
Description/Function
50S ribosomal subunit protein L3
50S ribosomal subunit protein L20
rplT
121
Localization pattern
CDS
Description/Function
50S ribosomal subunit protein L21
rplU
rplW
50S ribosomal subunit protein L23
rpoH
RNA polymerase sigma-32 factor
DNA-directed RNA polymerase
rpoZ
omega chain
122
Localization pattern
CDS
Description/Function
rpsO
30S ribosomal subunit protein S15
rpsP
30S ribosomal subunit protein S16
rpsQ
30S ribosomal subunit protein S17
123
Localization pattern
CDS
Description/Function
rpsU
30S ribosomal subunit protein S21
rsmB
Ribosomal RNA small subunit
methyltransferase B
secB
serA
Protein-export protein
D-3-phosphoglycerate
dehydrogenase
124
Localization pattern
CDS
serC
serS
Description/Function
Localization pattern
Phosphoserine aminotransferase
Seryl-tRNA synthetase
\
smF
Smf protein
smpB
SsrA-binding protein
125
CDS
Description/Function
Guanosine-3',5'-bis(diphosphate)
spoT
3'-pyrophosphohydrolase
sspA
Stringent starvation protein A
suhB
Inositol-1-monophosphatase
talB
Transaldolase B
126
Localization pattern
CDS
Description/Function
tktA
Transketolase 1
tpiA
Triosephosphate isomerase
Tryptophan synthase
trpA
alpha chain
trxA
Thioredoxin 1
127
Localization pattern
CDS
tufB
usG
yaeN
Description/Function
Protein chain elongation factor
EF-Tu
Stabilizes phage lambda protein
N-NusA-RNAP antitermination
comple
Putative cell cycle protein mesJ
128
Localization pattern
CDS
Description/Function
ybeB
Hypothetical protein
ydaO
Hypothetical protein
ydhH
Hypothetical protein
129
Localization pattern
CDS
Description/Function
yfgB
Hypothetical protein
yfhQ
Hypothetical tRNA/rRNA
methyltransferase
130
Localization pattern
CDS
ygcA
Description/Function
23S rRNA
(Uracil-5-)-methyltransferase
ygfB
Hypothetical protein
yggW
Hypothetical protein
yhbC
Hypothetical protein
131
Localization pattern
CDS
Description/Function
yhbY
Putative RNA-binding protein
yhbZ
Putative GTP-binding factor
yhdG
tRNA-dihydrouridine synthase B
132
Localization pattern
CDS
Description/Function
yihA
GTP-binding protein
yjbN
tRNA-dihydrouridine synthase A
yleA
Hypothetical protein
133
Localization pattern
CDS
Description/Function
yqcD
Hypothetical protein
yqgE
Hypothetical protein
yraO
ytfM
1.
Localization pattern
Hypothetical protein
Hypothetical protein
The localization patterns of these proteins are observed under fluorescence microscope in the log
phase or stationary phase of the corresponding EGFP tagged DY330 E.coli strain cultured at 32°C.
134
Appendix 2
The list of all 611persistent genes of E. coli
Gene
Category of
tagging result
Essentiality*
Short Description
aroK
1
N
Shikimate kinase I
aspS
1
E
Aspartyl-tRNA synthetase
atpC
1
N
ATP synthase epsilon chain
bcp
1
N
Bacterioferritin comigratory protein
bolA
1
N
Morphogene
cafA
1
N
Ribonuclease G
ccmE
1
N
Cytochrome c-type biogenesis protein
ccmG
1
N
Thiol:disulfide interchange protein
cdsA
1
E
Phosphatidate cytidylyltransferase
cydA
1
N
Cytochrome d ubiquinol oxidase subunit I
cysK
1
N
Cysteine synthase A
cysQ
1
N
PAP (3',5' adenosine diphosphate) 3' phosphatase
dfp
1
E
Coenzyme A biosynthesis bifunctional protein
dnaA
1
E
Chromosomal replication initiator protein
dut
1
E
Deoxyuridine 5'-triphosphate nucleotidohydrolase
dxr
1
E
1-deoxy-D-xylulose 5-phosphate reductoisomerase
fabD
1
E
Malonyl CoA-acyl carrier protein transacylase
fabH
1
N
3-oxoacyl-[acyl-carrier-protein] synthase III
fadD
1
N
Long-chain-fatty-acid--CoA ligase
135
folC
1
N
FolC bifunctional protein
folP
1
N
Dihydropteroate synthase
ftsI
1
E
Peptidoglycan synthetase ftsI
ftsJ
1
E
Ribosomal RNA large subunit methyltransferase J
ftsX
1
E
Cell division protein
gcvH
1
N
Glycine cleavage system H protein
glmS
1
N
Glucosamine--fructose-6-phosphate aminotransferase [isomerizing]
glnD
1
N
[Protein-PII] uridylyltransferase
glnE
1
N
Glutamate-ammonia-ligase adenylyltransferase
glpK
1
N
Glycerol kinase
gltX
1
E
Glutamyl-tRNA synthetase
glyQ
1
E
Glycyl-tRNA synthetase alpha chain
glyS
1
E
Glycyl-tRNA synthetase beta chain
gmk
1
E
Guanylate kinase
gor
1
N
Glutathione reductase
gph
1
N
Phosphoglycolate phosphatase
gpsA
1
N
Glycerol-3-phosphate dehydrogenase [NAD(P)+]
gyrA
1
E
DNA gyrase subunit A
gyrB
1
E
DNA gyrase subunit B
hemA
1
N
Glutamyl-tRNA reductase
hemB
1
N
Delta-aminolevulinic acid dehydratase
hemF
1
N
Coproporphyrinogen III oxidase, aerobic
136
hemL
1
N
Glutamate-1-semialdehyde 2,1-aminomutase
hflB
1
E
Cell division protein
hfq
1
N
HF-I, host factor for phage Qbeta
hisF
1
N
Imidazole glycerol phosphate synthase subunit
holA
1
E
DNA polymerase III, delta subunit
holB
1
E
DNA polymerase III, delta' subunit
hrpA
1
N
ATP-dependent helicase
ihfA
1
N
Integration host factor alpha-subunit
ihfB
1
N
Integration host factor beta-subunit
ilvD
1
N
Dihydroxy-acid dehydratase
lepB
1
E
Signal peptidase I
ligA
1
E
DNA ligase
lipB
1
N
Lipoyltransferase
mazG
1
N
Nucleoside triphosphate pyrophosphohydrolase
mrp
1
N
Putative ATPase
msbA
1
E
Lipid A export ATP-binding/permease protein
murE
1
E
UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-diaminopimelate ligase
murF
1
E
UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-alanine ligase
mutL
1
N
DNA mismatch repair protein
mutM
1
N
Formamidopyrimidine-DNA glycosylase
mutY
1
N
A/G-specific adenine glycosylase
ndk
1
N
Nucleoside diphosphate kinase
137
ogt
1
N
Methylated-DNA--protein-cysteine methyltransferase
orn
1
U
Oligoribonuclease
oxyR
1
N
Hydrogen peroxide-inducible genes activator
panB
1
N
3-methyl-2-oxobutanoate hydroxymethyltransferase
parC
1
E
Topoisomerase IV subunit A
pgsA
1
E
CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase
pmbA
1
N
Antibiotic peptide MccB17
pntB
1
N
NAD(P) transhydrogenase subunit beta
polA
1
E
DNA polymerase I
prfA
1
E
Peptide chain release factor 1
proB
1
N
Glutamate 5-kinase
proS
1
E
Prolyl-tRNA synthetase
purA
1
N
Adenylosuccinate synthetase
purD
1
N
Phosphoribosylamine--glycine ligase
purE
1
N
Phosphoribosylaminoimidazole carboxylase catalytic subunit
purF
1
N
Amidophosphoribosyltransferase
purK
1
N
Phosphoribosylaminoimidazole carboxylase ATPase subunit
purL
1
N
Phosphoribosylformylglycinamidine synthase
purM
1
N
Phosphoribosylformylglycinamidine cyclo-ligase
purN
1
N
Phosphoribosylglycinamide formyltransferase
pyrD
1
N
Dihydroorotate dehydrogenase
pyrE
1
N
Orotate phosphoribosyltransferase
138
radA
1
N
DNA repair protein
recD
1
N
Exodeoxyribonuclease V alpha chain
rep
1
N
ATP-dependent DNA helicase
rimI
1
N
Ribosomal-protein-alanine acetyltransferase
rimM
1
N
16S rRNA processing protein rimM
rluC
1
U
Ribosomal large subunit pseudouridine synthase C
rnc
1
N
Ribonuclease III
rnpA
1
E
Ribonuclease P protein component
rplB
1
E
50S ribosomal protein L2
rplD
1
E
50S ribosomal protein L4
rplF
1
E
50S ribosomal protein L6
rplR
1
E
50S ribosomal protein L18
rplI
1
E
50S ribosomal protein L9
rplJ
1
E
50S ribosomal protein L10
rplM
1
E
50S ribosomal protein L13
rplN
1
E
50S ribosomal protein L14
rplP
1
E
50S ribosomal protein L16
rplS
1
E
50S ribosomal protein L19
rpmA
1
E
50S ribosomal protein L27
rpmB
1
E
50S ribosomal protein L28
rpmG
1
E
50S ribosomal protein L33
rpmH
1
E
50S ribosomal protein L34
139
rpmI
1
E
50S ribosomal protein L35
rpoB
1
E
DNA-directed RNA polymerase beta chain
rpoE
1
N
RNA polymerase sigma-E factor
rpsA
1
E
30S ribosomal protein S1
rpsB
1
E
30S ribosomal protein S2
rpsC
1
E
30S ribosomal protein S3
rpsE
1
E
30S ribosomal protein S5
rpsF
1
E
30S ribosomal protein S6
rpsI
1
E
30S ribosomal protein S9
rpsJ
1
E
30S ribosomal protein S10
rpsK
1
E
30S ribosomal protein S11
rpsL
1
E
30S ribosomal protein S12
rpsM
1
E
30S ribosomal protein S13
rpsN
1
E
30S ribosomal protein S14
rpsR
1
E
30S ribosomal protein S18
rpsS
1
E
30S ribosomal protein S19
rpsT
1
N
30S ribosomal protein S20
secD
1
N
Protein-export membrane protein
secE
1
E
Preprotein translocase secE subunit
secG
1
N
Protein-export membrane protein
slyD
1
N
FKBP-type peptidyl-prolyl cis-trans isomerase slyD
sspB
1
N
Stringent starvation protein B
140
sucA
1
N
2-oxoglutarate dehydrogenase E1 component
sucB
1
N
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex
sucD
1
N
Succinyl-CoA synthetase alpha chain
tag
1
N
DNA-3-methyladenine glycosylase I
tig
1
N
Trigger factor
tldD
1
U
TldD protein
tolB
1
N
TolB protein
tolC
1
N
Specific tolerance to ColE1; affects chromosome segregation; OM porin
topA
1
E
DNA topoisomerase I
trmD
1
E
tRNA (Guanine-N(1)-)-methyltransferase
trpE
1
N
Anthranilate synthase component I
trpS
1
E
Tryptophanyl-tRNA synthetase
trxB
1
N
Thioredoxin reductase
ung
1
N
Uracil-DNA glycosylase
uup
1
U
ABC transporter ATP-binding protein
uvrB
1
N
UvrABC system protein B
uvrC
1
N
UvrABC system protein C
valS
1
E
Valyl-tRNA synthetase
xerC
1
N
Tyrosine recombinase
xerD
1
N
Tyrosine recombinase
xthA
1
N
Exodeoxyribonuclease III
yadG
1
N
Hypothetical ABC transporter ATP-binding protein
141
yaeC
1
U
D-methionine-binding lipoprotein
yajQ
1
U
Hypothetical protein
ybaB
1
U
Hypothetical protein
ybaD
1
U
Hypothetical protein
ybaX
1
U
Hypothetical protein
ybeD
1
U
Hypothetical protein
ybeY
1
U
Hypothetical protein
ycaJ
1
U
Hypothetical protein
ycfF
1
U
HIT-like protein
yciB
1
N
Probable intracellular septation protein
ydgM
1
N
Electron transport complex protein
yeaZ
1
U
Hypothetical M22 peptidase homolog
yffB
1
U
Hypothetical protein
yfhF
1
U
Hypothetical protein
yfhL
1
U
Putative ferredoxin-like protein
yfhP
1
U
Hypothetical protein
yfiH
1
U
Hypothetical protein
yfjF
1
U
Hypothetical protein
yfjG
1
U
Hypothetical protein
ygfA
1
U
Hypothetical protein
ygfE
1
N
Hypothetical protein
yggS
1
U
Hypothetical protein
142
yggT
1
U
Hypothetical protein
yggV
1
U
HAM1 protein homolog
yggX
1
U
Hypothetical protein
yhbN
1
U
Putative transport protein (ABC superfamily)
yhgH
1
N
Hypothetical protein
yhgI
1
N
Protein gntY
yhiR
1
U
Hypothetical protein
yibK
1
U
Hypothetical tRNA/rRNA methyltransferase
yibN
1
U
Hypothetical protein
yibP
1
U
Hypothetical protein
yidC
1
E
Inner membrane protein
yjeA
1
U
Putative lysyl-tRNA synthetase
yjeE
1
E
Hypothetical protein
yjeK
1
U
Hypothetical protein
yjjV
1
U
Putative deoxyribonuclease
yraL
1
U
Hypothetical protein
yrbD
1
U
Hypothetical protein
yrbE
1
U
Hypothetical protein
yrdC
1
U
Hypothetical protein
yrfE
1
U
ADP compounds hydrolase
yrfI
1
U
33 kDa chaperonin
abc
2
U
D-methionine transport ATP-binding protein
143
accD
2
E
Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta
aceF
2
N
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex
adk *
2
E
Adenylate kinase
apaH
2
N
Bis(5'-nucleosyl)-tetraphosphatase, symmetrical
aroB
2
N
3-dehydroquinate synthase
aroC
2
N
Chorismate synthase
atpG
2
N
ATP synthase gamma chain
bioA
2
N
Adenosylmethionine-8-amino-7-oxononanoate aminotransferase
bioB
2
N
Biotin synthase
bioF
2
N
8-amino-7-oxononanoate synthase
carA
2
N
Carbamoyl-phosphate synthase small chain
carB
2
N
Carbamoyl-phosphate synthase large chain
ccmA
2
N
Cytochrome c biogenesis ATP-binding export protein
ccmB
2
N
Heme exporter protein B
ccmC
2
N
Heme exporter protein C
ccmF
2
N
Cytochrome c-type biogenesis protein
clpB
2
N
Chaperone
crcB
2
U
Protein crcB
cysS
2
E
Cysteinyl-tRNA synthetase
def
2
E
Peptide deformylase
dnaE
2
E
DNA polymerase III alpha subunit
dsbB
2
N
Disulfide bond formation protein B
144
dxS*
2
E
1-deoxy-xylulose phosphate synthase
efp
2
E
Elongation factor P
eno
2
E
Enolase
erA*
2
E
Ras-like GTP-binding protein
folB
2
E
Dihydroneopterin aldolase
folD
2
N
FolD bifunctional protein
folK
2
N
2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase
frr
2
E
Ribosome recycling factor
fur
2
N
Ferric uptake regulation protein
gidB
2
N
Methyltransferase
glnS
2
E
Glutaminyl-tRNA synthetase
glyA
2
N
Serine hydroxymethyltransferase
groS
2
E
10 kDa chaperonin
hemE
2
N
Uroporphyrinogen decarboxylase
hemH
2
N
Ferrochelatase
hflK
2
N
HflA complex cleaves lambda cII
hisA
2
N
1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase
hslU
2
N
ATP-dependent hsl protease ATP-binding subunit
hslV
2
N
ATP-dependent protease
htpG
2
N
Chaperone
hupB
2
N
DNA-binding protein HU-beta
ileS
2
E
Isoleucyl-tRNA synthetase
145
infB
2
E
Translation initiation factor IF-2
kdsB
2
E
3-deoxy-manno-octulosonate cytidylyltransferase
ksgA
2
N
Dimethyladenosine transferase
leuS
2
E
Leucyl-tRNA synthetase
lon
2
N
ATP-dependent protease
lpxA
2
E
Acyl-[acyl-carrier-protein]--UDP-N-acetylglucosamine O-acyltransferase
lpxC
2
E
UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase
map*
2
E
Methionine amino peptidase
metF
2
N
5,10-methylenetetrahydrofolate reductase
metK*
2
E
S-adenosyl-methionine synthetase
miaA
2
N
tRNA delta(2)-isopentenylpyrophosphate transferase
mpl
2
N
UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase
mreC
2
N
Rod shape-determining protein
murB
2
E
UDP-N-acetylenolpyruvoylglucosamine reductase
nusA*
2
E
Transcription elongation protein
pepA
2
N
Cytosol aminopeptidase
pepN
2
N
Aminopeptidase N
pgk
2
N
Phosphoglycerate kinase
ppa
2
E
Inorganic pyrophosphatase
prfC
2
N
Peptide chain release factor 3
prlC
2
N
Oligopeptidase A
prmA
2
N
Ribosomal protein L11 methyltransferase
146
proA
2
N
Gamma-glutamyl phosphate reductase
proC
2
N
Pyrroline-5-carboxylate reductase
psd
2
N
Phosphatidylserine decarboxylase proenzyme
pth
2
E
Peptidyl-tRNA hydrolase
pykA
2
N
Pyruvate kinase II
pyrH*
2
E
Uridylate kinase
queA
2
N
S-adenosylmethionine:tRNA ribosyltransferase-isomerase
recA
2
N
General recombination and DNA repair protein
recG*
2
N
ATP-dependent DNA helicase
recJ
2
N
Single-stranded-DNA-specific exonuclease
rho
2
E
Transcription termination factor
ribC
2
N
Riboflavin synthase alpha chain
ribD
2
N
Riboflavin biosynthesis protein
rluD
2
N
Ribosomal large subunit pseudouridine synthase D
rne
2
E
Ribonuclease E
rnhA
2
N
Ribonuclease HI
rnr
2
N
Ribonuclease R
rpe
2
N
Ribulose-phosphate 3-epimerase
rph
2
N
Ribonuclease PH
rpiA
2
N
Ribose-5-phosphate isomerase A
rplC
2
E
50S ribosomal protein L3
rplT
2
E
50S ribosomal protein L20
147
rplU
2
E
50S ribosomal protein L21
rplW
2
E
50S ribosomal protein L23
rpoH
2
N
RNA polymerase sigma-32 factor
rpoZ
2
N
DNA-directed RNA polymerase omega chain
rpsO
2
E
30S ribosomal protein S15
rpsP
2
E
30S ribosomal protein S16
rpsQ
2
E
30S ribosomal protein S17
rpsU
2
E
30S ribosomal protein S21
rsmB
2
N
Ribosomal RNA small subunit methyltransferase B
secB
2
N
Protein-export protein
serA
2
N
D-3-phosphoglycerate dehydrogenase
serC
2
N
Phosphoserine aminotransferase
serS
2
E
Seryl-tRNA synthetase
smf
2
N
Smf protein
smpB
2
N
SsrA-binding protein
spoT
2
E
Guanosine-3',5'-bis(diphosphate) 3'-pyrophosphohydrolase
sspA
2
N
Stringent starvation protein A
suhB
2
N
Inositol-1-monophosphatase
talB
2
N
Transaldolase B
tktA
2
N
Transketolase 1
tpiA
2
N
Triosephosphate isomerase
trmE*
2
N
Probable tRNA modification GTPase
148
trpA
2
N
Tryptophan synthase alpha chain
trxA
2
N
Thioredoxin 1
tufB
2
N
Elongation factor Tu
usg
2
E
Stabilizes phage lambda protein N-NusA-RNAP antitermination complex
yaeL*
2
E
Inner membrane zinc metalloprotease ecfE
yaeN
2
E
Putative cell cycle protein mesJ
ybeB
2
U
Hypothetical protein
ydaO
2
N
Hypothetical protein
ydhH
2
U
Hypothetical protein
yfgB
2
U
Hypothetical protein
yfgK*
2
U
GTP-binding protein
yfhQ
2
U
Hypothetical tRNA/rRNA methyltransferase
yfjB*
2
U
Probable inorganic polyphosphate/ATP-NAD kinase
ygcA
2
N
23S rRNA (Uracil-5-)-methyltransferase
ygfB
2
U
Hypothetical protein
yggW
2
U
Hypothetical protein
ygjD*
2
E
Probable O-sialoglycoprotein endopeptidase
yhbC
2
U
Hypothetical protein
yhbY
2
U
Putative RNA binding protein
yhbZ
2
E
Hypothetical GTP-binding protein
yhdG
2
U
tRNA-dihydrouridine synthase B
yihA
2
E
Probable GTP-binding protein
149
yjbN
2
U
tRNA-dihydrouridine synthase A
yleA
2
U
Hypothetical protein
yqcD
2
N
Hypothetical protein
yqgE
2
U
Hypothetical protein
yraO
2
U
Hypothetical protein
ytfM
2
U
Hypothetical protein
aroE
3
N
Shikimate dehydrogenase
atpB
3
N
ATP synthase a chain
atpE
3
N
ATP synthase C chain
atpF
3
N
ATP synthase B chain
bcr
3
N
Bicyclomycin resistance protein
clpP
3
N
ATP-dependent Clp protease proteolytic subunit
cmk
3
N
Cytidylate kinase
csrA
3
N
Carbon storage regulator
cydB
3
N
Cytochrome d ubiquinol oxidase subunit II
dapB
3
N
Dihydrodipicolinate reductase
dapF
3
N
Diaminopimelate epimerase
dksA
3
N
DnaK suppressor protein
dnaN
3
E
DNA polymerase III, beta chain
dsbC
3
N
Thiol:disulfide interchange protein
eda
3
N
KHG/KDPG aldolase
fmt
3
E
Methionyl-tRNA formyltransferase
150
folE
3
N
GTP cyclohydrolase I
gltA
3
N
Citrate synthase
guaA
3
N
GMP synthase [glutamine-hydrolyzing]
infA
3
E
Translation initiation factor IF-1
kdtA
3
E
3-deoxy-D-manno-octulosonic-acid transferase
lepA
3
N
GTP-binding protein
lipA
3
N
Lipoyl synthase
lpxK
3
U
Tetraacyldisaccharide 4'-kinase
mrdA
3
E
Penicillin-binding protein 2
murD
3
E
UDP-N-acetylmuramoylalanine--D-glutamate ligase
parE
3
E
Topoisomerase IV subunit B
pcnB
3
N
Poly(A) polymerase
pgi
3
N
Glucose-6-phosphate isomerase
phoB
3
N
Phosphate regulon transcriptional regulatory protein
ppdD
3
N
Prepilin peptidase dependent protein D
recF
3
N
DNA replication and repair protein
relA
3
N
GTP pyrophosphokinase
rnhB
3
N
Ribonuclease HII
rpmF
3
E
50S ribosomal protein L32
ruvB
3
N
Holliday junction DNA helicase
ruvC
3
N
Crossover junction endodeoxyribonuclease
sdhA
3
N
Succinate dehydrogenase flavoprotein subunit
151
sdhB
3
N
Succinate dehydrogenase iron-sulfur protein
tgt
3
N
Queuine tRNA-ribosyltransferase
ubiE
3
U
Ubiquinone/menaquinone biosynthesis methyltransferase
upp
3
N
Uracil phosphoribosyltransferase
ybeZ
3
U
PhoH-like protein
ydhD
3
U
Probable monothiol glutaredoxin
ydjA
3
N
Hypothetical protein
yfcH
3
N
Hypothetical protein
yggH
3
U
tRNA (guanine-N(7)-)-methyltransferase
yggJ
3
U
Hypothetical protein
yggR
3
U
Hypothetical protein
yrbF
3
U
Hypothetical ABC transporter ATP-binding protein
aarF
4
N
Probable ubiquinone biosynthesis protein
accA
4
E
Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha
accB
4
E
Biotin carboxyl carrier protein of acetyl-CoA carboxylase
accC
4
E
Biotin carboxylase
aceE
4
N
Pyruvate dehydrogenase E1 component
acpP
4
E
Acyl carrier protein
ahpC
4
N
Alkyl hydroperoxide reductase subunit C
alaS
4
E
Alanyl-tRNA synthetase
apbE
4
U
Thiamine biosynthesis lipoprotein
apt
4
N
Adenine phosphoribosyltransferase
152
atpA
4
N
ATP synthase alpha chain
atpD
4
N
ATP synthase beta chain
atpH
4
N
ATP synthase delta chain
bioD
4
N
Dethiobiotin synthetase
birA
4
N
Biotin-[acetyl-CoA carboxylase] holoenzyme synthetase and repressor
cca
4
N
tRNA nucleotidyltransferase
clpX
4
N
ATP-dependent Clp protease ATP-binding subunit
cutE
4
E
Apolipoprotein N-acyltransferase
cysB
4
N
HTH-type transcriptional regulator
dapA
4
N
Dihydrodipicolinate synthase
dapE
4
N
Succinyl-diaminopimelate desuccinylase
deaD
4
N
Cold-shock DEAD-box protein A
dgkA
4
N
Diacylglycerol kinase
dnaB
4
E
Replicative DNA helicase
dnaG
4
E
DNA primase
dnaJ
4
N
Chaperone
dnaK
4
N
Chaperone
dnaQ
4
N
DNA polymerase III, epsilon chain
dnaX
4
E
DNA polymerase III subunit tau
fabA
4
E
3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase
fabG
4
E
3-oxoacyl-[acyl-carrier-protein] reductase
fabZ
4
E
(3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase
153
ffh
4
E
Signal recognition particle protein
fis
4
N
DNA-binding protein
folA
4
N
Dihydrofolate reductase
ftsA
4
E
Cell division protein
ftsE
4
E
Cell division ATP-binding protein
ftsW
4
E
Cell division protein
ftsZ*
4
E
Cell division protein
fumC
4
N
Fumarate hydratase class II
fusA
4
E
Elongation factor G
galE
4
N
UDP-glucose 4-epimerase
galU
4
N
UTP--glucose-1-phosphate uridylyltransferase
gcpE
4
E
4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase
gcvA
4
N
Glycine cleavage system transcriptional activator
gidA
4
N
Glucose inhibited division protein A
glmM
4
E
Phosphoglucosamine mutase
glmU
4
E
Bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-P uridyltransferase
glnA
4
N
Glutamine synthetase
gloA
4
N
Lactoylglutathione lyase
gloB
4
U
Probable hydroxyacylglutathione hydrolase
greA
4
N
Transcription elongation factor
groL
4
E
60 kDa chaperonin
grpE
4
E
Hsp 24 DnaK nucleotide exchange factor
154
gshB
4
N
Glutathione synthetase
guaB
4
N
Inosine-5'-monophosphate dehydrogenase
hemC
4
U
Porphobilinogen deaminase
hemK
4
N
Protein methyltransferase hemK
hflC
4
N
HflA complex cleaves lambda cII
hflX
4
N
GTP-binding protein
hisD
4
N
Histidinol dehydrogenase
hisS
4
E
Histidyl-tRNA synthetase
htpX
4
N
Probable protease
ispA
4
E
Geranyltranstransferase
ispB
4
N
Octaprenyl-diphosphate synthase
kdsA
4
E
2-dehydro-3-deoxyphosphooctonate aldolase
kdtB
4
E
Phosphopantetheine adenylyltransferase
lexA
4
N
LexA repressor
lgt
4
E
Prolipoprotein diacylglyceryl transferase
lolA
4
E
Outer-membrane lipoprotein carrier protein
lpd
4
N
Dihydrolipoyl dehydrogenase
lpxB
4
E
Lipid-A-disaccharide synthase
lpxD
4
E
UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase
lspA
4
E
Lipoprotein signal peptidase
lytB
4
E
4-hydroxy-3-methylbut-2-enyl diphosphate reductase
menG
4
U
Regulator of ribonuclease activity A
155
metB
4
N
Cystathionine gamma-synthase
metG
4
N
Methionyl-tRNA synthetase
mfd
4
N
Transcription-repair coupling factor
minD
4
N
Septum site-determining protein
mraY
4
E
Phospho-N-acetylmuramoyl-pentapeptide-transferase
mrcA
4
N
Penicillin-binding protein 1A
mrcB
4
N
Penicillin-binding protein 1B
mrdB
4
E
Rod shape-determining protein
mreB
4
N
Rod shape-determining protein
mreD
4
N
Rod shape-determining protein
murA
4
E
UDP-N-acetylglucosamine 1-carboxyvinyltransferase
murC
4
E
UDP-N-acetylmuramate--L-alanine ligase
murG
4
E
UDP-N-acetylglucosamine--N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase
murI
4
E
Glutamate racemase
mutS
4
N
DNA mismatch repair protein
mviN
4
U
Virulence factor mviN homolog
nth
4
N
Endonuclease III
nusB
4
E
N utilization substance protein B
nusG
4
E
Transcription antitermination protein nusG
pabA
4
N
Para-aminobenzoate synthase glutamine amidotransferase component II
pal
4
N
Peptidoglycan-associated lipoprotein
panC
4
N
Pantoate--beta-alanine ligase
156
pdxA
4
N
4-hydroxythreonine-4-phosphate dehydrogenase
pdxH
4
N
Pyridoxamine 5'-phosphate oxidase
pheS
4
E
Phenylalanyl-tRNA synthetase alpha chain
pheT
4
E
Phenylalanyl-tRNA synthetase beta chain
plsB
4
E
Glycerol-3-phosphate acyltransferase
pnp
4
N
Polyribonucleotide nucleotidyltransferase
priA
4
N
Primosomal protein N'
prs
4
E
Ribose-phosphate pyrophosphokinase
purB
4
N
Adenylosuccinate lyase
purH
4
N
Bifunctional purine biosynthesis protein
pyrF
4
N
Orotidine 5'-phosphate decarboxylase
pyrG
4
U
CTP synthase
rbfA
4
N
Ribosome-binding factor A
recC
4
N
Exodeoxyribonuclease V gamma chain
recN
4
N
DNA repair protein
recO
4
N
DNA repair protein
recQ
4
N
ATP-dependent DNA helicase
recR
4
N
Recombination protein
ribE
4
N
6,7-dimethyl-8-ribityllumazine synthase
ribF
4
N
Riboflavin biosynthesis protein
rnd
4
N
Ribonuclease D
rnt
4
N
Ribonuclease T
157
rplA
4
E
50S ribosomal protein L1
rplE
4
E
50S ribosomal protein L5
rplK
4
E
50S ribosomal protein L11
rplL
4
E
50S ribosomal protein L7/L12
rplO
4
E
50S ribosomal protein L15
rplQ
4
E
50S ribosomal protein L17
rplV
4
E
50S ribosomal protein L22
rplX
4
E
50S ribosomal protein L24
rpmC
4
E
50S ribosomal protein L29
rpmD
4
E
50S ribosomal protein L30
rpmE
4
E
50S ribosomal protein L31
rpmJ
4
E
50S ribosomal protein L36
rpoA
4
E
DNA-directed RNA polymerase alpha chain
rpoC
4
E
DNA-directed RNA polymerase beta' chain
rpoD*
4
E
RNA polymerase sigma factor
rpsD
4
E
30S ribosomal protein S4
rpsG
4
E
30S ribosomal protein S7
rpsH
4
E
30S ribosomal protein S8
ruvA
4
N
Holliday junction DNA helicase
sbcB
4
N
Exodeoxyribonuclease I
secA
4
E
Preprotein translocase secA subunit
secF
4
N
Protein-export membrane protein
158
secY
4
E
Preprotein translocase secY subunit
slyX
4
N
Protein slyX
sohB
4
N
Possible protease
ssb
4
E
Single-strand binding protein
sucC
4
N
Succinyl-CoA synthetase beta chain
surE
4
N
Acid phosphatase
tatC
4
U
Sec-independent protein translocase protein tatC
thiL
4
U
Thiamine-monophosphate kinase
thrS
4
E
Threonyl-tRNA synthetase
thyA
4
N
Thymidylate synthase
tmk
4
E
Thymidylate kinase
tolQ
4
N
TolQ protein
tolR
4
N
TolR protein
trmU
4
E
tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase
trpB
4
N
Tryptophan synthase beta chain
truA
4
N
tRNA pseudouridine synthase A
tsf
4
U
Elongation factor Ts
typA
4
U
GTP-binding protein
tyrS
4
E
Tyrosyl-tRNA synthetase
ubiA
4
N
4-hydroxybenzoate octaprenyltransferase
ubiG
4
N
3-demethylubiquinone-9 3-methyltransferase
ubiH
4
N
2-octaprenyl-6-methoxyphenol hydroxylase
159
uvrA
4
N
UvrABC system protein A
uvrD
4
N
DNA helicase II
visC
4
N
FAD-dependent oxidoreductase
xseA
4
N
Exodeoxyribonuclease VII large subunit
xseB
4
N
Exodeoxyribonuclease VII small subunit
yabC
4
U
S-adenosyl-methyltransferase
yacE
4
E
Dephospho-CoA kinase
yadF
4
E
Carbonic anhydrase 2
yadH
4
N
Hypothetical transport permease
yadR
4
U
Hypothetical protein
yaeS
4
E
Undecaprenyl pyrophosphate synthetase
yaeT
4
U
Unknown protein from 2D-page spots M62/M63/O3/O9/T35
yaiD
4
U
Recombination associated protein
yajC
4
N
Hypothetical protein
ybaV
4
U
Hypothetical protein
ybbF
4
E
UDP-2,3-diacylglucosamine hydrolase
ybeA
4
U
Hypothetical protein
ybeX
4
U
Magnesium and cobalt efflux protein
ybgC
4
N
Hypothetical protein
ycbY
4
U
Hypothetical protein
yceG
4
U
Hypothetical protein
ycfC
4
E
Hypothetical protein
160
ycfH
4
U
Putative deoxyribonuclease
ycfO
4
U
Beta-hexosaminidase
ycfV
4
E
Lipoprotein releasing system ATP-binding protein
ycfW
4
E
Lipoprotein releasing system transmembrane protein
ychB
4
E
4-diphosphocytidyl-2-C-methyl-D-erythritol kinase
ychF
4
N
GTP-dependent nucleic acid-binding protein
yciA
4
N
Putative acyl-CoA thioester hydrolase
yciO
4
N
Hypothetical protein
yebC
4
U
Hypothetical protein
yfcB
4
U
Hypothetical adenine-specific methylase
yfgM
4
U
Hypothetical protein
yfgO
4
N
Putative permease
yfhC
4
U
Hypothetical protein
yfhO
4
U
Cysteine desulfurase
yfiO
4
U
Hypothetical lipoprotein
ygbB
4
E
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
ygbP
4
E
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase
ygbQ
4
E
Cell division protein
ygdL
4
N
Hypothetical protein
ygdP
4
U
(Di)nucleoside polyphosphate hydrolase
ygfY
4
U
Hypothetical protein
yhbG
4
U
Probable ABC transporter ATP-binding protein
161
yhbJ
4
U
Hypothetical protein
yheS
4
U
Hypothetical ABC transporter ATP-binding protein
yhgF
4
N
Hypothetical protein
yhhF
4
U
Putative methylase
yhiN
4
U
Hypothetical protein
yicC
4
U
Hypothetical protein
yihZ
4
U
D-tyrosyl-tRNA(Tyr) deacylase
yjeQ
4
E
Probable GTPase
yjfH
4
U
23S rRNA (guanosine-2'-O-)-methyltransferase
yjgA
4
N
Hypothetical protein
yjgF
4
U
Hypothetical protein
yjgP
4
U
Hypothetical protein
yjgQ
4
U
Hypothetical protein
yjjK
4
N
ABC transporter ATP-binding protein
yqgF
4
E
Putative Holliday junction resolvase
yraN
4
U
Hypothetical protein
yrbA
4
U
Hypothetical protein
yrbH
4
U
Arabinose 5-phosphate isomerase
yrbI
4
E
3-deoxy-D-manno-octulosonate 8-phosphate phosphatase
yrfH
4
U
Heat shock protein 15
#
*: Essentiality based on PEC, E:essential; N :non-essential; U: unknown.
:The localization results of these gene products are previous published by our lab (29).
1:No clones on selective plates. 2: Located successfully. 3: Labelling successfully but no fluorescence signal. 4: Can not be tagged or located suceessfully by
other reasons, like targetting cassette producing PCR failure, etc.
162
Appendix 3 Primers used in the study of protein localization of E. coli
Name of oligo
length of oligo (bases)
Seuqnece of oligo (5' to 3')
aarF-EGFP-Sense
87
TTAATGGCAGGTGGTCTGATCGCCTGGTTTGTCGGTTGGCGCAAAACACGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
aarF-EGFP-AntiSense
72
ACAAAGCCGCATTATACGTTACACGGCCCGCCTTGAGCGATGAAAAAATCATAGTGAACCTCTTCGAGGGAC
aarF Sense Primer
20
TATTTTCTCGGAATTGGCGC
aarF Antisense Primer
26
AATAACTGCCAAATACTGATACCACC
abC-EGFP-Sense
87
ATTGCCTGGCTGCAGGAACACCATGTAAAAGTAGAGGTACTGGGTTATGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
abC-EGFP-AntiSense
72
ATTGCCAGCGTTTCCCATACGCCACGAACCAGCAGCCACATCATCGGCTCATAGTGAACCTCTTCGAGGGAC
abC Sense Primer
20
CGGCATCATGCTGACTGAAA
abC Antisense Primer
22
ACAAAGCCAAAAAAACCGGATA
accA-EGFP-Sense
87
GAAGATTTAAAAAATCGTCGTTATCAGCGCCTGATGAGCTACGGTTACGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
accA-EGFP-AntiSense
72
CGATAAAAAAGGGCCACCGAAGTGACCCTTTTTCAGAACTTTTGCGAATTATAGTGAACCTCTTCGAGGGAC
accA Sense Primer
19
TCGTTGAAAGCGCAACTGC
accA Antisense Primer
24
TCCTTCCTTAATCATAGCCTGCTC
accB-EGFP-Sense
87
GTCGAAAGTGGACAACCGGTAGAATTTGACGAGCCGCTGGTCGTCATCGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
accB-EGFP-AntiSense
72
ATCTCGCCGCGGTTGGCAATAACAATTTTATCCAGCATGTTCGCCTCGTTATAGTGAACCTCTTCGAGGGAC
accB Sense Primer
20
CCAGATCGAAGCGGACAAAT
accB Antisense Primer
24
TTCTTTACAGGCACGAAGAATACG
accC-EGFP-Sense
87
GGTGGCACTAACATCCACTATCTGGAGAAAAAACTCGGTCTTCAGGAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
accC-EGFP-AntiSense
72
AGTAATAAAAAAGGCCGGAAAATCCGGCCTTTTGACGCTTTAGCAGTCTTATAGTGAACCTCTTCGAGGGAC
accC Sense Primer
20
CCGCATCATGAATGACGAGA
accC Antisense Primer
21
AGCGGGGATTGTACCTTATGG
accD-EGFP-Sense
87
CCGCGTGAAGGCGTAGTGGTACCCCCGGTACCGGATCAGGAACCTGAGGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
accD-EGFP-AntiSense
72
GTGAGAATAGCAAAAGGGCAGAGCCAGTGGCCCTGCCCTTATCAGTTATCATAGTGAACCTCTTCGAGGGAC
accD Sense Primer
19
CCAGCGCAGTGAATTCCTG
accD Antisense Primer
24
TGATAATCATGGTATCCGCTGATT
aceE-EGFP-Sense
87
GCAATCGCCAAATTCAACATCGATGCAGATAAAGTTAACCCGCGTCTGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
163
aceE-EGFP-AntiSense
72
CCCCGATGTCCGGTACTTTGATTTCGATAGCCATTATTCTTTTACCTCTTATAGTGAACCTCTTCGAGGGAC
aceE Sense Primer
24
AATCGATAAGAAAGTGGTTGCTGA
aceE Antisense Primer
23
GGATCTCGGTGATTTCAACTTCA
aceF-EGFP-Sense
87
TTCATTACCATCATTAACAACACGCTGTCTGACATTCGCCGTCTGGTGATGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
aceF-EGFP-AntiSense
72
TTCATGAGATTACCAGAAAAAAGCCGGCCGTTGGGCCGGCTCTTTTACTTATAGTGAACCTCTTCGAGGGAC
aceF Sense Primer
19
TGATCGACGGTGCTGATGG
aceFAntisense Primer
22
AACGGCAACCGATTTGTCTATT
acpP-EGFP-Sense
87
AAAATCACCACCGTTCAGGCTGCCATTGATTACATCAACGGCCACCAGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
acpP-EGFP-AntiSense
72
CAAAAAGATAAAACTCAGGCGGTCGAACGACCGCCTGGAGATGTTCACTTATAGTGAACCTCTTCGAGGGAC
acpP Sense Primer
23
GATACTGAGATTCCGGACGAAGA
acpP Antisense Primer
24
CAGGGAGGGAAAAAATGATTCTAG
ahpC-EGFP-Sense
87
AAAGAAGGTGAAGCAACTCTGGCTCCGTCTCTGGACCTGGTTGGTAAAATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ahpC EGFP-Antisense
72
GTGAGCGGGCGACGCCAACGCCGCTATGGCGTGAAAGACGAAGGAAATTTATAGTGAACCTCTTCGAGGGAC
ahpC Sense Primer
19
GCGTCTGACCTGCTGCGTA
ahpC Antisense Primer
23
GAAGTATTTCGCGTCAGAGCAAG
alaS-EGFP-Sense
87
TTACCTGCAGCGTTAGCCAGTGTGAAAGGCTGGGTCAGCGCGAAATTGCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
alaS-EGFP-AntiSense
72
TAATGCGAATGCCGTGAAGCGAGTCCACGGCATTGCCTGACGCTTATATTATAGTGAACCTCTTCGAGGGAC
alaS Sense Primer
20
GGTGGTGGACGTCCTGACAT
alaS Antisense Primer
24
CTGACTTTATCGTTGTCGATAGCG
apaH-EGFP-Sense
87
TTTGTCCAGCCGTCGAACCGGCATAAGGATTTGGGCGAAGCGGCGGCGTCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
apaH-EGFP-AntiSense
72
TGCGACGCCGGTCGCGTCTTATCCGGCCTTCCTATATCAGGCTGTGTTTATAGTGAACCTCTTCGAGGGAC
apaH Sense Primer
21
CTGCGCTGGGAAGATAAACAG
apaH Antisense Primer
21
TAGAATTTACGGCTAGCGCCG
apbE-EGFP-Sense
87
AAAACCTGGATGTCACCACAGTTTAAAAGCTTCCTTGTCAGCGAAAAAAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
apbE-EGFP-AntiSense
72
CTTTAGGCTGCCCGGTCACCATCACGCAAAAACCAACAATCTTGCGCTTTATAGTGAACCTCTTCGAGGGAC
apbE Sense Primer
24
GCGGTTTATATGATCACCAAAGAA
apbE Antisense Primer
23
CATAATCAGCTCCCTGGTTAAGG
apT-EGFP-Sense
87
CTCGAAAAACAGGGCATTACCAGCTACAGCCTTGTCCCGTTCCCGGGCCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
164
apT-EGFP-AntiSense
72
GCACATCTTGTGCTGTCCGTAGCGTGGGCAGCACAAGACTGGCGATAATTATAGTGAACCTCTTCGAGGGAC
apT Sense Primer
23
GCTGCGTTCATTATCAACCTGTT
apT Antisense Primer
21
GGATTCACGAAGGGGTAATGC
aroB-EGFP-Sense
87
GGCGTTTCGCACGAGCTTGTTCTTAACGCCATTGCCGATTGTCAATCAGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
aroB-EGFP-AntiSense
72
ACCTGAAGCTAATAGACCGCTTGATAAGCGGCCTGACCTTTCTTGTTGTTATAGTGAACCTCTTCGAGGGAC
aroB Sense Primer
20
ATTCTTCCGTTGGCAATTGG
aroB Antisense Primer
23
AAGGTTAATGCTTACCACGTTGC
aroC-EGFP-Sense
87
TTACGGCAACGGGCGCAAAATGCCGATGTGAAGACTGATATTCCACGCTGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
aroC-EGFP-AntiSense
72
GCTACTGGCAAGCAGAGCCAGCAGCGCAATCGCGGTTTTATTCATTTTTTATAGTGAACCTCTTCGAGGGAC
aroC Sense Primer
19
GATCGCAGAAGCGATGCTG
aroC Antisense Primer
20
CGGCACAGGTTGGGTTATTT
aroE-EGFP-Sense
87
CTGCCTGACGTAGAACCAGTTATAAAGCAATTGCAGGAGGAATTGTCCGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
aroE-EGFP-AntiSense
72
TTTTATTCTCGTCCCACTCTTCCCTGTCCGGAAACTGGATGGCCTGATTCATAGTGAACCTCTTCGAGGGAC
aroE Sense Primer
22
CTTTCTTCTCTGGCACGGTGTT
aroE Antisense Primer
21
TCACGAGAGCGGGAAAACATA
aroK-EGFP-Sense
87
CAAAGCGCTAAAGTGGTTGCAAACCAGATTATTCACATGCTGGAAAGCAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
aroK-EGFP-AntiSense
72
ATCCACCTTAATTACTGTACCCGCAGACGAGTGTATATAAAGCCAGAATTATAGTGAACCTCTTCGAGGGAC
aroK Sense Primer
19
GAGATTGCCGACGTGACCA
aroK Antisense Primer
22
ACGACAATCCTCTCCATAACGC
aspS-EGFP-Sense
87
ACTGCACTGGCTGAGCTGAGCATTCAGGTTGTGAAGAAGGCTGAGAATAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
aspS-EGFP-AntiSense
72
AGTTGCCGCCTCGATGCAACGCGAATGATTTCGTGTATTTGAGTCATATCATAGTGAACCTCTTCGAGGGAC
aspS Sense Primer
20
ACTGAAGCACCGAGCTTTGC
aspS Antisense Primer
20
CCTTCGCTCATCCCATTCAC
atpA-EGFP-Sense
87
GAAGGCAAGCTGAAAGGCATCCTCGATTCCTTCAAAGCAACCCAATCCTGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
atpA-EGFP-AntiSense
72
GCTTCTCCTCAATGCCTTGCGGCCTGCCCTAAGGCAAGCCGCCAGACGTTATAGTGAACCTCTTCGAGGGAC
atpA Sense Primer
20
AGACCGGTGGCTACAACGAC
atpA Antisense Primer
21
CTACGTATCTCTTTTGCGCCG
atpB-EGFP-Sense
87
ATCTTCATGGTTCTGACGATCGTCTATCTGTCGATGGCGTCTGAAGAACATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
165
atpB-EGFP-AntiSense
72
ATGACAGTCTCCAGTTTGTTTCAGTTAAAACGTAGTAGTGTTGGTAAATTATAGTGAACCTCTTCGAGGGAC
atpB Sense Primer
22
TTCCACATCCTGATCATTACGC
atpB Antisense Primer
26
ATGTACAGCAGATCCATATTCAGGTT
atpC-EGFP-Sense
87
GCCAAAGCGATCGCGCAGCTGCGCGTTATCGAGTTGACCAAAAAAGCGATGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
atpC-EGFP-AntiSense
72
AAAAGCCAGCCTGTTTCCAGACTGGCTTTTGTGCTTTTCAAGCCGGTGTTATAGTGAACCTCTTCGAGGGAC
atpC Sense Primer
21
CGTAGATTACGCTCAGGCGTC
atpC Antisense Primer
20
CGCTATTCAGGACGGGTCAC
atpD-EGFP-Sense
87
TTCTACATGGTCGGTTCCATCGAAGAAGCTGTGGAAAAAGCCAAAAAACTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
atpD-EGFP-AntiSense
72
CGACGTCCAGGTGGTAAGTCATTGCCATATCACCCTCCGATTAAGGCGTTATAGTGAACCTCTTCGAGGGAC
atpD Sense Primer
18
GGCATCATGGAAGGCGAA
atpD Antisense Primer
21
GAACATTTGTTGCTCTGCGCT
atpE-EGFP-Sense
87
ATCCCGATGATCGCTGTAGGTCTGGGTCTGTACGTGATGTTCGCTGTCGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
atpE-EGFP-AntiSense
72
TATTTAGTTAACGTTCTGATATTGCTCTTTAAATAAAAGCAACGCTTACTATAGTGAACCTCTTCGAGGGAC
atpE Sense Primer
24
TTCTTTATCGTTATGGGTCTGGTG
atpE Antisense Primer
23
GTTGCGTTAAGATTCACAGCACA
atpF-EGFP-Sense
87
GTGGATGAAGCTGCTAACAGCGACATCGTGGATAAACTTGTCGCTGAACTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
atpF-EGFP-AntiSense
72
CGTAGGGGCGAGCTACCGTAATAAATTCAGACATCAGCCCCTCCCTCCTTATAGTGAACCTCTTCGAGGGAC
atpF Sense Primer
22
CAAGTTGCTATCCTGGCTGTTG
atpF Antisense Primer
20
ACGGCAAAGTCAAAAGCTGC
atpG-EGFP-Sense
87
GCCAGCATTACTCAGGAACTCACCGAGATCGTCTCGGGGGCCGCCGCGGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
atpG-EGFP-AntiSense
72
GGACAATCTTTCCAGTAGCCATCTTAAATCCTCTACGAAATAACCTGTTTATAGTGAACCTCTTCGAGGGAC
atpG Sense Primer
24
GCAGTTGGTATACAACAAAGCTCG
atpG Antisense Primer
19
TTCGACGTCAACTACGGCG
atpH-EGFP-Sense
87
GATGGCAGCGTACGCGGTCGTCTTGAGCGCCTTGCAGACGTCTTGCAGTCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
atpH-EGFP-AntiSense
72
GATCAGTTCGCTGATTTCGGTGGAATTCAGTTGCATGCTCCAGTCCCCTTATAGTGAACCTCTTCGAGGGAC
atpH Sense Primer
23
ATAAGTCTGTAATGGCAGGCGTT
atpH Antisense Primer
23
CACAACATTGAACTGAGCAATGC
bcP-EGFP-Sense
87
AAAACCAGCAATCACCACGACGTTGTGCTGAACTGGCTGAAAGAACACGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
166
bcP-EGFP-AntiSense
72
GAGGTATGCTGGCCGCAAGCGCAGCCAGCACGGAATGGAGCAAAGTAATCATAGTGAACCTCTTCGAGGGAC
bcP Sense Primer
20
CTGATTGACGCTGATGGCAA
bcP Antisense Primer
20
AAATGGATTCGACACCCGTG
bcR-EGFP-Sense
87
GCAACCAGCTCCATTCTCTTCTGTCTGTACGCCAGTCGGCCGAAAAAACGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
bcR-EGFP-AntiSense
72
ACATGCATCAACAAAGGAAGCCTTTTAGCTTCCTCGTTGTGCAATAGATCATAGTGAACCTCTTCGAGGGAC
bcR Sense Primer
22
CGATGATTTGGTCAATTGCATT
bcR Antisense Primer
23
CCGTTTCTGCGATCTAACTCAAC
bioA-EGFP-Sense
87
CTGACCGCAGCGGTTAACCGCGCGGTACAGGATGAAACATTTTTTTGCCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
bioA-EGFP-AntiSense
72
TTCTTGTTTGCAGAAAGTGTAGCCAGAAACCCTCACGCGGACTTCTCGTTATAGTGAACCTCTTCGAGGGAC
bioA Sense Primer
21
CGCCCTATATTATTCTCCCGC
bioA Antisense Primer
23
CTGATGAGTTTCATGAACCCTCC
bioB-EGFP-Sense
87
CAGGCGCTGATGACCCCGGACACCGACGAATATTACAACGCGGCAGCATTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
bioB-EGFP-AntiSense
72
CGGCAGCACGCCGCGCATCGAGCGCCGCGTTGATTTTCTCCTGCCAGCTCATAGTGAACCTCTTCGAGGGAC
bioB Sense Primer
22
GGGGATAACGAACAACAGCAAC
bioB Antisense Primer
21
TCAGATACTGGCGATCATCCG
bioD-EGFP-Sense
87
GAAAATCCAGAAAATGCGGCAACCGGAAAGTACATAAACCTTGCCTTGTTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
bioD-EGFP-AntiSense
72
TCAATCGAAGACGCGATCTCGCTCGCAATTTAACCAAATACAGAATGGCTATAGTGAACCTCTTCGAGGGAC
bioD Sense Primer
22
CGCTGAATATATGACCACGCTC
bioD Antisense Primer
18
CCGCATGAGGCGGAAGTA
bioF-EGFP-Sense
87
CATGAAATGCAGGATATCGACCGTCTGCTGGAGGTGCTGCATGGCAACGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
bioF-EGFP-AntiSense
72
TCATAGTGTGCGGCTGCCCGACCAAATGCCGCTGCAATGGCTTGTTTATTATAGTGAACCTCTTCGAGGGAC
bioF Sense Primer
20
ACTGCGCTTAACGCTAACCG
bioF Antisense Primer
21
TCTGGCGCTGTAGATCTGCAT
birA-EGFP-Sense
87
ATAATAAAACCCTGGATGGGCGGTGAAATATCCCTGCGTAGTGCAGAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
birA-EGFP-AntiSense
72
AGGTCAGACTACGCAAATAATTTGCAGGGGAGCGAATACTCCCCTTTCTTATAGTGAACCTCTTCGAGGGAC
birA Sense Primer
20
CGCGGAATAGACAAACAGGG
birA Antisense Primer
21
CGAAAAGTGCTAATCATGCGG
bolA-EGFP-Sense
87
CAGGACACCGTCTTTGCCTCTCCTCCCTGTCGTGGAGCAGGAAGCATCGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
167
bolA-EGFP-AntiSense
72
AATCTTTAGCAACATACTGGAAAAGCGCCGACAGTTGCAAATGCGTTTTTATAGTGAACCTCTTCGAGGGAC
bolA Sense Primer
25
ACACTATTAAGGAGTGGGAAGGGTT
bolA Antisense Primer
21
AAAAAGCGCAAAATCCAGACA
cafA-EGFP-Sense
87
GTACAAATTGAACCGCTCTATAACCAGGAGCAGTTTGACGTCGTAATGATGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cafA-EGFP-AntiSense
72
AAAAATGTGACTCAAAAACCCTTTGCCGGATGGCGGCCCAGCATCTGTTTATAGTGAACCTCTTCGAGGGAC
cafA Sense Primer
21
TGGAAATTTTCGTTGGCAAAC
cafA Antisense Primer
21
TCACCCGTCACTCCTTGTCTG
carA-EGFP-Sense
87
TTGTTCGACCACTTTATCGAGTTAATTGAGCAGTACCGTAAAACCGCTAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
carA-EGFP-AntiSense
72
GGATACTTTTTATATCTGTACGTTTTGGCATGGCTCTTTTACTCCTGATTATAGTGAACCTCTTCGAGGGAC9
carA Sense Primer
21
ATAAACCGGCATTCAGCTTCC
carA Antisense Primer
20
CGCCTGACCGATAACAATCG
carB-EGFP-Sense
87
GATGCGACTGAAAAAGTAATTTCGGTGCAGGAAATGCACGCACAGATCAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
carB-EGFP-AntiSense
72
GTTATTCGATCAAATTAGCGGATGAAAAATATCTGCCATGACACGCTATTATAGTGAACCTCTTCGAGGGAC
carB Sense Primer
20
CGCAGTGCGCTGCAATATAA
carB Antisense Primer
21
ACGGTCCTCATCAGAGAACCG
ccA-EGFP-Sense
87
CGGATTGCGGCGGTAGCCAGCTGGAAGGAACAACGTTGCCCAAAGCCTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ccA-EGFP-AntiSense
72
TGTAGCCGGATAAGGCGTTTACGCCGCATCCGGCAAAATGCCCAATACTCATAGTGAACCTCTTCGAGGGAC
ccA Sense Primer
19
GTGGAGATTCGCGAGGAGC
ccA Antisense Primer
19
CGCTTGCGCGTCTTATCAG
ccmA-EGFP-Sense
87
GTTGCTGAAAGTAAAATTCGCCGCATTTCACTGACGCAAACGAGGGCCGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ccmA-EGFP-AntiSense
72
TATGGCGAAACGCTACACGCAGCTCAAGACGGAAAATGCGCCAGAACATCATAGTGAACCTCTTCGAGGGAC
ccmA Sense Primer
22
TGATTCTGACTACCCACCAGCC
ccmA Antisense Primer
22
ACAATCAGGAAGAACCACAGCG
ccmB-EGFP-Sense
87
GCGACATTAAGTCCTTTTGCGACGGCGGCAGCGTTACGAATCAGCATTCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ccmB-EGFP-AntiSense
72
TCCACATAGTTTCGATACCAGACTCGAACAAAAATCAGTAATCCAGCGTTATAGTGAACCTCTTCGAGGGAC
ccmB Sense Primer
22
GTTGACGGGTATCTGGCAATTT
ccmB Antisense Primer
20
GGATCGCCAGTTGATGCAGT
ccmC-EGFP-Sense
87
GAAAAACGCCGTCCGTGGGTGAGTGAACTGATACTGAAAAGAGGCCGTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
168
ccmC-EGFP-AntiSense
72
CGTAACCGCCCATTGCGAAAAATTCATTCCAGGAAGCAAATGCAGGGGTCATAGTGAACCTCTTCGAGGGAC
ccmC Sense Primer
21
TTTGGCTTCCTGCTCCTGTCT
ccmC Antisense Primer
19
ACCAAAACCACCAGCGGAA
ccmE-EGFP-Sense
87
ATGGAAGCTAACCACCGTCGCCCGGCGAGTGTTTATAAGGACCCAGCATCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ccmE-EGFP-AntiSense
72
GCGCAATTCCCAGCGCCAGGCACAGCAGTCCGTTACCAATTTCTGGCATCATAGTGAACCTCTTCGAGGGAC
ccmE Sense Primer
19
GCTGGCGAAACACGATGAA
ccmE Antisense Primer
21
ATAGCGGATACACGGACAGCA
ccmF-EGFP-Sense
87
CCTCGCTATCGTAAGCGCGTGAGTCCGCAAAAAACTGCGCCGGAGGCCGTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ccmF-EGFP-AntiSense
72
CGGCAATCGCCAGGAAGATAATCAACGGAATTAACAATACTTTGCGCTTCATAGTGAACCTCTTCGAGGGAC
ccmF Sense Primer
22
TACAAACCATTTGTTCGCTGGA
ccmF Antisense Primer
22
GATTCCAGATTGGTCGGATCAT
ccmG-EGFP-Sense
87
GAAGAAGAGATCAAGCCGCTGTGGGAGAAATACAGTAAGGAGGCCGCACAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ccmG-EGFP-AntiSense
72
CCAGCGCTGAGCCGGAGATCATCAGCATCAGCACGCCCAATAAAAACCTCATAGTGAACCTCTTCGAGGGAC
ccmG Sense Primer
20
GCAACGGCATCATTCGCTAT
ccmG Antisense Primer
22
AGCTGACGGAACTGTTGTTCCT
cdsA-EGFP-Sense
87
GCTGCGGTACCGGTCTTTGCTTGCTTGTTGTTACTGGTATTCAGGACGCTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cdsA-EGFP-AntiSense
72
CGATGAACGAAGCCAAATCCCAGAGAAAACTCAGCATATTACCTTCCGTTATAGTGAACCTCTTCGAGGGAC
cdsA Sense Primer
21
GCAGGAATTAAGGACAGCGGT
cdsA Antisense Primer
21
ACCAAATTCATGCACGGTGAT
clpB-EGFP-Sense
87
GGTAAAGTGATTCGCCTGGAAGTTAATGAAGACCGGATTGTCGCCGTCCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
clpB-EGFP-AntiSense
72
CGTCTAACTTATAGACAAAAACGAGCCCCGAAGGGCTCGTTTTATCATTTATAGTGAACCTCTTCGAGGGAC
clpB Sense Primer
22
TGGCACAGCAAATACTGTCTGG
clpB Antisense Primer
24
GTGGCGCATTATAGGGAGTTATTC
clpP-EGFP-Sense
87
CCTGAAGCGGTGGAATACGGTCTGGTCGATTCGATTCTGACCCATCGTAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
clpP-EGFP-AntiSense
72
CGTTGTGCCGCCCTGGATAAGTATAGCGGCACAGTTGCGCCTCTGGCATCATAGTGAACCTCTTCGAGGGAC
clpP Sense Primer
20
TTATGGCGCTTCATACGGGT
clpP Antisense Primer
21
CTTCTTTGTTCTTTGTGCCGC
clpX-EGFP-Sense
87
AAACCGTTGCTGATTTATGGCAAGCCGGAAGCGCAACAGGCATCTGGTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
169
clpX-EGFP-AntiSense
72
AGATAAAATCCCCCCTTTTTGGTTAACTAATTGTATGGGAATGGTTAATTATAGTGAACCTCTTCGAGGGAC
clpX Sense Primer
21
ATGTACGATCTGCCGTCCATG
clpX Antisense Primer
22
CAACGCCGAGAATAGAGGAAAA
cmK-EGFP-Sense
87
CAAGTGATTGAAAAAGCGCTACAATACGCGCGCCAGAAATTGGCTCTCGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cmK-EGFP-AntiSense
72
ATACCCGCTGTCATTCCATTGCAACGGGGGTACTGCAAATTCGGTCGCTTATAGTGAACCTCTTCGAGGGAC
cmK Sense Primer
23
AGTGTTGGATTCCACCACCTTAA
cmK Antisense Primer
19
AACGTCCACCTGGCTCCAT
crcB-EGFP-Sense
87
TTTGCCATGACCGCACTGGCATTCTGGCTGTTTTCGGCCTCAACCGCACACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
crcB-EGFP-AntiSense
72
GTCAGCAAGAATTCAAAACCCGCTTAATCAGCGGGTTTTTTTTGGTCTTTATAGTGAACCTCTTCGAGGGAC
crcB Sense Primer
23
CTGAACGTTTTCGTCAACCTTCT
crcB Antisense Primer
20
TGCTGCAAACGTAATCGCTC
csrA-EGFP-Sense
87
GAAGAGATCTACCAGCGTATCCAGGCTGAAAAATCCCAGCAGTCCAGTTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
csrA-EGFP-AntiSense
72
AGAAATTTTGAGGGTGCGTCTCACCGATAAAGATGAGACGCGGAAAGATTATAGTGAACCTCTTCGAGGGAC
csrA Sense Primer
22
CCCGAAGGAAGTTTCTGTTCAC
csrA Antisense Primer
22
TTGAATGAACGGGAGTAAAGCG
cutE-EGFP-Sense
87
GCATTGTTTGGTTTTGCTGCTGTGTTGATGAGTCTGCGTCAGCGACGTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cutE-EGFP-AntiSense
72
GGTGAGCGTGCCGAAATATGGGATGTATTCCGGCACGATAAGAAGGGATTATAGTGAACCTCTTCGAGGGAC
cutE Sense Primer
24
GAGGTGTTAACCACTAACGTGACG
cutE Antisense Primer
22
TATCCGGATAATGCACTGATGC
cydA-EGFP-Sense
87
ACCGGTCGCTATCACTTTGAGCAGTCTTCCACGACTACTCAGCCGGCACGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cydA-EGFP-AntiSense
72
CCAGATAAAACGCAATACTTCATAATCGATCATTTGACGACTCCTGTCTTATAGTGAACCTCTTCGAGGGAC
cydA Sense Primer
22
TTAATGTTCAAGTTTGCACGCC
cydA Antisense Primer
19
TCAGCAGAACGCCAACCAG
cydB-EGFP-Sense
87
TTCGGTCGTATCACCAAAGAAGATATTGAACGTAACACCCACTCTCTGTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cydB-EGFP-AntiSense
72
GAAGCGTTCCCAGAATCCATGCGAAATACCACATTTTTAGCTCCTTACTTATAGTGAACCTCTTCGAGGGAC
cydB Sense Primer
23
GTTCTGGTACCGATCATTCTGCT
cydB Antisense Primer
20
CGGTGATTACCCCAAACGAA
cysB-EGFP-Sense
87
TCTAATGAAGAAATTGAGGTCATGTTTAAAGATATAAAACTGCCGGAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
170
cysB-EGFP-AntiSense
72
ATTCCGGCACCTTCGCTACATAAAAGGTGCCGAAAATAACGCAAGAAATTATAGTGAACCTCTTCGAGGGAC
cysB Sense Primer
20
GCATTTAACGCGTGATGTCG
cysB Antisense Primer
24
CGAGGCGGGTAATTAGACACTACT
cysK-EGFP-Sense
87
TTAAGCACCGCATTGTTTGCCGATCTCTTCACTGAGAAAGAATTGCAACAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cysK-EGFP-AntiSense
72
AAAAGCACCTAAAAAGGTGCTTTTTTACGCATTTTTAACAAGCTGGCATTATAGTGAACCTCTTCGAGGGAC
cysK Sense Primer
24
GTGGTTATTCTACCATCATCGGGT
cysK Antisense Primer
20
GGAGGGGCGAAAGTTTGAAG
cysQ-EGFP-Sense
87
TACACTCCGCGTGAGTCGTTCCTGAATCCGGGGTTCAGAGTGTCTATTTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cysQ-EGFP-AntiSense
72
AAATCAGGATGGCAGAATCAGGAAATACACTGTTTCTGCCATCTGAATTTATAGTGAACCTCTTCGAGGGAC
cysQ Sense Primer
21
TTCACGACTGGCAGGGTAAAC
cysQ Antisense Primer
25
TTTGGTTACTTTATGTCGCCATTAA
cysS-EGFP-Sense
87
ATGGGGATCGTGCTGGAAGATGGCCCGCAAGGGACCACCTGGCGTCGTAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
cysS-EGFP-AntiSense
72
GCGCAGACGATAACCGGATGCGAAAACTCGCATCCGGCAATAGCGCAATTATAGTGAACCTCTTCGAGGGAC
cysS Sense Primer
21
AATTCAACAGCGTCTGGATGC
cysS Antisense Primer
23
GGATGCTACTGATGGGAATGTTG
dapA-EGFP-Sense
87
GACAGTGGTCGTGAGACGGTCAGAGCGGCGCTTAAGCATGCCGGTTTGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dapA-EGFP-AntiSense
72
GCCAGGCGCGACTTTTGAACAGAGTAAGCCATCAAATCTCCCTAAACTTTATAGTGAACCTCTTCGAGGGAC
dapA Sense Primer
22
GGTGAAATGGGCATGTAAGGAA
dapA Antisense Primer
22
AATAAAACAAGCGAAACACCCG
dapB-EGFP-Sense
87
AAGGAAAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dapB-EGFP-AntiSense
72
TCAATAAATTAAATGTGTTATTTTTGCACCATAACAAATATTTTGTGGTTATAGTGAACCTCTTCGAGGGAC
dapB Sense Primer
22
GGTAAGATCGGCTTTGTGGTTG
dapB Antisense Primer
21
AGGGCCAAAAATTAAAGCCCT
dapE-EGFP-Sense
87
CTGCAGCTACTTGCCCGTATGTATCAACGTATCATGGAACAGCTCGTCGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dapE-EGFP-AntiSense
72
ATATTTAGCCAGCCAGTCCATGCTTATTTCCTCTTGCAGAACCACTCATCATAGTGAACCTCTTCGAGGGAC
dapE Sense Primer
20
GCCGGTCAATGCCACTATTC
dapE Antisense Primer
24
CCTACCAAAAAGACAATCACCAGA
dapF-EGFP-Sense
87
TTATATATGACTGGCCCGGCGGTACATGTCTACGACGGATTTATTCATCTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
171
dapF-EGFP-AntiSense
72
GGTCATCAAGCTCCGTGAGTGTTTCCTGCAGTTCTTCCCCTGGTTGCTTCATAGTGAACCTCTTCGAGGGAC
dapF Sense Primer
22
TCTTGATATCGCCTGGAAAGGT
dapF Antisense Primer
22
AATCAGATAATCGACAACCGCC
deaD-EGFP-Sense
87
GCTCCGCGTCGTGATGATTCTACCGGTCGTCGTCGTTTCGGTGGTGATGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
deaD-EGFP-AntiSense
72
GGGGCTGTATATATTATTTTACAGATTGTGTTCGCTGTTCAGCGATGATTATAGTGAACCTCTTCGAGGGAC
deaD Sense Primer
19
TCGTTTTAGCGGCGAACGT
deaD Antisense Primer
22
AAAAAGCCCCGATGGTAAAAAT
deF-EGFP-Sense
87
CAACGTATTCGTCAGAAAGTTGAAAAACTGGATCGTCTGAAAGCCCGGGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
deF-EGFP-AntiSense
72
TACCCGCAAAAATAATACGTAGTGATTCTGACACGTTAGTTCTTATCCTTATAGTGAACCTCTTCGAGGGAC
deF Sense Primer
23
ATTCAGCATGAGATGGATCACCT
deFAntisense Primer
21
GCCAACGACGTTATGACCAGA
dfP-EGFP-Sense
87
CAATTATTACTCGACGAGATCGTGACCCGTTATGATGAAAAAAATCGACGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dfP-EGFP-AntiSense
72
GCATAAGTCGGGAGCGGAAATTCCTTCCCAACGCGCGGGTCCAGAATCTTATAGTGAACCTCTTCGAGGGAC
dfP Sense Primer
20
CTTGAGCGCAAAGAGCTCCT
dfP Antisense Primer
19
GAGACAGGCACGCAGGTCA
dgkA-EGFP-Sense
87
ATTATCGTCGCCGTGATTACCTGGTGCATTCTGTTATGGTCGCATTTTGGACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dgkA-EGFP-AntiSense
72
AACCATAAACTGCACAATAAACCAGAGATTTATCGAATTCTGGAAGGGTTATAGTGAACCTCTTCGAGGGAC
dgkA Sense Primer
21
AAAAGATATGGGATCCGCTGC
dgkA Antisense Primer
25
CTGTGAGTATATACAGCAAAAGGCG
dksA-EGFP-Sense
87
TGCATCGACTGCAAAACGCTGGCTGAAATTCGCGAAAAACAGATGGCTGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dksA-EGFP-AntiSense
72
AGGCGGGAGCATTTCCCGCCTGTGGTAAACGTGATGGAACGGCTGTAATTATAGTGAACCTCTTCGAGGGAC
dksA Sense Primer
21
ATTGGTATTCGCCGTCTGGAA
dksA Antisense Primer
20
GGCGAAGCGGCCAATATACT
dnaA-EGFP-Sense
87
AGCCACGATATCAAAGAAGATTTTTCAAATTTAATCAGAACATTGTCATCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dnaA-EGFP-AntiSense
72
TGTAGCGGTTTTAATAAATGCTCACGTTCTACGGTAAATTTCATAGGTTTATAGTGAACCTCTTCGAGGGAC
dnaA Sense Primer
21
AAGATCGAGCAGTTGCGTGAA
dnaA Antisense Primer
22
TACCGAGAATCGGTAGCGTAGG
dnaB-EGFP-Sense
87
GGTCAATGGTCGCGCTTCGACAACTATGCGGGGCCGCAGTACGACGACGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
172
dnaB-EGFP-AntiSense
72
GTTCCTTGATAAGTGTTTGCTTTAATTACCTAATTCATAAAATAATTATTATAGTGAACCTCTTCGAGGGAC
dnaB Sense Primer
21
GTAAACAACGTAACGGCCCAA
dnaB Antisense Primer
20
ACAACAGTTGCCGCTTGCAT
dnaE-EGFP-Sense
87
AACGATCTCCGTGGCCTCATTGGTTCGGAGCAGGTGGAACTGGAGTTTGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dnaE-EGFP-AntiSense
72
AATCGGCTGTTCAAAATCAAGGAAATTCAGACTCATAGTATTCCTGTATTATAGTGAACCTCTTCGAGGGAC
dnaE Sense Primer
21
TGTCTCTCCGAGCGATCGTTT
dnaE Antisense Primer
20
CGGCTAACCGCAGTCAGAGA
dnaG-EGFP-Sense
87
AACGAAGAACGCCTGGAGCTCTGGACATTAAACCAGGAGCTGGCGAAAAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dnaG-EGFP-AntiSense
72
CGGCTGTCGGGGGCTTCCCGATCGCTCTTCGGCACTTAAGCCGTTAAATCATAGTGAACCTCTTCGAGGGAC
dnaG Sense Primer
21
CGCCAGGAAGAGTTAATCGCT
dnaG Antisense Primer
22
ATATATTTGCCGCTGCCTCTCA
dnaJ-EGFP-Sense
87
TCAAAGAGCTTCTTTGATGGTGTGAAGAAGTTTTTTGACGACCTGACCCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dnaJ-EGFP-AntiSense
72
GCACCCTATTTTTACCCAGGCCTGCCCACGGGCAGGCTTTTGGGGAGGTTATAGTGAACCTCTTCGAGGGAC
dnaJ Sense Primer
21
TGCAAGAGCTGCAAGAAAGCT
dnaJ Antisense Primer
25
ACTTTACAGGTGCTCGCATATCTTC
dnaK-EGFP-Sense
87
AAAGATGACGATGTTGTCGACGCTGAATTTGAAGAAGTCAAAGACAAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dnaK-EGFP-AntiSense
72
GAAATTCCCCTTCGCCCGTGTCAGTATAATTACCCGTTTATAGGGCGATTATAGTGAACCTCTTCGAGGGAC
dnaK Sense Primer
18
CTGCCGGTGCTGATGCTT
dnaK Antisense Primer
20
TCACGCTCTTCCGCTGTTTT
dnaN-EGFP-Sense
87
GAAGATGCGGCCAGCCAGAGCGCGGCTTATGTTGTCATGCCAATGAGACTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dnaN-EGFP-AntiSense
72
CGGTTTCAATGTTGCGGAAATCGCGGATCAACAAGCGGGTGAGGGACATTATAGTGAACCTCTTCGAGGGAC
dnaN Sense Primer
20
AAAACGTCCGCATGATGCTG
dnaN Antisense Primer
20
CCGTTGGCACCTACCAGAAA
dnaQ-EGFP-Sense
87
GCCCGTCTCGATCTGGTGCAGAAGAAAGGCGGAAGTTGCCTCTGGCGAGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dnaQ-EGFP-AntiSense
72
GCTGCAAAAATCGCCCAAGTCGCTATTTTTAGCGCCTTTCACAGGTATTTATAGTGAACCTCTTCGAGGGAC
dnaQ Sense Primer
24
ACAGATGAAGAGATTGCAGCTCAT
dnaQ Antisense Primer
23
ATATTACGGATTGCCTCGACCTT
dnaX-EGFP-Sense
87
CTGCGTCGGTTCTTCGATGCGGAGCTGGATGAAGAAAGTATCCGCCCCATTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
173
dnaX-EGFP-AntiSense
72
TTCTCTCTCAATCACGTTAAGGATGACGAACGTAAGCTGTGCTTACGATCATAGTGAACCTCTTCGAGGGAC
dnaX Sense Primer
21
GCGTCAGGCGATATACGAAGA
dnaX Antisense Primer
23
CAGACCGCCTTTACCAAACATAG
dsbB-EGFP-Sense
87
GTGGTGATTTCCCAGCCGTTTAAAGCGAAAAAACGTGATCTGTTCGGTCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dsbB-EGFP-AntiSense
72
TAAATATAGCGGCAGGAAAAAAGCGCTCCCGCAGGAGCGCCGAATGGATTATAGTGAACCTCTTCGAGGGAC
dsbB Sense Primer
21
ATCGCTTACCTGATTGTCGCA
dsbB Antisense Primer
24
GCGAAGTTCTGATTTACTGAGGGT
dsbC-EGFP-Sense
87
AAAGAGATGAAAGAATTCCTCGACGAACACCAAAAAATGACCAGCGGTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dsbC-EGFP-AntiSense
72
TTTCATCGACTTCACGGCGACGAAGTTGTATCTGTTGTTTCACGCGAATTATAGTGAACCTCTTCGAGGGAC
dsbC Sense Primer
21
AGTTGTGCTGAGCAATGGCAC
dsbC Antisense Primer
20
CAGCAAGGGAGGCAATTCAG
duT-EGFP-Sense
87
TTCGACGCCACCGACCGCGGTGAAGGCGGCTTTGGTCACTCTGGTCGTCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
duT-EGFP-AntiSense
72
AACGAAATGTTTGCGGCTATGTTATGACGTTATTCGGATGCGTATGTGTTATAGTGAACCTCTTCGAGGGAC
duT Sense Primer
24
GTTCCGGTAGTACAGGCTGAATTT
duT Antisense Primer
23
TCTGCCATGTTACAAAATACCCC
dxR-EGFP-Sense
87
GATGCGAACGCGCGTGAAGTCGCCAGAAAAGAGGTGATGCGTCTCGCAAGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
dxR-EGFP-AntiSense
72
GAAGCCCTACGCTAACAAATAGCGCGACTCTCTGTAGCCGGATTATCCTCATAGTGAACCTCTTCGAGGGAC
dxR Sense Primer
21
CCACAATGTGTGGACGATGTG
dxR AntiSense Primer
22
CGATCAGATGGCGCAGACTATA
edA-EGFP-Sense
87
TACGACCGCATTACTAAGCTGGCGCGTGAAGCTGTAGAAGGCGCTAAGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
edA-EGFP-AntiSense
72
AAAAAAACGCTACAAAAATGCCCGATCCTCGATCGGGCATTTTGACTTTTATAGTGAACCTCTTCGAGGGAC
edA Sense Primer
20
TGAAAAGCGTGCTGTGCATC
edA Antisense Primer
22
GCCGGACAGGTAAAAGTACAGG
efP-EGFP-Sense
87
GAAGTCATCAAAGTGGATACCCGCTCTGGTGAATACGTCTCTCGCGTGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
efP-EGFP-AntiSense
72
TGACCTGAATAAGTGATGGTGCAGCCTGCAGGCCGCACCACAACCGCATTATAGTGAACCTCTTCGAGGGAC
efP Sense Primer
24
GTGGTTAAAGTTCCGCTGTTTGTA
efP Antisense Primer
23
AACAAGAACGATAAGGCGTTTCA
enO-EGFP-Sense
87
CTGGGCGAAAAAGCACCGTACAACGGTCGTAAAGAGATCAAAGGCCAGGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
174
enO-EGFP-AntiSense
72
AAAATGCCAGCCCGGAGGCTGGCATTTTTAAATCAGATAAAGTCAGTCTTATAGTGAACCTCTTCGAGGGAC
enO Sense Primer
24
TACAACCAGCTGATTCGTATCGAA
enO Antisense Primer
21
GTTCCGCTGGAGGCTCAGATA
fabA-EGFP-Sense
87
TATACCGCCAGCGACCTGAAAGTCGGTCTGTTCCAGGATACGTCTGCCTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fabA-EGFP-AntiSense
72
CCTCCGCATTGCGGAGGTTTCGCCTTTTGATACTCTGTCTGATTATAATCATAGTGAACCTCTTCGAGGGAC
fabA Sense Primer
20
ATGGCGAAGTGCTGGTTGAT
fabA Antisense Primer
24
GGGTAGTAATGGCCTGATTCTGTC
fabD-EGFP-Sense
87
ACCGCCTCGGCGCTGAACGAACCTTCAGCGATGGCAGCGGCGCTCGAGCTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fabD-EGFP-AntiSense
72
ACCGGTTACCAGTGCGATTTTTCCTTCAAAATTCATGATTTTCCTCTTTTATAGTGAACCTCTTCGAGGGAC
fabD Sense Primer
20
CTGACGAAACGCATTGTCGA
fabD Antisense Primer
20
AGTGCCAATAACTTTCGCGC
fabG-EGFP-Sense
87
GCTTACATCACGGGTGAAACTTTGCATGTGAACGGCGGGATGTACATGGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fabG-EGFP-AntiSense
72
ATAACCACGCAGACTGCGCGCAACATGAGCATTTTGTGCAAATCGCGGTCATAGTGAACCTCTTCGAGGGAC
fabG Sense Primer
18
TTGCATTCCTGGCATCCG
fabG Antisense Primer
26
ATAACGCAAATCATTTTGCACTAATT
fabH-EGFP-Sense
87
CTTGAAGCCTTTGGCGGTGGATTCACCTGGGGCTCCGCGCTGGTTCGTTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fabH-EGFP-AntiSense
72
CTGTCCAGGGAACACAAATGCAAATTGCGTCATGTTTTAATCCTTATCCTATAGTGAACCTCTTCGAGGGAC
fabH Sense Primer
20
TGGATCGCCACGGTAATACC
fabH Antisense Primer
21
ATATCAGCCAGCATTCCAACG
fabZ-EGFP-Sense
87
GGTAAAGTAGTTTGCGAAGCAACGATGATGTGTGCTCGTAGCCGGGAGGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fabZ-EGFP-AntiSense
72
TTCCACAATGGCGGTTGGATGCACAAAGGCGGATTTATCAATCACGTATCATAGTGAACCTCTTCGAGGGAC
fabZ Sense Primer
20
ACCCGTTTTAAAGGGGTTGC
fabZ Antisense Primer
23
CCAACGATACAAAAAGGACCAAT
fadD-EGFP-Sense
87
TTGCGACGAGAATTACGTGACGAAGCGCGCGGCAAAGTGGACAATAAAGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fadD-EGFP-AntiSense
72
GTCAAAAAAAACGCCGGATTAACCGGCGTCTGACGACTGACTTAACGCTCATAGTGAACCTCTTCGAGGGAC
fadD Sense Primer
24
GAGTTTCGTGATGAGTTACCGAAA
fadD Antisense Primer
22
CATCGTCCGTGGTAATCATTTG
ffH-EGFP-Sense
87
AAGATGATGAGAAGCATGAAGGGTATGATGCCCCCAGGCTTCCCTGGTCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
175
ffH-EGFP-Antisense
72
GGATGACGAGCACATCCCGGTGCCAAAATGGCAAACAAGCCAGGCCGATTATAGTGAACCTCTTCGAGGGAC
ffH Sense Primer
22
GCGCATGATGAAGAAAATGAAG
ffH Antisense Primer
19
CCGGAGCGTACACGCAGTA
fiS-EGFP-Sense
87
GGCATCAACCGTGGTACGCTGCGTAAAAAATTGAAAAAATACGGCATGAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fiS-EGFP-AntiSense
72
CCCCATGCCGAGTAGCGCCTTTTTAATCAAGCATTTAGCTAACCTGAATTATAGTGAACCTCTTCGAGGGAC
fiS Sense Primer
21
TGCAATACACCCGTGGTAACC
fiS Antisense Primer
23
GGTCACTCCCTTTGTGACACCTA
fmT-EGFP-Sense
87
GACCTCCTGAACTCTCGTCGGGAATGGTTTGTTCCGGGCAACCGTCTGGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fmT-EGFP-AntiSense
72
CATAAGTATAAAAACGCCCGGCAAGACCGGGCTTAGAAGAGTGGACTATCATAGTGAACCTCTTCGAGGGAC
fmT Sense Primer
22
ACCTGCTCTCGTTACAACCTGC
fmT Antisense Primer
21
CCTTGCTCGACGACTTGTTCA
folA-EGFP-Sense
87
GCTGATGCGCAGAACTCTCACAGCTATTGCTTTGAGATTCTGGAGCGGCGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
folA-EGFP-AntiSense
72
GACGCGACCGGCGTCGCATCCGGCGCTAGCCGTAAATTCTATACAAAATTATAGTGAACCTCTTCGAGGGAC
folA Sense Primer
23
GATGACTGGGAATCGGTATTCAG
folA Antisense Primer
22
CACAGCCTGATATAGGAAGGCC
folB-EGFP-Sense
87
GCGAATGTTGGCGTAATCATTGAGCGTGGCAATAATCTGAAAGAAAATAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
folB-EGFP-AntiSense
72
CTACTGCGTATGACCAGGTTATAACCGTTTGGTTTAACAGCTGTAAAATTATAGTGAACCTCTTCGAGGGAC
folB Sense Primer
22
GTGCGTATCAAACTCAGCAAGC
folB Antisense Primer
24
TTATTAAAATGTACCGCTTGTCCG
folC-EGFP-Sense
87
ACGGTCGCACATGTCATGGAAGTGATTGACGCGAGGAGAAGCGGTGGCAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
folC-EGFP-AntiSense
72
ACCCCCAGCGCCACCAGCACGATCGTGCCCACTAACCGATTCTGAAACTTATAGTGAACCTCTTCGAGGGAC
folC Sense Primer
19
AAAGCGGAAGACACCGTGC
folC Antisense Primer
20
CCAGCAGCCCTGGAAGTACA
folD-EGFP-Sense
87
ATTGAAAACACGCTACAGGCGTGCGTTGAATATCATGATCCACAGGATGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
folD-EGFP-AntiSense
72
TCGCACAGCTCAACGTGCGGATGTTTACCTAAAGAAAATGTCGCCATGTTATAGTGAACCTCTTCGAGGGAC
folD Sense Primer
23
GCTAAACGCGCCTCATACATTAC
folD Antisense Primer
19
TCGCTCCAGCCTTCCAGTT
folE-EGFP-Sense
87
TCCAGTCAGAATACGCGCCACGAGTTTCTGCGCGCTGTGCGTCATCACAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
176
folE-EGFP-AntiSense
72
CGAACAAAATCGAGCGTGACGTTGCGCTCCATGGTTCCTGCCTTTTAATCATAGTGAACCTCTTCGAGGGAC
folE Sense Primer
19
ACCAGTGCCACGACAACGA
folE Antisense Primer
21
ATAGCAGGATCCCCAGAATGG
folK-EGFP-Sense
87
ATGTTGCGTCAAATCTTACATACAAGAGCATTTGACAAATTAAACAAATGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
folK-EGFP-AntiSense
72
GATGAGATATGATTTTCAGAAAATATTTATATTCGCAATATAAATAAATTATAGTGAACCTCTTCGAGGGAC
folK Sense Primer
20
ATTTATGCTGTGGCCGCTGT
folK Antisense Primer
23
GGTTAGGGTATGGAGATGGGATT
folP-EGFP-Sense
87
ATGCGGGTGGTGGAAGCCACTCTGTCTGCAAAGGAAAACAAACGCTATGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
folP-EGFP-AntiSense
72
GCATCCCCTACACGACCACGAATCCCATCGGTACCGAAATATTTACGATTATAGTGAACCTCTTCGAGGGAC
folP Sense Primer
23
ATCATTCGTGTTCATGACGTCAA
folP Antisense Primer
22
AGCACAAAATCAGGTGTGATCG
frR-EGFP-Sense
87
AAGAAAATTGAAGCGGCGCTGGCAGACAAAGAAGCAGAACTGATGCAGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
frR-EGFP-AntiSense
72
AGCCGATCCGCAAGGATCTACTGAGCGGCGTTTTTGTCGTTCAAGAAATCATAGTGAACCTCTTCGAGGGAC
frR Sense Primer
22
GAGATCAGCGAAGACGACGATC
frR Antisense Primer
23
CAGAATGGTGAGTTGCTTCATGA
ftsA-EGFP-Sense
87
TCAGTTGGCTCGTGGATCAAGCGACTCAATAGTTGGCTGCGAAAAGAGTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ftsA-EGFP-AntiSense
72
ATTTGTGCCTGTCGCCTGAGGCCGTAATCATCGTCGGCCTCATAAAAATTATAGTGAACCTCTTCGAGGGAC
ftsA Sense Primer
25
AACGGTGAAGCTGAAGTAGAAAAAC
ftsA Antisense Primer
21
CTTTAATCACCGCGTCATTGG
ftsE-EGFP-Sense
87
CGCATGCTCACCCTGAGCGATGGTCACTTGCATGGAGGCGTGGGCCATGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ftsE-EGFP-AntiSense
72
CGATCAAGACGCCCGCCAAACTGCCGAATATGATTGATTGCATCGCGCTTATAGTGAACCTCTTCGAGGGAC
ftsE Sense Primer
20
AACCGTATTGATGGCAACGC
ftsE Antisense Primer
22
AACGTTGGTTTTGCGATTTACC
ftsI-EGFP-Sense
87
GATAAAAATGAATTTGTGATTAATCAAGGCGAGGGGACAGGTGGCAGATCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ftsI-EGFP-AntiSense
72
GCTCGCGAAGGTGCGTCTGGCACCCACGGAGCAAGAAGGTCGCGCAAATTATAGTGAACCTCTTCGAGGGAC
ftsI Sense Primer
22
GCGTATTGCGTACCATGAACAT
ftsI Antisense Primer
21
CGGCTGTCGAGTGTCATCTCT
ftsJ-EGFP-Sense
87
TCTCGTGCACGTTCGCGGGAAGTGTATATTGTAGCGACCGGGCGTAAACCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
177
ftsJ-EGFP-AntiSense
72
GATACTCTATATCCAGCATCTTTCAAACTTTCGTCTGAAATCTCCCGGTTATAGTGAACCTCTTCGAGGGAC
ftsJ Sense Primer
21
AGGTCAAAGTTCGTAAGCCGG
ftsJ Antisense Primer
19
GCACAACGGCAATGACCAG
ftsW-EGFP-Sense
87
GATTATGAAACGCGTCTGGAGAAAGCGCAGGCGTTTGTACGAGGTTCACGACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ftsW-EGFP-AntiSense
72
GTCCACCGGTTCCGCCTGCCATCACCATTAATCGCTTTCCTTGACCACTCATAGTGAACCTCTTCGAGGGAC
ftsW Sense Primer
24
ACTGATTATGTCGACAGCCATCAT
ftsW Antisense Primer
20
TGCCAACCCTGAGCCATTAG
ftsX-EGFP-Sense
87
GTGGCAGCGTGGCTTGCCACGGTACAACATTTACGCCACTTTACGCCTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ftsX-EGFP-AntiSense
72
TTCCCTGCTACGGAACCCATTGCAGGGAAAGAGTATAACACGCTTTTATTATAGTGAACCTCTTCGAGGGAC
ftsX Sense Primer
22
TATTGCTGCTGGTATGCTCGAT
ftsX Antisense Primer
22
GAAATACCGGGAAGAGACAACG
fumC-EGFP-Sense
87
GACAGCTGGGTACGGCCAGAACAGATGGTCGGCAGTATGAAAGCCGGGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fumC-EGFP-AntiSense
72
GCAGCCGCTTCGTTTGATCATTCCACGGCTGCACCTGTATGTTGCAGATTATAGTGAACCTCTTCGAGGGAC
fumC Sense Primer
20
CGCTGGGGTATCTTAGCGAA
fumC Antisense Primer
23
GACAATGTGCAGCACCGTTATAA
fuR-EGFP-Sense
87
CACTGTGCCGAAGGCGATTGCCGCGAAGATGAACATGCGCACGAAGGCAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fuR-EGFP-AntiSense
72
TGCATAAAAAAGCCAACCCGCAGGTTGGCTTTTCTCGTTCAGGCTGGCTTATAGTGAACCTCTTCGAGGGAC
fuR Sense Primer
20
TGGCATTCGCCTGACTAACC
fuR Antisense Primer
26
AAATAAGTGAGAGCTGTAACTCTCGC
fusA-EGFP-Sense
87
GATGAAGCGCCGAGTAACGTTGCTCAGGCCGTAATTGAAGCCCGTGGTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
fusA-EGFP-AntiSense
72
CTCTCCCCTTCAGGAGAGAGCACGGGACTTTGGTATTAACCCTTAGGCTTATAGTGAACCTCTTCGAGGGAC
fusA Sense Primer
21
TCTGACCAAAGGTCGTGCATC
fusA Antisense Primer
22
TAACGTGCGGTTTTGTACGTTC
galE-EGFP-Sense
87
GCGCAGGACACCTGGCACTGGCAGTCACGCCATCCACAGGGATATCCCGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
galE-EGFP-AntiSense
72
GCGGCGATGTGGATGATCAACGGGATTAAATTGCGTCATGGTCGTTCCTTATAGTGAACCTCTTCGAGGGAC
galE Sense Primer
20
GTAACGCGCACACTCGATGA
galE Antisense Primer
19
AGAATCCATTGCCCGGTGA
galU Antisense Primer
21
CGGGATTTTTTATTGTCCGGT
178
galU-EGFP-AntiSense
72
CGGCGTCGATTGCTCAACGCCGTTTCGTGGATAACACCGATACGGATGTTATAGTGAACCTCTTCGAGGGAC
galU-EGFP-Sense
87
CTTGGCACGGAATTTAAAGCCTGGCTTGAAGAAGAGATGGGCATTAAGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
galU Sense Primer
20
GCAGGCCTTCGTTGAATACG
gcpE-EGFP-Sense
87
GCCAGTCAGCTGGACGAAGCGCGTCGAATTGACGTTCAGCAGGTTGAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gcpE-EGFP-AntiSense
72
ATGCGGGTTCAATCATACACGGGAAGCGAGGCGCTTCCCATCACGTTATTATAGTGAACCTCTTCGAGGGAC
gcpE Sense Primer
22
CAACGATATGATCGACCAGCTG
gcpE Antisense Primer
87
GCCAGTCAGCTGGACGAAGCGCGTCGAATTGACGTTCAGCAGGTTGAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gcvA-EGFP-Sense
87
CTGGCGAAAGCCGCTGCTGAACAAGAAAAATTCCGCTTTCGTTATGAACAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gcvA-EGFP-AntiSense
72
GGCGAAAATCAGCATAAAACGGCTGGTCATGGTCGTACCCTACGTAAATTATAGTGAACCTCTTCGAGGGAC
gcvA Sense Primer
22
CATGACAGTCAGGCAGAACTGG
gcvA Antisense Primer
21
CCACAAAAATGAAGCCGCTAA
gcvH-EGFP-Sense
87
CTGGAATCACTGCTGGATGCGACCGCATACGAAGCATTGTTAGAAGACGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gcvH-EGFP-AntiSense
72
TAAATTTTCCTCACCCTGATCCTCTCCCGCAGAAGAGGAATAAAGCCGTTATAGTGAACCTCTTCGAGGGAC
gcvH Sense Primer
22
TAAAATCAAAGCCAGCGATGAA
gcvH Antisense Primer
24
CTCTCCTTACGAAGAGAGTGAGGG
gidA-EGFP-Sense
87
TCCATTCTGCTGGTGTGGCTGAAAAAACAGGGTATGCTGCGTCGTAGCGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gidA-EGFP-AntiSense
72
TTGATGCGTTGCCTGGTAAGCGGGTGCTTACCAGGCATTTTTAATGCGTTATAGTGAACCTCTTCGAGGGAC
gidA Sense Primer
19
GGCCAAGCTTCGCGTATTT
gidA Antisense Primer
23
GTTTGTTGAGCACGGTGATTACC
gidB-EGFP-Sense
87
CCAGCCCTGGATGGCGAACGTCATCTGGTGGTGATTAAAGCAAATAAAATTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gidB-EGFP-AntiSense
72
TTGTTAACAGTCTAACCGGTCAATTTTTTATGATTTTTTTGATAAAAATTATAGTGAACCTCTTCGAGGGAC
gidB Sense Primer
25
CAGGTCGAATCAGTGGTTAAACTTC
gidB Antisense Primer
21
CAAAAGAGTGAACGTGGCGTT
glmM-EGFP-Sense
87
GCGCAGGTGACTGAATTTGCACACCGCATCGCCGATGCAGTAAAAGCCGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glmM-EGFP-AntiSense
72
GAGAAAAAAGGCGACAATCGCCGCCTTTTTAGCCAGTTATCTAACGCTTTATAGTGAACCTCTTCGAGGGAC
glmM Sense Primer
20
GTGATGGTGGAAGGCGAAGA
glmM Antisense Primer
21
ACAGCAAAACCGATGTGTTCG
glmS-EGFP-Sense
87
GGCACCGACGTTGACCAGCCGCGTAACCTGGCAAAATCGGTTACGGTTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
179
glmS-EGFP-AntiSense
72
AAACATAACAGGAAGAAAAATGCCCCGCTTACGCAGGGCATCCATTTATTATAGTGAACCTCTTCGAGGGAC
glmS Sense Primer
21
TTGCACCGATCTTCTACACCG
glmS Antisense Primer
22
ACATGGAGTTGGCAGGATGTTT
glmU-EGFP-Sense
87
CGTGTGCCGCAGACTCAGAAAGAAGGCTGGCGTCGTCCGGTAAAGAAAAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glmU-EGFP-AntiSense
72
AGATTATGTTATCTCCTCATCCCATGTGACCGGGTTAGCCGGCCAGAATCATAGTGAACCTCTTCGAGGGAC
glmU Sense Primer
23
GGCGAAAATGCATTAGCTATCAG
glmU Antisense Primer
25
TTTATAGTTACTGCTTGTGGGAGGG
glnA-EGFP-Sense
87
CGCGTGCGTATGACTCCGCATCCGGTAGAGTTTGAGCTGTACTACAGCGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glnA-EGFP-AntiSense
72
CCAGGCCTGCCAGAGACAGGCGAAAAGTTTCCACGGCAACTAAAACACTTATAGTGAACCTCTTCGAGGGAC
glnA Sense Primer
22
CGAAGCAATTGATGCGTACATC
glnA Antisense Primer
19
GGCCGGATAAGACGCATTT
glnD-EGFP-Sense
87
CAGGAAGTGCATCAGCGGTTGACAGAGGCCCTCAATCCAAACGATAAAGGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glnD-EGFP-AntiSense
72
GTTCTGTAACTGCTGCATTGTTAAACTCTTTTCATATCAGTAAACACATCATAGTGAACCTCTTCGAGGGAC
glnD Sense Primer
22
TTATTCATAATTGCCACCGCTG
glnD Antisense Primer
19
GGCGTTCAAAAGCGGTTTC
glnE-EGFP-Sense
87
GCAGAGCGTGAACTGGTGCGGGCAAGCTGGCAGAAGTGGCTGGTGGAAGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glnE-EGFP-AntiSense
72
TTCCTGTCTCCTGAGAGATTCAAAATTTGCGCGCGATAATACCATACTTCATAGTGAACCTCTTCGAGGGAC
glnE Sense Primer
22
ATCTGGCATTACAGGAATTGCC
glnE Antisense Primer
20
ACGTTCAAACTCTGGCAGCG
glnS-EGFP-Sense
87
GTATTTAACCGCACCGTTGGGCTGCGTGATACCTGGGCGAAAGTAGGCGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glnS-EGFP-AntiSense
72
TTGCCGGATGCGACGTAAACGCCCCATCCGGCATAGCGAAACTTAAAATTATAGTGAACCTCTTCGAGGGAC
glnS Sense Primer
22
GTTACTTCTGCCTCGATAGCCG
glnS Antisense Primer
20
GCCTGATAAGCGTAGCGCAT
gloA-EGFP-Sense
87
TACAAAATTGAGTTAATCGAAGAGAAAGACGCCGGTCGCGGTCTGGGCAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gloA-EGFP-AntiSense
72
TCGATGCAGTAAAGATGCGGGCGCGATGAGTTCACGCCCGGCAGGAGATTATAGTGAACCTCTTCGAGGGAC
gloA Sense Primer
21
CTACGGTTATCGCGTTTGTGG
gloA Antisense Primer
21
ATAAATTGCAGCGCGCATTAT
gloB-EGFP-Sense
87
CAACAACCTGAAGAGCGTTTTGCATGGTTAAGGTCAAAGAAAGATAGGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
180
gloB-EGFP-AntiSense
72
AGACGACCGATCATAACGGCGAACGGAGCCGATGACAAGAAAGTTTTATCATAGTGAACCTCTTCGAGGGAC
gloB Sense Primer
21
TCTGAAAAATGAGCGGCAAAT
gloB Antisense Primer
27
TTCATGTGTGTGTCAATAGTTGCTTAA
glpK-EGFP-Sense
87
GGCTGGAAAAAAGCGGTTAAACGCGCGATGGCGTGGGAAGAACACGACGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glpK-EGFP-AntiSense
72
GTTTCGGGACTACCGGATGCGGCATAAACGCTTCATTCGGCATTTACATTATAGTGAACCTCTTCGAGGGAC
glpK Sense Primer
20
GCATCGAAACCACTGAGCGT
glpK Antisense Primer
20
TATTGATGTGTGCGGGGTTG
gltA-EGFP-AntiSense
72
CGCCATATGAACGGCGGGTTAAAATATTTACAACTTAGCAATCAACCATTATAGTGAACCTCTTCGAGGGAC
gltA-EGFP-Sense
87
CAGCTGTATACAGGATATGAAAAACGCGACTTTAAAAGCGATATCAAGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gltA Sense Primer
22
AGTGACGGTATGAAGATTGCCC
gltA Antisense Primer
26
GGTTATAAATGCGACTACCATGAAGT
gltX-EGFP-Sense
87
GAGCGTATCAACAAAGCGCTGGATTTTATTGCTGAACGCGAAAATCAGCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gltX-EGFP-AntiSense
72
AAAAACGGCAGGATATTATCTCCTGCCGTTTATCTTTTTACACGCTAATTATAGTGAACCTCTTCGAGGGAC
gltX Sense Primer
22
GTTACCGTTCACGCAATTGGTA
gltX Antisense Primer
24
GTCTCGATATTGACGAATCAGCAT
glyA-EGFP-Sense
87
CGCATCAAAGGTAAAGTTCTCGACATCTGCGCACGTTACCCGGTTTACGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glyA-EGFP-AntiSense
72
GCATCCGGCATGAACAACGAGCACATTGACAGCAAATCACCGTTTCGCTTATAGTGAACCTCTTCGAGGGAC
glyA Sense Primer
22
GCTGGACAGCATCAATGATGAA
glyA Antisense Primer
21
GTTTTGTAGGCCGGATAAGGC
glyQ-EGFP-Sense
87
TACGCTTCCCGTGAAGCCCTCGGCTTCCCGATGTGCAACAAAGATAAGTAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glyQ-EGFP-AntiSense
72
TTCAGTGCCGATTTCCACCAGAAAAGTTTTCTCAGACATAGCCGCCTCTTATAGTGAACCTCTTCGAGGGAC
glyQ Sense Primer
21
GAGCGTCAGCGCTACATTCTG
glyQ Antisense Primer
21
AAGTTCGCAGCAAAGGACTCA
glyS-EGFP-Sense
87
GAGAAACTGCGCGAACTGTTCCTGCGCGTTGCGGATATTTCGCTGTTGCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
glyS-EGFP-AntiSense
72
GCGATAAAAAAAGCCTGCCAGATGGCAGGCTATTTAATAACGGCGTTATTATAGTGAACCTCTTCGAGGGAC
glyS Sense Primer
21
TTGCGTATCAACCGTCTGACC
glyS Antisense Primer
21
CAAGCACCCGTGGCTATTCTA
gmK-EGFP-Sense
87
AGCCGCCAAAAGCAGCGTCATGACGCTTTAATCAGCAAATTGTTGGCAGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
181
gmK-EGFP-AntiSense
72
AAAGCTCCACAGGTGAAGAAATGACTGGGCATGATACTGAAATCAGGTTCATAGTGAACCTCTTCGAGGGAC
gmK Sense Primer
19
ACCATTATTCGCGCCGAAC
gmK Antisense Primer
20
CTGAACAGTTACGCGTGCCA
goR-EGFP-Sense
87
AATACCGTCGCCATTCACCCAACGGCGGCAGAAGAGTTCGTGACAATGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
goR-EGFP-AntiSense
72
GAAACGTAATTAAGGGCTAAGAGCACACTACTCTTAGCCCTTTAACATTTATAGTGAACCTCTTCGAGGGAC
goR Sense Primer
22
GGCAACCAAAAAAGACTTCGAC
goR Antisense Primer
24
TTCTGCTTCAGCTTCTGAACTGAT
gpH-EGFP-Sense
87
CTGCCCGCATTAGGGCTTCCGCATAGCGAAAATCAGGAATCGAAAAATGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gpH-EGFP-AntiSense
72
CCAATGGTCAATTCACCTGAGGGCTGTGCGCCACTAAAAACGATGGGCTTATAGTGAACCTCTTCGAGGGAC
gpH Sense Primer
25
AGCCAGCCTGATGTAATTTATCAGT
gpH Antisense Primer
24
TGGTAGTCATCCTGCATGTTTACC
gpsA-EGFP-Sense
87
GCGCGCGAGGCAGCATTGACTTTACTAGGTCGTGCACGCAAGGACGAGCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gpsA-EGFP-AntiSense
72
CCCGTTCTGCGCGGGCCGGGTCATAGCGGTAACAAAGGTTCCCTGGGGTTATAGTGAACCTCTTCGAGGGAC
gpsA Sense Primer
21
TTGAAATGCCAATAACCGAGG
gpsA Antisense Primer
25
GCTTACTCCACACGATGAGATAATG
greA-EGFP-Sense
87
AAAACGCCGGGCGGCGAAGTAGAATTTGAAGTAATTAAGGTGGAATACCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
greA-EGFP-AntiSense
72
TTTTTCCTTTCTTTACAATACATCAACATCTTGAGTATTGGGTAATTCTTATAGTGAACCTCTTCGAGGGAC
greA Sense Primer
24
GCAAAGAAGAAGATGATGTTGTGG
greA Antisense Primer
21
TCGTTGATAAAAGGCCGCATA
groL-EGFP-Sense
87
TTAGGCGCTGCTGGCGGTATGGGCGGCATGGGTGGCATGGGCGGCATGATGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
groL-EGFP-AntiSense
72
AGACATTTCTGCCCGGGGGTTTGTTTATTTCTGCGAGGTGCAGGGCAATTATAGTGAACCTCTTCGAGGGAC
groL Sense Primer
20
GTGGCTGGCCTGATGATCAC
groL Antisense Primer
23
CGTCGTCCGTGTCTGAATCTTAT
groS-EGFP-Sense
87
GAAGAAGTGTTGATCATGTCCGAAAGCGACATTCTGGCAATTGTTGAAGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
groS-EGFP-AntiSense
72
GCCATTATCTTTATTCCTTAAATTCGTATGTTCAGTGTCGTGCGCGGATTATAGTGAACCTCTTCGAGGGAC
groS Sense Primer
23
GGCTACGGTGTGAAATCTGAGAA
groS Antisense Primer
20
CACGAGCGTCGTTACCGAAT
grpE-EGFP-Sense
87
AATGGTCGTACGATTCGTGCGGCGATGGTTACTGTAGCGAAAGCAAAAGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
182
grpE-EGFP-AntiSense
72
CGGCCCGGCATTCGCATGCAGGGCCGTGAATTATTACGAAAGCAGAAATTATAGTGAACCTCTTCGAGGGAC
grpE Sense Primer
23
ACGTACTGGGCATTATGCAGAAG
grpE Antisense Primer
22
AGTTTTTCCTGTGAAACCGCTG
gshB-EGFP-Sense
87
TCGATCACCGGAATGTTAATGGATGCCATCGAAGCACGTTTACAGCAGCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gshB-EGFP-AntiSense
72
GGGCGCTGTCACTCAGAGTCTCAACGAGATCCTTCTCGCTAAGGTGGGTTATAGTGAACCTCTTCGAGGGAC
gshB Sense Primer
24
CCTGTATTCGTGAGATTGAAGCAG
gshB Antisense Primer
18
AACAGCGCCCAGTATGCG
guaA-EGFP-Sense
87
CGCGTGGTGTATGACATCAGCGGCAAGCCGCCAGCTACCATTGAGTGGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
guaA-EGFP-AntiSense
72
CCCTCTGTAGTAACAGAGGGTTTTGTTCATTCATAGTGCAGGGTCAAATCATAGTGAACCTCTTCGAGGGAC
guaA Sense Primer
19
ATTTCCTCGGTCGCGTTTC
guaA Antisense Primer
26
GACAGCTGGTTTAATTAATCGATGTT
guaB-EGFP-Sense
87
GTTCACGACGTGACCATTACTAAAGAGTCCCCGAACTACCGTCTGGGCTCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
guaB-EGFP-AntiSense
72
GTGAAACAGATAATATAAATCGCCCGACATGAAGTCGGGCGAAGAGAATCATAGTGAACCTCTTCGAGGGAC
guaB Sense Primer
21
CGAACTGCGTACTAAAGCGGA
guaB Antisense Primer
21
TCCGTCATTGACGCTTATTCC
gyrA-EGFP-Sense
87
GACGATGAAATCGCTCCGGAAGTGGACGTTGACGACGAGCCAGAAGAAGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gyrA-EGFP-AntiSense
72
TCAATTCAAACAAGGGAGATAGCTCCCTTTTGGCATGAAGAAGTAAAATTATAGTGAACCTCTTCGAGGGAC
gyrA Sense Primer
22
AAGATCTGGATACCATCGACGG
gyrA Antisense Primer
24
AACTTTACCGTGCCCTAATACGAC
gyrB-EGFP-Sense
87
CGCCGTGCGTTTATTGAAGAGAACGCCCTGAAAGCGGCGAATATCGATATTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
gyrB-EGFP-AntiSense
72
AGGCCTGATAAGCGTAGCGCATCAGGCACGCTCGCATGGTTAGCGCCATTATAGTGAACCTCTTCGAGGGAC
gyrB Sense Primer
19
TGCTGCCGACCAGTTGTTC
gyrB Antisense Primer
27
ATTCAATACATTGCAAGATTTTCGTAG
hemA-EGFP-Sense
87
GACGGGGATAACGAACGCCTGAATATTCTGCGCGACAGCCTCGGGCTGGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hemA-EGFP-AntiSense
72
GCTTCATAGGCGTAAATGCACCCTGTAAAAAAAGAAAATGATGTACTGCTATAGTGAACCTCTTCGAGGGAC
hemA Sense Primer
20
ATGCGCCAACGAAATCACTT
hemA Antisense Primer
19
GGGCTTCCAGTTTGGCAAC
hemB-EGFP-Sense
87
CTGATTTTCAGCTACTTTGCGCTGGATTTGGCTGAGAAGAAGATTCTGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
183
hemB-EGFP-AntiSense
72
CACCGTACTTTCAACAGGTTAACTCCCCCTTTCTGAGAGGAAACAAAATTATAGTGAACCTCTTCGAGGGAC
hemB Sense Primer
22
GTCGTGCTCGAAAGCTTAGGTT
hemB Antisense Primer
22
GATCCTTGGGGATAAACCGTTT
hemC-EGFP-Sense
87
AACGGCGCGCGCGAGATCCTCGCTGAAGTCTATAACGGAGACGCCCCGGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hemC-EGFP-AntiSense
72
GGCTCACTAACTCTTCTCCAGCGGGAGACGGGCGGGTGACAAGGATACTCATAGTGAACCTCTTCGAGGGAC
hemC Sense Primer
20
GATTTCGCTGGCAGAAGAGC
hemC Antisense Primer
20
CTCAATCAGCGGAAAATGCC
hemE-EGFP-Sense
87
GCTGGCGTGTTCGTGGAGGCAGTGCATCGACTGTCTGAACAGTATCACCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hemE-EGFP-AntiSense
72
CAGTTCGATTTGTTGAGCGCGTAATGACGCGAGATCCATAATCACTCCTTATAGTGAACCTCTTCGAGGGAC
hemE Sense Primer
20
TTGGTCACGGCATTCATCAG
hemE antisense Primer
21
ATATTTCAGCAGCACCATCGC
hemF-EGFP-Sense
87
GGCAGCCCAGAAGCGGCGTTAAGTGAGTTTATTAAGGTCAGGGATTGGGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hemF-EGFP-AntiSense
72
GCCGTCACTGACGCTGCATCAGCGGATGCGGGAGTGGGGGTGAGGGAGTTATAGTGAACCTCTTCGAGGGAC
hemF Sense Primer
24
TACGCTGGGAATATGATTATCAGC
hemFAntisense Primer
21
CACGGATTACCAGCAGCTGTT
hemH-EGFP-Sense
87
GCCACGCCGGAACATATCGAAATGATGGCTAATCTTGTTGCCGCGTATCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hemH-EGFP-AntiSense
72
CGCCGACGAGGCTCTTCGCGACGGCGCTCAGTTCTTTACCGCTCAGCTTTATAGTGAACCTCTTCGAGGGAC
hemH Sense Primer
21
GCAAAACCGTGAGGTCTTCCT
hemH Antisense Primer
23
TTTGCATTATTCACGGATGATGA
hemK-EGFP-Sense
87
TGCCGTGACTATGGTGATAACGAGCGCGTAACGCTCGGCCGCTATTATCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hemK-EGFP-AntiSense
72
AAAGCGCGATACTAATAAGATGAACACTAAGCAGTGTAGAAAAACTTGTCATAGTGAACCTCTTCGAGGGAC
hemK Sense Primer
20
ACAAGCATTTATCCTCGCGG
hemK Antisense Primer
24
GCCAGAAACGTAAGGTTAATAGCC
hemL-EGFP-Sense
87
GAAGATATCAATAACACCATCGATGCTGCACGTCGGGTGTTTGCGAAGTTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hemL-EGFP-AntiSense
72
CGTAGGTCGGATAAGGCGTTCACGCCGCATCCGACAAACCATGCTGGATCATAGTGAACCTCTTCGAGGGAC
hemL Sense Primer
22
ATGCTGGACGAAGGTGTTTACC
hemL Antisense Primer
20
GCGTCTTATCGGGCCTACAA
hflB-EGFP-Sense
87
CCGCGTACGCCGAACCCGGGTAACACCATGTCAGAGCAGTTAGGCGACAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
184
hflB-EGFP-AntiSense
72
GCACGCCCCGGGGTTTTCGGTACAAATACAGTCATCTGATGCGGGAACTTATAGTGAACCTCTTCGAGGGAC
hflB Sense Primer
23
ACAATTCTGGCGACAATGGTAGT
hflB Antisense Primer
22
AGTGAAGTACCCTGGGCAAAGA
hflC-EGFP-Sense
87
CCGGATAGCGATTTCTTCCGCTACATGAAGACGCCGACTTCCGCAACGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hflC-EGFP-AntiSense
72
ATCCCTGAGGATGCGGTGGCTTTATTGACCTGTACCGCAGTCGTTATATTATAGTGAACCTCTTCGAGGGAC
hflC Sense Primer
23
AATCAGGACGTGATGGTCATGAG
hflC Antisense Primer
23
AGCCAGATTGTCGAATTCATTCA
hflK-EGFP-Sense
87
GACCAACGCCGCGCCAACGCGCAGCGTAACGACTACCAGCGTCAGGGGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hflK-EGFP-AntiSense
72
GCACTACCAGCACGATGATGATAATCGCGATAACTGACTTACGCATCGTTATAGTGAACCTCTTCGAGGGAC
hflK Sense Primer
21
AACCAGTGGAGCAAGCAACAC
hflK Antisense Primer
20
GCGCTCACCTTCTTTGACGA
hflX-EGFP-Sense
87
GACTGGCGTCGCCTCTGTAAACAAGAACCGGCGTTGATCGATTACCTGATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hflX-EGFP-AntiSense
72
GTCTTTCGACGCCAGAGGATATGACTCCACGCTTCAGACGCTACGCCGTTATAGTGAACCTCTTCGAGGGAC
hflX Sense Primer
21
TCTGCAAGTTCGTATGCCGAT
hflX Antisense Primer
23
CATATTTGTTATGCGGTGATCCC
hfQ-EGFP-Sense
87
GGTAGCAGCGCGCAGAATACTTCCGCGCAACAGGACAGCGAAGAAACCGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hfQ-EGFP-AntiSense
72
GGGAACGCAGGATCGCTGGCTCCCCGTGTAAAAAAACAGCCCGAAACCTTATAGTGAACCTCTTCGAGGGAC
hfQ Sense Primer
24
GGTTTCTCATCACAGTAACAACGC
hfQ Antisense Primer
26
CGTATAACCCTCTAAATAGATCAGCG
hisA-EGFP-Sense
87
CTGGAAGGTAAATTCACCGTGAAGGAGGCCATCGCATGCTGGCAAAACGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hisA-EGFP-AntiSense
72
ACTGTACGCCTTTCACCACCTGACCATCACGAACGTCGAGACATGGGATTATAGTGAACCTCTTCGAGGGAC
hisA Sense Primer
20
GCGTAATAGTTGGTCGGGCA
hisA Antisense Primer
22
CGATATCGCCAATGATTTCATG
hisD-EGFP-Sense
87
GCCCACAAAAATGCCGTTACTTTGCGTGTTAACGCCCTTAAGGAGCAAGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hisD-EGFP-AntiSense
72
TCAGGTTGCGGACGTTTTCACGCGCTAAATCGGTAATAGTCACGGTGCTCATAGTGAACCTCTTCGAGGGAC
hisD Sense Primer
24
CTGGCTTCAACCATAGAAACACTG
hisD Antisense Primer
20
GTTGGCGTTCAGCCAGACAT
hisF-EGFP-Sense
87
GGTGAATTAAAAGCGTACCTGGCAACACAGGGCGTGGAGATCAGGATATGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
185
hisF-EGFP-AntiSense
72
TAAGTCCGTCGGTTTTTTCCCAGTCCAGTTCGCGACGTTGTTGTTCTGTTATAGTGAACCTCTTCGAGGGAC
hisF Sense Primer
21
GCAGCTTCCGTATTCCACAAA
hisF Antisense Primer
21
GATACCGCGTGTTGCACAATC
hisS-EGFP-Sense
87
ACGGCAGTTGCGCAGGATAGCGTAGCCGCGCATTTGCGCACGTTACTGGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hisS-EGFP-AntiSense
72
CCTGGTCGTTTTCGTTCTCGTAAATTTCCACGCTGTCCTTCTCCTTCCTTATAGTGAACCTCTTCGAGGGAC
hisS Sense Primer
20
GAAGGATTTGCGCTCTGGTG
hisS Antisense Primer
20
AACAGCCAGTGCTTTGCCAT
holA-EGFP-Sense
87
TTATCTCTTCTGTTGTGCCATAAACCCCTGGCGGACGTATTTATCGACGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
holA-EGFP-AntiSense
72
TGCACCGGATCAAAGGTGCCGCCAAACAGAGCCTGTAAAGATTTCATATCATAGTGAACCTCTTCGAGGGAC
holA Sense Primer
23
ACCCTCAAACAAGATTACGGTCA
holA Antisense Primer
22
TTTCCACGGGTTTTAGATGACC
holB-EGFP-Sense
87
CGTATTGAGCATTACCTGCAACCGGGCGTTGTGCTACCGGTTCCTCATCTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
holB-EGFP-AntiSense
72
AGACCATCGAGATGGCAGTGTGAGTCGACTAAAAACATGATGTCTCTCTTATAGTGAACCTCTTCGAGGGAC
holB Sense Primer
20
GCGAGCTTCTCATCACCGAT
holB Antisense Primer
23
TCCACGTCCTTATGCAAAGATTC
hrpA-EGFP-Sense
87
TATCCGATTTCAGATAAGCGTATTTTGCAGGCGATGGAGCAGATTAGCGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hrpA-EGFP-AntiSense
72
GGCGCTAAATGCTTACCGGGTTTTTTCTTTATCAGGCAAATAGCAGGGTTATAGTGAACCTCTTCGAGGGAC
hrpA Sense Primer
21
TGCGCGTTAGTTACTTCGCTC
hrpA Antisense Primer
21
CACTCCGCAAGCCTGACATAT
hslU-EGFP-Sense
87
AAACATCTGGATGCGTTGGTGGCAGATGAAGATCTGAGCCGTTTTATCCTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hslU-EGFP-AntiSense
72
TGGGGCCTTTCAGCCCCATCAAACAATGATGAAAATGATTGAACGCGATTATAGTGAACCTCTTCGAGGGAC
hslU Sense Primer
21
GAGATTTCCTACGACGCCAGC
hslU Antisense Primer
23
GTTGTTCAGTCATAATACGCGCC
hslV-EGFP-Sense
87
TGCATCTATACCAACCATTTCCACACCATCGAAGAATTAAGCTACAAAGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hslV-EGFP-AntiSense
72
CAGTTCGCTGACGATTTCGCGTGGGGTCATTTCAGACATGGGAGATCCTTATAGTGAACCTCTTCGAGGGAC
hslV Sense Primer
21
TTGCTGAAAAGGCGTTGGATA
hslV Antisense Primer
21
CAGCTCTTCGTTGAGCTGCAT
htpG-EGFP-Sense
87
CTGGAAGATCCGAACCTGTTTATTCGTCGTATGAACCAGCTGCTGGTTTCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
186
htpG-EGFP-AntiSense
72
TGATGAAAAGAAAAATGCCGGATGACACGAAGGTCATCCGGCATTACATCATAGTGAACCTCTTCGAGGGAC
htpG Sense Primer
21
AGATGAAGCGAAGTTCAGCGA
htpG Antisense Primer
21
TAATGGCGAGATAATTTGCGG
htpX-EGFP-Sense
87
CCGCCGCTGGATAAACGAATTGAAGCTCTGCGTACGGGTGAATACCTGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
htpX-EGFP-AntiSense
72
TAAAAAAAGCGCGTCGATCAGGACGCGCTTTTTAGTATTTACTTCATATTATAGTGAACCTCTTCGAGGGAC
htpX Sense Primer
23
TCGCTCAGTGAGTTGTTCATGAC
htpX Antisense Primer
21
CGTATCACTCAGCCACGATCC
hupB-EGFP-AntiSense
72
CAGTAGATGCGCCCTTGAACTTCGTCACATCCCCACTGGGGACAACGCTTATAGTGAACCTCTTCGAGGGAC
hupB-EGFP-Sense
87
GCTAAAGTACCGAGCTTCCGTGCAGGTAAAGCACTGAAAGACGCGGTAAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
hupB Sense Primer
22
ACCGGTAAAGAGATCACCATCG
hupB Antisense Primer
25
GTCACCGAATACAAATAAAAAAGGC
ihfA-EGFP-Sense
87
CCCGGGCAGAAGTTAAAAAGCCGGGTCGAAAACGCTTCGCCCAAAGACGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ihfA-EGFP-AntiSense
72
CAGTGAAAAGAAAAAAGGCCGCAGAGCGGCCTTTTTAGTTAGATCAGATTATAGTGAACCTCTTCGAGGGAC
ihfA Sense Primer
22
GGATATTCCCATTACAGCACGG
ihfA Antisense Prime
22
GCGTTGATTTTACGGTGACTCT
IhfB-EGFP-Sense
87
CCTCACTTTAAACCTGGTAAAGAACTGCGCGATCGCGCCAATATTTACGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
IhfB-EGFP-AntiSense
72
AAAGCACCCGACAGGTGCTTTTCTCTCGTTCAAGTTTGAGTAAAAAACTTATAGTGAACCTCTTCGAGGGAC
ihfB Sense Primer
22
CCGAAGACTGGCGATAAAGTAG
ihfB Antisense Primer
24
AGCTTCCAGTTCCAGATTAGAGAA
ileS-EGFP-Sense
87
GGCCGCTGTGTCAGCAACGTCGCCGGTGACGGTGAAAAACGTAAGTTTGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ileS-EGFP-AntiSense
72
CCACCAGCCACAGCCAGCGTAGCCCTGTTGAACAGATCGATTGACTCATCATAGTGAACCTCTTCGAGGGAC
ileS Sense Primer
20
GCGTTGAGTAAAGCCGAAGG
ileS Antisense Primer
22
AGCAAAGTTCTGGAGGATCAGG
ilvD-EGFP-Sense
87
GCAACCAGCGCCGACAAAGGCGCGGTGCGCGATAAATCGAAACTGGGGGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ilvD-EGFP-AntiSense
72
ATTCGGCACCTTCCGGAGCACCGGACAGGGGTTGCGAGTCAGCCATTATTATAGTGAACCTCTTCGAGGGAC
ilvD Sense Primer
21
TGAACGTCAGGTCTCCTTTGC
ilvD Antisense Primer
21
TTTTTGTAGCGGCGTAACCTG
infA-EGFP-Sense
87
GAACTGACCCCGTACGACCTGAGCAAAGGCCGCATTGTCTTCCGTAGTCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
187
infA-EGFP-AntiSense
72
CCGACCTTTTACTCGTTCTTTCTCTTCGCCCATCAGGCGGTAAAACAATCATAGTGAACCTCTTCGAGGGAC
infA Sense Primer
20
CTACATCCGCATCCTGACGG
infA Antisense Primer
27
GGAAGTATAAGTCCGTAACTTGTCTCG
infB-EGFP-Sense
87
GGCGATGTGATCGAAGTATTCGAAATCATCGAGATCCAACGTACCATTGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
infB-EGFP-AntiSense
72
TGCCGGATGCAGCGTAAACGCCTTATCCCGCATGGAACCCTAAAAACCTTATAGTGAACCTCTTCGAGGGAC
infB Sense Primer
23
TTAAGAACTACAACGACGTCCGC
infB Antisense Primer
19
CCAGCGTCACATCAGGCAA
ispA-EGFP-Sense
87
GATACCTCGGCACTGGAAGCGCTAGCGGACTACATCATCCAGCGTAATAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ispA-EGFP-AntiSense
72
GTATTTGGCAATATCAAAACTCATCAGGGGCCTATTAATACTTATTGTTTATAGTGAACCTCTTCGAGGGAC
ispA Sense Primer
21
CCGTCAGTCGCTGAAACAACT
ispA Antisense Primer
20
CTGGGTGGAGTCGACCAGTG
ispB-EGFP-Sense
87
TGGCGAGAAGCACTCATCGGCCTCGCGCACATCGCTGTTCAACGCGATCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ispB-EGFP-AntiSense
72
GAACTTACTGGAACCATCCCGCGCGCTGCGCGGGATGAGGGGAGGGGATTATAGTGAACCTCTTCGAGGGAC
ispB Sense Primer
19
AGCAGACAAAGCCATCGCA
ispB Antisense Primer
25
CTATACTCCTGATGGCCTATTGCTC
kdsA-EGFP-Sense
87
AAAGCGATTGATGATCTGGTGAAAGGTTTCGAAGAACTGGATACCAGCAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
kdsA-EGFP-AntiSense
72
AAAGTCTTAACGCAGAACGCTAATACTTTATTTTTCAAGCAAAAAAGATTATAGTGAACCTCTTCGAGGGAC
kdsA Sense Primer
20
TGGAACCGTTCCTCAAGCAG
kdsA Antisense Primer
19
GCCTGCGGCCTTTTTTGTA
kdsB-EGFP-Sense
87
ACAGGTGTGGATACCCCTGAAGATCTTGAGCGCGTTCGCGCTGAAATGCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
kdsB-EGFP-AntiSense
72
ACGGTACGACACTCCTCCCAAAATTGGCTGAAGTGTCGTGAAGTGAAATTATAGTGAACCTCTTCGAGGGAC
kdsB Sense Primer
23
ATGTTGCTGTTGCTCAGGAAGTT
kdsB Antisense Primer
25
GTCACCTGAATGAGATCAATTGTTG
kdtA-EGFP-Sense
87
CTACAGCGTCTGCTTCAACTGCTGGAACCTTACCTGCCACCGAAAACGCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
kdtA-EGFP-AntiSense
72
ATGGGATCGAAAGTACCCGGATAAATCGCCCGTTTTTGCATAACAACCTCATAGTGAACCTCTTCGAGGGAC
kdtA Sense Primer
21
TTACTCACCGACGCCGATTAC
kdtA Antisense Primer
22
CGCGTCACGATATCGATATGAC
kdtB-EGFP-Sense
87
ACCCATTTCCTGCCGGAGAATGTCCATCAGGCGCTGATGGCGAAGTTAGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
188
kdtB-EGFP-AntiSense Prime
72
CCAGAAGTAATTCATGCGCGCCGGATGGCATACCATCCGGCATAAACGCTATAGTGAACCTCTTCGAGGGAC
kdtB Sense Primer
22
TTCATCGTTGGTGAAAGAGGTG
kdtB Antisense Primer
20
TTCATCGTTGGTGAAAGAGGTG
ksgA-EGFP-Sense
87
TATTGCCAGATGGCGAACTATCTGGCGGAGAACGCGCCTTTGCAGGAGAGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ksgA-EGFP-AntiSense
72
TGTAGACGCTTTGAACCTGAATACACACTCGGGGCGAATTGATCATCGTTATAGTGAACCTCTTCGAGGGAC
ksgA Sense Primer
21
GGAAAATATCTCTGTCGCGCA
ksgA Antisense Primer
23
TGCGTATGGTTACGGTATAAGCA
lepA-EGFP-Sense
87
CTGCCGCAGGAAGCGTTCCTCGCCATTCTGCACGTCGGCAAAGACAACAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lepA-EGFP-AntiSense
72
AATCACCAGAATCAGGGCAAACATATTCGCCATGCCAACTCCTAAGGGTTATAGTGAACCTCTTCGAGGGAC
lepA Sense Primer
23
AAGGTAAGAAACGCATGAAGCAG
lepA Antisense Primer
21
CATAAAATGCCCGTCACCAGT
lepB-EGFP-Sense
87
GAAGGCGAATGGCCGACTGGTCTGCGCTTAAGTCGCATTGGCGGCATCCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lepB-EGFP-AntiSense
72
TAATTCACGTTGTCGCCATAACGGCGACAACGTGAACGAAGATGGCTATTATAGTGAACCTCTTCGAGGGAC
lepB Sense Primer
18
CTTTGTGCCGGAAGCGAA
lepB Antisense Primer
23
TTAGCCACGGGAGATTTATCTCA
leuS-EGFP-Sense
87
GTACGTAAAGTGATTTACGTACCAGGTAAACTCCTCAATCTGGTCGTTGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
leuS-EGFP-AntiSense
72
CCAGAGATAACAACAATGTTGCCAGATATCGCACGCTTCCTCCCGCGCTTATAGTGAACCTCTTCGAGGGAC
leuS Sense Primer
21
GCCAGGAACATCTGGTAGCAA
leuS Antisense Primer
21
TCATAGTGGAAGGAACCTGCG
lexA-EGFP-Sense
87
TTCACCATTGAAGGGCTGGCGGTTGGGGTTATTCGCAACGGCGACTGGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lexA-EGFP-AntiSense
72
TGAAAAACAAACCGCGACGCCAGGCGGCATCGCGGTCTCAGAGATATGTTATAGTGAACCTCTTCGAGGGAC
lexA Sense Primer
23
GCGAGTTTAAACCAATTGTCGTT
lexA Antisense Primer
20
AATGCCATGCAGACAAGCCT
lgT-EGFP-Sense
87
GTGATCATGATGGTCTGGGCATATCGTCGCAGCCCACAGCAACACGTTTCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lgT-EGFP-AntiSense
72
TTCGTCGAGCACTTTTTGCATCAGTTCTAAATACTGTTTCATGGTTCCTCATAGTGAACCTCTTCGAGGGAC
lgT Sense Primer
23
AAATTCTTTCCATCCCGATGATT
lgT Antisense Primer
21
CGGTACGGTCGTTTTTCTGTG
ligA-EGFP-Sense
87
CTGGGCATTGAAGTCATCGACGAAGCGGAAATGCTGCGTTTGCTGGGTAGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
189
ligA-EGFP-AntiSense
72
AACGGCATTATCGTATTGGCTATTTCAATCAGCTGCTCTTTTTCCATCTCATAGTGAACCTCTTCGAGGGAC
ligA Sense Primer
21
TGCAGGATCTAAACTGGCGAA
ligA Antisense Primer
22
TTAAGCGACGCCCTTTGTATTT
lipA-EGFP-Sense
87
GTCCGCTCTTCTTACCACGCCGATTTGCAGGCGAAAGGGATGGAAGTTAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lipA-EGFP-AntiSense
72
TCAAAAAGCGGGTTTTTTATCAGACAGATGTAAGTAATTATTACAGGATTATAGTGAACCTCTTCGAGGGAC
lipA Sense Primer
19
GAAATGAAAGCCGAAGCGC
lipA Antisense Primer
19
AAGAGTGACGTGGCGAGCA
lipB-EGFP-Sense
87
GAAAATATTTTAGCGCTACTAAACAATCCGGACTTCGAATATATTACCGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lipB-EGFP-AntiSense
72
ATATTATGAGTAATGACCCAGTGTAAATTGGGCCATTGATGTATGGAATTATAGTGAACCTCTTCGAGGGAC
lipB Sense Primer
20
GAAACCCGAAGCGACGACTA
lipB Antisense Primer
21
ACGCGAAGGAGATGTAAAGCA
lolA-EGFP-Sense
87
AAATTTACCTTCACCCCGCCGCAAGGCGTCACGGTAGATGATCAACGTAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lolA-EGFP-AntiSense
72
AAAGTATTATCCGAAAAATCGAGCGACAGATTGCTCACTCAGGTGCCTCTATAGTGAACCTCTTCGAGGGAC
lolA Sense Primer
24
CAGCAGTTATCAACTGAAATCCCA
lolA Antisense Primer
25
CTGGCCGATATACTGTGCTAAATTT
loN-EGFP-Sense
87
ACTCTGGCGCTGCAAAATGAACCGTCTGGTATGCAGGTTGTGACTGCAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
loN-EGFP-AntiSense
72
AATTAGCCTGCCAGCCCTGTTTTTATTAGTGCATTTTGCGCGAGGTCACTATAGTGAACCTCTTCGAGGGAC
loN Sense Primer
21
TGTGAAGCGCATTGAGGAAGT
loN Antisense Primer
22
CCGCCATCTAACTTAGCGAGAC
lpD-EGFP-Sense
87
GTGTTCGAAGGTAGCATTACCGACCTGCCGAACCCGAAAGCGAAGAAGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lpD-EGFP-AntiSense
72
CGTGGTTAGCCGCTTTTTTAATTGCCGGATGTTCCGGCAAACGAAAAATTATAGTGAACCTCTTCGAGGGAC
lpD Sense Primer
19
TCTGCACGAGTCTGTGGGC
lpD Antisense Primer
23
ACTGGAAAGGTAAATTGCAGACG
lpxA-EGFP-Sense
87
GTGAAAGCCTTTACCGATTTCTTTGCACGCTCAACGCGCGGTCTGATTCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lpxA-EGFP-AntiSense
72
AGGTTTCTCCGGCGACCAGGGCAATCGTTAATGGACGCTGTTCAGTCATTATAGTGAACCTCTTCGAGGGAC
lpxA Sense Primer
21
GTGAAACCGGAAATTGCTGAA
lpxA Antisense Primer
21
GGCACATGTTCTTTCAGAGCG
lpxB-EGFP-Sense
87
CGCTGCAATGCCGATGAGCAGGCGGCACAAGCCGTTCTGGAGTTAGCACAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
190
lpxB-EGFP-AntiSense
72
CTTCATCCACACCCGCAACCAGCTGCGTGTGCGGATAAACAAATTCGATCATAGTGAACCTCTTCGAGGGAC
lpxB Sense Primer
19
CACGCGATGCACGATACCT
lpxB Antisense Primer
18
AAGGATCACCGCAGCGGT
lpxC-EGFP-Sense
87
GACGACGCAGAACTGCCGTTGGCCTTCAAAGCGCCTTCAGCTGTACTGGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lpxC-EGFP-AntiSense
72
AGAGTGCCAGATTTGCCAGTCGAATTTTATACGACAGTATAAATGTCGTTATAGTGAACCTCTTCGAGGGAC
lpxC Sense Primer
20
AAACTGCTGCAGGCTGTCCT
lpxC Antisense Primer
22
AAAAAACGACTGGTTCACCTGG
lpxD-EGFP-Sense
87
GACATGAGCAAGCGTCTGAAATCGCTTGAGCGCAAGGTTAATCAACAAGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lpxD-EGFP-AntiSense
72
CGTAAGAATGAGACAGGCCGTAAAGTTTGGCGAACAAAAGATGGAACGTTATAGTGAACCTCTTCGAGGGAC
lpxD Sense Primer
19
CCAACAAAGTCTGGCGCAA
lpxD Antisense Primer
23
AACGACAATAATAACACGGCCTG
lpxK-EGFP-Sense
87
GATGAACCAGCGAAACTGCTTACGCAACTAACCTTGCTGGCTTCTGGCAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lpxK-EGFP-AntiSense
72
CGGCAGCGACATTCATGACTCCATCAATCGAACGCTGCCGCGGCGTAACTATAGTGAACCTCTTCGAGGGAC
lpxK Sense Primer
22
TATTTGCCTGTAGACGCACAGC
lpxK Antisense Primer
21
AAGATTACGCGCATCAGCAAG
lspA-EGFP-Sense
87
GCGGCACTGATTGTGCTGGAAGGTTTTTTGCCTTCTAGAGCGAAAAAACAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lspA-EGFP-AntiSense
72
ATCTGTAGGCCGGATAAGATGCGTCAGCATCGCATCCGGCAGGGTTTATTATAGTGAACCTCTTCGAGGGAC
lspA Sense Primer
21
GCCGATACTGCCATCTGTGTC
lspA Antisense Primer
20
GCCTTATCCGGCCTACGATT
lytB-EGFP-Sense
87
ATTGTTTTCGAAGTGCCGAAAGAGCTGCGTGTCGATATTCGTGAAGTCGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
lytB-EGFP-AntiSense
72
TGCCGGTAACAAGACCGGCATTTTCGCATAACTTAGGCTGCTAATGACTTATAGTGAACCTCTTCGAGGGAC
lytB Sense Primer
24
GATATTCTGGTGCAGAATGTGGTG
lytB Antisense Primer
24
TAGGTAAACGCATGTTTTCTCCAT
mazG-EGFP-Sense
87
GAAACAATGGAAGAAGTCTGGCAACAGGTAAAACGGCAGGAAATTGATCTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mazG-EGFP-AntiSense
72
CTTGTCATTTAAAAAATGACACAAATGGCGCTTGACCGCGTAATTCCCTTATAGTGAACCTCTTCGAGGGAC
mazG Sense Primer
21
CGAAGTGGAGCGTATTGTTGC
mazG Antisense Primer
24
GGTAAATGTTTTTGACGCAAATCA
menG-EGFP-Sense
87
TATGCCGACAATACCGGGATTATTCTTTCAGAAGATCCGCTGGATATTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
191
menG-EGFP-AntiSense
72
AGGCCAACAGGTAACGCAGAAAAAAGGCACCTTGCGGTGCCTTTCTTATCATAGTGAACCTCTTCGAGGGAC
menG Sense Primer
18
AAAGCGATGTCCGCGTCA
menG Antisense Primer
22
GCTTCATCTTCCGCGTAATTTC
metB-EGFP-Sense
87
GAAGATTTAATTGCCGACCTGGAAAATGGCTTCCGGGCTGCAAACAAGGGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
metB-EGFP-AntiSense
72
TATGCAGCTGACGACCTTTCGCCCCTGCCTGCGCAATCACACTCATTTTTATAGTGAACCTCTTCGAGGGAC
metB Sense Primer
23
CGTATCTCCACCGGTATTGAAGA
metB Antisense Primer
22
TCACATCAGCCAGACTACTGCC
metF-EGFP-Sense
87
GCTGAAATGAGTTACGCGATTTGCCATACGCTGGGGGTTCGACCTGGTTTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
metF-EGFP-AntiSense
72
TGTTTAAAATTTGTGATCACTGTGTGATTTTCACAAAAGCCACACTATTTATAGTGAACCTCTTCGAGGGAC
metF Sense Primer
23
TTAAGCCGTGAAGGAGTGAAAGA
metFAntisense Primer
20
CCTCATTTCGAGGCAGCATT
metG-EGFP-Sense
87
ATTTTCCTGCTAAGCCCGGATGCCGGTGCTAAACCGGGTCATCAGGTGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
metG-EGFP-AntiSense
72
GGAATTTATAAAGAAAAGGCGCTGTCGATGCAGCGCCTTGAAGGGGGATTATAGTGAACCTCTTCGAGGGAC
metG Sense Primer
21
TCGGTATCTCTGAAGGCATGG
metG Antisense Primer
23
CAGTTGAATGCAGATGCTACCAG
mfD-EGFP-Sense
87
ATCGAATGGGTACGCCAGTTTATGCGTGAACTGGAAGAGAACGCGATCGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mfD-EGFP-AntiSense
72
ATTTGTAAATGTTGCAGATGGGGGCGCAGAAACGCCCCCGATTTACCATTATAGTGAACCTCTTCGAGGGAC
mfD Sense Primer
21
TTCAGGATTTGAGTGAGCGGA
mfD Antisense Primer
24
TAAGCCTGAATTATGGATGGTGAC
miaA-EGFP-Sense
87
CCAGAACAGGCGCGTGACGAAGTATTACAGGTTGTTGGTGCTATCGCAGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
miaA-EGFP-AntiSense
72
CTTTCGATTCTGAAAAAATTGCGCACGATACGTCTCAATTGTACACATTCATAGTGAACCTCTTCGAGGGAC
miaA Sense Primer
21
AGATAACCTGGCTGCGTGGTT
miaA Antisense Primer
23
CTTGTAAAGATTGCCCCTTAGCC
minD-EGFP-Sense
87
CGCTTCATTGAAGAAGAGAAGAAAGGCTTCCTCAAACGCTTGTTCGGAGGACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
minD-EGFP-AntiSense
72
GGCTGTGTTTTTCTTCCGCGAGAGAAAGAAATCGAGTAATGCCATAACTTATAGTGAACCTCTTCGAGGGAC
minD Sense Primer
23
CGTAGAACGTCTGTTGGGAGAAG
minD Antisense Primer
22
CAACAATAATCTGCAGCCGTTC
mpL-EGFP-Sense
87
ATCCATCAGAAACTGCTGGATGGGCTGGCGAAGAAGGCGGAAGCCGCGCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
192
mpL-EGFP-AntiSense
72
GTGAACGCCTTATCCGGCCTACGCATACTATATCTGGCTAAGGCCGAATTATAGTGAACCTCTTCGAGGGAC
mpL Sense Primer
19
TCTGGTGATGAGCAACGGC
mpL Antisense Primer
21
GCCTGATAAGACGCATCAAGC
mraY-EGFP-Sense
87
ATTATTTCGCTGATGCTGGTTCTGATTGGTCTGGCAACGCTGAAGGTACGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mraY-EGFP-AntiSense
72
GGCCCAGGCCGATAATGACGACATTTTTACCCTGATAATCAGCCATGATTATAGTGAACCTCTTCGAGGGAC
mraY Sense Primer
23
ACCACTATGAACTGAAAGGCTGG
mraY Antisense Primer
21
AAAAAGTCCACGCAGGAAAGC
mrcA-EGFP-Sense
87
CACGAGGTGGGAACGACCATTATCGATAATGGCGAGGCACAGGAATTGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mrcA-EGFP-AntiSense
72
AAGTGCACTTTGTCAGCAAACTGAAAAGGCGCCGAAGCGCCTTTTTAATCATAGTGAACCTCTTCGAGGGAC
mrcA Sense Primer
20
GACACAACAGGCAGTGCACG
mrcA Antisense Primer
19
AGCCGGATAACGCGTTCAC
mrcB-EGFP-Sense
87
AAAGACAGCGACGGTGTAGCCGGTTGGATCAAGGATATGTTTGGTAGTAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mrcB-EGFP-AntiSense
72
TTATTTTACCGGATGGCAACTCGCCATCCGGTATTTCACGCTTAGATGTTATAGTGAACCTCTTCGAGGGAC
mrcB Sense Primer
21
AACAGCAACCTGCTCAGCAAG
mrcB Antisense Primer
25
CGTTCCTGAAGGGTTAATAAACAAC
mrdA-EGFP-Sense
87
AACACCGATCTGCCTGCGGAAAATCCAGCGGTTGCCGCAGCGGAGGACCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mrdA-EGFP-AntiSense
72
GATGGACTTTATCCCAGAATGTTTTTTTATTCGGATTATCCGTCATGATTATAGTGAACCTCTTCGAGGGAC
mrdA Sense Primer
23
CAGATCCTCGACCACATTATGCT
mrdA Antisense Primer
23
CAGTAAGATCAGCAGCATTGTGG
mrdB-EGFP-Sense
87
GGGATTGTAATGTCAATCCACACCCACAGGAAAATGTTGTCGAAAAGCGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mrdB-EGFP-AntiSense
72
CCTGCCGCGATGCAGATCCCGAGCCACTGCTTACGCATTGCGCACCTCTTATAGTGAACCTCTTCGAGGGAC
mrdB Sense Primer
21
CTAATTGTGCTGATGGCTGGG
mrdB Antisense Primer
22
GACCATCATCGCTTGTACATGC
mreB-EGFP-Sense
87
AAAGCGCTGGAAATGATCGACATGCACGGCGGCGACCTGTTCAGCGAAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mreB-EGFP-AntiSense
72
GTATCAGACCAGGCAGGGTAAACAGACACTTCCCCTGCCTGCATCCGATTATAGTGAACCTCTTCGAGGGAC
mreB Sense Primer
22
TTCCAGTCGTTGTTGCTGAAGA
mreB Antisense Primer
25
AAAATTGGCTTCATAAGTTATGCGT
mreC-EGFP-Sense
87
ACGCCGCCGCAAAGTGGTGCTCAACCGCCTGCGCGTGCGCCGGGAGGGCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
193
mreC-EGFP-AntiSense
72
GGAAAGAGAGCCAGATTACCCAGCGTCCCTGGCTACGATAGCTCGCCACTATAGTGAACCTCTTCGAGGGAC
mreC Sense Primer
21
GCTGCTAATCGCTCTCCACAA
mreC Antisense Primer
22
GCCGGAAAACAATCAGGTTATC
mreD-EGFP-Sense
87
CCGTGGATTTTCTTGCTGATGCGCAAAGTCCGTCAGCAGTTTGCAGTGCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mreD-EGFP-AntiSense
72
GACGACGCGGAGAACCGGAAGCTAAATACAGAGAAGTCATAGAAACCTTTATAGTGAACCTCTTCGAGGGAC
mreD Sense Primer
23
ACCGGAAGTGTTCTGGAGTAGTG
mreD Antisense Primer
23
CCCGTAACAATACGTTCAAAGGT
mrP-EGFP-Sense
87
CTCTACTGGCAGGGTGAAGTCATTCCAGGCGAGATTTCCTTCCGCGCGGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mrP-EGFP-AntiSense
72
GTAACATCTCTGCGGTGTATGAAGAATAACCAGAATGGTTAATAGGCGTTATAGTGAACCTCTTCGAGGGAC
mrP Sense Primer
23
GGAGAGCGAATTTACCGCTATCT
mrP Antisense Primer
21
CGGCAAAAACTAATACACCGC
msbA-EGFP-Sense
87
CTTGAGCACCGCGGCGTTTACGCGCAACTTCACAAAATGCAGTTTGGCCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
msbA-EGFP-AntiSense
72
GCAGCAATAGCCGCCACAAAGGGGATTCACCAGACCAGATTTTTTCGATCATAGTGAACCTCTTCGAGGGAC
msbA Sense Primer
20
AATCGTGGTCGTCGAGGATG
msbA Antisense Primer
21
CACTCACCAGGCCATACAACC
murA-EGFP-Sense
87
GAAGACAAACTGCGCGCTTTAGGTGCAAATATTGAGCGTGTGAAAGGCGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
murA-EGFP-AntiSense
72
AGTGGTCTGGCGGTAGCCCCGCGAACGGGGCTGCCAGCTCTCAGACGATTATAGTGAACCTCTTCGAGGGAC
murA Sense Primer
25
GTGGTTGATCGTATTTATCACATCG
murA Antisense Primer
25
GCAGTTGATGCGTAGCTACACTAAA
murB-EGFP-Sense
87
GTCCGCTTTATTGGTGCATCAGGTGAAGTGAGCGCAGTGGAGACAATTTCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
murB-EGFP-AntiSense
72
CACCGTTCGCTAACAGGGCAATCAATTTCAGTGGCACGGTGTTATCCTTCATAGTGAACCTCTTCGAGGGAC
murB Sense Primer
20
CAGCTGGCGCATCATGTAAG
murB Antisense Primer
19
ACCCAACTGCTCGCCAGAG
murC-EGFP-Sense
87
TTAGCTGAAATCAAACTGAAGCCGCAAACTCCGGAGGAAGAACAACATGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
murC-EGFP-AntiSense
72
GAAACTTCCCGCTCAGCGGAGGTCCCACCCAACAGGACCGCGATTTTATCATAGTGAACCTCTTCGAGGGAC
murC Sense Primer
24
GTAATATTGGAAAAATTGCCCGTT
murC Antisense Primer
18
CGCGTCAATACCGCCTTC
murD-EGFP-Sense
87
AACTTTGAACAACGAGGCAATGAGTTTGCCCGTCTGGCGAAGGAGTTAGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
194
murD-EGFP-AntiSense
72
TGAATCCTGGCAGGCGCGGCATTTTCAGGCGAGGGAGAGATAAACGCATCATAGTGAACCTCTTCGAGGGAC
murD Sense Primer
19
TGGTTCTGCTCTCCCCAGC
murD Antisense Primer
18
TAGCGCCGTGGAGATCCA
murE-EGFP-Sense
87
CTGGACTACTCCGATCGCGTCACGGTGGCGCGTCTGCTGGGGGTGATTGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
murE-EGFP-AntiSense
72
GCAGTTCACCGTTGAGAATGTCGGTAAGTTGGCTAAGGGTTACGCTAATCATAGTGAACCTCTTCGAGGGAC
murE Sense Primer
24
CCATGAAGATTACCAGATTGTTGG
murE Antisense Primer
24
TACAGCATCAAGGGTGATATCTGC
murF-EGFP-Sense
87
AGTGCCGCCATGGAAGAGGTAGTACGCGCTTTACAGGAGAATGGGACATGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
murF-EGFP-AntiSense
72
AGACGTTAAAGCCGGAATAATATTTGACCAAATGTTCGGCCAGCCAAACTATAGTGAACCTCTTCGAGGGAC
murF Sense Primer
27
AATTACGATTTTAGTTAAGGGTTCACG
murF Antisense Primer
22
CCCATCCACAATGAGATGAACA
murG-EGFP-Sense
87
CCGGATGCCACCGAGCGAGTGGCAAATGAAGTGAGCCGGGTTGCCCGGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
murG-EGFP-AntiSense
72
ACGCCATTAACTTCTTAAATTCATACGATGCAAAAGGCATCGCTACAATTATAGTGAACCTCTTCGAGGGAC
murG Sense Primer
23
ACCTTATTAACCATGGCAGAACG
murG Antisense Primer
25
CAGTTTTGCCAATTGTTGTGTATTC
murI-EGFP-Sense
87
GTTTTACAGCGTTACGGCTTCGAAACGCTCGAAAAACTGGCAGTTTTAGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
murI-EGFP-AntiSense
72
CAAGAGGAAATTTAAAATAATTTTCTGACCGCGCAACATTCAACCAAATCATAGTGAACCTCTTCGAGGGAC
murI Sense Primer
24
AATATTGCCTTTTGTATGGCAATG
murI Antisense Primer
23
GGCGCATTATAGGGAGTTATTCC
mutL-EGFP-Sense
87
CTGTTACAATCTGTTGATTTACATCCGGCGATAAAAGCCCTGAAAGATGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mutL-EGFP-AntiSense
72
GTCGGCCCCATCAAAAAAATCGCCTTAGGCAGGCTCGCCTTACTGATATCATAGTGAACCTCTTCGAGGGAC
mutL Sense Primer
21
AACGGTTATGTCCGCAACTTG
mutL Antisense Primer
21
CAATGGCTAACGCCGTTTTAC
mutM-EGFP-Sense
87
GCGACTAAACATGCGCAGCGGGCAACGTTTTATTGTCGGCAGTGCCAGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mutM-EGFP-AntiSense
72
GTTAGCGTAGCGTTTATGCCGGATGGTATGCCATCCGGCGCGCATGAATTATAGTGAACCTCTTCGAGGGAC
mutM Sense Primer
23
AAAGTGATGGTAAACCGGGCTAT
mutM Antisense Primer
20
AATGTCCATCAGGCGCTGAT
mutS-EGFP-Sense
87
CTCACCCCGCGTCAGGCGCTGGAGTGGATTTATCGCTTGAAGAGCCTGGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
195
mutS-EGFP-AntiSense
72
CAGTTGTCGTTAATATTCCCGATAGCAAAAGACTATCGGGAATTGTTATTATAGTGAACCTCTTCGAGGGAC
mutS Sense Primer
23
CGCAAATGTCTTTGCTGTCAGTA
mutS Antisense Primer
25
GGCATGGTTTTACCCTGTAAAATAA
mutY-EGFP-Sense
87
GCGGCTCCCGTGGAGCGTTTGTTACAGCAGTTACGCACTGGCGCGCCGGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mutY-EGFP-AntiSense
72
ACAAAAAATCGTTCTGCTCATAAATCATCCTCTTTATCGACTCACGCGCTATAGTGAACCTCTTCGAGGGAC
mutY Sense Primer
20
GCTGCATGGATGAAGGCAAT
mutY Antisense Primer
20
TTCTGCTTCACGTTGCAGGA
mvN-EGFP-Sense
87
GCACTGGCGGTACTGGGCTTCAAAGTTAAAGAATTTGCCCGCCGGACGGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
mviN-EGFP-AntiSense
72
TCGATCTGAAGATTATCTCCGGCCTGCACTGCAGGCCGGAATGCATTGTTATAGTGAACCTCTTCGAGGGAC
mviN Sense Primer
22
ATATCATGCCGGAGTGGTCATT
mviN Antisense Primer
20
CTATATGGGGCGAACGGTCA
ndK-EGFP-Sense
87
CGCGAAATCGCTTATTTCTTTGGCGAAGGCGAAGTGTGCCCGCGCACCCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ndK-EGFP-AntiSense
72
AATTCTGGCGCACGGATGCCACGTTTGCACGCGGCATTTACGAAATTATTATAGTGAACCTCTTCGAGGGAC
ndK Sense Primer
20
CTGATTCCGTCGAATCTGCC
ndK Antisense Primer
22
TGGAGGGTTGAAAAAAGAAACG
ntH-EGFP-Sense
87
GGCTCTTGTATTATTGAAGATCTTTGTGAATACAAAGAGAAAGTTGACATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ntH-EGFP-AntiSense
72
AGGATAAAGAAAGGTTATCAATGGGGTAATCGGTGTTACCCCTTTTCTTCATAGTGAACCTCTTCGAGGGAC
ntH Sense Primer
20
CACGGGCGTTATACCTGCAT
ntH Antisense Primer
25
TACCTGATGATAACGCTAAGCAATG
nusB-EGFP-Sense
87
GTCAACGGCGTACTCGATAAAGCAGCACCTGTGATTCGCCCTAACAAAAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
nusB-EGFP-AntiSense
72
AGGCCGGCGATCATGGAACGGTCTTCCGTGAATCTACCGGCCTGGATATCATAGTGAACCTCTTCGAGGGAC
nusB Sense Primer
21
TTAACGAAGCGATCGAACTGG
nusB Antisense Primer
22
ACATGCCATACGTTATGCCTCA
nusG-EGFP-Sense
87
TTCGGTCGTGCGACCCCGGTAGAGCTGGACTTCAGCCAGGTTGAAAAAGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
nusG-EGFP-AntiSense
72
TCTCACGCCTTGTGCAACGATTAAATCGCCGCTTTTTTGATCGCTGGGTTATAGTGAACCTCTTCGAGGGAC
nusG Sense Primer
25
GGATTACGAGAAATCTCGTCTGAAA
nusG Antisense Primer
21
AACAAAAGGCGCGAAATTGTA
ogT-EGFP-Sense
87
GGAGTTCAGCGAAAAGAGTGGTTATTGCGCCATGAAGGTTATCTTTTGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
196
ogT-EGFP-AntiSense
72
GTAACTTTACATAAAAGTGTGAACAAGCTGGCACAAATTGTTTAATGTTTATAGTGAACCTCTTCGAGGGAC
ogT Sense Primer
20
ACCATGACCGGATATGCAGG
ogT Antisense Primer
26
ACAGCAGAGAATTCCGATATTAGATG
orN-EGFP-Sense
87
CGTGAATCGGTGGCGGAGCTGGCTTACTACCGCGAGCATTTTATCAAGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
orN-EGFP-AntiSense
72
TCACGCCGCCGCAAGTGGATTCCGGCGCTTACGTGACCAGGAAAAATTTTATAGTGAACCTCTTCGAGGGAC
orN Sense Primer
19
TTTACCAAGCAGGGGACGC
orN Antisense Primer
23
AGCAAGACGTTCAATTTAGCGTC
oxyR-EGFP-Sense
87
ATCCGCGCAAGAATGGATGGCCATTTCGATAAAGTTTTAAAACAGGCGGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
oxyR-EGFP-AntiSense
72
AACTACCCGACGATGGCGGAAGCCTATCGGGTAGCTGCGTTAAACGGTTTATAGTGAACCTCTTCGAGGGAC
oxyR Sense Primer
19
CGCTATGAGCAGCTGGCAG
oxyR Antisense Primer
21
GTGGCGGCAACACTATTGAGT
pabA-EGFP-Sense
87
AGTATTCTTAGCGAACAAGGACATCAACTGCTGGCTAATTTCCTGCATCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pabA-EGFP-AntiSense
72
TTATAACCACAAAATATGCATAAAAAATCACTAAATGGCAATCAGAAATCATAGTGAACCTCTTCGAGGGAC
pabA Sense Primer
21
TGGAAGGTGTGCAGTTCCATC
pabA Antisense Primer
24
ATGATCACCCTGTTACGCATAAAC
paL-EGFP-Sense
87
GGTCATGACGAAGCGGCATACTCCAAAAACCGTCGTGCGGTACTGGTTTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
paL-EGFP-AntiSense
72
CGACAGACTCAATAGTTGATGTCTGAAGTTACTGCTCATGCAATTCTCTTATAGTGAACCTCTTCGAGGGAC
paL Sense Primer
25
ATCTCCATCGTTTCTTACGGTAAAG
paL Antisense Primer
20
TGATTGGTGCCTGAGCAAAA
panB-EGFP-Sense
87
ATGGCTGAAGTGGAGTCCGGCGTTTATCCGGGCGAAGAACACAGTTTCCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
panB-EGFP-AntiSense
72
GCTGACGCAGCAGCGGCAGGGTTTCGATAATTAACACAACGTGACTCCTTATAGTGAACCTCTTCGAGGGAC
panB Sense Primer
23
CGGTCACATTCCTAAATTCGCTA
panB Antisense Primer
20
CCATCGTGCAGGTTACCCAT
panC-EGFP-Sense
87
GCCTGGCTTGGCGATGCTCGCCTGATCGACAACAAAATGGTCGAGCTGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
panC-EGFP-AntiSense
72
TGGGGTAAATTAATAACTGGCGCCATCAGCCGTAGCGCCAGTTAAGTATTATAGTGAACCTCTTCGAGGGAC
panC Sense Primer
23
CTGGAAGTTTCTGAAACCAGCAA
panC Antisense Primer
21
GAAGACGTTGCAGAGATGGCA
parC-EGFP-Sense
87
CGTGTTGAGATCGACTCTCCTCGCCGTGCCAGCAGCGGTGATAGCGAAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
197
parC-EGFP-AntiSense
72
ATCCGGCGTTCCTTGCAAGCGGGAGGAAACAGCGCCCTCCCCGGCATATTATAGTGAACCTCTTCGAGGGAC
parC Sense Primer
18
GCGGTTTGCAGCGTATCG
parC Antisense Primer
21
CCGGATGACGACTTAACGTTT
parE-EGFP-Sense
87
GATCGCCGCAACTGGTTGCAAGAGAAAGGCGACATGGCGGAGATTGAGGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
parE-EGFP-AntiSense
72
ATCCTGCCTTGTTTGCCCGGCCATCCTGACCGGGCAATGTTCTTTCCTTTATAGTGAACCTCTTCGAGGGAC
parE Sense Primer
20
GATATGCTGCTGGCGAAGAA
parE Antisense Primer
21
GTATTCTGCAGCCAGGGATTT
pcnB-EGFP-Sense
87
CGTCGTACTCGTCGTCCACGCAAACGCGCACCACGTCGTGAGGGTACCGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pcnB-EGFP-AntiSense
72
GCTCCAGCGGAGAGGCCAGATTGCTGCCTATGGCAATATACGCCACTGTCATAGTGAACCTCTTCGAGGGAC
pcnB Sense Primer
20
AAGGGATGCTCAACGAGCTG
pcnB Antisense Primer
21
TAATGCTTTCAGGGCAGCATT
pdxA-EGFP-Sense
87
AGTTTTATTACGGCGCTTAATCTCGCCATCAAAATGATTGTTAACACCCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pdxA-EGFP-AntiSense
72
TTTGCCCGAAGCGTTTACGGGCTAAGTGGCCCTGGTGGACTCGATTATTCATAGTGAACCTCTTCGAGGGAC
pdxA Sense Primer
19
GCCTGCCCTTTATTCGCAC
pdxA Antisense Primer
22
TGTCGATCACGAACTGATCGTT
pdxH-EGFP-Sense
87
TTTTTGTACCAGCGTGAAAATGATGCGTGGAAGATTGATCGTCTTGCACCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pdxH-EGFP-AntiSense
72
TGCCAGAATCAGGAGTACCAGCGATTAAAGCAAGATTTTTGCATCTTTTCATAGTGAACCTCTTCGAGGGAC
pdxH Sense Primer
21
ATTGAGTTCTGGCAGGGTGGT
pdxH Antisense Primer
23
GCCAGATGCGAAAGAGACATAGA
pepA-EGFP-Sense
87
GCGTTGCTGGCACAGTTCCTGTTAAACCGCGCTGGGTTTAACGGCGAAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pepA-EGFP-AntiSense
72
ATAAGGCGTTCACGCCGCATCCGGCAATAACAGCCTTGCCTGACGCAATTATAGTGAACCTCTTCGAGGGAC
pepA Sense Primer
21
CTGGCGTTCTGGTAAAGCAAA
pepA Antisense Primer
24
CCTACGAGTTCAGTGCTGTGTAGG
pepN-EGFP-Sense
87
CTGGAAAATCTCTCTGGCGATCTGTACGAGAAGATAACTAAAGCACTGGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pepN-EGFP-AntiSense
72
GGGTAAATTCCCCGAATGGCGGCGCTATTGCCGCCATTCGGTTATTTATCATAGTGAACCTCTTCGAGGGAC
pepN Sense Primer
21
CCTGAAACGTTACGATGCCAA
pepN Antisense Primer
24
TGAATCTGAAACTCGCCTGAGAA
pgI-EGFP-Sense
87
CACGATAGCTCGACCAATGGTCTGATTAACCGCTATAAAGCGTGGCGCGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
198
pgI-EGFP-AntiSense
72
TGCCGGATGCGGCGTGAACGCCTTATCCGGCCTACATATCGACGATGATTATAGTGAACCTCTTCGAGGGAC
pgI Sense Primer
21
GGAACTGGGTAAACAGCTGGC
pgI Antisense Primer
22
GCATCGACCTGTAGGCCTGATA
pgK-EGFP-Sense
87
GAAGGTAAAGTACTGCCTGCAGTAGCGATGCTCGAAGAGCGCGCTAAGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pgK-EGFP-AntiSense
72
TCTAAAAGCGCGCTGAAACAAGGGCAGGTTTCCCTGCCCTGTGATTTTTTATAGTGAACCTCTTCGAGGGAC
pgK Sense Primer
21
CGGCATTGCTGACAAAATCTC
pgK Antisense Primer
20
TTGTCGCCTTCCTGCAACTC
pgsA-EGFP-Sense
87
TGGTCAATGTTGCAATATTTGAGCGCTGCGCGTGCAGATTTGCTTGATCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pgsA EGFP-Antisense
72
ATATTTTTCACCACTTTTGATCGTTTGCTGAAAATTACGCCGAAACGATCATAGTGAACCTCTTCGAGGGAC
pgsA Sense Primer
23
GTCCGAACATTTGGGTTGAGTAC
pgsA Antisense Primer
21
TTCTACTTACCTGGCGCGATG
pheS-EGFP-Sense
87
GACCTGCGTTCATTCTTCGAAAACGATCTGCGTTTCCTCAAACAGTTTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pheS-EGFP-AntiSense
72
CCCATTCGCGTAACCACAGTTCACTGAATTTCATAATCTATTCCTGCCTTATAGTGAACCTCTTCGAGGGAC
pheS Sense Primer
21
GGAGCGTCTGACTATGTTGCG
pheS Antisense Primer
20
CCAGCGCATCGCTATCAATC
pheT-EGFP-Sense
87
GCCAAATGTGTAGAGGCATTAAAAGAGCGATTCCAGGCATCATTGAGGGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pheT-EGFP-AntiSense
72
TTATCAAACAGATATTCTGACATTTCAGCTTTTGTAAGCGCCATAGGTTCATAGTGAACCTCTTCGAGGGAC
pheT Sense Primer
24
CCGTACACTCGAAGAAGAGGAGAT
pheT Antisense Primer
24
TCTCTTCGAAAAACAGTTCAACCA
phoB-EGFP-Sense
87
CGCATGGTGCAGACCGTGCGCGGTACAGGATATCGTTTTTCAACCCGCTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
phoB-EGFP-AntiSense
72
TCCAGTTAAGAAATCATAAGCCCTGCTCTGCGTCCGATGAGCAAGGCGTTATAGTGAACCTCTTCGAGGGAC
phoB Sense Primer
20
ACGGTCGATGTCCACATTCG
phoB Antisense Primer
21
AGCCGTTCCAGCACGTAAGAT
plsB-EGFP-Sense
87
ATTACATCAGACGTGCGTTTGACGATTGAGAGTGCGACGCAGGGCGAAGGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
plsB-EGFP-AntiSense
72
TGGAAGGCCGGATAAGGCGTTTTCGCCGCATCCGGCAATTCTCTCTGATTATAGTGAACCTCTTCGAGGGAC
plsB Sense Primer
24
ACGATGAAGGTTTATCAGTTGCTG
plsB Antisense Primer
23
CATCGCAATTTATTGAATTTGCA
pmbA-EGFP-Sense
87
AATATACAGTGTGGTTCTGTGCTGTTGCCGGAGATGAAAATCGCCGGACAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
199
pmbA-EGFP-AntiSense
72
TTTTGTGTAATTTTTTAGTTTATAGCGCGGCAGGTCGCGCCAGTTTTTTTATAGTGAACCTCTTCGAGGGAC
pmbA Sense Primer
23
ACCGTCGGTAACGATATTGAAAC
pmbA Antisense Primer21
21
GGTCACGTACTGCGAGTACGC
pnP-EGFP-Sense
87
CAGTCTCAACCTGCTGCAGCACCGGAAGCTCCGGCTGCTGAACAGGGCGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pnP-EGFP-AntiSense
72
CCTGCCCGGTTAAAAGCCCCCCGCCGCAGCGGAGGGCAAATGGCAACCTTATAGTGAACCTCTTCGAGGGAC
pnP Sense Primer
25
GTATCCGTCTGAGCATTAAAGAAGC
pnP Antisense Primer
19
GCTTCATTTCCCACTCCCG
pntB-EGFP-Sense
87
ATGCTGTTTGGTGACGCCAAAGCCAGCGTGGATGCAATCCTGAAAGCTCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pntB-EGFP-AntiSense
72
TTAAGCGATCTCAATAAAGAGTGACGGCCTCAGCAGAGGCCGTCAGGGTTATAGTGAACCTCTTCGAGGGAC
pntB Sense Primer
20
GTGCAAAACCCGCTGTTCTT
pntB Antisense Primer
19
GAGGTCAAAGCATCGCCGT
polA-EGFP-Sense
87
GTGCCGTTGCTGGTGGAAGTGGGGAGTGGCGAAAACTGGGATCAGGCGCACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
polA-EGFP-AntiSense
72
GACAGCTTATGTTGCTTACTTACGAAAAAAGGCATGTTCAGGCGAATCTTATAGTGAACCTCTTCGAGGGAC
polA Sense Primer
21
AAGATGATGTTGATGCCGTCG
polA Antisense Primer
26
GCATAGGAATTTCTAATAGCCATCAC
ppA-EGFP-Sense
87
GAAGCCGCTAAAGCTGAAATCGTTGCCTCCTTCGAGCGCGCAAAGAATAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ppA-EGFP-AntiSense
72
CCCTTACTAACCGAAGCCCGGCGTTCAGGGTTATTACGCCAGAAGAACTTATAGTGAACCTCTTCGAGGGAC
ppA Sense Primer
21
GGCAAGTGGGTGAAAGTTGAA
ppA Antisense Primer
22
TGTTTATTTATCGCGGGCATAA
ppdD-EGFP-Sense
87
AGCGCATTGCAGCAAGCCTGCGAAGATGTCTTCCGCTTTGATGACGCCAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ppdD-EGFP-AntiSense
72
ATAACGCAGACACAGGGCAGTGAGCTGTGGAATATTCATTGCCGCTCCTTATAGTGAACCTCTTCGAGGGAC
ppdD Sense Primer
20
ACGCGCAACTGCAATATTCA
ppdD Antisense Primer
20
CCGCAACATGAACCACCTCT
prfA-EGFP-Sense
87
ATTATCCAGGAACATCAGGCCGACCAACTGGCGGCGTTGTCCGAGCAGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
prfA-EGFP-AntiSense
72
TCGCCTGAAGTTGGCTTATTGCTTCACGTAACCAGTGTTGATATTCCATTATAGTGAACCTCTTCGAGGGAC
prfA Sense Primer
24
GAAGTGATGGAAGGTAAGCTGGAT
prfA Antisense Primer
21
CCAGCAGGATTTCAGCATCAC
prfC-EGFP-Sense
87
CTGGCACAGGAACGTTATCCGGACGTTCAGTTCCACCAGACCCGCGAGCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
200
prfC-EGFP-AntiSense
72
AAGGGAAATTGACAGGGCGCAGCGGCTACCGCGCCCTGGAGGCAAGAATTATAGTGAACCTCTTCGAGGGAC
prfC Sense Primer
20
CATCGCTACCAGCATGGTCA
prfC Antisense Primer
22
AAGAACATTCCGTAAGCGGCTA
priA-EGFP-Sense
87
CCGGATTCCCGTAAGGTGAAATGGGTGCTGGATGTTGATCCGATTGAGGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
priA-EGFP-AntiSense
72
AGTGTGATGAATATTGAATTTTTCGATCCGCCTCGCATCGTGAGCGGTTTATAGTGAACCTCTTCGAGGGAC
priA Sense Primer
20
TACGCTGGCGCTCATCAATA
priA Antisense Primer
20
CGCGTGAAAACGGTTACAGA
prlC-EGFP-Sense
87
GGTCGTGAACCGCAGCTGGATGCGATGCTGGAGCATTACGGCATTAAGGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
prlC-EGFP-AntiSense
72
CCGTCTCCGGTGCCTGTTTCATCAATTAAGCAGATTTTCACTGAATGATCATAGTGAACCTCTTCGAGGGAC
prlC Sense Primer
21
TCAGAAGAGCCGATGGATCTG
prlC Antisense Primer
23
ATCAGGTTGTCTTCATCGTGCTC
prmA-EGFP-Sense
87
GACCCGGTCGTGGAAAAAGAAGAGTGGTGCCGTATTACCGGTCGTAAGAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
prmA-EGFP-AntiSense
72
TGAGCTTGCTCGCACTTCGCCCCGCGTCACCCTACGGCGATGCGAAGGTTATAGTGAACCTCTTCGAGGGAC
prmA Sense Primer
23
GTGAAGCTTATGCCGATAGCTTC
prmA AntiSense Primer
20
AATCGGCAAATTTACGTGCC
proA-EGFP-Sense
87
GCACTGACCACTTACAAGTGGATCGGCATTGGTGATTACACCATTCGTGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
proA-EGFP-AntiSense
72
CAATGGCCTTGTGAATCAAATGGCTACTTTTGCATCACCCGGTTTTATTTATAGTGAACCTCTTCGAGGGAC
proA Sense Primer
22
GGCGGTAAGCACACAAAAACTC
proA Antisense Primer
23
GACAAGGTTAAAACTAACCGGGC
proB-EGFP-Sense
87
GGATATGAATACGGCCCGGTTGCCGTTCACCGTGATGACATGATTACCCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
proB-EGFP-AntiSense
72
AGGCTTGCTTCGCGGCAATGCCCATTTGTTCCAGCATCAGCCTGCTCCTTATAGTGAACCTCTTCGAGGGAC
proB Sense Primer
22
CACTCGCAAGAAATTGATGCAA
proB Antisense Primer
21
GGCTGGAGAGTTGCGCTAATT
proC-EGFP-Sense
87
ATCGAAGCGATGACGAAGTGTATGGAAAAATCAGAAAAACTCAGCAAATCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
proC-EGFP-AntiSense
72
CCGGACGTAACCGCACCGAAGTGGCGGCCTGACGTCCGGCGAAAGTCATCATAGTGAACCTCTTCGAGGGAC
proC Sense Primer
22
ACTGGAAGAGAAAGGCTTCCGT
proC Antisense Primer
21
TTTGGCGCTTTACAAAGCAAA
proS-EGFP-Sense
87
TTAATTAAGACTGGTGACATCGTCGAATATCTGGTGAAACAGATTAAAGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
201
proS-EGFP-AntiSense
72
ACAATCCATGTAAAAAAAGGGCCCTGAAATTCAGGACCCTTTCTGGCATCATAGTGAACCTCTTCGAGGGAC
proS Sense Primer
23
AATATAAATATCGTCGCAACGGC
proS Antisense Primer
22
GCAGTACGCCTTTGGTTTATCC
prS-EGFP-Sense
87
GCGATTCGTCGTATCAGCAACGAAGAATCGATCTCTGCCATGTTCGAACACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
prS-EGFP-AntiSense
72
ATTACAGACAAAAAAACCCGCCGCAGCGGGTCTTTGAGCCGGGTTCGATTATAGTGAACCTCTTCGAGGGAC
prS Sense Primer
21
CGTGCGTACTCTGACCCTGTC
prS Antisense Primer
24
GTGAAGGAGGCATAGGTCATACAA
psD-EGFP-Sense
87
GAAGCAGAACACGACGCCAGCCCATTGGTTGACGACAAAAAAGACCAGGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
psD-EGFP-AntiSense
72
CATCAGAAAAGTGATAATCAGGCGCACGTCAGCGTTTCCTTTGATGGATTATAGTGAACCTCTTCGAGGGAC
psD Sense Primer
20
TTTGTTACGCCAGACGCTGA
psD Antisense Primer
26
AGTTCCTGAGTGATTTGTTTGCTATC
ptH-EGFP-Sense
87
ACAGATGGCTTGACCAAAGCAACGAACCGATTGCACGCCTTTAAAGCGCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ptH-EGFP-AntiSense
72
CTTTGCCTATTATACACGGCACTCGGCAAAAATGCCGCAGACAACGACTTATAGTGAACCTCTTCGAGGGAC
ptH Sense Primer
21
TGATGAAGCCATTGACGAAGC
ptH Antisense Primer
20
CCGCATTTGAATCCCATGAT
purA-EGFP-Sense
87
ACCGGTCCGGATCGTACTGAAACCATGATTCTGCGCGACCCGTTCGACGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purA-EGFP-AntiSense
72
ATCACACTGTTCGCCCGGCAGGCAAAATATCTGCCAGGCGTACCAGAATTATAGTGAACCTCTTCGAGGGAC
purA Sense Primer
20
AGCTGACTGGTGTGCCGATC
purA Antisense Primer
21
TAATGGCTTACCCGACACAGC
purB-EGFP-Sense
87
ACGCCGGCTAACTATATTGGTCGAGCTATCACGATGGTTGATGAGCTGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purB-EGFP-AntiSense
72
CTTAATAAGCAGGCCGGACAGCATCGCCATCCGGCACTGATACGAGGTTTATAGTGAACCTCTTCGAGGGAC
purB Sense Primer
22
GCGTTGCCAGAAGAAGAGAAAG
purB Antisense Primer
26
TATGGGGGTAAACATTAAATAAACCA
purD-EGFP-Sense
87
TGCTTCTGCCGGAAAGATATCGGCTGGCGCGCTATCGAACGCGAGCAGAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purD-EGFP-AntiSense
72
CCGTCAGTTAGGGATCACGCGCAAAACGCTATTGGCAAAACTGTCGCGTTATAGTGAACCTCTTCGAGGGAC
purD Sense Primer
24
TATGCCTTAATGACCGATATCCAC
purD Antisense Primer
24
GTGGAAGTGGAAAAAGAGGTGATT
purE-EGFP-Sense
87
AAAGCCCAGACCGACGAAGTGCTGGAAAACCCGGACCCGCGAGGTGCGGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
202
purE-EGFP-AntiSense
72
GACGCAGCATACGGCCTAACTGCCCGTTACCGAGGACGCAAACCTGTTTCATAGTGAACCTCTTCGAGGGAC
purE Sense Primer
21
AAGAACTGCACCAGCGTCTGA
purE Antisense Primer
22
AGACAGCAATGCCTAACGGTTC
purF-EGFP-Sense
87
GCAGTGCAACGTCAGAACGAAGTGGAAAATCTCGAAATGCATAACGAAGGACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purF-EGFP-AntiSense
72
GCGGGAGTTGCAAGTCAGGGTGCCAGACCGGCACCCTCAGCGAAGGCATCATAGTGAACCTCTTCGAGGGAC
purF Sense Primer
22
ACGTTACGTAATGATGACGCCA
purF Antisense Primer
19
TGCAGGCAGACTTTGCAGG
purH-EGFP-Sense
87
GACGAGCACGGTATTGCGATGCTCTTCACCGACATGCGCCACTTCCGCCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purH-EGFP-AntiSense
72
GCTCGCGCCCGCCGTTACCAATCACTAATACTTTCATCTATTGCTCCATTATAGTGAACCTCTTCGAGGGAC
purH Sense Primer
23
TATCCGTGATGACGAAGTGATTG
purH Antisense Primer
24
AGCAACAAAAACAGTCTCAACCAG
purK-EGFP-Sense
87
CTGCCGCCGGAATATGCCAGCGGCGTGATTTGGGCGCAGAGTAAGTTCGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purK-EGFP-AntiSense
72
AGGCCGGATAAGGCGTTTACGCCGCATCCGGCAAGAATAGAGCACCAGTTATAGTGAACCTCTTCGAGGGAC
purK Sense Primer
20
CGACACATCGCGTCTGACTG
purK Antisense Primer
19
GGCCTACAATGGGTACCGG
purL-EGFP-Sense
87
GAGGATGGCCCATGGATGCGCATTTTCCGCAATGCGCGTAAGCAGTTGGGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purL-EGFP-AntiSense
72
TTGGTGCTTAATGCCGCATCCGGGCTGCAAAACCAATGGGCTGACGACTTATAGTGAACCTCTTCGAGGGAC
purL Sense Primer
19
CTCCTGGCATCCGGAAAAC
purL Antisense Primer
20
TCCCGGAGTTGGGAGCTTAT
purM-EGFP-Sense
87
AAAATCGGTATCATCAAAGCCTCTGATTCCGAACAACGCGTGGTTATCGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purM-EGFP-AntiSense
72
TTGCCTGTAAATTACTTCCGTTGCCGGAAATAAGCACCACAATATTCATTATAGTGAACCTCTTCGAGGGAC
purM Sense Primer
19
TCCGGAAGTGGACAAAGCC
purM Antisense Primer
22
TTTGTTGGTTTTACAGGCGTCA
purN-EGFP-Sense
87
GCGTGGCTGGATGGTCAACGTCTGCCGCCGCAGGGCTACGCTGCCGACGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
purN-EGFP-AntiSense
72
GAATTGAAAAACGCCAGCGGCAGAGCTGGCGCTTTAATTACGGGGGTATTATAGTGAACCTCTTCGAGGGAC
purN Sense Primer
21
GGTCGTCTGAAAATGCACGAA
purN Antisense Primer
21
CTGCTGGAGCTTGCGATTTAC
pykA-EGFP-Sense
87
GTGATGAGTACCGTGGGTTCTACTAATACCACGCGTATTTTAACGGTAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
203
pykA-EGFP-AntiSense
72
TTGAACTGTAGGCCGGATGTGGCGTTTTCGCCGCATCCGGCAACGTACTTATAGTGAACCTCTTCGAGGGAC
pykA Sense Primer
22
TTGATGTCTGGTGACCTGGTGA
pykA Antisense Primer
24
CGCCTGATGATAAGTTCAAGTTTG
pyrD-EGFP-Sense
87
GGTTTTATTTTTAAAGGTCCGCCGCTGATTAAAGAAATCGTTACCCATATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pyrD-EGFP-AntiSense
72
TGAAAATAAAGCCCTGATTATCTTATAAAGAGGAATTCGAAGAAATAATTATAGTGAACCTCTTCGAGGGAC
pyrD Sense Primer
22
GTGCCTCACTGGTGCAAATTTA
pyrD Antisense Primer
25
CAACAGCGATGAATATAAAACAACC
pyrE-EGFP-Sense
87
ATGGCGGAACATCTGGCGGCGGTTAAGGCCTATCGCGAAGAGTTTGGCGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pyrE-EGFP-AntiSense
72
CAGTTGCAGTAATATGACGCCGGATGACTTTTCATCCGGCGAGTTTCTTTATAGTGAACCTCTTCGAGGGAC
pyrE Sense Primer
23
CCTGATTGCTTACCTGGAAGAGA
pyrE Antisense Primer
22
TTGTCCGCAGCGAATTTAAATA
pryF-EGFP-Sense
87
GATCCAGCGCAGACGCTGAAAGCGATCAACGCCTCTTTACAGCGGAGTGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pyrF-EGFP-AntiSense
72
TACGTCCGGTTTCCGTTGAGTAGACCAGACGGCTGTTGGAATCACTCATCATAGTGAACCTCTTCGAGGGAC
pyrF Sense Primer
24
GTTGTCGGCTGGTGTTGATTATAT
pyrF Antisense Primer
19
CACCACACCGTCGCCTTTA
pyrG-EGFP-Sense
87
TTTGCAGGCTTTGTGAAAGCCGCCAGCGAGTTCCAGAAACGTCAGGCGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
pyrG-EGFP-AntiSense
72
ACAAACAACGCGTACCCAGGGTACGCGTTGCCGCTCTAACTTTTTTACTTATAGTGAACCTCTTCGAGGGAC
pyrG Sense Primer
20
ACTCCACGTGATGGTCACCC
pyrG Antisense Primer
25
GGACATTAGGTTTTCCTCAAGTCAC
queA-EGFP-Sense
87
GCGATGTTTATCACGTACAATCCGCAGGCAATTAATGAGCGCGTCGGGGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
queA-EGFP-AntiSense
72
CCACTACGTCAGAAAAACAGTCCAACGTTTTAAACCAGCGCCGCGGAATTATAGTGAACCTCTTCGAGGGAC
queA Sense Primer
22
CGCCTATAAAGCAGCGGTAGAA
queA Antisense Primer
20
GTCGGTGGTGTCCAGTTCAA
radA-EGFP-Sense
87
ATTTTTGGCGTTAAAAAACTCTCCGACGCGCTTAGCGTGTTCGACGACTTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
radA-EGFP-AntiSense
72
CAGTTTTCAGGTAATCAAATGACGACATATCTCCCTCCGTATATCTCATTATAGTGAACCTCTTCGAGGGAC
radA Sense Primer
21
AGCGGTCAGGAACGAATCTCT
radA Antisense Primer
20
GCTACCTGCTGTAGCGTGCA
rbfA-EGFP-Sense
87
GTCAAACATGACGAAGAACGTCGTGTTAACCCGGACGACAGCAAGGAGGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
204
rbfA-EGFP-AntiSense
72
GCAACAAAACGCCGTTAATGTCGCGACCGCGACGACGAGGACGACTCATTATAGTGAACCTCTTCGAGGGAC
rbfA Sense Primer
19
TGCGCATGTCAAACCTGGT
rbfA Antisense Primer
22
TTGCTGGACATACCCTGAGGTT
recA-EGFP-Sense
87
GATTTCTCTGTAGATGATAGCGAAGGCGTAGCAGAAACTAACGAAGATTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recA-EGFP-AntiSense
72
AAAAGCAAAAGGGCCGCAGATGCGACCCTTGTGTATCAAACAAGACGATTATAGTGAACCTCTTCGAGGGAC
recA Sense Primer
19
TGCTGAGCAACCCGAACTC
recA Antisense Primer
21
CGACGGGATGTTGATTCTGTC
recC-EGFP-Sense
87
GTTGAACAGTCGCAACGTTTCCTGTTACCGCTGTTTCGCTTTAATCAGTCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recC-EGFP-AntiSense
72
TGCGCATCATAAAGTAAGCGGATAGATTGCGCAATTTTTATACAGCACTCATAGTGAACCTCTTCGAGGGAC
recC Sense Primer
22
TAACACCAGAGACAATGGAGGC
recC Antisense Primer
19
GTGCTGCACGAGTCAGCCT
recD-EGFP-Sense
87
ACTCGTACTGAGCGGCGCAGTGGTCTGGCGGCGTTGTTTAGTTCACGGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recD-EGFP-AntiSense
72
TCGGATGCGACATGCGTAACACTCGTACGTCGCATCCGGCAATTACGTTTATAGTGAACCTCTTCGAGGGAC
recD Sense Primer
20
CGCATATTAAGTGCGGCAAT
recD Antisense Prime
19
GGCGGATTTAGGGTAAGCG
recF-EGFP-Sense
87
TCGGACGAAAATTCGAAGATGTTTACCGTGGAAAAGGGTAAAATAACGGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recF-EGFP-AntiSense
72
GAGTCATAAGAATTCGACATCAACGTTTCTCGCTCATTTATACTTGGGTTATAGTGAACCTCTTCGAGGGAC
recF Sense Primer
19
ACAGGTCTTTGTCAGCGCG
recF Antisense Primer
23
GCCCTTTCAGGACTTTGATACTG
recG-EGFP-Sense
87
AAAGCCCTGATAGAACGCTGGATGCCGGAGACGGAACGTTACTCGAATGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recG-EGFP-AntiSense
72
GCAGGAAGGTAGGGTAACCTGAAATGGCGGTCTTCTCACTGCCGCCTTTTATAGTGAACCTCTTCGAGGGAC
recG Sense Primer
21
ACGAACGTTACCCACAACAGG
recG Antisense Primer
21
GTAGGGTGATGAATCGCATCC
recJ-EGFP-Sense
87
TTTCGCGGCAACCGCAGCCTGCAAATTATCATCGACAATATCTGGCCAATTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recJ-EGFP-AntiSense
72
GAGCGGGATTGTACCCAATCCACGCTCTTTTTTATAGAGAAGATGACGCTATAGTGAACCTCTTCGAGGGAC
recJ Sense Primer
25
CAACTGGCTTATAAGCTCGATATCA
recJ Antisense Primer
24
TGAGCTAGTCAAAATGCGGTGATA
recN-EGFP-Sense
87
AGTGAAGTCACACGTAATACACTGGCGAATGCGAAAGAACTGCTTGCAGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
205
recN-EGFP-AntiSense
72
TCTTACGGCGTTTTGCTGTTTACTCTGACCGTGAAGCAGGAAAAAAGTTTATAGTGAACCTCTTCGAGGGAC
recN Sense Primer
19
AAGCGCGGTTACAAGAGCT
recN Antisense Primer
26
TCATCACTTTAAAACCTTTTGCTTTC
recO-EGFP-AntiSense
72
TATGGTCAATGTTGACGCCTAACAGTAATTCAGCCATGACAATCCTCATCATAGTGAACCTCTTCGAGGGAC
recO-EGFP-Sense
87
GAACTGTTCCGGCAGTTTATGCCTAAGCGAACGGTGAAAACACATTATGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recO Sense Primer
20
TTAAGCCGTATCTTGGCGGT
recO Antisense Prime
18
CACCGGATCCGGGTAAGC
recQ-EGFP-Sense
87
AAACCGTTTATGGCGCTGATTCGTGCGCATGTTGATGGCGATGACGAAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recQ-EGFP-AntiSense
72
GGGAAACGTTTACGGAGTCTTCATACTGGCACTTTTTTATGCTGCTGACTATAGTGAACCTCTTCGAGGGAC
recQ Sense Primer
23
TGATTGAGATGGCTGAACAGATG
recQ Antisense Primer
23
CATCAACATACATTTGACTCGCG
recR-EGFP-Sense
87
GACGGCACCACGTTGTCACACTCCCTTGCCGGGCGTCATAAGATTCGTTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
recR-EGFP-AntiSense
72
AAGGGAGAATAATTTCAAGCGAGAGCAGGTGATCCTGCTCTCGTTTGCTTATAGTGAACCTCTTCGAGGGAC
recR Sense Primer
18
AATCGCTCATGGCGTTCC
recR Antisense Primer
22
AAACAGGATGTGGGAGAGATGG
relA-EGFP-Sense
87
AAACTCAACCAGGTGCCGGATGTTATCGACGCGCGTCGGTTGCACGGGAGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
relA-EGFP-AntiSense
72
AGATACAGTATATATCAATCTACATTGTAGATACGAGCAAATTTCGGCCTATAGTGAACCTCTTCGAGGGAC
relA Sense Primer
22
ACCATCGACATGACCATTGAGA
relA Antisense Primer
22
CCTTTCCTCAAACCGCTATCAT
rep-EGFP-Sense
87
CAAAGCCATCTGGCGAATCTGAAAGCGATGATGGCGGCAAAACGAGGGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rep-EGFP-AntiSense
72
AATGAGTAAGTGCCGGATGCGATGCTGACGCATCTTTTCCGGCCTTGATTATAGTGAACCTCTTCGAGGGAC
rep Sense Primer
20
AACAGGAGCGCAAAGTGGTC
rep Antisense Primer
23
ATTATTGCTCAGGAAAGCCAGTG
rhO-EGFP-Sense
87
CTGGCAATGACCAAGACCAATGACGATTTCTTCGAAATGATGAAACGCTCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rhO-EGFP-AntiSense
72
AAAGCAAAACGCCACGTAAACACGTGGCGTTTTTGGCATAAGACAAATTTATAGTGAACCTCTTCGAGGGAC
rhO Sense Primer
22
AAATCGATGCAATGGAATTCCT
rhO Antisense Primer
21
GCGCGGCATTAAGATTACAGA
ribC-EGFP-Sense
87
CGTGTGCTGGCGGCACGAGAAAATGCCATGAATCAACCAGGCACAGAAGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
206
ribC-EGFP-AntiSense
72
GCTCGCTAAAGGCTATTCTATCGCCCCCTCTCCGGGGGCGATTTCAGATCATAGTGAACCTCTTCGAGGGAC
ribC Sense Primer
24
CAAACTCAGGCAGTGGTAGATACG
ribC Antisense Primer
19
CGGTGTTGAAAACGGCCTT
ribD-EGFP-Sense
87
AAAGAGATACGTCATGTAGGCCCGGATGTTTGCCTGCATTTAGTGGGTGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ribD-EGFP-AntiSense
72
GATTTTAGCATAATATTTCGTGCGCTGCTTCCCTTTCGAGCCGGGAGATCATAGTGAACCTCTTCGAGGGAC
ribD Sense Primer
23
GCACCTAAACTATTAGGCAGCGA
ribD Antisense Primer
25
GCAACGTTAGCTTCAATAATGTTCA
ribE-EGFP-Sense
87
GCTGCACTGACCGCGCTTGAAATGATTAATGTATTGAAAGCCATCAAGGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ribE-EGFP-AntiSense
72
CGAGCGCGGCGACGAGCAGCAGGTTTCACGGATTTCCCCTTACTAATTTCATAGTGAACCTCTTCGAGGGAC
ribE Sense Primer
19
GCACCAAAGCTGGCAACAA
ribE Antisense Primer
20
ATCAGCGATGTCGTTCTGGG
ribF-EGFP-Sense
87
GCGCGTGATGAATTAACCGCCCGCGAATTTTTTGGGCTAACAAAACCGGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ribF-EGFP-AntiSense
72
ACTCATCAGATTCTCGGTTCCGTATTTCGGTTTGATTACATAACAGGCTTATAGTGAACCTCTTCGAGGGAC
ribF Sense Primer
19
CGTCGCTGGACGAACTGAA
ribF Antisense Primer
19
TTCCGGCAAATTCAGGGTT
rimI-EGFP-Sense
87
ACCACGGACGGTCGCGAAGACGCCATCATCATGGCGTTGCCAATCAGTATGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rimI-EGFP-AntiSense
72
CATCGGCATCAAAGAAAATCCAGTCCCACTTCATTATTCCACCTTGTATTATAGTGAACCTCTTCGAGGGAC
rimI Sense Primer
21
GACGATTCGCCGCAATTACTA
rimI Antisense Primer
24
CGGTGAATGAGTCAAAGGTAAACA
rimM-EGFP-Sense
87
AAAGTCGATCTCACTACTCGTTCAATCGAAGTAGATTGGGATCCTGGTTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rimM-EGFP-AntiSense
72
AATTATGCCAATCCACATAGCGCCGTCTTTTACCGTTTATCCGGTGGTTTATAGTGAACCTCTTCGAGGGAC
rimM Sense Primer
20
ACGTCTCGTACCGTTCCTCG
rimM Antisense Primer
19
TAATCGGTAATTGCGCGGA
rluC-EGFP-Sense
87
CCGATGGATGAAGGTTTGAAGCGTTGTTTGCAAAAGCTGCGTAACGCGCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rluC-EGFP-AntiSense
72
AAACGCCTTATCAGGCCAACCGCCCATTATCAGGTTTATATGCTTGTATTATAGTGAACCTCTTCGAGGGAC
rluC Sense Primer
21
TGAGGTGATGCGTATCGAAGC
rluC Antisense Primer
22
AAAACCCGCTGATGGGATAGTT
rluD-EGFP-Sense
87
GAGGTGATGCGCGCCGATTTCGAAGAACATAAGGATGAAGTGGACTGGTTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
207
rluD-EGFP-AntiSense
72
AGGCCGCAACACCTTTTGGCTGCGGCCACTGCGGGACAATCAGCTTACTCATAGTGAACCTCTTCGAGGGAC
rluD Sense Primer
22
TCCACAAGATATGGTGGAGCTG
rluD Antisense Primer
23
ACCGAGGTTGAGTGAGTCATACG
rnC-EGFP-Sense
87
AAGGCTGAGCAGGCTGCCGCCGAACAGGCGTTGAAAAAACTGGAGCTGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rnC-EGFP-AntiSense
72
TCGGACGTCCGACGATGGCAATAAATCCGCAGTAACTTTTATCGATGCTCATAGTGAACCTCTTCGAGGGAC
rnC Sense Primer
23
TTACTATCCACTGCCAGGTCAGC
rnC Antisense Primer
22
TGTTCAACAATGTGGATTTGCC
rnD-EGFP-Sense
87
GGTGAGCTGATGGCGGAAGCATTACACAATTTATTGCAGGAATATCCGCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rnD-EGFP-AntiSense
72
CGAAGCCGGATGTGGCGCTGAGCGCGCCCAGTCCGGCTTCGGAAGATTTTATAGTGAACCTCTTCGAGGGAC
rnD Sense Primer
20
AGAACAATTTGCCGGAGCTG
rnD AntiSense Primer
20
GGTAAACGCCTGGTGTTGGA
rnE-EGFP-Sense
87
ACGGCAACACATCATGCCTCTGCCGCTCCTGCGCGTCCGCAACCTGTTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rnE-EGFP-AntiSense
72
TAAAAAAGCCCTGGCAGTTACCAGGGCTTGATTACTTTGAGCTAATTATTATAGTGAACCTCTTCGAGGGAC
rnE Sense Primer
19
TAAAGGTGCCGCAGGTGGT
rnE Antisense Primer
22
ATTGTTGGTTAGCAAGGATGCC
rnhA-EGFP-Sense
87
GCCGCGGCGATGAATCCCACACTGGAAGATACAGGCTACCAAGTTGAAGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rnhA-EGFP-AntiSense
72
AATTCGCCAGGCGGTTGGAGCCACCCGGCAATGTCGTAAACCACAGGCTTATAGTGAACCTCTTCGAGGGAC
rnhA Sense Primer
23
GAAAACGAACGCTGTGATGAACT
rnhA Antisense Primer
23
AACGCTAAATCCGATGAAACAGA
rnhB-EGFP-Sense
87
CACCATCGGCGCAGCTTTGGGCCTGTCAAACGCGCACTGGGACTTGCGTCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rnhB-EGFP-AntiSense
71
GGTTCAGACATCTTCAGATTCCGGTTTACTTAATCTCGACACAAGAATCATAGTGAACCTCTTCGAGGGAC
rnhB Sense Primer
21
GTACCCAACCGCTTTTCATCT
rnhB Antisense Primer
21
TCATCGAGTAGTCGCTGTGCA
rnpA-EGFP-Sense
87
GAAGCGTTGGAAAAATTATGGCGCCGCCACTGTCGCCTGGCTCGCGGGTCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rnpA-EGFP-AntiSense
72
GCCCGAGTAGCGGACTAATCAGGCGTTGATAGACCCGAATGAGGGCTATCATAGTGAACCTCTTCGAGGGAC
rnpA Sense Primer
21
CTATGGATTTCGTGGTGGTGG
rnpA Antisense Primer
23
CTCAATTCCGTAGCTTGAACAGG
rnR-EGFP-Sense
87
ATAGCTGCAGCGACCAAAGCGAAGCGTGCGGCGAAGAAAAAAGTGGCAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
208
rnR-EGFP-AntiSense
72
GCGCATTTTGTCAGCAATCTAACCCTCTTCTTTTAAAGAGGGTATTGATCATAGTGAACCTCTTCGAGGGAC
rnR Sense Primer
20
CGAGAAAAGCGAAAAAGCCA
rnR Antisense Primer
23
GAATTTGCGTGATTATGTAGGCC
rnT-EGFP-Sense
87
AACCGCTGGAAACGTCTGGGAGGCTGGCCGCTATCTGCCGCCGAAGAGGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rnT-EGFP-AntiSense
72
CTCACTATAGATGCCTGAATCATTGCATGTCATCAGGCATCGACTCGATTATAGTGAACCTCTTCGAGGGAC
rnT Sense Primer
21
GCACTGCTGTGCTGTTTTGTG
rnT Antisense Primer
22
GTGAATATCATGCAGGATGCGT
rpE-EGFP-Sense
87
AAAAAAGTCATTGATGAAATGCGCAGTGAACTGGCAAAGGTAAGTCATGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpE-EGFP-AntiSense
72
ACCAGCGTACCATCAAGATCAAAAGCGACGCCGCGAATATCTTCAAACTTATAGTGAACCTCTTCGAGGGAC
rpE Sense Primer
20
GCAATCTTCGACCAGCCAGA
rpE Antisense Primer
21
AGCAGCAAGACCAGGAGCACT
rpH-EGFP-Sense
87
GAAGAGCTACTCATCTTGTTGGCTCTGGCCCGAGGGGAATCGAATCCATTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpH-EGFP-AntiSense
72
TCATCAGTCGCCTTAAAAATCAGTTTGCCAGCGCCGCCTTCTGCGTCGCTATAGTGAACCTCTTCGAGGGAC
rpH Sense Primer
23
GACATGAACGTAGTGATGACCGA
rpH Antisense Primer
20
TCATGCCTTCGCTCCTCATC
rpiA-EGFP-Sense
87
GCGGACGTTGCGCTGATTGGCACACCTGACGGTGTCAAAACCATTGTGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpiA-EGFP-AntiSense
72
AAATTTAATGAAGAGAATTTTTTTAACGGGGGAGGTTCCCCCGTCAGATCATAGTGAACCTCTTCGAGGGAC
rpiA Sense Primer
22
GGTGACTGTTGGCTTGTTTGCT
rpiA Antisense Primer
22
GCCTGGTAAAAGCGTGACACAT
rplA-EGFP-Sense
87
ATGGGTGCAGGTGTTGCAGTTGACCAGGCTGGCCTGAGCGCTTCTGTAAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplA-EGFP-AntiSense
72
ATACGTGGGGGTAAGATTGTAGACAAAATCACCGCCCACGTAAAGGCATTATAGTGAACCTCTTCGAGGGAC
rplA Sense Primer
24
GGCGTGTACATCAAGAAAGTTAGC
rplA Antisense Primer
20
GCTCCTGGCGACTCACTCAG
rplB-EGFP-Sense
87
ACCCGCAGCAACAAGCGTACTGATAAATTCATCGTACGTCGCCGTAGCAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplB-EGFP-AntiSense
72
ATAAAAGGACCTTTCTTGAGAGAACGTGGCATGGCTTATCCTCTAAAATTATAGTGAACCTCTTCGAGGGAC
rplB Sense Primer
23
GCGTTCAGACCAAAGGTAAGAAG
rplB Antisense Primer
23
CTACCTTCTTCAGCAAGTGCAGG
rplC-EGFP-Sense
87
GTCCCGGGTGCAACCGGTAGCGACCTGATCGTTAAACCAGCTGTGAAGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
209
rplC-EGFP-AntiSense
72
GTCAGCGCGCTCTGCGCGTCTTTCAATACTAATTCCATTGCTATCTCCTTATAGTGAACCTCTTCGAGGGAC
rplC Sense Primer
22
CAACCTGCTGCTGGTTAAAGGT
rplC Antisense Primer
22
ATCACGACCGAAGGTAGTTTCG
rplD-EGFP-Sense
87
AAAGTCGTAATGACTGCTGATGCTGTTAAGCAAGTTGAGGAGATGCTGGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplD-EGFP-AntiSense
72
CAGAAACGTGCGGTGCACGCAGCACCTTCAGCAGACGTTCTTCACGAATCATAGTGAACCTCTTCGAGGGAC
rplD Sense Primer
21
GTTGACGTACGCGATGCAACT
rplD Antisense Primer
23
GTCGCGTCTTTAGCAACTTTGAG
rplE-EGFP-Sense
87
GACGAAGAAGGCCGCGCTCTGCTGGCTGCCTTTGACTTCCCGTTCCGCAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplE-EGFP-AntiSense
72
TTACTTCGCGTGCTTTCATTGATTGCTTAGCCATTTAGTAACCCTACCTTATAGTGAACCTCTTCGAGGGAC
rplE Sense Primer
23
CGTTCGTGGTTTGGATATTACCA
rplE Antisense Primer
19
GCGCGTTTCGCGAAGTATT
rplF-EGFP-Sense
87
GGTGTTCGTTACGCCGACGAAGTCGTGCGTACCAAAGAGGCTAAGAAGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplF-EGFP-AntiSense
72
GCGGGTCGCACGACGGATACGAGCAGATTTCTTATCCATAGTGTTACCTTATAGTGAACCTCTTCGAGGGAC
rplF Sense Primer
19
CCTACCGTCGTCCTGAGCC
rplF Antisense Primer
20
CGATGTACCACCAGGCGAGT
rplI-EGFP-Sense
87
CAGGTTCACAGCGAAGTATTCGCGAAAGTGATCGTAAACGTAGTAGCTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplI-EGFP-AntiSense
72
AAAACGCCGACCAATGGTCGGCGTTTTTACGTCTCGTTGAATAACGAATTATAGTGAACCTCTTCGAGGGAC
rplI Sense Primer
21
GTACCACTGGCGAACACGAAG
rplI Antisense Primer
25
GAGAATGGTGAATGGATCTACTTGC
rplJ-EGFP-Sense
87
GGCAAACTGGTTCGTACTCTGGCTGCTGTACGCGATGCGAAAGAAGCTGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplJ-EGFP-AntiSense
72
TCAGAATAAGTTTATACGTAAGCGAATGCGTTAAAAAGATAACTGCGATTATAGTGAACCTCTTCGAGGGAC
rplJ Sense Primer
21
GCAACCATGAAAGAAGCTTCG
rplJ Antisense Primer
23
TGCAACTGCTTCAATGATTTGAT
rplK-EGFP-Sense
87
ACTCGCTCCATCGAAGGTACTGCACGTTCCATGGGCCTGGTAGTGGAGGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplK-EGFP-AntiSense
72
AACTTTCTCGCGGATAACACGCATGCGCTTGGTCAGTTTAGCCATTTCTTATAGTGAACCTCTTCGAGGGAC
rplK Sense Primer
19
CAGACCAAAGCTGCCGACA
rplK Antisense Primer
24
CGATAGCTTCGTTGATGTCGTACT
rplL-EGFP-Sense
87
GAAGCACTGAAAAAAGCTCTGGAAGAAGCTGGCGCTGAAGTTGAAGTTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
210
rplL-EGFP-AntiSense
72
TCACCAGCCATCAGCCTGATTTCTCAGGCTGCAACCGGAAGGGTTGGCTTATAGTGAACCTCTTCGAGGGAC
rplL Sense Primer
20
GCTGCTCTGAAAGAAGGCGT
rplL Antisense Primer
18
GCGCAAAAAGGCTGGTGA
rplM-EGFP-Sense
87
GCGGGTAACGAGCACAACCACGCGGCACAGCAACCGCAAGTTCTTGACATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplM-EGFP-AntiSense
72
GCGACCAGTGCCGTAGTATTGATTTTCAGCCATTGCCTATAATCCCGATTATAGTGAACCTCTTCGAGGGAC
rplM Sense Primer
20
AAAGGCATGTTGCCAAAAGG
rplM Antisense Primer
20
TTTGATGAAAACGCGAGCTG
rplN-EGFP-Sense
87
CTTCGTAGTGAGAAGTTCATGAAAATTATCTCTCTGGCACCAGAAGTACTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplN-EGFP-AntiSense
72
ACGATAACTTCGTCATCACGACGGATTTTCGCTGCCATGATTCGCTCCTTATAGTGAACCTCTTCGAGGGAC
rplN Sense Primer
22
CAGCCTATCGGTACGCGTATTT
rplN Antisense Primer
23
CGCGTTTACCTTTATCTTTACCG
rplO-EGFP-Sense
87
ACTAAAGGCGCTCGTGCTGCTATCGAAGCTGCTGGCGGTAAAATCGAGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplO-EGFP-AntiSense
72
CCTTTGGCACTTTGAAAATCTAATCCCGGTTGTTTAGCCATCTGCTACTTATAGTGAACCTCTTCGAGGGAC
rplO Sense Primer
20
CGAGTTCGCGAAAGTGATCC
rplO Antisense Primer
21
ACAGCAGTCTGCGTTTCAGCT
rplP-EGFP-Sense
87
GCAGCAGCGAAACTGCCGATTAAAACCACCTTTGTAACTAAGACGGTGATGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplP-EGFP-AntiSense
72
CGGTGTTCAGCTCTTCAACGCTCTTCTCACGCAGCTCTTTTGCTTTCATTATAGTGAACCTCTTCGAGGGAC
rplP Sense Primer
23
CTGTATGAAATGGACGGTGTTCC
rplP Antisense Primer
22
CATACGCAGGTTGAACTGCTCA
rplQ-EGFP-Sense
87
GCTTACATCGAGCTGGTTGATCGTTCAGAGAAAGCAGAAGCTGCTGCAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplQ-EGFP-AntiSense
72
CGGGTATAAAAAAACCCGCCGGGGCGGGTTTTTTTACGTTGCTTCAGATTATAGTGAACCTCTTCGAGGGAC
rplQ Sense Primer
23
CCGGTGGTTACACTCGTATTCTG
rplQ Antisense Primer
24
CCACATAAATACTCCAGGGGATGA
rplR-EGFP-Sense
87
GGTCGTGTCCAGGCACTGGCAGATGCTGCCCGTGAAGCTGGCCTTCAGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplR-EGFP-AntiSense
72
GCAGTTCGCCAGCTTGTTTTTCGATGTGAGCCATCTTACACCTCTACCTTATAGTGAACCTCTTCGAGGGAC
rplR Sense Primer
22
GATGTATCCTTTGACCGTTCCG
rplR Antisense Primer
19
CGGTTTACCGCGATCAGCT
rplS-EGFP-Sense
87
TACCTGCGTGAGCGTACTGGTAAGGCTGCTCGTATCAAAGAGCGTCTTAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
211
rplS-EGFP-AntiSense
72
CAGCCAATTGGCCAGCCCTTCTTAACAGGATGTCGCTTAAGCGAAATCTTATAGTGAACCTCTTCGAGGGAC
rplS Sense Primer
19
AACGTCGTGGTGCTGTTCG
rplS Antisense Primer
19
GCGTCGCAGTGGTGATTACTAC
rplT-EGFP-Sense
87
GACAAAGTAGCGTTCACCGCTCTGGTTGAAAAAGCGAAAGCAGCTCTGGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplT-EGFP-AntiSense
72
ATGGCGTTGAAACGAAAAGAGGGAGACTAGCTCCCTCTTTCAACTGGCTTATAGTGAACCTCTTCGAGGGAC
rplT Sense Primer
20
CGACCGTAAGATCCTGGCTG
rplT Antisense Primer
22
AAGGCTACGGCGATAAAAGTCA
rplU-EGFP-Sense
87
CAGGGCCATCGTCAGTGGTTCACTGATGTGAAAATTACTGGCATCAGCGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplU-EGFP-AntiSense
72
TGGAGCCGCCAGCCTTTTTATGTGCCATTTGAAATCTCTCCTCAGGTCTTATAGTGAACCTCTTCGAGGGAC
rplU Sense Primer
20
CGGTCGTGGCGAGAAAGTTA
rplU Antisense Primer
19
AGCTTCTGAATCGCGACCG
rplV-EGFP-Sense
87
GATCGCATCCTGAAGCGCACCAGCCACATCACTGTGGTTGTGTCCGATCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplV-EGFP-AntiSense
72
GAATACCATTAGGATGTACTTTCTGACCCATTGCTAGTCTCCAGAGTCTCATAGTGAACCTCTTCGAGGGAC
rplV Sense Primer
20
AGCATGAAGCGCATTATGCC
rplV Antisense Primer
20
TTTGGTGTTCGCAAACCAGG
rplW-EGFP-Sense
87
TACGTCACCCTGAAAGAAGGCCAGAATCTGGACTTCGTTGGCGGCGCTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplW-EGFP-AntiSense
72
GAGATGTCGGTTTACATTTAACAACTGCCATTGTATTACTCCTCCGACTTATAGTGAACCTCTTCGAGGGAC
rplW Sense Primer
21
GACAGCGTATCGGTCGTCGTA
rplW Antisense Primer
22
GTGCAGCTCAGGGTTAACCACT
rplX-EGFP-Sense
87
GAAGACGGTAAAAAAGTCCGTTTCTTCAAGTCTAACAGCGAAACTATCAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rplX-EGFP-AntiSense
72
CTTCGTCTTTGTAGTAATCATGCAGTTTCGCCATCGTACTACTCCAAATTATAGTGAACCTCTTCGAGGGAC
rplX Sense Primer
22
GGCTGACCGTGTAGGCTTTAGA
rplX Antisense Primer
19
CCCGAGGGACTTGCATGAC
rpmA-EGFP-Sense
87
TTCGAAGTTAAAGGCCCGAAAAACCGTAAATTTATCAGCATCGAAGCTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmA-EGFP-AntiSense
72
CCCGCAACGTGTTGCGGGGCTTTCATCCGTTACCGGGACGCGAAAAACTTATAGTGAACCTCTTCGAGGGAC
rpmA Sense Primer
24
TTGCTAAAGCAGACGGTAAAGTGA
rpmA Antisense Primer
20
GGATTAACGTCGCACCATGC
rpmB-EGFP-Sense
87
AAAGGCATCGATACAGTTCTGGCTGAACTGCGTGCCCGTGGCGAAAAGTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
212
rpmB-EGFP-AntiSense
72
TGATTTTCTCACGAATACCTTTAGCCATGATTTATTTCCTCTAAGTACTTATAGTGAACCTCTTCGAGGGAC
rpmB Sense Primer
19
TTTTGTCACCCTGCGCGTA
rpmB Antisense Primer
22
CCAGTTTTTCCGGCTTAGTACG
rpmC-EGFP-Sense
87
CGTCGCGATGTCGCACGCGTTAAGACTTTACTGAACGAGAAGGCGGGTGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmC-EGFP-AntiSense
72
TTTTGTCGCTAACAACGCGACCTTGCAGAGTACGGATTTTATCGGTCATTATAGTGAACCTCTTCGAGGGAC
rpmC Sense Primer
21
CCAGCTGCAACAGTCTCACCT
rpmC Antisense Primer
22
CGTTCGATAGCAACAACAATGG
rpmD-EGFP-Sense
87
GCTATTCGCGGTATGATCAACGCGGTTTCCTTCATGGTTAAAGTTGAGGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmD-EGFP-AntiSense
72
CGCCTTTTTGGAGCCTTCGGCCGGAGACAGAGTATTTAAACGCATCTCTTATAGTGAACCTCTTCGAGGGAC
rpmD Sense Primer
20
TGCGTCGTATTGGTCACACC
rpmD Antisense Primer
20
GAACCGATACCACGACCCAG
rpmE-EGFP-Sense
87
GGTGGCCGTGTTGACCGCTTCAACAAGCGTTTCAACATCCCGGGCAGCAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmE-EGFP-AntiSense
72
TCAGGCACAAAAAAAGCGCCGTGCGGCGCTTTTTTCGGAAATCCGGTCTTATAGTGAACCTCTTCGAGGGAC
rpmE Sense Primer
20
CACTGGCAAACAGCGTGATG
rpmE Antisense Primer
23
GCTGTTTTCGTGGTAATACGACC
rpmF-EGFP-Sense
87
CACCACATCACTGCCGACGGTTACTACCGCGGCCGCAAGGTCATCGCTAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmF-EGFP-AntiSense
72
AGTTGCCTGGGGAAAATCCTCACTAAGCTTCATCACGCAGATGCGTGATTATAGTGAACCTCTTCGAGGGAC
rpmF Sense Primer
24
GTCACCAGCCTGTCTGTAGACAAA
rpmF Antisense Primer
24
GGGTTAGACGTGTCAAGGTATCGT
rpmG-EGFP-Sense
87
TTCGATCCAGTTGTTCGCCAGCACGTGATCTACAAAGAAGCGAAAATCAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmG-EGFP-AntiSense
72
ACAAAAAACCCCGCCGGAGCGAGGTTTTTTGTTACATCAAAGCGAGAATTATAGTGAACCTCTTCGAGGGAC
rpmG Sense Primer
22
TAAGCCGGAAAAACTGGAACTG
rpmG Antisense Primer
23
GAACAGATGCAGTCAATATGGGG
rpmH-EGFP-Sense
87
GTTCTGGCACGTCGTCGTGCTAAAGGCCGCGCTCGTCTGACCGTTTCTAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmH-EGFP-AntiSense
72
CGTAACTCCCTGGGAAATGCGAGCTTAACCACTCAGGGGTTAGCTTTATTATAGTGAACCTCTTCGAGGGAC
rpmH Sense Primer
22
TTCCGTGCTCGTATGGCTACTA
rpmH Antisense Primer
23
CGAATGTGAATTGACTGGGAGTT
rpmI-EGFP-Sense
87
ATGGTTTCCAAAGGCGATCTGGGCCTGGTAATCGCGTGCCTGCCGTACGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
213
rpmI-EGFP-AntiSense
72
GCTCTCCTGTATCTATATTCTAATTAAAAAGTTAAAAACGTTAACGGCTTATAGTGAACCTCTTCGAGGGAC
rpmI Sense Primer
21
ACCTGCGTCACATTCTGACCA
rpmI antisense Primer
23
AATAACACCACGTTTTACGCGAG
rpmJ-EGFP-Sense
87
GTCATCCGTGTGATTTGCAGTGCCGAGCCGAAGCATAAACAGCGCCAAGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpmJ-EGFP-AntiSense
72
TAATCTAGCCAGCTCAACCCAACTTTGCAAGAAAAATATGCGAAAAAATCATAGTGAACCTCTTCGAGGGAC
rpmJ Sense Primer
21
TGCCGTAACTGCAAAATCGTT
rpmJ Antisense Primer
24
ACGCACAGACATACAAAAGATTGG
rpoA-EGFP-Sense
87
TCTCTGGGCATGCGCCTGGAAAACTGGCCACCGGCAAGCATCGCTGACGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpoA-EGFP-AntiSense
72
TGGCGCATGACCTTATCCTTCTCAGTAAAACCTTAACCTGTGATCCGGTTATAGTGAACCTCTTCGAGGGAC
rpoA Sense Primer
23
ACTGAGATTAAAGACGTGCTGGC
rpoA Antisense Primer
21
CGGTTCAGTTGACGACCACTC
rpoB-EGFP-Sense
87
TTGTTGAAAGAGATTCGTTCGCTGGGTATCAACATCGAACTGGAAGACGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpoB-EGFP-AntiSense
72
TCCGCTGCCGGGTTTTAACCCGACAGCAGTGACCTGTTTGAGCGAGAATTATAGTGAACCTCTTCGAGGGAC
rpoB Sense Primer
20
ACGGCAACCATCAGATGGAG
rpoB Antisense Primer
21
CGGTTTTAGTCTGCGCTTTCA
rpoC-EGFP-Sense
87
GCCAGCCTGGCAGAACTGCTGAACGCAGGTCTGGGCGGTTCTGATAACGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpoC-EGFP-AntiSense
72
TAAAAAAACCCGCCGAAGCGGGTTTTTACGTTATTTGCGGATTAACGATTATAGTGAACCTCTTCGAGGGAC
rpoC Sense Primer
19
CCGCAGGTGACTGCAGAAG
rpoC Antisense Primer
24
ACAAATGCTCTTTCCCTAAACTCC
rpoE-EGFP-Sense
87
TTCCGAGCGAGGGAAGCTATTGATAACAAAGTTCAACCGCTTATCAGGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpoE-EGFP-AntiSense
72
GTTGTTCTTTCTGCATGCCTAATACCCTTATCCAGTATCCCGCTATCGTCATAGTGAACCTCTTCGAGGGAC
rpoE Sense Primer
20
TTGTCCGGTAGGTACGGTGC
rpoE Antisense Primer
24
TTCGTTAAGCAGCTCACTATCCAG
rpoH-EGFP-Sense
87
CGCCAGCTGGAAAAGAACGCGATGAAAAAATTGCGTGCTGCCATTGAAGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpoH-EGFP-AntiSense
72
ACAAAAACCCCGGACTCTCATCCAGGGTTCTCTGCTTAATAGCGGAAATTATAGTGAACCTCTTCGAGGGAC
rpoH Sense Primer
21
AAGTCCACGTTGCAGGAACTG
rpoH Antisense Primer
25
GAAATTGATTATTACAGAGGCCCAA
rpoZ-EGFP-Sense
87
CAGGAAGCCGCTGAATTACAAGCCGTTACCGCTATTGCTGAAGGTCGTCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
214
rpoZ-EGFP-AntiSense
72
CAGTTGATTCAGGCTTTCAAACAGATACAAGGGCGACCCGCTTTGTGATTATAGTGAACCTCTTCGAGGGAC
rpoZ Sense Primer
20
AACCAGATCCTCGACGTTCG
rpoZ Antisense Primer
20
GGTCTTCCGGCAGGTAGGTT
rpsA-EGFP-Sense
87
AACTTCTCCAACAACGCAATGGCTGAAGCTTTCAAAGCAGCTAAAGGCGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsA-EGFP-AntiSense
72
AAGTAAACTCAACAAACTTCGGAATAAAAATCCCGAAGAGTCAGAGAATTATAGTGAACCTCTTCGAGGGAC
rpsA Sense Primer
23
GATGCAATCGCAACTGTTAACAA
rpsA Antisense Primer
21
CAGGACGAAACCTGCAATCTG
rpsB-EGFP-Sense
87
CGTTCTCAGGATCTGGCTTCCCAGGCGGAAGAAAGCTTCGTAGAAGCTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsB-EGFP-AntiSense
72
GCCGCCTTTCTGCAACTCGAACTATTTTGGGGGAGTTATCAAGCCTTATTATAGTGAACCTCTTCGAGGGAC
rpsB Sense Primer
20
TTGCTGCAACCGTACGTGAA
rpsB Antisense Primer
22
GCTCATCCCGGTCACTTACTGA
rpsC-EGFP-Sense
87
CCGGAAAAACCGGCTGCTCAGCCTAAAAAGCAGCAGCGTAAAGGCCGTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsC-EGFP-AntiSense
72
CATTTTACGGAATTTTGTACGCTTTGGTTGTAACATCAGCGACGCTCCTTATAGTGAACCTCTTCGAGGGAC
rpsC Sense Primer
21
GGTGGTATGGCTGCTGTTGAA
rpsC Antisense Primer
20
CTGCCGAAGCTAACATCCGT
rpsD-EGFP-Sense
87
GATCTGTCTGCGGACATTAACGAACACCTGATCGTCGAGCTTTACTCCAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsD-EGFP-AntiSense
72
AACTCTGTCACAGAACCCTGCATTGTGTCCTCTCTTTGGTACTAAGCTTTATAGTGAACCTCTTCGAGGGAC
rpsD Sense Primer
20
ACGTTTAAGCGTAAGCCGGA
rpsD Antisense Primer
22
ACTTGCTCGATATCAACCAGGC
rpsE-EGFP-Sense
87
GAAATGGTCGCTGCCAAGCGTGGTAAATCCGTTGAAGAAATTCTGGGGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsE-EGFP-AntiSense
72
ACCGATTGCACTGCGGGTTTGAGTAATTTTAATAGTCTTTGCCATGGTTTATAGTGAACCTCTTCGAGGGAC
rpsE Sense Primer
21
GCAACTATTGATGGCCTGGAA
rpsE Antisense Primer
20
AGCAGCGTTGCCTTGTGTTT
rpsF-EGFP-Sense
87
GATTTCGCAAACGAAACCGCTGATGATGCTGAAGCTGGGGATTCTGAAGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsF-EGFP-AntiSense
72
AGCCCTGCACACGGTGCCGGACAACACCAGACGGTTGGTCATCAGAAATTATAGTGAACCTCTTCGAGGGAC
rpsF Sense Primer
22
ATGGTTAAAGCGAAAGACGAGC
rpsF Antisense Primer
21
CCTGATGGACTGACCTTTCGA
rpsG-EGFP-Sense
87
AGTCACCAGGCGGGCGCTTCCAGTAAGCAGCCCGCTTTGGGCTACTTAAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
215
rpsG-EGFP-AntiSense
72
GATGGGTGTTGTACGAGCCATTTGTTTCCTCGTTTATCTTTTAGGCGTTCATAGTGAACCTCTTCGAGGGAC
rpsG Sense Primer
22
TCGCACACTACCGTTGGTTATC
rpsG Antisense Primer
22
TGATACCGATGTTACGGTAGCG
rpsH-EGFP-Sense
87
CGTGCAGCGCGCCAGGCTGGTCTTGGTGGCGAAATTATCTGCTACGTAGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsH-EGFP-AntiSense
72
AGGAACAACGACCGGTGCTTTAGCAACACGAGACATTTTTTCCTCCGATTATAGTGAACCTCTTCGAGGGAC
rpsH Sense Primer
22
GATGAGCTGCCGAAAGTTATGG
rpsH Antisense Primer
24
CTGACCGTTGATTTTTACGTCAAC
rpsI-EGFP-Sense
87
AAGAAAGTCGGTCTGCGTAAAGCACGTCGTCGTCCGCAGTTCTCCAAACGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsI-EGFP-AntiSense
72
CCGAAGCGGGTTTTTTCGAAAATTGTTTTCTGCCGGAGCAGAAGCCAATTATAGTGAACCTCTTCGAGGGAC
rpsI Sense Primer
21
TACTCGTGACGCTCGTCAGGT
rpsI Antisense Primer
21
GCAGCAAAAAGCAACTTTCCA
rpsJ-EGFP-Sense
87
CTGATGCGTCTGGATCTGGCTGCCGGTGTAGACGTGCAGATCAGCCTGGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsJ-EGFP-AntiSense
72
CGACTAAACCAATCATTGTTTCAACCTCTCAATCGCTCAATGACCTGATTATAGTGAACCTCTTCGAGGGAC
rpsJ Sense Primer
20
TGGTTGACATCGTTGAGCCA
rpsJ Antisense Primer
24
GTGAAGATACGGGTCATACCCACT
rpsK-EGFP-Sense
87
GTGACTCCGATCCCTCATAACGGTTGTCGTCCGCCGAAAAAACGTCGCGTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsK-EGFP-AntiSense
72
CAAATATCTTGCCATTTTCTTTCTCCAACAAACCTGGAAAACGAGGCGTTATAGTGAACCTCTTCGAGGGAC
rpsK Sense Primer
23
CAGGTTTCCGCATCACTAACATT
rpsK Antisense Primer
20
TAAGTCGGTGCCCTCACGAC
rpsL-EGFP-Sense
87
AAAGACCGTAAGCAGGCTCGTTCCAAGTATGGCGTGAAGCGTCCTAAGGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsL-EGFP-AntiSense
72
AGTTTGACATTTAAGTTAAAACGTTTGGCCTTACTTAACGGAGAACCATTATAGTGAACCTCTTCGAGGGAC
rpsL Sense Primer
22
GTGTTCGTTACCACACCGTACG
rpsL Antisense Primer
24
TTCAGGATTGTCCAAAACTCTACG
rpsM-EGFP-Sense
87
ACCAAGACCAACGCACGTACCCGTAAGGGTCCGCGCAAACCGATCAAGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsM-EGFP-AntiSense
72
CGTTTACGTGCACGAATTGGTGCCTTTGCCATTATTCAATCACCCCGATTATAGTGAACCTCTTCGAGGGAC
rpsM Sense Primer
19
TTGCGTCATCGTCGTGGTC
rpsM Antisense Primer
19
GCCACGCCGTCAGAGACTT
rpsN-EGFP-Sense
87
CGTGAAGCCGCTATGCGCGGTGAAATCCCGGGTCTGAAAAAGGCTAGCTGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
216
rpsN-EGFP-AntiSense
72
ATCTTGCATGCTCATCTGTCTTTACTCCCGTGATTCAATTGGTGACAATTATAGTGAACCTCTTCGAGGGAC
rpsN Sense Primer
19
GGTTTCCTGCGGAAGTTCG
rpsN Antisense Primer
20
CGTTACGGATACGGGTCAGC
rpsO-EGFP-Sense
87
AAAGACGTAGCACGTTACACCCAGCTCATCGAGCGCCTGGGTCTGCGTCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsO-EGFP-AntiSense
72
CTTGAAAAAAGGGGCCACTCAGGCCCCCTTTTCTGAAACTCGCAAGAATTATAGTGAACCTCTTCGAGGGAC
rpsO Sense Primer
24
TAAACTGCTCGACTACCTGAAACG
rpsO Antisense Primer
19
TTCCAGTGAATTGCTGCCG
rpsP-EGFP-Sense
87
ACTATTTCTGATCGCGTTGCTGCGCTGATCAAAGAAGTAAACAAAGCAGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsP-EGFP-AntiSense
72
AGGTGCTTGCGCGGTGAGTTGTTTGCTCATCATGACCACCGTGACAGATTATAGTGAACCTCTTCGAGGGAC
rpsP Sense Primer
23
CAATCGCTAGCGAAAAAGAAGAA
rpsP Antisense Primer
22
CCACCCACGAATACCGTAAGAC
rpsQ-EGFP-Sense
87
TCCAAGACTAAATCCTGGACGCTGGTTCGCGTTGTAGAGAAAGCGGTTCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsQ-EGFP-AntiSense
72
AACGGCTCATTTCTGAGCCGTTTATTCGTATTGAGAGAGTGTACTGTATTATAGTGAACCTCTTCGAGGGAC
rpsQ Sense Primer
21
GGTATCGGTGACGTGGTTGAA
rpsQ Antisense Primer
20
CACCGCTTCAAGGATATGGG
rpsR-EGFP-Sense
87
ATCAAACGCGCTCGCTACCTGTCCCTGCTGCCGTACACTGATCGCCATCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsR-EGFP-AntiSense
72
CTTGCATTACCTTATCCTCTCAAAGTCGTATTAATGGACCGTGACCGATTATAGTGAACCTCTTCGAGGGAC
rpsR Sense Primer
20
AAATACCAGCGTCAGCTGGC
rpsR Antisense Primer
22
TTACCTGATCACCCAGGCTACC
rpsS-EGFP-Sense
87
CCGACTCGTACTTATCGCGGCCACGCTGCTGATAAAAAAGCGAAGAAGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsS-EGFP-AntiSense
72
AACGAGCATGGCGATGTTTAGCGATAGTTTCCATCTCTTCCTCCTACCTTATAGTGAACCTCTTCGAGGGAC
rpsS Sense Primer
21
TGGTTGGTCACAAACTGGGTG
rpsS Antisense Primer
21
AACAAGGCGAACCTTCTGAGC
rpsT-EGFP-Sense
87
AAAGCTGCACGTCATAAGGCTAACCTGACTGCACAGATCAACAAACTGGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rpsT-EGFP-AntiSense
72
AAAACCCGCTTGCGCGGGCTTTTTCACAAAGCTTCAGCAAATTGGCGATTATAGTGAACCTCTTCGAGGGAC
rpsT Sense Primer
22
CAGGCTGCTAAAGGTCTGATCC
rpsT Antisense Primer
20
CATCACAAAAGCAGCAGGCA
rpsU-EGFP-Sense
87
CGTCACGCGAAGAAACTGGCTCGCGAAAACGCACGCCGCACTCGTCTGTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
217
rpsU-EGFP-AntiSense
72
CCTTACAACTACAACTCGGTCTGATCGGAGAGCAACGCTCTCGGGGAATTATAGTGAACCTCTTCGAGGGAC
rpsU Sense Primer
21
GCGCTAAAGCTTCTGCAGTGA
rpsU Antisense Primer
19
TAAGCCGCGCATTCCTTTC
rsmB-EGFP-Sense
87
CCTGGTGCCGAAGAGGGCGACGGCTTCTTTTACGCTAAGCTAATCAAAAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
rsmB-EGFP-AntiSense
72
GCCGGCACCCAGAATGATAATTTTCATCAGTCGCGACCCGTTATCTCATCATAGTGAACCTCTTCGAGGGAC
rsmB Sense Primer
20
GTACCGCTGATGCCGAACTT
rsmB Antisense Primer
20
TTCTCGCCAACCAGGTTTTC
ruvA-EGFP-Sense
87
CCTGACGCCAGCAGTGAAACTTTAATTCGCGAAGCCCTACGCGCCGCGTTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ruvA-EGFP-AntiSense
72
AAGTGGTACCGGCAGAAATCAGACGGTCTGCTTCAATCATCCTTTACCTCATAGTGAACCTCTTCGAGGGAC
ruvA Sense Primer
20
AAACCACAAGAAGCAAGCCG
ruvA Antisense Primer
21
GATCTGCTACATCTTCCGGCA
ruvB-EGFP-Sense
87
GCGACGACGCGGGCGTGGAATCACTTTGGCATAACGCCGCCAGAAATGCCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ruvB-EGFP-AntiSense
72
ATCAGGCATATTGCCAGTGCCGGATGCGGCGCGAGCGACCAATCCGACTTATAGTGAACCTCTTCGAGGGAC
ruvB Sense Primer
23
AACCTTATTTGATTCAGCAAGGC
ruvB Antisense Primer
22
TAGTCCTGGTAAGACGCGAACA
ruvC-EGFP-Sense
87
GCGATGCAGATGAGCGAATCGCGGCTGAACCTGGCGAGAGGGCGACTGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ruvC-EGFP-AntiSense
72
CGGAGGGAGTGGAAACGCCTCAGCCGGAACTGACCGAGGCGGTATAACTTATAGTGAACCTCTTCGAGGGAC
ruvC Sense Primer
20
CCCACTGCCACGTTAGTCAG
ruvC Antisense Primer
20
ATCCGGGTTTGGTGTTGATT
sbcB-EGFP-Sense
87
GAGAAAGTGGCGCTGTTAAAAGCACTTTGGCAGTACGCGGAAGAGATTGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sbcB-EGFP-AntiSense
72
GCCTGACTCAACATTGTCCTCCGCCGTACCAGCGGCGGAGGCTTCAAATTATAGTGAACCTCTTCGAGGGAC
sbcB Sense Primer
24
TGCAGATGCTGGTACAACAATATG
sbcB Antisense Primer
23
ATCACCGATTATCAGCAGATTGG
sdhA-EGFP-Sense
87
AACATGGAACCGAAACTGCGCCCGGCATTCCCGCCGAAGATTCGTACTTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sdhA-EGFP-AntiSense
72
GTTATAGCGATAAATTGAAAACTCGAGTCTCATTTTCCTGTCTCCGCATTATAGTGAACCTCTTCGAGGGAC
sdhA Sense Primer
18
GTCGGAATCCATGACGCG
sdhA Antisense Primer
20
CATACGCGGAGCATCATCAA
sdhB-EGFP-Sense
87
CCGACGCGCGCCATCGGCCATATCAAGTCGATGTTGTTGCAACGTAATGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
218
sdhB-EGFP-AntiSense
72
GCACTGGTTGCCTGATGCGACGCTTGCGCGTCTTATCAGGCCTACGGTTTATAGTGAACCTCTTCGAGGGAC
sdhB Sense Primer
24
TCATGAACTGCGTCAGTGTATGTC
sdhB Antisense Primer
19
TGTAGGCCGGATAAGGCGT
secA-EGFP-Sense
87
TGCCCGTGCGGTTCTGGTAAAAAATACAAGCAGTGCCATGGCCGCCTGCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
secA-EGFP-AntiSense
72
TATAAAAAAGGCGCAGAATCCTGCGCCTTTTACTTCAACAGTTAGCTTTTATAGTGAACCTCTTCGAGGGAC
secA Sense Primer
20
AAACCGGAGAGCGCAAAGTA
secA Antisense Primer
24
CAATTTGCAGCTTTTTCATTGTCT
secB-EGFP-Sense
87
AACTATTTGCAGCAGCAGGCTGGCGAAGGTACTGAAGAACATCAGGATGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
secB-EGFP-AntiSense
72
CGTACGAGCCGGCACCGATCACAGTCATTGAAGCATTACGTTGGTTCATCATAGTGAACCTCTTCGAGGGAC
secB Sense Primer
21
ACATTCCCGCAACTGAACCTT
secB Antisense Primer
18
GGCCATTTCTTGCCAGGG
secD-EGFP-Sense
87
GCCATCGTAAACCTGCTATATGGCGGCAAGCGCGTCAAGAAGCTGTCAATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
secD-EGFP-AntiSense
72
CCGTGGTTTAGTTGTTCAACAGTATATTCCTGTGCCACATCGCACTCCTCATAGTGAACCTCTTCGAGGGAC
secD Sense Primer
20
TGTGGCGACGTCGATGTTTA
secD Antisense Primer
23
CCCAGCGCATAAAGTCATAGACT
secE-EGFP-Sense
87
CTGGATGGTATTCTGGTTCGCCTGGTATCCTTTATCACTGGCCTGAGGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
secE-EGFP-AntiSense
72
GAAAACGCCTGAACGACGTACCAGCGCTTTTTAGGAGCTTCAGACATCTCATAGTGAACCTCTTCGAGGGAC
secE Sense Primer
23
ACCGCAGTAATGTCACTGATCCT
secE Antisense Primer
18
TGCTACGCGGCCTTCAAA
secF-EGFP-Sense
87
TTGCAGCAGAAAGTGGAAAAAGAAGGGGCGGATCAGCCGTCAATTCTGCCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
secF-EGFP-AntiSense
72
AAAATCCCGATCTTCTGACCGGGATTTTCAACATCAACGGGAACTTGATTATAGTGAACCTCTTCGAGGGAC
secF Sense Primer
19
TGGGTATGAAGCGCGAACA
secF Antisense Primer
22
GGGATTTTCGCAATCTCCATAC
secG-EGFP-Sense
87
GAACAAACTCAGCCAGCTGCTCCGGCTAAGCCGACCAGCGATATCCCGAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
secG-EGFP-AntiSense
72
AAGGTAGCGTGTCTACCAATTCCACCACCTCGGCACGGATACTACTTTTTATAGTGAACCTCTTCGAGGGAC
secG Sense Primer
22
AGCGAATGGGAAAATCTGAGTG
secG Antisense Primer
22
CTTGAACCCGTAAGCCCTATTG
secY-EGFP-Sense
87
AGTCAGTATGAGTCTGCATTGAAGAAGGCGAACCTGAAAGGCTACGGCCGACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
219
secY-EGFP-AntiSense
72
GAAGCACGAACTTTCATTTTTACTCTCCGTAACTTCTCGGGCGACCAATTATAGTGAACCTCTTCGAGGGAC
secY Sense Primer
25
ATTATGGACTTTATGGCTCAAGTGC
secY Antisense Primer
22
CGATTTTGCAGTTACGGCATAA
serA-EGFP-Sense
87
CTGCAGGCAATGAAAGCTATTCCGGGTACCATTCGCGCCCGTCTGCTGTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
serA-EGFP-AntiSense
72
AAAACGGGCAAGTCAGTGACCTGCCCGTTGATTTTCAGAGAAGGGGAATTATAGTGAACCTCTTCGAGGGAC
serA Sense Primer
20
TTGAAGCCGACGAAGACGTT
serA Antisense Primer
19
GCAACGGTGTGGAGAAGGG
serC-EGFP-Sense
87
GGCGTTAAAGCGCTGACAGACTTCATGGTTGAGTTCGAACGCCGTCACGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
serC-EGFP-AntiSense
72
AATAAAAACCCCACAGGCTGGCTGTGGGGATTAAGCAAAATTTCGGCATTATAGTGAACCTCTTCGAGGGAC
serC Sense Primer
21
ATGCACTGAAAGGTCACCGTG
serC Antisense Primer
21
GAGCGATGGGTTGTAACGTCA
serS-EGFP-Sense
87
GAAGTACCAGAAGTTCTGCGTCCGTATATGAACGGACTGGAATATATTGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
serS-EGFP-AntiSense
72
ACAAAAAAAGCGCCCGCAGGCGCTTTTTAGATTCAGAAAAATTGGGTATTATAGTGAACCTCTTCGAGGGAC
serS Sense Primer
21
CTATCAGCAGGCTGATGGTCG
serS Antisense Primer
27
GTTCGCTATATAGGCTTGTATACATCG
slyD-EGFP-Sense
87
GGTGGCGAAGGCTGCTGTGGCGGTAAAGGCAACGGCGGTTGCGGTTGCCACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
slyD-EGFP-AntiSense
72
GGCGTAAAAAAAGCGGGGATTCCCCGCTTTTTTGTCACTTTTTCGGTATTATAGTGAACCTCTTCGAGGGAC
slyD Sense Primer
23
AAGAAGAACTGGCTCATGGTCAC
slyD Antisense Primer
22
GCTGACCGAGAAGTTAAAAGCC
slyX-EGFP-Sense
87
CAGCCGTCGAACATCGCGTCGCAGGCTGAAGAAACGCCACCGCCACATTATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
slyX-EGFP-AntiSense
72
TACCGAAAAAGTGACAAAAAAGCGGGGAATCCCCGCTTTTTTTACGCCTCATAGTGAACCTCTTCGAGGGAC
slyX Sense Primer
20
CGATCATCTGCGTCTGCTGA
slyX Antisense Primer
19
GTCATGAACACGGTGGCGA
smF-EGFP-Sense
87
TATGTCCGATTGAGGAGGGCATGCCATGTTCGACGTACTAATGTATTTGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
smF-EGFP-AntiSense
72
AGTTTGTCTTGATCCACACGCAACTCAGCTTCTGTGTGAATATAGGTTTCATAGTGAACCTCTTCGAGGGAC
smF Sense Primer
19
AGCAGGATGGATCGCAGCT
smF Antisense Primer
20
CCTGCGTCGGTAAGATCCTG
smpB-EGFP-Sense
87
GAGCGCGAATGGCAGGTGGATAAAGCACGTATCATGAAAAACGCCCACCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
220
smpB-EGFP-AntiSense
72
CGGAGAGGGAGGCGCGGTGAGGAACTGGTCAATAATTGGAGTGCAGGTTTATAGTGAACCTCTTCGAGGGAC
smpB Sense Primer
21
CGCCAAAGGTAAGAAACAGCA
smpB Antisense Primer
22
TTGTGTCGGATGTGATAGCCAA
sohB-EGFP-Sense
87
GCCGATCGATTGTTGCTACGCTGGTGGCAGCGGGGTCAAAAGCCATTGATGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sohB-EGFP-AntiSense
72
TCTGGTTGATTAAAGCAAAACGCGAGGTCTTAGCCTCGCGTTTGTCTTTTATAGTGAACCTCTTCGAGGGAC
sohB Sense Primer
20
CTCATTGACCGATTCACCGG
sohB Antisense Primer
20
GGCCCATGTGCTTTCAGAAA
spoT-EGFP-Sense
87
CGCAAAATCCGCGTGATGCCAGACGTGATTAAAGTCACCCGAAACCGAAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
spoT-EGFP-AntiSense
72
GGCGAGCATTTCGCAGATGCGTGCATAACGTGTTGGGTTCATAAAACATTATAGTGAACCTCTTCGAGGGAC
spoT Sense Primer
21
AGCGCCTTTATTCGTCTGACC
spoT Antisense Primer
20
TTTGTGGACCTGCTCCATGC
ssB-EGFP-Sense
87
GCAGCGCCGTCTAACGAGCCGCCGATGGACTTTGATGATGACATTCCGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ssB-EGFP-AntiSense
72
TTTAATCATCCACCTTAAAACAATATAACCTATTGTTTTAATGACAAATCATAGTGAACCTCTTCGAGGGAC
ssB Sense Primer
18
AGTCTCGCCCGCAGCAGT
ssB Antisense Primer
19
AAGCCTCCATAACGGAGGC
sspA-EGFP-Sense
87
TTCCTTGCTTCTTTAACTGAAGCAGAACGTGAAATGCGTCTGGGCCGGAGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sspA-EGFP-AntiSense
72
GCAGCAGATAGGGACGACGTGGTGTTAGCTGTGACAAATCCATACAGATTATAGTGAACCTCTTCGAGGGAC
sspA Sense Primer
21
GAAAGGCTATATGACCCGCGT
sspA Antisense Primer
24
TGGTTATCCAGCAACCACTCATAG
sspB-EGFP-Sense
87
GAACCTCCGCAGCCACCACGCGGTGGTCGACCGGCATTACGCGTTGTGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sspB-EGFP-AntiSense
72
TATTAAGTCATTAAAAAGACAAAACAGGCCGCCTGGGCCTGTTTTGTATTATAGTGAACCTCTTCGAGGGAC
sspB Sense Primer
24
GATGATGACACTCATCCTGACGAT
sspB Antisense Primer
22
AATATGATTGCCACAATCACGC
sucA-EGFP-Sense
87
GTTCACCAGAAACAGCAACAAGATCTGGTTAATGACGCGCTGAACGTCGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sucA-EGFP-AntiSense
72
GCAGGTCAGGGACCAGAATATCTACGCTACTCATTGTGTATCCTTTATTTATAGTGAACCTCTTCGAGGGAC
sucA Sense Primer
21
CCAGCATCATTTCCGTGAAGT
sucA Antisense Primer
19
GTGGCATCGGCTACGGATT
sucB-EGFP-Sense
87
GTAACGATCAAAGAGTTGCTGGAAGATCCGACGCGTCTGCTGCTGGACGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
221
sucB-EGFP-AntiSense
72
AGGCGATAATGCCTTATCCGGTCTACAGTGCAGGTGAAACTTAAACTACTATAGTGAACCTCTTCGAGGGAC
sucB Sense Primer
20
CGCTGTCCTACGATCACCGT
sucB Antisense Primer
20
CGTCGCATCAGGCTTCAATT
sucC-EGFP-Sense
87
AAAGGTCTGACGGATGCAGCTCAGCAGGTTGTTGCCGCAGTGGAGGGGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sucC-EGFP-AntiSense
72
TAAAGCCCTGGCAGATAACCTTGGTGTTTTTATCGATTAAAATGGACATTATAGTGAACCTCTTCGAGGGAC
sucC Sense Primer
23
CTGACAGCGGCCTGAATATTATT
sucC Antisense Primer
21
TGGCCTGTTCTGAGTGGAAAG
sucD-EGFP-Sense
87
ACCGTTCGCAGCCTGGCGGATATCGGTGAAGCACTGAAAACTGTTCTGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
sucD-EGFP-AntiSense
72
CCATTCCTGTAGAGGGAAGCGGCGAGGGCTATTTCTTATTACAGATATTTATAGTGAACCTCTTCGAGGGAC
sucD Sense Primer
22
GAGAAATTCGCTGCTCTGGAAG
sucD Antisense Primer
20
CCAACCATGTCGAAACCGAC
suhB-EGFP-Sense
87
AAAGCCATGCTGGCGAACATGCGTGACGAGTTAAGCGACGCTCTGAAGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
suhB-EGFP-AntiSense
72
AGCGCCTGAAAGGCGAGGGCGGGTGAGTGATATCACCCGCCTGAGTCATTATAGTGAACCTCTTCGAGGGAC
suhB Sense Primer
21
TGACGAGTTAAGCGACGCTCT
suhB Antisense Primer
22
GAAAGATGGTGGGAGAGTGACG
surE-EGFP-Sense
87
CAAGATGTGGTTTCAGACTGGTTAAACAGCGTGGGAGTTGGCACGCAATGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
surE-EGFP-AntiSense
72
GAATACCTTGCGCACGTAATTGATCCAGAAGTGCTTGTACGCGTCTGCTTATAGTGAACCTCTTCGAGGGAC
surE Sense Primer
21
CCGCTGCATGTGGATTTAACT
surE Antisense Primer
21
AAGTGCATTCAGCACCTGCTC
taG-EGFP-Sense
87
CTGGTGAATGATCATGTGGTTGGCTGCTGTTGCTATCCGGGAAATAAACCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
taG-EGFP-AntiSense
72
GCCACAGTTCGAGGATCGCGGGGAGTTCTGAACGTTGCGCTTCCCGAATCATAGTGAACCTCTTCGAGGGAC
taG Sense Primer
25
ATCTGTTACTCCTTTATGCAGGCAT
taG Antisense Primer
21
CAGTCACGCCAGTAATTCGCT
talB-EGFP-Sense
87
AAGTTTGCTATTGACCAGGAAAAACTGGAAAAAATGATCGGCGATCTGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
talB-EGFP-AntiSense
72
GCTTCAGAAGAGGTAGCGTGACCGACTTCCCGGTCACGCTAAGAATGATTATAGTGAACCTCTTCGAGGGAC
talB Sense Primer
22
CGCGTATCACTGAGTCCGAGTT
talB Antisense Primer
21
CACTGCGAAGGGAGTGACAGA
tatC-EGFP-Sense
87
AATCGGGAAGAGGAAAACGACGCTGAAGCAGAAAGCGAAAAAACTGAAGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
222
tatC-EGFP-AntiSense
72
CAAACATCCTGTACTCCATATGACAACCGCCCTGACGGGCGGTTGAATTTATAGTGAACCTCTTCGAGGGAC
tatC Sense Primer
24
TGTCTTCTTCTCACGCTTTTACGT
tatC Antisense Primer
23
ATTGCGAACTGGTCAAATTAACG
tgT-EGFP-Sense
87
ACTGATTTTTACCAGCGTCAGGGGCGAGAAGTACCACCTTTGAACGTTGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tgT-EGFP-AntiSense
72
ACCGCATCAGAAATAAAAAAGCTCATTAAATTTCCCTCATTATTAATATTATAGTGAACCTCTTCGAGGGAC
tgT Sense Primer
21
ACGCAAGGCTATTGAAGAGGG
tgT Antisense Primer
23
AGCATCAAAATCAAAGACATCGG
thiL-EGFP-Sense
87
GGCGAACCTGTTACATTAGACTGGAAAGGATATGACCATTTTGCCACGCCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
thiL-EGFP-AntiSense
72
AGTAGATGCCACGGATTACTCATCTTCAGGCGACTTTTCGCGACATCTTTATAGTGAACCTCTTCGAGGGAC
thiL Sense Primer
23
TTTACCTGTATCGGGCAAATGAC
thiL Antisense Primer
22
TTAATCCACTTCCGAATCCGAC
thrS-EGFP-Sense
87
GAGAAGCTGCAACAAGAGATTCGCAGCCGCAGTCTTAAACAATTGGAGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
thrS-EGFP-AntiSense
72
GATACGGTTAGGGCGCGCCGTTTGAACTCGTTTTCCGCCTTTAATACCTTATAGTGAACCTCTTCGAGGGAC
thrS Sense Primer
21
CGTGGTAAAGACCTGGGAAGC
thrS Antisense Primer
22
ACCTGTTAAGCGAACTTCCTGG
thyA-EGFP-Sense
87
GAGATTGAAGGCTACGATCCGCATCCGGGCATTAAAGCGCCGGTGGCTATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
thyA-EGFP-AntiSense
72
AAAAAAACCGACGCACACTGGCGTCGGCTCTGGCAGGATGTTTCGTAATTATAGTGAACCTCTTCGAGGGAC
thyA Sense Primer
23
TTCGACTACCGTTTCGAAGACTT
thyA Antisense Primer
22
AGGCGTCTCGAAGAATTTAACG
tiG-EGFP-Sense
87
AAAGTGACTGAAAAAGAAACCACTTTCAACGAGCTGATGAACCAGCAGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tiG-EGFP-AntiSense
72
TGGCGGTGACGGGCCTTTGTGCGAATTTAGCGCGTTATGCTGCGTAAATTATAGTGAACCTCTTCGAGGGAC
tiG Sense Primer
23
ACAGGCTGTTGAAGCTGTACTGG
tiG Antisense Primer
19
GCTTTTCGCACGGTTCCAT
tktA-EGFP-Sense
87
GAGTTCGGCTTCACTGTTGATAACGTTGTTGCGAAAGCAAAAGAACTGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tktA-EGFP-AntiSense
72
AGGTAATAAAAAAGGTCGCCGAAGCGACCTTTTTACCCGAAATGCTAATTATAGTGAACCTCTTCGAGGGAC
tktA Sense Primer
20
CCACCTTCGGTGAATCTGCT
tktA Antisense Primer
21
CTTGTCCGCAAACGGACATAT
tldD-EGFP-Sense
87
GTGGGCCAGCCAACGTTGAAAGTCGATAACCTGACTGTTGGCGGTACTGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
223
tldD-EGFP-AntiSense
72
TTCGTGCACGTAGAAAGATTAATTATCCTTCTGAAAATAGTGAAATTATTATAGTGAACCTCTTCGAGGGAC
tldD Sense Primer
21
GTGGGTGTCTGCGGTAAAGAA
tldD Antisense Primer
22
ACGTTGTACAAACCTGTGCCAA
tmK-EGFP-Sense
87
ATGGATGCAATCCGCACTACCGTGACCCACTGGGTGAAGGAGTTGGACGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tmK-EGFP-AntiSense
72
AGCTGGCTACCAGTTTTTCGAAATCAGGTCGTAACCATGGATACCATCTCATAGTGAACCTCTTCGAGGGAC
tmK Sense Primer
22
ATTCATACCATTGATGCCACCC
tmK Antisense Primer
22
AGTAGCGCATGGTGACCTCTTC
tolB-EGFP-Sense
87
CTTCCGGCAACTGATGGACAGGTCAAATTCCCTGCCTGGTCGCCGTATCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tolB-EGFP-AntiSense
72
TTGTTCAGTTGCATTTCAATGATTCCTTTACTATTCAATTAATTATTATCATAGTGAACCTCTTCGAGGGAC
tolB Sense Primer
22
ATTTGGTTTCTACAGATGGGCG
tolB Antisense Primer
21
GAGCAATCATCAGCCCTTTCA
tolC-EGFP-Sense
87
CAAACATCCGCACGCACTACCACCAGTAACGGTCATAACCCTTTCCGTAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tolC-EGFP-AntiSense
72
CTTTACGTTGCCTTACGTTCAGACGGGGCCGAAGCCCCGTCGTCGTCATCATAGTGAACCTCTTCGAGGGAC
tolC Sense Primer
22
CTGATGGTTATGCGCCTGATAG
tolC Antisense Primer
20
GGGAAGAATGCGGCAGATAA
tolQ-EGFP-Sense
87
ACCGCGATTCTGCACCGCCAGGCGTTTACCGTTAGCGAGAGCAACAAGGGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tolQ-EGFP-AntiSense
72
TTCGGACTTGAGATCGCGACGACCTCGTCCACGCGCTCTGGCCATGGCTTATAGTGAACCTCTTCGAGGGAC
tolQ Sense Primer
27
GAACTGAATTACGACAACTTTATGGAA
tolQ Antisense Primer
21
CGTCCAGCAACGGTACAATGT
tolR-EGFP-Sense
87
TTGTTACATAGTGCGGGTGTGAAATCGGTTGGTTTAATGACGCAGCCTATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tolR-EGFP-AntiSense
72
CTGTTCGCCTGTTACCCGCTCTCTTTCAAGCAAGGGAAACGCAGATGTTTATAGTGAACCTCTTCGAGGGAC
tolR Sense Primer
22
GCAAAAGATGTGCCTTACGATG
tolR Antisense Primer
22
TTTGACACTCTCGGTTTCCAAA
topA-EGFP-Sense
87
ACTGGCTGGTCAGCATTTTATGTTGATGGCAAATGGGTTGAAGGAAAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
topA-EGFP-AntiSense
72
GGCCGCTTTCGCGACCCTTTGTTTATAAAAACCTGACAGAATTAAAGGTTATAGTGAACCTCTTCGAGGGAC
topA Sense Primer
21
CTTCGGAAAAAGACGGAAAGG
topA Antisense Primer
21
TCGTTTTTTCGTCACACCTGG
tpiA-EGFP-Sense
87
GCTGACGCCTTCGCAGTAATCGTTAAAGCTGCAGAAGCGGCTAAACAGGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
224
tpiA-EGFP-AntiSense
72
GAGTTAAGGAAAGTAAGTGCCGGATATGAAATCCGGCACCTGTCAGACTTATAGTGAACCTCTTCGAGGGAC
tpiA Sense Primer
20
GTTTGCTCAGCCGGATATCG
tpiA Antisense Primer
23
AGTGTGAGATTTTGCGTTAAGGC
trmD-EGFP-Sense
87
GAGTTCAAAACGGAACACGCACAACAGCAACATAAACATGATGGGATGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trmD-EGFP-AntiSense
72
TGCTCATAATTTAATCTCTTATCCTGGGTAAACTGATATCTCGGGGGCTTATAGTGAACCTCTTCGAGGGAC
trmD Sense Primer
21
CTGAAGAGCAAGCAAGGTTGC
trmD Antisense Primer
23
GTCCTGCTTCATCTGCTCTTGTT
trmU-EGFP-Sense
87
GAAGTGTGCCTCGGTGGCGGTATTATTGAGCAGCGTCTGCCGCTGCCGGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trmU-EGFP-AntiSense
72
AATTCTTTGCCACGTTCACTGCTTCCTTGTTTTAAGTAAAGATAATAATCATAGTGAACCTCTTCGAGGGAC
trmU Sense Primer
23
CCAGTCTGCCGTCTTCTATAACG
trmU Antisense Primer
20
AGGGCGAGGGTGATGTCATA
trpA-EGFP-Sense
87
CTGGCGGCACTGAAAGTTTTTGTACAACCGATGAAAGCGGCGACGCGCAGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trpA-EGFP-AntiSense
72
TCATTAAAGAAAGTTAAAATGCCGCCAGCGGAACTGGCGGCTGTGGGATTATAGTGAACCTCTTCGAGGGAC
trpA Sense Primer
24
TCGAGCAACATATTAATGAGCCAG
trpA Antisense Primer
19
CGGGGTAAGCGAAACGGTA
trpB-EGFP-Sense
87
GATAAAGACATCTTCACCGTTCACGATATTTTGAAAGCACGAGGGGAAATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trpB-EGFP-AntiSense
72
CTTCTTTGCGCTCCTTCAACTGGGCAAACAGAGATTCGTAGCGTTCCATCATAGTGAACCTCTTCGAGGGAC
trpB Sense Primer
24
AGCAGCTACTGGTGGTTAACCTTT
trpB Antisense Primer
20
AGCGTGACGAAAGGAACGAA
trpE-EGFP-Sense
87
CGCGCTGTACTGCGCGCTATTGCCACCGCGCATCATGCACAGGAGACTTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trpE-EGFP-AntiSense
72
GGTTGTACGTAAAAGAGTCGATATTATCGAGCAGCAGAATGTCAGCCATCATAGTGAACCTCTTCGAGGGAC
trpE Sense Primer
19
AAGCCGACGAAACCCGTAA
trpE Antisense Primer
21
ATCACCACGTTATGCCCATTG
trpS-EGFP-Sense
87
TCCCGTACGCTAAAAGCGGTGTACGAAGCGATTGGTTTTGTGGCGAAGCCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trpS-EGFP-AntiSense
72
CACGCCGCATCCGGCATGAACAAAGCGCAATTTGCCAGCAATAGTGAATTATAGTGAACCTCTTCGAGGGAC
trpS Sense Primer
22
TCCTGCAACAGGTGATGAAAGA
trpS Antisense Primer
21
TGCATTACTTTGTAGGCCGGA
truA-EGFP-Sense
87
GACCGGTATGATCTTCCAAAACCGCCAATGGGCCCGCTATTTCTGGCGGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
225
truA-EGFP-AntiSense
72
CTGTAACTACGTTGGCTACAGCCTGAAATGTTCCGAGCATTATTCTCGTTATAGTGAACCTCTTCGAGGGAC
truA Sense Primer
23
AGAGCTGGATAGCAGAGTTGCTG
truA Antisense Primer
23
GCCTATGCCTTGTACTCGTCATC
trxA-EGFP-Sense
87
GGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGACGCTAACCTGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trxA-EGFP-AntiSense
72
GCCGGGCGTCCAGTTTTTAGCGACGGGGCACCCGAACATGAAATTCCCTTATAGTGAACCTCTTCGAGGGAC
trxA Sense Primer
23
CTGCTGTTCAAAAACGGTGAAGT
trxA Antisense Primer
21
GATAAAACGGGAAGCGTTGGA
trxB-EGFP-Sense
87
ATGGCAGCACTTGATGCGGAACGCTACCTCGATGGTTTAGCTGACGCAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
trxB-EGFP-AntiSense
72
ATAGTCGCATGGTGTCGCCTTCTTTACTTTTGTTACTGATTTGTAAAATTATAGTGAACCTCTTCGAGGGAC
trxB Sense Primer
20
GGCGACGTGATGGATCACAT
trxB Antisense Primer
22
TTGCAGAGCAATGTTACAACGG
tsF-EGFP-Sense
87
AAAGTTGAGACTGACTTTGCAGCAGAAGTTGCTGCGATGTCCAAGCAGTCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tsF-EGFP-AntiSense
72
AAGATGGGCACAAAAAGAAGCCGCCCTCAGGCGGCTCCTTTTTGATAATTATAGTGAACCTCTTCGAGGGAC
tsF Sense Primer
21
CGCTGAAGTGACTGGCTTCAT
tsF Antisense Primer
21
CCCCACAAGGGTTAGCTGAAT
tufB-EGFP-Sense
87
CGTGAAGGCGGCCGTACCGTTGGCGCGGGCGTTGTAGCAAAAGTTCTGAGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tufB-EGFP-AntiSense
72
ATCAAATGATGCCCTTTTAGTGCGCATTGCGTCAAATGTTATCGGCAATTATAGTGAACCTCTTCGAGGGAC
tufB Sense Primer
22
AAGGCGTAGAGATGGTAATGCC
tufB Antisense Primer
20
TTCTGGTACGAAAGCGTGCA
typA-EGFP-Sense
87
GACGAACTGGTAGAAGTGACTCCGACCTCTATCCGTATTCGTAAACGTCACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
typA-EGFP-AntiSense
72
ATTAATCGTCTTTCGGTGCGCGGTTGGCGCGGCGACGATCGTTTTCCGTCATAGTGAACCTCTTCGAGGGAC
typA Sense Primer
23
TGGAACAAGCTCTGGAGTTCATC
typA Antisense Primer
21
CGCTGGCAGGTTTTTTATGAC
tyrS-EGFP-Sense
87
TTTACCTTACTGCGTCGCGGTAAAAAGAATTACTGTCTGATTTGCTGGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
tyrS-EGFP-AntiSense
72
TAAAAACCAGGGGGAGTGATTTCTCACTCCCCCTTTCCACTTAATGCATTATAGTGAACCTCTTCGAGGGAC
tyrS Sense Primer
23
GAAGAAGATCGTCTGTTTGGTCG
tyrS Antisense Primer
22
CAACGTGAGACTGGATAGCGAG
ubiA-EGFP-Sense
87
TATGTTGGTCTGGTACTATTTTTAGGGCTGGCAATGAGTTACTGGCATTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
226
ubiA-EGFP-AntiSense
72
CAGGCAACCCAGAAGAAAGCCGGATGATCATCCGGCTTTTTTACATCATCATAGTGAACCTCTTCGAGGGAC
ubiA Sense Primer
19
TGGCGCGCTGTTTGTTTAT
ubiA Antisense Primer
21
GTTGTGTAGGCCTGAGAAGCG
ubiE-EGFP-Sense
87
TACTACAATCTGACGGCAGGGGTTGTGGCGCTGCATCGTGGTTATAAGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ubiE-EGFP-AntiSense
72
TCAATTCCTGCCGTCACTAAAGGTTTAAAAGGCATTTCCGGTCTCCTGTCATAGTGAACCTCTTCGAGGGAC
ubiE Sense Primer
20
AAAGCCATGATGCAGGATGC
ubiE Antisense Primer
22
CGATACAGGAAGGTGTTGAGCA
ubiG-EGFP-Sense
87
AAACTCGGCCCCGGCGTGGATGTGAACTATATGCTGCACACGCAGAATAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ubiG-EGFP-AntiSense
72
AGACGCGGCAAGCGTCGCATCAGGCATTGGCGCGGCCAAACATCAACCTCATAGTGAACCTCTTCGAGGGAC
ubiG Sense Primer
23
CATATCACTGGGCTGCATTACAA
ubiG Antisense Primer
20
GCCTACGGGGAGCATTTGTA
ubiH-EGFP-Sense
87
ACCCCGGCACGCGATGTGCTGGCGCAGCGCACCCTCGGTTGGGTGGCGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ubiH-EGFP-AntiSense
72
ACAATGGCTACATCAACACTTTGCATTGTTTATTCCTTAAAACCGCCTTCATAGTGAACCTCTTCGAGGGAC
ubiH Sense Primer
20
AACATCGGGCTGATGACGAT
ubiH Antisense Primer
20
CCCTGTAAGCCACAGGCAAC
unG-EGFP-Sense
87
CGTGGCGAGACGCCGATTGACTGGATGCCAGTATTACCGGCAGAGAGTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
unG-EGFP-AntiSense
72
ATAAATCAGCCGGGTGGCAACTCTGCCATCCGGCATTTCCCCGCAAATTTATAGTGAACCTCTTCGAGGGAC
unG Sense Primer
22
ATTTTGTGCTGGCAAATCAGTG
unG Antisense Primer
22
TGAATGGTGGCGTCAGAATAAA
upP-EGFP-Sense
87
TACATTATTCCGGGCCTCGGCGATGCCGGTGACAAAATCTTTGGTACGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
upP-EGFP-AntiSense
72
CTCAAAAAAAAGCCGACTCTTAAAGTCGGCTTTAATTATTTTTATTCTTTATAGTGAACCTCTTCGAGGGAC
upP Sense Primer
22
ATTGATCAGGGACTGAACGAGC
upP Antisense Primer
19
GATAGCACGGCGCGTCATA
usG-EGFP-Sense
87
GCGCTGATGGCAGTAAAAATCGCCGAGAAACTGGTGCAGGAGTATCTGTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
usG-EGFP-AntiSense
72
CAATGCCCAGCGCAATTTTATAAACTGGCGGTTGTTGCTGGTCGGACATTATAGTGAACCTCTTCGAGGGAC
usG Sense Primer
19
GTCGGTGGCCGATAACGTT
usG Antisense Primer
23
CAGCCGTAATACTTACTGCCGTC
uup Antisense Primer
23
CATGCCTGATAAACCCAGTTCAT
227
uup Sense Primer
23
AAAAAGTGCTTGCTGATATGGCT
uup-EGFP-AntiSense
72
CAATTTTACCGTTGTCAGCTGTCTCTGTTTAAATCGACTATTTTGCGATCATAGTGAACCTCTTCGAGGGAC
uup-EGFP-Sense
87
GAGCAAGCCTTTGAACGCTGGGAGTATCTTGAAGCGTTAAAAAATGGTGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
uvrA-EGFP-Sense
87
GTCGCGGAGTGCGAAGCATCACACACGGCACGCTTCCTTAAGCCGATGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
uvrA-EGFP-AntiSense
72
TGGTGCAACTCTGAAAGGAAAAGGCCGCTCAGAAAGCGGCCTTAACGATTATAGTGAACCTCTTCGAGGGAC
uvrA Sense Primer
20
AGATCCTCGTCTCCGGTACG
uvrA Antisense Primer
21
TGCCGGAAGAAAAACGTAAAT
uvrB-EGFP-Sense
87
CAAATTCGTGACCAGTTGCATCAGCTGCGTGAGCTGTTTATCGCGGCATCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
uvrB-EGFP-AntiSense
72
GCGCATCAGGCTGTTTTCCGTTTGTCATCAGTCTTCTTCGCTATCCTGTTATAGTGAACCTCTTCGAGGGAC
uvrB Sense Primer
19
GCGCAGAATCTGGAGTTCG
uvrB Antisense Primer
23
GAAAATGTAGGCCTGATAAGCGT
uvrC-EGFP-Sense
87
CCGGGTATTTCGCAAGGTCTGGCAGAAAAGATCTTCTGGTCGTTGAAACATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
uvrC-EGFP-AntiSense
72
GTAACTATCTGTTGTCAGTAAGATTACCCCTATGTTGCTACAGAGACATCATAGTGAACCTCTTCGAGGGAC
uvrC Sense Primer
19
TTACGTAACGCCAGCGTCG
uvrC Antisense Primer
28
ACGTAGGGATATTAAATTGCATAATGAC
uvrD-EGFP-Sense
87
GGCCAGGGTATTAAATGGCTGGTGGCGGCATACGCCCGGCTGGAGTCGGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
uvrD-EGFP-AntiSense
72
AATGATTTTTTAGGCCAAATAAGGTGCGCAGCACCGCATCCGGCAACGTTATAGTGAACCTCTTCGAGGGAC
uvrD Sense Primer
19
GAAGGCAGCGGTGAGCATA
uvrD Antisense Primer
24
CATGACGTTGCAATTTATTGAATC
valS-EGFP-Sense
87
GCGGAAGCGAAAGCGAAACTGATTGAACAGCAGGCTGTTATCGCCGCGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
valS-EGFP-AntiSense
72
AAAAGGCCGGAGCATGCTCCGGCCTTCGTTTTCATCACTGTGTTTTGATTATAGTGAACCTCTTCGAGGGAC
valS Sense Primer
19
CATCGCGAAAGAGCGTGAG
valS Antisense Primer
21
AGCCAGTATTTCACGGGGAGT
visC-EGFP-Sense
87
CAACTTATCCGCCAGGCAATGGGATTAAACGATTTGCCTGAATGGCTGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
visC-EGFP-AntiSense
72
GGAGATGAAAGTGTGATGGGTATCAAATAAACAACAGAGGAGAAATTTTTATAGTGAACCTCTTCGAGGGAC
visC Sense Primer
19
TTTGAAACTGGCCGACACG
visC Antisense Primer
20
AATGAGGAAAATCTCCCGGC
xerC-EGFP-Sense
87
CACCTTGCCTCGGTGTACGATGCGGCGCATCCACGCGCCAAACGGGGGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
228
xerC-EGFP-AntiSense
72
GGTCAAAGGTGAGCGCCGAGATGCGCCCCAAAGGCCGGTAAAAACGCATTATAGTGAACCTCTTCGAGGGAC
xerC Sense Primer
24
CTCCACCACGCAAATCTATACTCA
xerC Antisense Primer
22
CGGACGGTTATCGTAAAGGGTA
xerD-EGFP-Sense
87
GTCGCTACCGAGCGTCTGCGGCAACTTCATCAACAGCATCACCCGCGGGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
xerD-EGFP-AntiSense
72
AAACAACATAAAACCTTTCTTCATAAATCTTCCCGTTCTTTTCAGACATCATAGTGAACCTCTTCGAGGGAC
xerD Sense Primer
20
ACAGCGATCTCTCCACCACG
xerD Antisense Primer
22
TGGCTAACGTTTGTTGAATTGC
xseA-EGFP-Sense
87
AGTGAAGTAAAAAACATCCAGCCAGTAAAAAAATCGCGTAAAAAGGTGCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
xseA-EGFP-AntiSense
72
GCACGGGCATGGCTTGATATCGAAAAAACGCGTTGAATTCGTGCTGGCTTATAGTGAACCTCTTCGAGGGAC
xseA Sense Primer
23
AATGCTAACCACACGTCTGGAAG
xseA Antisense Primer
25
AGCCTGTGGTGCAGTAGATTACTTC
xseB-EGFP-Sense
87
CTGTCTGACAATGAAGACGCCTCTCTAACCCCTTTTACACCGGACAATGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
xseB-EGFP-AntiSense
72
CCTGGTTGGCCTGCTTAACGCAGGCTTCGAGTTGCTGCGGAAAGTCCATTATAGTGAACCTCTTCGAGGGAC
xseB Sense Primer
21
GCCAAATTACAACAAGCCGAA
xseB Antisense Primer
21
GCCATACTGCATGGTTTCGAC
xthA-EGFP-Sense
87
AGCATGGAAAAACCGTCCGATCACGCCCCCGTCTGGGCGACCTTCCGCCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
xthA-EGFP-AntiSense
72
CTCAAGGTTAATTCTCCTGACCCAGTTTGAGCCAGGAGAGCTGCTAAATTATAGTGAACCTCTTCGAGGGAC
xthA Sense Primer
22
AAACCGGCATCGACTATGAAAT
xthA Antisense Primer
23
ACGCAGAGACGGTATAACAAAGG
yabC-EGFP-Sense
87
AACCCTCGTGCCCGTAGTTCAGTTCTGCGTATTGCAGAGAGGACGAATGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yabC-EGFP-AntiSense
72
TTCCCATCGATCCTTTAACTTTGCTTAGAGCTTCTGTCACTCTGCTGATCATAGTGAACCTCTTCGAGGGAC
yabC Sense Primer
23
CTGCGAGCACTAGGCAAGTTAAT
yabC Antisense Primer
21
CGATAACACCAGGCAATGCAT
yacE-EGFP-Sense
87
CACGCACACTATTTGCAGCTTGCGTCGCAGTTTGTCTCACAGGAAAAACCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yacE-EGFP-AntiSense
72
TACGCATTTTTTCATTTAGTGGATGTTCAAAAAGGACCTGGGTCTGCATTATAGTGAACCTCTTCGAGGGAC
yacE Sense Primer
20
TGCTATCGCATCGGATGTTG
yacE Antisense Primer
23
ACGATGGGTAAATTAACGGTGAG
yadF-EGFP-Sense
87
CGTTACCGTCACGGGATTTCCAACCTCAAGCTGAAACACGCCAACCACAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
229
yadF-EGFP-AntiSense
72
ACGAGTAAGTGTGAAGTTGCCGGATGTGTTGCATCCGGCATGGCATTTTTATAGTGAACCTCTTCGAGGGAC
yadF Sense Primer
20
CTTGCTGCGTGATCTGGATG
yadF Antisense Primer
22
GCCGTATATCGGCAAAGTGATT
yadG-EGFP-Sense
87
CTGGAAGAGCTGTTTGTTTCACTGGTTAATGAAAAACAAGGAGATCGCGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yadG-EGFP-AntiSense
72
GGATCTCTTTCGCCCAGATGCTTTTTAGCGCCACCCAGTAAAGATGCATCATAGTGAACCTCTTCGAGGGAC
yadG Sense Primer
27
CAGGTATTAAGTATGCGTAACAAAGCT
yadG Antisense Primer
22
CTGCACCCAGATACGCATAAAG
yadH-EGFP-Sense
87
TTTTATTTGATCTGTTGGTCGCTGATCCAACGTGGACGTGGTTTGCGTAGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yadH-EGFP-AntiSense
72
TAGCCGTCAAAACTCCTCTCCCCCAAATCCAGAGGAGAGGAAATAGCCTTATAGTGAACCTCTTCGAGGGAC
yadH Sense Primer
20
CCTTTGGCGTACTGGTGGTC
yadH Antisense Primer
18
CGCCTTCCTCCTTAGCCG
yadR-EGFP-Sense
87
ACCAACCCGAACGCGAAAAGCACCTGCGGTTGCGGTTCTTCCTTTAGTATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yadR-EGFP-AntiSense
72
GAAGAGAGAAGATGTGCCGGATAGTTTATCCGGCACATGAACAACAGATTATAGTGAACCTCTTCGAGGGAC
yadR Sense Primer
24
TTATACCGAAGGTCTGGAAGGTTC
yadR Antisense Primer
19
CGTTTGCGCTGGATGAGAA
yaeC-EGFP-Sense
87
GTTTACGAAGCAGCAAACAAAGTGTTTAACGGCGGAGCTGTTAAAGGCTGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yaeC-EGFP-AntiSense
72
AAGCGCCCGTCCTGAATGATATTACAAATTGTGGAAACAGCCTAAAAATTAATAGTGAACCTCTTCGAGGGAC
yaeC Sense Primer
23
TCGTCCAGGCTTATCAGTCTGAC
yaeC Antisense Primer
24
GGAGCTTGTAAAAATGACAAGACG
yaeN EGFP-Sense
87
GTGGCTGAAGGTGAGAATGGCGTAAGTTTTGTCTGGCAGAAAACGCTTAGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yaeN EGFP-Antisense
72
TTGACTTTCGCCGGATGCGACGTTTGATGCGTCTTATCCGGCTTTCACTTATAGTGAACCTCTTCGAGGGAC
yaeN Sense Primer
21
GGGGTATTTGTGACGCAAGAA
yaeN Antisense Primer
20
GGTACGGTGGTGGTAAGCGA
yaeS-EGFP-Sense
87
GCTAATCGAGAGCGTCGTTTCGGCGGCACCGAGCCCGGTGATGAAACAGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yaeS-EGFP-AntiSense
72
TAACACAAAAGCAGATATCAGGCGATACTTCAGCAAAAGCGACCCCCATCATAGTGAACCTCTTCGAGGGAC
yaeS Sense Primer
24
TTTCGATGAACAAGACTTTGAAGG
yaeS Antisense Primer
19
CCAGCGTTACAATGGCGAA
yaeT-EGFP-Sense
87
TACGATGGAGACAAGGCAGAACAGTTCCAGTTTAACATCGGTAAAACCTGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
230
yaeT-EGFP-AntiSense
72
GCCTAAAGTCATCGCTACACTACCACTACATTCCTTTGTGGAGAACACTTATAGTGAACCTCTTCGAGGGAC
yaeT Sense Primer
20
TGGTGTTCTCCTACGCCCAG
yaeT Antisense Primer
19
TGGCCCGGCGATCTTATAT
yaiD-EGFP-Sense
87
GCAGCGTTAATTCAAAACCTGATTGAAGGATTAGGTGGCGAAGCACAACGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yaiD-EGFP-AntiSense
72
GATAAGACGCGGCAGGCGTCGCATCCGGCATTAAAGGAAAATCAGCAATTATAGTGAACCTCTTCGAGGGAC
yaiD Sense Primer
24
ACGAAGATATCGACCGTGAAGATT
yaiD Antisense Primer
18
TGCCTGGTGTGGCTTCGT
yajC-EGFP-Sense
87
AAACGTGACTTCGTAGCTGCCGTCCTGCCGAAAGGCACCATGAAGGCGCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yajC-EGFP-AntiSense
72
CAAAGGATAACGGTTTAACACGGCAATTCCCTTAGGGAAAAATTTTAATTATAGTGAACCTCTTCGAGGGAC
yajC Sense Primer
23
CGCTGAATGACACCACTGAAGTA
yajC Antisense Primer
21
CACCACGATCAGCATGACGTA
yajQ-EGFP-Sense
87
GTACGTGGTGGCGATCTCGGTCAGCCGTTCCAGTTCAAAAACTTCCGCGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yajQ-EGFP-AntiSense
72
CAGGCGTTCATGCCGCATCTGACATGAACAAAACGCACATAGTCGCGATTATAGTGAACCTCTTCGAGGGAC
yajQ Sense Primer
21
TAACGGGCAAATCTCGTGATG
yajQ Antisense Primer
25
TCTGAATTACAAACCTTTGTAGGCC
ybaB-EGFP-Sense
87
GCCTCTGTATCCTCCGGAATGCAGCTGCCGCCTGGCTTTAAGATGCCGTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybaB-EGFP-AntiSense
72
GACAGCGCAGTGCTTCCATAAGCTGTGTTAACAGCGGGCTGGTTTGCATCATAGTGAACCTCTTCGAGGGAC
ybaB Sense Primer
22
CGTCGTATTGAAGAAACGCAGA
ybaB Antisense Primer
19
AAGCAGCGTGAACGCCATA
ybaD-EGFP-Sense
87
AGTTTCGAAGATATCAAAGAATTTGGCGAAGAGATCGCGCGCCTGGAGGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybaD-EGFP-AntiSense
72
TTGCGCCAGCTTTAGCGCCCGCGCCATGTAATACTCGTCCTGCACGGCTTATAGTGAACCTCTTCGAGGGAC
ybaD Sense Primer
24
CCTATATCCGTTTTGCCTCTGTCT
ybaD Antisense Primer
19
TGGGATGCGTGGTAAAACG
ybaV-EGFP-Sense
87
CCGGGGATGGGCAATTCGCTGGTGGAACGTAATCTGGCGGTATTAACCCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybaV-EGFP-AntiSense
72
TGGTATGACCTCTTCAGTCTGGCAAAAAATTGCCACTATGCAAATTAATTATAGTGAACCTCTTCGAGGGAC
ybaV Sense Primer
25
GAAGAGTACGGTCCGTTTAAAACTG
ybaV Antisense Primer
22
TGTTTGCATAGCGCAATAACCT
ybaX-EGFP-Sense
87
GCCGATAAACCGACGGTGATGGCAGCGATGAAGCAGAAAACCGGGTTGAGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
231
ybaX-EGFP-AntiSense
72
TTTTGTGGTGCCGGATGCTCAAGCCGCATCCGGCGACACCCGGAATAATTATAGTGAACCTCTTCGAGGGAC
ybaX Sense Primer
20
TAATTTACGCGCCAACGGTT
ybaX Antisense Primer
23
GAAAAGCTGGAGCAGATGGTTAA
ybbF-EGFP-Sense
87
TCAATGGTGAAAGTCACGGCGGATGACGTTGAGCTGATTCATTTTCCGTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybbF-EGFP-AntiSense
72
CAAGGAAAACGGTTGCGTGGCTGTGAAATCAGCAAAGTTGCGGGTTTTTTATAGTGAACCTCTTCGAGGGAC
ybbF Sense Primer
20
CCTGCTTTTCGCGTGGTACT
ybbF Antisense Primer
20
GGGCACAGAGAATAGCACGG
ybeA-EGFP-Sense
87
AGTCTGTACCGGGCGTGGAGCATCACCACCAACCATCCTTATCACCGTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybeA-EGFP-AntiSense
72
AGAGTTCTGTAGTTTCATCCGCTGCGTTTTCTACTCAAAGCTCCCTTATCATAGTGAACCTCTTCGAGGGAC
ybeA Sense Primer
20
AGTTAGCCGCTGAGCTGGAA
ybeA Antisense Primer
20
CGCGGACTCTGCCGTATAGT
ybeB-EGFP-Sense
87
GTCATGCAGGAAGAGAGCCGTCGCCTGTATGAACTGGAAAAACTCTGGAGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybeB-EGFP-AntiSense
72
CCAGTCCGGCATTTTCGTTCCCACGGCGACAAGTTGCAGCTTCACGCATTATAGTGAACCTCTTCGAGGGAC
ybeB Sense Primer
21
GATTTGGGCGATGTGATTGTC
ybeB Antisense Primer
22
GACGCAGGTACTCGGTAAAACC
ybeD-EGFP-Sense
87
GAAACACTGTATGAAGAACTGGGCAAAATCGATATTGTCCGCATGGTTCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybeD-EGFP-AntiSense
72
GAGGAGAGGGGAGTTACCCGACCAGGAGCCGGGTAACGGAGAAGCGAGTTATAGTGAACCTCTTCGAGGGAC
ybeD Sense Primer
24
ACTATCAACGCCACTCATATCGAG
ybeD Antisense Primer
24
AGTGGGGGAAAAGTATATCACAGC
ybeX-EGFP-Sense
87
CAGGTTCATGTCAAAATCCCGGATGACTCACCCCAGCCGAAGCTGGATGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybeX-EGFP-AntiSense
72
TTCAATTAATGAGGCAAAAGCCATGTAGTTATCTATCCAGTTTCGGTTTTATAGTGAACCTCTTCGAGGGAC
ybeX Sense Primer
18
TTCAAAGTGGCGATGGCC
ybeX Antisense Primer
20
GGCACCGAATAATAACGCCA
ybeY-EGFP-Sense
87
GAGATTATGCTTGCTCTGGGCTATGAGGATCCGTACATTGCCGAGAAAGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybeY-EGFP-AntiSense
72
CGTTAATCACCAACGGCGGGGACGTCTGCCAGTCAAATGCCTGGCAAATTATAGTGAACCTCTTCGAGGGAC
ybeY Sense Primer
23
AGATGACGAAGCAGAAGAAATGG
ybeY Antisense Primer
24
CATGTTAGTTAATCAAAACGCCGT
ybeZ-EGFP-Sense
87
CGAAAAGCGGCGCTGGCAGCAGAACGCAAGCGCGAAGAACAGGAACAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
232
ybeZ-EGFP-AntiSense
72
ACCCGGAATTATCTTCACATGCCAGTTGTAAATCGAGGATCACCTGACTCATAGTGAACCTCTTCGAGGGAC
ybeZ Sense Primer
24
GTATCGTTAACGCCTATGAAGCCT
ybeZ Antisense Primer
22
GTCTGAAACTGGCTCTCTTCCG
ybgC-EGFP-Sense
87
AAAATGAAGCCTCGTGCGCTTCCCAAGTCTATTGTCGCGGAGTTTAAGCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ybgC-EGFP-AntiSense
72
TAACCAGAAGGCTAGCCTTCAGGAACAAATCAAGGATATTCATGTCAGTCATAGTGAACCTCTTCGAGGGAC
ybgC Sense Primer
23
GAAGCAGAGGTTCTGGTTGTTTG
ybgC Antisense Primer
21
AATAATGGCCCAAGATGCGAT
ycaJ-EGFP-Sense
87
CTCGCCTGGCTGGCTGAACAGGATCAAAATAGCCCCATAAAACGCTACCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ycaJ-EGFP-AntiSense
72
AGCCTGCGACCACAGGGATACAGTAACAACATTACCGCAACGATAACATTATAGTGAACCTCTTCGAGGGAC
ycaJ Sense Primer
23
GCACAAACACGCTATTATTTCCC
ycaJ Antisense Primer
24
TATCGAATTAAATGGGAGATGTGG
ycbY-EGFP-Sense
87
GATTTCGCCCGTAACCGCCAGATCCACAACTGCTGGCTGATTACCGCAGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ycbY-EGFP-AntiSense
72
ACGACAGCCATGCGCCATGCATACTGATTAATGACATTACTATTCCTTTCATAGTGAACCTCTTCGAGGGAC
ycbY Sense Primer
20
TTCCGTATGGATCTCGACGG
ycbY Antisense Primer
21
GTTCTGCGTTATCGAGAAGCG
yceG-EGFP-Sense
87
AACAAGTCTGTGCAGGATTATCTGAAAGTGCTTAAGGAAAAAAATGCGCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yceG-EGFP-AntiSense
72
CGCGCGGTAGTTTTGCCTGCGCCTTCCAGCCCCTCAATGACGATATACTTATAGTGAACCTCTTCGAGGGAC
yceG Sense Primer
21
CCGATGGTAAAGGTGGTCACA
yceG Antisense Primer
22
GTTCCCGAGTGAAAACCATGTC
ycfC-EGFP-Sense
87
CGCCTGACCACTCAGGCAAAACAAATTCTTGCTCATTTAACCCCGGAGTTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ycfC-EGFP-AntiSense
72
GCGTCCATCGACAGGGGAAACGGCGGTCAGTGAGGATAATTCCATAGATCATAGTGAACCTCTTCGAGGGAC
ycfC Sense Primer
21
CGGACGTCTGCAACTGATGTT
ycfC Antisense Primer
22
TCAGCAAACCATATTCGCTGAA
ycfF-EGFP-Sense
87
CACTTGTTGGGTGGCCGTCCGCTGGGACCAATGCTGGCGCATAAAGGTCTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ycfF-EGFP-AntiSense
72
GCAGTAACAACACCAGAGACACCAGCCCAAAGCATCCTTTTCTCATCGTTATAGTGAACCTCTTCGAGGGAC
ycfF Sense Primer
23
ATTGCTGAGCAAGAAGGTATTGC
ycfF Antisense Primer
21
AATTTCCGGATGTGAACGACA
ycfH-EGFP-Sense
87
AACTTCGCCCGTCTGTTTCACATCGACGCTTCCCGCCTTCAATCCATCCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
233
ycfH-EGFP-AntiSense
72
GAACTTTACTCGTTTTAGCCATTAATTACGAGCTTTAAAAAAACTCATTCATAGTGAACCTCTTCGAGGGAC
ycfH Sense Primer
20
GAACTGGCGCAGGTAACCAC
ycfH Antisense Primer
21
GGTTATTCACCGCCCAATTTT
ycfO-EGFP-Sense
87
ACCCGTCTGAATCAGTTACATGAACGCTGGCAGGAAGAGAAAGCAGGTCACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ycfO-EGFP-AntiSense
72
TCAAAACCGTGTAAATAGATAATCATCGCTTCCTCACATAAGCCAGGGTTATAGTGAACCTCTTCGAGGGAC
ycfO Sense Primer
19
TCGCGACAGGAACTGATGG
ycfO Antisense Primer
20
TCTCGTGGTTACCCGGACTG
ycfV-EGFP-Sense
87
GAAATGCGTGATGGTCGTCTGACGGCGGAACTGAGCCTGATGGGGGCGGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ycfV-EGFP-AntiSense
72
GTCCGCGACTAAAACGCAGGCCAATTAATAACGATAAAGGCATCGCCATTATAGTGAACCTCTTCGAGGGAC
ycfVSense Primer
21
GCAACTGGCGAAACGTATGAG
ycfV Antisense Primer
20
ACGGAGATCAGCGACACCAT
ycfW-EGFP-Sense
87
CCGGCGCGGCGCGCCAGTAATATTGACCCTGCGCGAGTCCTTAGCGGCCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ycfW-EGFP-AntiSense
72
ATATCAAACCCGTAATACATTGCCGCTCCTTGTTTTAATGTACTGCCTTTATAGTGAACCTCTTCGAGGGAC
ycfW Sense Primer
21
CTGGTCACAGCATTGTTGCTG
ycfW Antisense Primer
18
AAACACGCCAAGCGCAAT
ychB-EGFP-Sense
24
GGCTTTGTGGCGAAAGGCGCTAATCTTTCCCCATTGCACAGAGCCATGCTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ychB-EGFP-AntiSense
72
AACGTCTGGAACAAGGTGACGTTGTCACCGAAACTCAGCTTGCCCGGCTTATAGTGAACCTCTTCGAGGGAC
ychB Sense Primer
26
CTGAATTTGATACAGAGTCTGAAGCC
ychB Antisense Primer
21
CAGGCGGTGTATTAAAGAGCG
ychF-EGFP-Sense
87
AAAGATTACATCGTGAAAGATGGCGATGTGATGAACTTCCTTTTCAACGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ychF-EGFP-AntiSense
72
TTGCGCTCTTCATGAGATTTAGCGAAACCTCATGAGACAATAAATTAATTATAGTGAACCTCTTCGAGGGAC
ychF Sense Primer
25
TCATCACTTACAAAGGTGAACAAGG
ychF Antisense Primer
25
GAATGATTAGGACTCGGTGAAATGA
yciA-EGFP-Sense
87
AAGTATGTCGCGGTTGATCCTGAAGGAAAACCTCGCGCCTTACCTGTTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yciA-EGFP-AntiSense
72
ATTCAGTAAGCAGAAAGTCAAAAGCCTCCGACCGGAGGCTTTTGACTATTATAGTGAACCTCTTCGAGGGAC
yciA Sense Primer
22
GCAACGCTATAAAGCGACAGAA
yciA Antisense Primer
20
AGGCAGTGGGATTGTGGTGA
yciB-EGFP-Sense
87
TTGTTAAGCGGTATCTATATCTACCGCCACATGCCGCAGGAAGATAAATCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
234
yciB-EGFP-AntiSense
72
GGAGAACAGAGGAGATACAGCGCCAGCCCCGAAGGACTGGCAGTCTGGTTATAGTGAACCTCTTCGAGGGAC
yciB Sense Primer
24
TCAACTTTAAAGTCTTTGGCCTGA
yciB Antisense Primer
21
CAGGCGCGATGCTACTATGAT
yciO-EGFP-Sense
87
GATACGCCGGTCGTGGTGCGTGAAGGCGTAGGTGATGTGAAGCCTTTCTTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yciO-EGFP-AntiSense
72
GCAGCGAAACTTCCCTGCCATAGTCTTCCATCCGTGGAACGCAATTTGTTATAGTGAACCTCTTCGAGGGAC
yciO Sense Primer
23
GAAACCGACAACGGTTATTGATC
yciO Antisense Primer
21
ACAGCCCTGCTATCAACAGCA
ydaO-EGFP-Sense
87
GAAGATGAAAATCAGTTGGATGAGTTACGGCTGAATGTGGTTGAAGTGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ydaO-EGFP-AntiSense
72
CCTCCATAAGAGTAGCCCGATACGCTTGCGCATCGGGCGCTATCCTGGTTATAGTGAACCTCTTCGAGGGAC
ydaO Sense Primer
21
CGCGAAGAGATCCCACTACAA
ydaO Antisense Primer
20
CATCTTATTCGGGATTGCCG
ydgM-EGFP-Sense
87
TGGGATCTGAACACCATTCCCGTGCGTATCATTCCCGTGGAACACCATGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ydgM-EGFP-AntiSense
72
CCGCCGTTGAAATCCCAGATTTTATTTTTTCTGAATGCAGAGAATAACTTATAGTGAACCTCTTCGAGGGAC
ydgM Sense Primer
19
CGGTCGCAGAAACACCTGA
ydgM Antisense Primer
20
CTGGGTTTTCATCTCCGGTG
ydhD-EGFP-Sense
87
CTGATCAAAGAAACTGCCGCTAAATACAAGTCTGAAGAGCCGGACGCGGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ydhD-EGFP-AntiSense
72
AAAGGACTGACGGATGCCCGTTCGCATCCGTCAGTATTGCAGGACGGATTATAGTGAACCTCTTCGAGGGAC
ydhD Sense Primer
22
TCGTGATCGAAATGTATCAGCG
ydhD Antisense Primer
20
TTTCAAGTTCGCCACAAGGG
ydhH-EGFP-Sense
87
ACTGGCGCAAGCCAGGAGACGGTACTGGGGGCTATTTTCCCCGCTAACCCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ydhH-EGFP-AntiSense
72
CCAAGTGTAACGGCAGACGCGGTAAGAAAAATTCAGTTAACTCTGATATCATAGTGAACCTCTTCGAGGGAC
ydhH Sense Primer
22
GGGATTACCAGGAAATCTGCCT
ydhH Antisense Primer
20
CTGGTCTGGAGGGCAATACG
ydjA-EGFP-Sense
87
GCATCTACGTCGATTAACGTCCCGGACCCGACGCCGTTTGTAACTTATTTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ydjA-EGFP-AntiSense
72
TGAATTCCTGCGCCTTTGCTCACAATCCAGACAGTTTCGCGACAATTATCATAGTGAACCTCTTCGAGGGAC
ydjA Sense Primer
20
TTCTCTACCTCGGTACGCCG
ydjA Antisense Primer
24
CCTCATTCCGTGAAGTGATAAGTG
yeaZ-EGFP-Sense
87
CCGGTTTATTTACGTAACAACGTCGCATGGAAGAAACTTCCGGGCAAAGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
235
yeaZ-EGFP-AntiSense
72
AACCGCCATGGTGCGACTCCTTTTTTTCTCAGGGCATACTCTTAAGATTCATAGTGAACCTCTTCGAGGGAC
yeaZ Sense Primer
21
TTTGCTGAGGGTAAAACGGTG
yeaZ Antisense Primer
23
CCTGCCAGTATGCCTTTGATAAC
yebC-EGFP-Sense
87
CAGGAAGTTTACCATAACGGTGAAATCTCTGATGAGGTCGCAGCGACTCTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yebC-EGFP-AntiSense
72
AGAATAATAGCCATCACGCGTCTCCGTTTTGCTGTTTAGCAGGCCTCATCATAGTGAACCTCTTCGAGGGAC
yebC Sense Primer
21
ATATGCTGGAAGATTGCGACG
yebC Antisense Primer
22
GACAGTTGCCTACCTACCTGGC
yfcB-EGFP-Sense
87
ACCAAAGAGCAGCTTATTGCCGCACGAGAACATTTCGCGATTTATAAAGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfcB-EGFP-AntiSense
72
GTGTTTCCAGCCATCACGGCTCCGTTATTGTTGTGTTTGCGTGTTTACTTATAGTGAACCTCTTCGAGGGAC
yfcB Sense Primer
22
AATATCCGGATGTTCCGTTCAC
yfcB Antisense Primer
22
GGTGGTTACGCGAAAGAGTTGT
yfcH-EGFP-Sense
87
TTTGCGTTTCGCTGGTACGATTTAGAAGAGGCGCTGGCGGATGTCGTTCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfcH-EGFP-AntiSense
72
ATCCTGTAACACCGGGAGTTAACTGGCGGATGTTTGCTGTAAACCACATCATAGTGAACCTCTTCGAGGGAC
yfcH Sense Primer
21
TGGTATTAGGTGGACAACGCG
yfcH Antisense Primer
20
ACCAGACGATCTTATCGCGC
yffB-EGFP-Sense
87
ATGCTGCTGGGTTTCAGTGATTCCAGTTATCAGCAATTTTTCCATGAGGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yffB-EGFP-AntiSense
72
GCGGCGAATAAGCTGTTGTGTCAGCTCAATAACCGGGCACGACATAGACTATAGTGAACCTCTTCGAGGGAC
yffB Sense Primer
22
TATCAAACGTCCATTGCTCTGC
yffB Antisense Primer
21
GCATCCTGCATCATCAGGACT
yfgB-EGFP-Sense
87
CGTACCCTGCGTAAACGGATGCAGGGTGAAGCCATCGACATTAAAGCGGTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfgB-EGFP-AntiSense
72
ATAAAACATTACGCCACGGTACATAAAGTAACCGTGGCGTAATGGCTATCATAGTGAACCTCTTCGAGGGAC
yfgB Sense Primer
22
GTGGTGATGATATCGATGCTGC
yfgB Antisense Primer
20
AGTCAGCAAAAACGCACCGT
yfgM-EGFP-Sense
87
ACTCCGGCACTGAGCGAAATGATGCAGATGAAAATTAATAATTTGTCCATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfgM-EGFP-AntiSense
72
GAAAGCAGTCCTGGCAGCAGTAATTTACGCAATTGCATCGGGTCCCTCTCATAGTGAACCTCTTCGAGGGAC
yfgM Sense Primer
21
ATAAGCAAGGTGCGCGTAGTG
yfgM Antisense Primer
20
AGCGAACAGCCGCTTAAAAG
yfgO-EGFP-Sense
87
CTGATCAAAGCCGTGATTCATGCCTGGCCCGATGGGCAAATCGCGCAAGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
236
yfgO-EGFP-AntiSense
72
AGGAACCCTGAAAAATCAGCCCGGCGAAACAGTTCGTCGGGCTGAAGATTATAGTGAACCTCTTCGAGGGAC
yfgO Sense Primer
22
TTTATCGGTGGTGATCTTCGGT
yfgO Antisense Primer
23
CTGGTGAGTATGTGTTATCGGGC
yfhC-EGFP-Sense
87
ATGCGCCGCCAGGAAATTAAAGCGCAGAAAAAAGCGCAATCCTCGACGGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfhC-EGFP-AntiSense
72
TTCTCCCTCTCTGCTGTTTTCCAGGAAAGGGAGTGAAGAGAAACAAAATTATAGTGAACCTCTTCGAGGGAC
yfhC Sense Primer
22
CGTTGCTCAGTGACTTCTTTCG
yfhC Antisense Primer
24
TCCCAGTCGTCATCAAACTATTTG
yfhF-EGFP-Sense
87
ACCAACCCGAACGTCAAAGATGAGTGTGGTTGCGGCGAAAGCTTCCACGTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfhF-EGFP-AntiSense
72
AACAAACCCCACGCGCAGGCGACCACGGTGGGGTTATCGGTATGCGCATCATAGTGAACCTCTTCGAGGGAC
yfhF Sense Primer
20
AAGAAGGCCTGAACGAAGGG
yfhF Antisense Primer
27
GAGGGTGAAGTAATCCATAACATTCTC
yfhL-EGFP-Sense
87
GAAGAACAGTTGTGGGATAAATTTGTGCTGATGCACCACGCGGATAAAATTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfhL-EGFP-AntiSense
72
TAAGGCTTCCCAGTAATATAATTAATACTCTACTTCCAGAGTAGAATATTATAGTGAACCTCTTCGAGGGAC
yfhL Sense Primer
21
TGCCCGATCCCCAATACTATT
yfhL Antisense Primer
20
CCAGTCGGACGCACCTTTAA
yfhO-EGFP-Sense
87
GAAATGTACAAGCAGGGCGTGGATCTGAACAGCATCGAATGGGCTCATCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfhO-EGFP-AntiSense
72
AACTTTTTCGCTGTAAGCCATTATAAATTCTCCTGATTCCGATACCGATTATAGTGAACCTCTTCGAGGGAC
yfhO Sense Primer
20
CGTCTGCGTGACCTTTCTCC
yfhO Antisense Primer
21
TTACGCGGATTCTCGTAATGG
yfhP-EGFP-Sense
87
GACGCGCCACGCACCCGCACACAAGACGCGATCGACGTTAAGTTACGCGCTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfhP-EGFP-AntiSense
72
GTGTTTACGGAGTATTTAGCACTCCGGCCTGATTCTGAATTCTTTTTATTATAGTGAACCTCTTCGAGGGAC
yfhP Sense Primer
22
TAACCAGGAAGTGCTGGATGTG
yfhP Antisense Primer
20
CAGGCTACCGGCTGGATGTA
yfhQ-EGFP-Sense
87
CGCGGGATTCTGGCTTCTATTGAGCAGCAGAATAAAGGTAACAAGGCCGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfhQ-EGFP-AntiSense
72
ACTGTAGGCCTGATAAGACGCATTACGCGTCGCATCAGGCAACGGCTGTTATAGTGAACCTCTTCGAGGGAC
yfhQ Sense Primer
23
GGAAAGCCAGGAGTTGAATATCC
yfhQ Antisense Primer
21
GCCTTATCCGACCTACGGTTC
yfiH-EGFP-Sense
87
TATCGTCGCGACAAGACCACCGGTCGTATGGCAAGTTTCATTTGGCTGATACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
237
yfiH-EGFP-AntiSense
72
TAATGTGAAAAGAAAATCACGCGTACCGGATCGTCTTGATTCTTTAGGTTATAGTGAACCTCTTCGAGGGAC
yfiH Sense Primer
22
GCGACCGTTGTACATATACGGA
yfiH Antisense Primer
24
AGGTCATCCCTCAATTATTCAAGG
yfiO-EGFP-Sense
87
GCGCAAGCTGAAAAAGTAGCGAAAATCATCGCCGCAAACAGCAGCAATACACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfiO-EGFP-AntiSense
72
TAAAAAAACGGCAGCTCAAGGGCTGCCGTTTTGTGTTTCAGGTTTCTGTTATAGTGAACCTCTTCGAGGGAC
yfiO Sense Primer
22
GCATACCGTCAGATGCAGATGA
yfiO Antisense Primer
24
AATCGCTTCAGTTTCACAACTGAC
yfjF-EGFP-Sense
87
GCCGATCCGAAAGAGCTTCGCAGGCAACGAGCAGAAAAATCAGCGAATAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfjF-EGFP-AntiSense
72
CTCAAAGACGTTAAAAAAGGTGCTCAATGAGCACCTTTTTTCTGTCTGTTATAGTGAACCTCTTCGAGGGAC
yfjF Sense Primer
19
CGGGTGGAGATTTATCGCC
yfjF Antisense Primer
23
AACCTGCGCTGAGTGGTAACTAA
yfjG-EGFP-Sense
87
AATATGGTCCAGGCTTTTACGGTTCGTGCGAAAGAGGTTTACAGTGCCAGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yfjG-EGFP-AntiSense
72
TGCAGGTACTGCTTCTCAGGTAGCGCATAAGCCACCTCAACGGCAATTTTATAGTGAACCTCTTCGAGGGAC
yfjG Sense Primer
20
ATTGAACTCGCCTTTGGTCG
yfjG Antisense Primer
19
ATTCCAGCAAGCCACTGGC
ygbB-EGFP-Sense
87
GGGGAAGGGATTGCCTGTGAAGCGGTGGCGCTACTCATTAAGGCAACAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygbB-EGFP-AntiSense
72
CGGTGCCTTGCGGTTTACCGTGGAGGTAAGTGAGATTATCAAACTCAATCATAGTGAACCTCTTCGAGGGAC
ygbB Sense Primer
24
TTAACGTGAAAGCCACTACTACGG
ygbB Antisense Primer
20
GTCTTCCGGATTGGCTTTCA
ygbP-EGFP-Sense
87
TTGGCACTGGCCGAGTTTTACCTCACCCGAACCATCCATCAGGAGAATACACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygbP-EGFP-AntiSense
72
GGCCTTCACCGCCAAAGGCATGTACGTCAAAACCGTGTCCAATTCGCATTATAGTGAACCTCTTCGAGGGAC
ygbP Sense Primer
19
AAGGCCGTGCGGATAACAT
ygbP Antisense Primer
20
TGCGTACGCCACCAATGATA
ygbQ-EGFP-Sense
87
CTGGTGCCTGACGCGTCGAAGCGCGCACAGTCTGCGGGGCAAAACAATCGACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygbQ-EGFP-AntiSense
72
GGCGCAAACATCCAAATGAGTGGTTGCCATGTTAATTCCCGGGCTGATTTATAGTGAACCTCTTCGAGGGAC
ygbQ Sense Primer
23
CGTAATGAACTCAGCATGACCAG
ygbQ Antisense Primer
21
TGCTTAGGACATTCCGTTTGC
ygcA-EGFP-Sense
87
TTCCCACACACGGGACATCTGGAATCGATGGTACTTTTCTCGCGCGTTAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
238
ygcA-EGFP-AntiSense
72
TCGTCCTCTCCTTTAGGGACCAGACCTGCCGAAATCGGCAAATCGCAACTATAGTGAACCTCTTCGAGGGAC
ygcA Sense Primer
22
AAAGCAGGATATACCATTGCGC
ygcA Antisense Primer
24
ATTGATATGTGCACTTCTTACCGC
ygdL-EGFP-Sense
87
GCGGTTTCTCATGCGCTGAAGAAGATGATGGCGAAAGCGGCGCGTCAGGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygdL-EGFP-AntiSense
72
ACAGAACCGGGTCGGATAAGACGTTCGCGTCTCATCCGACCTGATTGTTTATAGTGAACCTCTTCGAGGGAC
ygdL Sense Primer
18
TGGTGACCGCCACCTTTG
ygdL Antisense Primer
19
TATCGCTGCGACGAAGCAG
ygdP-EGFP-Sense
87
GAAAATACGCCAAAACCACAAAACGCATCTGCTTATCGACGTAAAAGAGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygdP-EGFP-AntiSense
72
TACCTTTTCGACTATTTCGCGCAGGCGAGTGAGCATAATTGGCGTGACTTATAGTGAACCTCTTCGAGGGAC
ygdP Sense Primer
21
AAAGAGTTCGCGAGTGTGGTG
ygdP Antisense Primer
23
AATATTTAACGCCTCATTCAGGC
ygfA-EGFP-Sense
87
TGGGATATCCCTCTTCCTGCGGTGGTTACACCGTCGAAAGTCTGGGAGTGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygfA-EGFP-AntiSense
72
GGTCAAAGAATCAACGATGTCAATCAGGGCGATGCGGGTGTATCGCCCTTATAGTGAACCTCTTCGAGGGAC
ygfA Sense Primer
22
GCATGATTGTCAGTTGGTGGAA
ygfA Antisense Primer
23
GCAATCCTCCCTTACCCTTACTC
ygfB-EGFP-Sense
87
TTTACTCATCCGCAACCGACCGCGCCAGAAGTACAAAAACCGACTCTACACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygfB-EGFP-AntiSense
72
TCTTGCCGGGATATCTCACTCATAACACTCTCCTTACGTTTTTTGTTTTTATAGTGAACCTCTTCGAGGGAC
ygfB Sense Primer
24
AAGAGATCATCGAATACGTTCGTG
ygfB Antisense Primer
21
GGCGCTACGTGTTACTTCTGG
ygfE-EGFP-Sense
87
GCGTTACTTGAACAAGGTCGCATCACCGAAAAAACTAACCAAAACTTTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygfE-EGFP-AntiSense
72
GAGAAATTTTGTCTTCACGGTTACTCTACCACAGTAAACCGAAAAGTGTCATAGTGAACCTCTTCGAGGGAC
ygfE Sense Primer
19
TTCGGATGCTGCAGCAGAC
ygfE Antisense Primer
22
CGCCACATTCTTGTGGTATGAA
ygfY-EGFP-Sense
87
ATGGTCCGACTCATCCAGACACGGAACCGGGAACGTGGTCCTGTGGCAATCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ygfY-EGFP-AntiSense
72
CCATGAATCAGCAAGGAAAGCCACTGTGCGCGCCAGGAGACGCGCAAATCATAGTGAACCTCTTCGAGGGAC
ygfY Sense Primer
24
CCTGTTTAACTGGCTGATGAATCA
ygfY Antisense Primer
24
CATGAGTAAAATAACAGCGGCAAC
yggH-EGFP-Sense
87
GGTCATCGTCTTGGTCACGGAGTATGGGACTTAATGTTCGAGAGGGTGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
239
yggH-EGFP-AntiSense
72
CGTCGATGTGCATTTTTTTACGCAGACGACGGCTACGGTTCTTTGCCATTATAGTGAACCTCTTCGAGGGAC
yggH Sense Primer
25
TGTCAGAGAGCAATGATTACGTACC
yggH Antisense Primer
21
GCCACCGAAAATCCTAATTCC
yggJ-EGFP-Sense
87
ACTGCGCTCACCGCCATTACCGCGCTACAAGTACGATTTGGCGATTTGGGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yggJ-EGFP-AntiSense
72
TGCGATGGGGTCCATCACGATGCCGAGCTTGATCATTATTCTTCTCCGTTATAGTGAACCTCTTCGAGGGAC
yggJ Sense Primer
21
GATATCCTGTTGGGACCTCGC
yggJ Antisense Primer
19
GACGCTGTGCTTCCAGCAA
yggR-EGFP-Sense
87
ATGATAACGTTTCAGCAGAGTTATCAGCACCGGGTGGGGGAAGGGCGTTTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yggR-EGFP-AntiSense
72
TTATTGCCTTTGTAGGCCCGATAAGCTTGCGCATCGGGCATGGCAACGTCATAGTGAACCTCTTCGAGGGAC
yggR Sense Primer
20
CGAAGGGAAAACCCACCAGT
yggR Antisense Primer
20
TCTGGCAGCGGCTATAGGTC
yggS-EGFP-Sense
87
ATGGTTCGTATCGGCACTGCAATTTTTGGTGCGCGTGATTACTCTAAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yggS-EGFP-AntiSense
72
CCGTTGAAAGCAGGAAAGTCAACGTATTCATGGCGTTCCTTTAATTCCTTATAGTGAACCTCTTCGAGGGAC
yggS Sense Primer
20
TGTCGGACGATATGGAAGCC
yggS Antisense Primer
21
ATCACAATGAGCCCACTGCAT
yggT-EGFP-Sense
87
GTATTACAGGCAACCGGAAATATGCTGCTGCCAGGGCTGTGGATGGCGTTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yggT-EGFP-AntiSense
72
GAATATAGAGCCGTAAAACCAGACCGTCATCATTAACTGTTACGGCATTCATAGTGAACCTCTTCGAGGGAC
yggT Sense Primer
24
GTATGTCATCAATATGGGTGTCGC
yggT Antisense Primer
22
AATAGAATCACGGCTGGCTTTC
yggV-EGFP-Sense
87
TCCCACCGTGGTCAGGCGTTGAAACTGCTGCTGGACGCTTTACGTAATGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yggV-EGFP-AntiSense
72
TTCTGCACGCACCACGGGATGTGAATGTAGAGACTCAGCGGAGGTAATTTATAGTGAACCTCTTCGAGGGAC
yggV Sense Primer
22
TACCTTCCGAAGGGAAAACCGC
yggV Antisense Primer
21
GCGTGAGAGTTGAAATCGCAG
yggW-EGFP-Sense
87
GAACATGGGAAGCTGTTTTTAAATTCGCTGCTGGAGCTTTTTCTGGCTGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yggW-EGFP-AntiSense
72
CACATGTCGGCTGGATAAGGCGTTCACGCCGCATCCGGCAATACAAGTTTATAGTGAACCTCTTCGAGGGAC
yggW Sense Primer
21
TATCTCACCGAATGTGCGGAT
yggW Antisense Primer
23
GCGCGTCTTATCAGACCTACAAC
yggX-EGFP-Sense
87
TTCGAGGGTAAAGAGGTGCATATCGAGGGCTATACGCCGGAAGATAAAAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
240
yggX-EGFP-AntiSense
72
TGTGTTTGTTTTTATGCAAGTTGCCGGAGGCGTGCTCCGGCACTGTTTTTATAGTGAACCTCTTCGAGGGAC
yggX Sense Primer
20
GCTGCTTGAGCAGGAGATGG
yggX Antisense Primer
24
AGATATTTTTTCATCATTCCGGGT
yhbC-EGFP-Sense
87
GAAGTGTTCGCGCTGAGTAATATCCAGAAGGCGAACCTGGTTCCCCACTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhbC-EGFP-AntiSense
72
AGCCAAAATTTCTTTGTTCATCGCGGGCTTTTCACCTCATCCAGACTATTATAGTGAACCTCTTCGAGGGAC
yhbC Sense Primer
24
GATCACAGTTACCGTCGAAGGTAA
yhbC Antisense Primer
22
TTTTCATTGGATACGGCTTCAA
yhbG-EGFP-Sense
87
TTACAAGACGAACACGTTAAGCGTGTATACCTTGGGGAAGACTTCAGACTCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhbG-EGFP-AntiSense
72
TGTTCAGAATCGTACTCTCCTGCTAAAACGTCGCAAACTTCTACCCTATCATAGTGAACCTCTTCGAGGGAC
yhbG Sense Primer
22
AACGCGCTTATATCGTCAGTCA
yhbG Antisense Primer
23
CTAAGCCTGAGTTGCAAACCTTG
yhbJ-EGFP-Sense
87
CGCGGTAAAAACGTCCAGTCACGCCATCGTACGCTGGAAAAACGTAAACCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhbJ-EGFP-AntiSense
72
GGGCATGCATGCCCAGCTTGTTTGTGATTTCAACAGTTTGCTTGACGGTCATAGTGAACCTCTTCGAGGGAC
yhbJ Sense Primer
22
CACCGTTCGGTGTATATTGCAG
yhbJ Antisense Primer
23
AATTCAAACAGCTTCATTGCAGG
yhbN-EGFP-Sense
87
CTGCAGGACAAAAACAACAAAGGCCAGACCCCGGCACAGAAGAAGGGTAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhbN-EGFP-AntiSense
72
TTTATAGGCTTTTGCAAGGTTCTTTGCAGTTAATGTTGCCATAACGAATTATAGTGAACCTCTTCGAGGGAC
yhbN Sense Primer
20
AAAATGCAGGCTTTCAGCGA
yhbN Antisense Primer
20
GTTGACGGTCAGGCTGACGT
yhbY-EGFP-Sense
87
ACGCTGGTGCTTTATCGCCCAACTAAAGAACGTAAAATCTCGCTGCCACGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhbY-EGFP-AntiSense
72
GAAAACCCCTCGTTTTACACAGCAAATGTGTGTAACTTTAGGATAATCTTATAGTGAACCTCTTCGAGGGAC
yhbY Sense Primer
21
TGATCGTGGAAGCTATCGTGC
yhbY Antisense Primer
20
GAGCGTGGCATTTTGCTCTC
yhbZ-EGFP-Sense
87
GACGACTGGGACGAAGACGACGAAGAAGGCGTTGAGTTCATTTACAAGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhbZ-EGFP-AntiSense
72
CCTGATAAGCGTAGCGCATCAGGCTGATTTGGCGTTTATCATCAGTGATTATAGTGAACCTCTTCGAGGGAC
yhbZ Sense Primer
24
TGAAGAGATTGCTGAAGAGGATGA
yhbZ Antisense Primer
22
CTTATCCGGCCTACAAAATCGT
yhdG-EGFP-Sense
87
GATGCCAGCGAACAGCTGGAGGCGTTGGAGGCATACTTCGAAAATTTTGCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
241
yhdG-EGFP-AntiSense
72
GAATTTACGCGTTGTTCGAACATAGTTCTGTCAGCTCTTTATTTCTGTTTATAGTGAACCTCTTCGAGGGAC
yhdG Sense Primer
20
GGAACACGCTCCAAATGACC
yhdG Antisense Primer
27
AGAGTTAACGGTAGAAACGGTCAGTAC
yheS-EGFP-Sense
87
CTGGAAGCCCAGGAGCAGCTTGAGCAGATGCTGCTGGAAGGCCAAAGCAACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yheS-EGFP-AntiSense
72
CAGCACTGCTGCTGAATTCATTGGCATCGGTCGTCGTTATCTGCGCCATCATAGTGAACCTCTTCGAGGGAC
yheS Sense Primer
24
GAACTGTATGACCAGAGCCGTAAA
yheS Antisense Primer
20
GCAGCATGGTTTGCAGATGA
yhgF-EGFP-Sense
87
GGTAATAGCGCGATGATGGATGCGCTGGCGGCGGCAATGGGCAAAAAACGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhgF-EGFP-AntiSense
72
CTGCCCTACGATTTCGTGCAAATTCGAACCGTAGGCCAGTACGGGCGTTTATAGTGAACCTCTTCGAGGGAC
yhgF Sense Primer
25
AAGTGGATCTTCAGCGTAAACGTAT
yhgF Antisense Primer
25
ATATTCTCCGGCACTTTTATGTCAG
yhgH-EGFP-Sense
87
TTACGCAATGGTGCGGCGGCTGTCCAGGTCTGGTGCCTTTGTCGAACCTTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhgH-EGFP-AntiSense
72
TAATAGTTGACTATTTTAGTTGGTTATAATACGCCCATCATCGAGGCTCTATAGTGAACCTCTTCGAGGGAC
yhgH Sense Primer
19
GCAGAGATTGCGCAGTTGC
yhgH Antisense Primer
24
GCATCGGAAATACGGATCATAGTA
yhgI-EGFP-Sense
87
AAAGGTGTGCGCGATCTCACCGAACACCAGCGCGGCGAACACTCCTACTACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhgI-EGFP-AntiSense
72
AATGACGCTTTAGCGTCGCATCGGGCAATCTACAAAAGAGGGGATAACTTATAGTGAACCTCTTCGAGGGAC
yhgI Sense Primer
22
AGAAGCAGCTGCTGAACGAATT
yhgI Antisense Primer
20
CGTCTGGCACATGTTCAACG
yhhF-EGFP-Sense
87
GTGGCTTATCGGCTGTATCAACGCGAAGCACAAGGAGAAAGTGATGCTGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhhF-EGFP-AntiSense
72
TTGAGGATTAAAAATCCCCAAACGCAGAGCATTAACAAACGACCAATATTATAGTGAACCTCTTCGAGGGAC
yhhF Sense Primer
24
TTCCAGCAAACTGGTCATTACATC
yhhF Antisense Primer
19
ATCAGCGCCACGTTAACGA
yhiN-EGFP-Sense
87
TGGTCGAGTGCGTGGGCTTGTGCGCAGGATTTGATTGCAGCAAAGTCGTCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yhiN-EGFP-AntiSense
72
AGCTCATTTTTAATGCGACTCTAATAATTTTCATCTTTAGGAAATAGGTCATAGTGAACCTCTTCGAGGGAC
yhiN Sense Primer
21
TGGGGGGCTATAACTTCCAGT
yhiN Antisense Primer
22
TCAGTTCACGGGCTCATTAGAA
yhiR-EGFP-Sense
87
CTGGTTCCGGCAGGCACCGGGCACGCCACCGTAAGCTGGATCGTGCCGGAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
242
yhiR-EGFP-AntiSense
72
TACCGCGATTGTAGCGCGAGACGTAATAGGTGCCAGCAATGGCTGCAATTATAGTGAACCTCTTCGAGGGAC
yhiR Sense Primer
25
TGGAAACTGGAACAACAGATGAATA
yhiR Antisense Primer
24
CGATGGCGATGTAATCATAGTGTT
yibK-EGFP-Sense
87
GTGTATGAAGCCTGGCGGCAGTTGGGGTATCCGGGAGCGGTATTGAGAGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yibK-EGFP-AntiSense
72
CTGTGATCGTGCCGGATGCGATGTAATCATCTATCCGGCCTACAGTAACTATAGTGAACCTCTTCGAGGGAC
yibK Sense Primer
21
ATGAATCTGTCCAATGCGGTG
yibK Antisense Primer
24
TTGAGTATGGGGATGGGATCTAAT
yibN-EGFP-Sense
87
GAAGGCGTCGCTGGCTGGGCTGGCGAAAACTTGCCTTTGGTGCGCGGCAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yibN-EGFP-AntiSense
72
GGGCCTAATTGCAGCTAACGGCCTGCATCATGAAAGACGACAGGTAAATTATAGTGAACCTCTTCGAGGGAC
yibN Sense Primer
20
ACGCACTGACGAAAGCTGGT
yibN Antisense Primer
23
TGGAGTGTCCCCAGAAGCTTATA
yibP-EGFP-Sense
87
GAAATTCGCCGCCAGGGTCAGGCGGTCAATCCACAGCCGTGGTTGGGAAGACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yibP-EGFP-AntiSense
72
CAACAGAGCGGCAAATGCAAGAACGTTACGACGAAATGGAAACAAAACTTATAGTGAACCTCTTCGAGGGAC
yibP Sense Primer
21
CAGGGTCGGCCTTCACTCTAT
yibP Antisense Primer
19
TGGCAAGTTTGCCAGCAAG
yicC-EGFP-Sense
87
GAGCTGAAAGTGTTGATTGAGCAGATGCGCGAGCAGATTCAGAACATCGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yicC-EGFP-AntiSense
72
GAGTGGCGGCATTTGTGAAGGCGGAAAAGTAAGAATTGGCGTTACGAGTTATAGTGAACCTCTTCGAGGGAC
yicC Sense Primer
23
ATCAATGCCGAAGTGACAAACTC
yicC Antisense Primer
19
TTGCGGGGAAGAAAAATGC
yidC-EGFP-Sense
87
TACCGTGGTCTGGAAAAACGTGGCCTGCATAGCCGCGAGAAGAAAAAATCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yidC-EGFP-AntiSense
72
AAAAAGGCGGTCAACTGACCGCCCTTATTTTAGCGAAAACTCACCGAATCATAGTGAACCTCTTCGAGGGAC
yidC Sense Primer
23
CCTGGTAACCATTATTCAGCAGC
yidC Antisense Primer
23
CATGATGTTCCTGTTGCTTTGTG
yihA-EGFP-Sense
87
GATACCTGGTTTAGCGAGATGCAGCCTGTAGAAGAAACGCAGGACGGCGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yihA-EGFP-AntiSense
72
TTACGGGCCGGATACGCCACATCCGGCACAAGCATTAAGGCAAGAAAATTATAGTGAACCTCTTCGAGGGAC
yihA Sense Primer
21
TTCGTTGAAGAAACAAGGCGT
yihA Antisense Primer
23
CAGGCCAACGGTAGAATTGTAAT
yihZ-EGFP-Sense
87
ATGCAGGTATCGCTGGTCAATGATGGCCCCGTGACATTCTGGTTGCAGGTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
243
yihZ-EGFP-AntiSense
72
ACATAGCGATACTCTCTCTTGTTTCCCGTGACAACCCTGGAAGCTGGCTCATAGTGAACCTCTTCGAGGGAC
yihZ Sense Primer
19
CAAACAGGACGCTTCGCTG
yihZ Antisense Primer
23
CCAGCGAAACTGATAGTAACGCT
yjbN-EGFP-Sense
87
GCAGACATTAATGTGCTGGAACACGCGCTCAAACTGGTGGCGGATAAGCGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjbN-EGFP-AntiSense
72
GCGACGGTGCGCAGGGCGTGGTGAATTTGACTACTTTTTGGTGAAAAGTTATAGTGAACCTCTTCGAGGGAC
yjbN Sense Primer
21
TTGGGCTTGTTCCAGGGTATT
yjbN Antisense Primer
24
CTCTTGCTGGCATTACAAGAATCA
yjeA-EGFP-Sense
87
CTGGGCGCGGAGACACTGGCTGAAGTCATCGCCTTTAGCGTTGACCGGGCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjeA-EGFP-AntiSense
72
GGCGCTTATCACGCCATTCTTCGCTGTTAATTCAGTAATTTTTCAGAATTATAGTGAACCTCTTCGAGGGAC
yjeA Sense Primer
22
GTTGATCGTCTGGTGATGTTGG
yjeA Antisense Primer
25
AAATATCCAGTCTTAAATTGTGGCC
yjeE-EGFP-Sense
87
GTGAGTGCGGTTTCCTCTGCGGGTGAATTGTTGCTGGCGCGTTTAGCCGGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjeE-EGFP-AntiSense
72
TACCAACCAATTTCTGATGCGATACATCATCCCGCCACCTTTCAAAGGTTATAGTGAACCTCTTCGAGGGAC
yjeE Sense Primer
24
ACACATTGATTATCAGGCACAAGG
yjeE Antisense Primer
23
AACCTGAATATCAGAGAGCGTCG
yjeK-EGFP-Sense
87
ATTGGCGGCGAACCCAGCAAAACGCCGCTGGATCTCCAGCTACGCCAGCAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjeK-EGFP-AntiSense
72
GCGTAGCGAATCAGGCAATTTTAATGTTTAACTTCCCTGTTTAATCAGTTATAGTGAACCTCTTCGAGGGAC
yjeK Sense Primer
22
TATGCGTGAGTTGCTGACACTG
yjeK Antisense Primer
21
TTTCAATGCACGATGTAGGCC
yjeQ-EGFP-Sense
87
GAAAGCATGGCGCAGGTAAAAACGCGTAAAAACTTTTCTGATACGGATGACCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjeQ-EGFP-AntiSense
72
CGGATCCTGAAAAAAAGGGGACGATTCTAACGACGGTTAGCTTAATTGTCATAGTGAACCTCTTCGAGGGAC
yjeQ Sense Primer
23
CCGTTTCGAAAACTATCACCGTA
yjeQ Antisense Primer
18
TGTCGTTCCTGATCCGGC
yjfH-EGFP-Sense
87
GTTTCGGTTGCGACCGGAATTTGCTTATTTGAAGCGGTGCGCCAGCGCAGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjfH-EGFP-AntiSense
72
CAAAAAAAAACCATCCAAATCTGGATGGCTTTTCATAATTCTGAGAAATTATAGTGAACCTCTTCGAGGGAC
yjfH Sense Primer
22
ATTGCGATGAGTTGATCAGCAT
yjfH Antisense Primer
21
GCCAACGGATTCCATGTCATA
yjgA-EGFP-Sense
87
GAAATTGCGCTGATGTTGCCGGAGCTTCTGGAGCGTTGGATTGAACGCGTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
244
yjgA-EGFP-AntiSense
72
CCACGCTCAGATAACGTAGGTAGCGTTCTACATCGGTGTGTAAATCGGTCATAGTGAACCTCTTCGAGGGAC
yjgA Sense Primer
21
TATCAACAAGGGCAAGGAACG
yjgA Antisense Primer
22
TAAGCAGGGTTATCGGGCTAAG
yjgF-EGFP-Sense
87
CGTCTGCCGAAAGACGTGAAGATTGAGATCGAAGCGATCGCTGTTCGTCGCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjgF-EGFP-AntiSense
72
TTGTCATCAGACTTAATCCGGGCATGATAGCCCGGATTTCCATCAAGATTATAGTGAACCTCTTCGAGGGAC
yjgF Sense Primer
21
CCTTCTTCACCGAACACAACG
yjgf Antisense Primer
20
ATAAGCGTAGCGCATCAGGC
yjgP-EGFP-Sense
87
ACCGTGCCGGTCCGCCGCCTGCGCGCCAGTTTTTCGCGTAAAGGAGCGGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjgP-EGFP-AntiSense
72
TGAAAATAGTTTTACCGATATAGCGGTCAAGTACGCCAAAAGGTTGCATCATAGTGAACCTCTTCGAGGGAC
yjgP Sense Primer
24
TTTAGCGATTGTTCTCAACCTTTG
yjgP Antisense Primer
24
AGCATGAACAGTGTCATCATGATG
yjgQ-EGFP-Sense
87
CCAAGCGCCAGCTTCTTCTTAATCAGCCTGTGGCTGTTAATGAGAAAATCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjgQ-EGFP-AntiSense
72
GCTAACAATAATAAAGGGAGCTTTCGCTCCCTTTATTCGTTCATTCGGTTATAGTGAACCTCTTCGAGGGAC
yjgQ Sense Primer
21
GCTGACGTTGGTTTATGGCAT
yjgQ Antisense Primer
22
TTTCAGGAATGAACGAAGCACA
yjjK-EGFP-Sense
87
GGCGCAGACGCGCTGGAGCCGAAGCGTATCAAGTACAAGCGTATTGCGAAGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjjK-EGFP-AntiSense
72
TTTTGTAGGCCGGATAAGGCGTTCGCGCCGCATCCGGCATTTTACGCATTATAGTGAACCTCTTCGAGGGAC
yjjK Sense Primer
25
GAGTTCTTCGAAGGTAACTTTACCG
yjjK Antisense Primer
21
GACGCTTACCGCGTCTTATCA
yjjV-EGFP-Sense
87
GAGATTGCGCAAGCGTTGCTTAATAACACGTATACGTTGTTTAACGTGCCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yjjV-EGFP-AntiSense
72
AGGCATTGTGCGCCAACTGCCGGATGCGGCGTGAACGCCTTATCCGGCCTATAGTGAACCTCTTCGAGGGAC
yjjV Sense Primer
20
GATATGCCGCTCAACGGTTT
yjjV Antisense Primer
24
GTAGGCATGATAAGACGCGTTAAG
yleA-EGFP-Sense
87
ATTGCCCGTACCCGCAAAGAAAACGACCTTGGCGTGGGTTATTATCAGCCGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yleA-EGFP-AntiSense
72
GGATAAAGAGAGAAAAAACAAGGCCCACCGGAACGGCAGGCCTGAGAATTATAGTGAACCTCTTCGAGGGAC
yleA Sense Primer
20
GTGGCAGAAACACCGGAATC
yleA Antisense Primer
19
GGCGCAAGCATTGCAATAA
yqcD-EGFP-Sense
87
TGGCGCAGTAATAGCGATTTTGTCCCATCGACCACAAGACTGGTTCGGCAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
245
yqcD-EGFP-AntiSense
72
CTTTCACAACCTTCTGCGTGAATCCAGCACGCAAAATTGAGAAAAAATTTATAGTGAACCTCTTCGAGGGAC
yqcD Sense Primer
21
TACGCACGTTATACCCGTCGT
yqcD Antisense Primer
22
TGATTACAATAGCCCTGCCTGA
yqgE-EGFP-Sense
87
AAACTGATTGGTGTGGATATTCTCACCATGCCTGGTGTGGCAGGACACGCCCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yqgE-EGFP-AntiSense
72
CGCCAATGCTTTTGGTGCCGAAGTCGAAGGCGAGTAAGGTTCCACTCATCATAGTGAACCTCTTCGAGGGAC
yqgE Sense Primer
23
CCGGCAGATCTGAATATTCTGTT
yqgE Antisense Primer
18
GTGCCGGTAATGCGTTGG
yqgF-EGFP-Sense
87
GACTCTGCCTCTGCGGTTATTATTCTCGAAAGCTATTTCGAGCAGGGATATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yqgF-EGFP-AntiSense
72
ATAAGACGCGATGATATTATTTACACTCCGCCAGGCGTTTAAATCGCCTTATAGTGAACCTCTTCGAGGGAC
yqgF Sense Primer
20
TCCGGTCTGTTTGAACAGGG
yqgF Antisense Primer
20
ATAAGGTGTTCACGCCGCAT
yraL-EGFP-Sense
87
CACGGCGTGAAGAAAAATGCGCTGTATAAGTATGCGCTGGAGCAGCAGGGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yraL-EGFP-AntiSense
72
CGGTAAAAGAAGACGTTGCGTTTTGATTAACGCAACGCTTCGGCACTGTTATAGTGAACCTCTTCGAGGGAC
yraL Sense Primer
20
GAACTGCCGCTGAAAAAAGC
yraL Antisense Primer
20
CACAGCCACCATTACCGTCA
yraN-EGFP-Sense
87
TTCACCGGGAATGAGGTTGAGTGGATTAAGGATGCCTTTAATGACCACTCACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yraN-EGFP-AntiSense
72
GTGAAGCAAGCTTTAATTCTTTCTTGCACGCTAATCCTTAAACCTTAATTATAGTGAACCTCTTCGAGGGAC
yraN Sense Primer
23
AGTTTTGATACTGTGGATTGCCG
yraN Antisense Primer
21
CCGCAATTTGAGTTTGAATGC
yraO-EGFP-Sense
87
AATTGCCTGTGCGATCTGATCGATAACACGCTTTTCCCTCACCAGGATGATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yraO-EGFP-AntiSense
72
CGCGGAAATAAGGACTGCGATTGGCGATAATGCCTTCATGTATTCTCCTTATAGTGAACCTCTTCGAGGGAC
yraO Sense Primer
21
CGTAGTGCTCGCATTCAGGAA
yraO Antisense Primer
21
CACAGCAGCGGTACCCACTAC
yrbA-EGFP-Sense
87
AAAGCGTATACCCCTGCGGAGTGGGCGCGCGATCGCAAACTGAACGGCTTTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrbA-EGFP-AntiSense
72
TGTTCTCAGTTAACAATTCATATCCGCTACCGGCGAATCGCCCATAGCTCATAGTGAACCTCTTCGAGGGAC
yrbA Sense Primer
20
CGCATTCATGCTGTGTCGAT
yrbA Antisense Primer
20
AATTGTGACTTCGCCCTGGA
yrbD-EGFP-Sense
87
GCTGCTGCGCCAGGTAATAATGAAACCACTGAACCTGTGGGTACAACGAAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
246
yrbD-EGFP-AntiSense
72
CAAAGCGACCATCATTAAACGTTTAAACATGCGTCGGTTCTCCTGAAATTATAGTGAACCTCTTCGAGGGAC
yrbD Sense Primer
18
AATAGTGGCGATGCGCCA
yrbD Antisense Primer
23
TCCATCAGCTTATACGGATTGGT
yrbE-EGFP-Sense
87
CTGGCTGTTCTGGGGCTGGATTTTGTGCTGACCGCATTGATGTTTGGGAATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrbE-EGFP-AntiSense
72
AATAAAAAGATACCCACCCAAATTTCATTTTTTTTCGTTTGCATGAACTCATAGTGAACCTCTTCGAGGGAC
yrbE Sense Primer
19
ATTAGCCGGGCAACCACTC
yrbE Antisense Primer
24
GTTCAGTACGTATGGACGTCACGT
yrbF -EGFP-Senser
87
CCGTTCCGCTATCCTGCCGGCGATTATCACGCTGATCTTTTACCAGGGAGTCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrbF -EGFP-AntiSenser
72
ATCCCTTTATGTCCGAGCGACGCCAGCGCATTTAACAGCATGAGTGGCTTATAGTGAACCTCTTCGAGGGAC
yrbF Sense Primer
22
TCAGTTTCTGGACGGGATAGCT
yrbF Antisense Primer
19
CCGACCAGCGCATTGAATA
yrbH-EGFP-Sense
87
CATTTACTCGGTGTGTTACATATGCATGATTTACTGCGTGCAGGCGTAGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrbH-EGFP-AntiSense
72
TCGCAAGCGACGCACCTGCTTTGCTCATTGTTGTTTATCCTTGAATCTTTATAGTGAACCTCTTCGAGGGAC
yrbH Sense Primer
21
TATCACCTCCGTGATGGTTGC
yrbH Antisense Primer
23
CAGCAGACGAATGTTCTCTGCTT
yrbI-EGFP-Sense
87
TTATTACTCCTGGCGCAGGGCAAACTGGATGAAGCCAAAGGGCAATCGATACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrbI-EGFP-AntiSense
72
CCAGAACCGCCAGTGATAGCACAATGATAACCCAACGTCTGGCTTTACTCATAGTGAACCTCTTCGAGGGAC
yrbI Sense Primer
19
ATTACGTGACGCGCATTGC
yrbI Antisense Primer
20
CGGCCATATTAATGCCGATC
yrdC-EGFP-Sense
87
AATCCTTCAGAAATCCGCGATGCCCTGACGGGTGAACTGTTTCGACAGGGGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrdC-EGFP-AntiSense
72
TTGCTGTGGGCTATCGGATTACCAAAAACAGCATAGGTTTCCATTATGTTATAGTGAACCTCTTCGAGGGAC
yrdC Sense Primer
21
GATTGCCACCTTGTCGAACAG
yrdC Antisense Primer
20
TTGCTGATGAATGAATGGCG
yrfE-EGFP-Sense
87
GTCAGTGCGCTGTTCCTCGTGCGCGAATGGTTGAAAGGGCAGGGGCGAGTGCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrfE-EGFP-AntiSense
72
AACCCCATAAGCCTGATAAACATTGTGCATCAGGCAAACTTCACGCATTTATAGTGAACCTCTTCGAGGGAC
yrfE Sense Primer
21
GACCCTGACTTCAATGAAGCG
yrfE Antisense Primer
26
AAAATCGTGAAAACTCAATAAATTGC
yrfH-EGFP-Sense
87
GACAAAAAAGAGCGCCGCGACCTGTTACGATTTAAACACGGCGACAGTGAACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
247
yrfH-EGFP-AntiSense
72
ATGTAATTGGTCATGTTGCGGCATAATCATCTCTCTTGCAGGTGACAGTTATAGTGAACCTCTTCGAGGGAC
yrfH Sense Primer
25
GTAAACTTAATGCCTTAACCATGCC
yrfH Antisense Primer
20
CCGAAACGGTTACCAGTTCG
yrfI-EGFP-Sense
87
GATATTGCTGAAATCCGCAACAACGCGTCTCCGGCAGATCCGCAAGTTCATCTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
yrfI-EGFP-AntiSense
72
TGTATTAGTCGTAAAATCCGGCAGAGCCCTCTCTGCCGGACATACTCATTATAGTGAACCTCTTCGAGGGAC
yrfI Sense Primer
24
TGCGGTAACCACTATCTGTTCAAT
yrfI Antisense Primer
22
CTGAATGAGTGACAAAGCGCAT
ytfM-EGFP-Sense
87
GATAAAGACGAACACGGGTTACAGTTTTACATCGGTCTGGGGCCAGAATTACTCGAAGGTTCCGGTATGGTGAGCAAGGGCGAGGAG
ytfM-EGFP-AntiSense
72
ACAGTAAGATAACGATAACCACGCCGAGGCTGATTTTTTTCCATAAACTCATAGTGAACCTCTTCGAGGGAC
ytfM Sense Primer
21
CAATCAAACTCGATTTTGCCG
ytfM Antisense Primer
18
CACCAGAAACGCCACCGA
EGFP 3'-Forward Primer
21
GGTCCTGCTGGAGTTCGTGAC
EGFP 5'-Reverse Primer
21
GTCGTCCTTGAAGAAGATGGT
248

Documentos relacionados