Aerosols deposition qualification of Stack Monitors for Research

Transcripción

Aerosols deposition qualification of Stack Monitors for Research
Aerosols deposition qualification of Stack Monitors
for Research Reactors (RR) & Medical Isotope
Production Facilities (MIPF)
Eduardo Nassif – INVAP S.E. – Bariloche - Argentina
Fabian Rossi - ANSTO - Australia
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Context: Relevance of Aerosols Deposition (& Iodine Plate Out ) on
Sampling lines of Stack Monitors
On measuring stack effluents in nuclear facilities, aerosols deposition and iodine plate
out on sampling lines should drive relevant attention in order to optimize design of
sampling lines, minimize sample losses and improve accuracy.
A number of considerations on sampling lines geometry, analysis of suitable materials
and flow rate ranges shall be taken into account.
Design recommendations and guidance are defined on Standards – like, for instanceANSI 13.1 and M11 (see References below on this presentation). This lead designers to
often focus their attention on monitor´s location and disposition inside the plant, and
reactor´s stack sampling lines design.
While this a rather common practice to be considered when designing sampling lines
connecting air effluent monitors to process (stack), less attention is driven regarding
design and qualification of monitor´s internal sampling lines, related to aerosol
deposition and iodine plate out effects.
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Scope : Main goals..
To determine actual penetration factors inside monitor´s sampling lines. This is
relevant, since may affect measurement accuracy when estimating stack
emissions.
In addition to review calculations on deposition effects expected for specific
connections of stack monitors to process, an experimental method to
quantify relevance of deposition effects inside monitoring equipment – in
comparison with the effects observed on main connection to process- is
described.
Previous analysis is complemented with a review of Iodine Plate-Out
effects on stack monitor´s sampling lines is presented.
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Stack Monitors Installation Requirements
Many RMS suppliers produce and install Stack Eflluent monitors on (new or upgraded)
nuclear facilities. Different facilities do have specific air sampling requirements.
Due to quite diverse lay-out arrangements, installation requirements for sampling lines
may be quite different.
Installation in already existing upgraded plants usually do present more complex
restrictions for sampling line connections from monitoring units up to the stack.
Specific customer´s requirements does impose also additional restrictions on
monitoring units themselves.
(Example: closed structures may be required as prevention for shower spreads being
installed in the vicinity of the equipment as part of fire systems.., while in other cases
“open” racks can be used, thus giving other internal sampling lines design
opportunities).
In the following slides, some remarks on these design options, considered for several
equipment installed by our company at different facilities are presented...
ARMUG 2014 – NPL – 11/19/2014
Installation & Monitoring Requirements
Real Time – Off-Line Automatic Stack Effluents Surveillance
(some examples)
RPF/ETRR-2 Radioisotope Production Facility (Egypt)
OPAL Nuclear Research Reactor (Australia)
ARMUG 2014 – NPL – 11/19/2014
Stack Effluent Monitors
(common and specific Features)
ISOKINETIC SAMPLING
To measure STACK EMISSIONS IN RR – not the same- to measure STACK EMISSIONS IN MIPF *
(MIPF: NG High Activity in Pulsed «batch» emissions...follow-up!)
PARTICULATE –IODINE – NOBLE GAS independent channels
NG CHANNEL: GROSS β - GROSS γ DETECTION and γ SPECTROMETRIC CAPABILITIES
(41Ar – 133Xe and other specific measurement channels)
GROSS β - GROSS γ DETECTION FOR AEROSOLS (currently α/β measurement requirements)
131I
DETECTORS: Use of plastic scintillators
DETECTION ON IODINE CHANNEL
last generation Lanthanum halide scintillators
+CdTe Solid State detectors – Si PIPS
4 User´s Interface Communication Levels (Local x 2 – Remote x 2)
* CUSTOMIZED – PROCESS ORIENTED SOFTWARE INTERFACE
STRUCTURE & SAMPLING SYSTEM
ARMUG 2014 – NPL – 11/19/2014
Typical Internal Architecture (possible Options)
Structural Requirements
(examples)
OPEN GEOMETRY SAMPLING RACK
STANDARD 19in. RACK WITH
TOUCH SCREEN LOCAL
INTERFACE
OR..
SEISMIC QUALIFIED CUSTOM STRUCTURE – after IEEE 1E 344
IP 65 COMPLAINING - WATER TIGHT -
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
2 Main Tracks to be considered..
Stack to Monitor
Monitor´s internal
sampling lines
Adjustment of Penetration
Factors should be available
within Monitor´s Software
User Interface capabilities
ARMUG 2014 – NPL – 11/19/2014
Determining Aerosols Deposition….Stack to Monitor
From Stack to Monitor
...(by calculations)
INPUT DATA
Vertical section
(stack level +37 to llevel +16) 21 m
Horizontal section
3.7 m
Elbows
4 x 90°
Pressure
101.325 Kpa
Temperature
300 K
Diameter of the aerosol particle to be considered
10 µm*
* according to ANSI 13.1, pages 29 and 39
Shorter sampling lengths between Stack
and Monitor is achievable when installing
the monitor at higher reactor building
levels….but…
..this implies higher seismic requirements
impact on structure and internal sampling
lines design
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions..determining Aerosols Deposition
Stack to monitor sampling line - Aerosols Deposition mechanisms
Gravitational settling: Significantly only on horizontal sections or on an angle
above 30 degrees with respect to the vertical
Brownian diffusional deposition: Generally quite low for velocities above 1m/s
Turbulent inertial deposition: Quite significant and rising with velocity at an
exponent close to 2.6, depending on the correlation
Electrostatic deposition: It depends on the electrostatic load accumulating
on the piping
Thermophoretic
gradients
deposition:
between
walls
Registered
and
flow,
when
or
there
between
are
flows
temperature
at
different
temperatures
Diffusiophoretic deposition: Due to aerosol concentration gradients in the
same fluid, it is negligible in turbulent rates and in those of low deposition by
other mechanisms
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Stack to monitor sampling line - Aerosols Deposition mechanisms
Calculations being considered/performed on all straight sections after the specific
mechanisms
Mechanism
Gravitational settling
Turbulent inertial deposition
Brownian diffusional deposition
Electrostatic deposition
Thermophoretic deposition
Diffusiophoretic deposition
Calculation being performed
Yes, for all non-vertical sections -main
mechanismYes
Yes, for verification purposes
No: as metallic pipelines grounded through
anchors are considered and fluid is air with
50% +/- 10% controlled humidity.
No: as it is considered that there are no
relevant temperature gradients on the
pipeline (effects are negligible: < 0.1%) .
No: only one gas (air) -perfectly mixed and
uniform - is present in the sampling line
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions..determining Aerosols Deposition
Stack to monitor sampling line - Aerosols Deposition mechanisms
Penetration of the Piping System as the result of the individual penetrations of each fitting
and straight section for each mechanism.
ηtotal = ∏ηi , j
i, j
Where
ηi , j
is the penetration of fitting i for deposition mechanism j
Correlations are used for the entire sampling piping that calculate separately each
mechanism and distinguish elbows, contractions and expansions as global deposition.
Deposition on bends may be calculated through the following equation when the
curvature radius – inner diameter ratio is equal to or above 5.
ηbend = e−2.823 Stk α
where,
α is the elbow angle.
Stk = Stokes Number
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Stack to Monitor sampling lines
Different sampling line design alternatives being analyzed
Item
1
φi = 0.0221m (25.4mm, BWG16,
e=1.65 mm)
Q = 75 l/min
U = 3.26 m/s
φi = 0.0221m (25.4mm, BWG16,
e=1.65mm)
2
Q = 65 l/min
U = 2.85 m/s
φi = 0.0316m (34.9 mm, BWG16,
e=1.65mm)
3
Q = 94 l/min
U = 2 m/s
φi = 0.0348m (38.1mm, BWG16,
e=1.65mm)
4
Vertical
section
Horizontal
section
Elbows
Reynolds fluid (Ref)
4608
4608
4608
Gravitational penetration
1
0.82
-
Diffusional penetration
0.999
0.9999
-
Turbulent penetration
0.854
0.972
-
Alternative
Q = 105.6 l/min
U = 1.85 m/s
φi = 0.03339m (38.1mm, BWG14,
e=2.11mm)
5
Q = 100 l/min
U = 1.85 m/s
Total (Π
Π ηi )
0.853
0.797
0.448
Reynolds fluid (Ref)
4029
4029
4029
Gravitational penetration
1
0.798
-
Diffusional penetration
0.999
0.9999
-
Turbulent penetration
0.904
0.982
-
Total (Π
Π ηi )
0.903
0.783
0.49
Reynolds fluid (Ref)
4042
4042
4042
Gravitational penetration
1
0.799
-
Diffusional penetration
0.999
0.9999
-
Turbulent penetration
0.983
0.997
-
Total (Π
Π ηi )
0.982
0.796
0.70
Reynolds fluid (Ref)
4118
4118
4118
Gravitational penetration
1
0.802
-
Diffusional penetration
0.999
0.9999
-
Turbulent penetration
0.988
0.998
-
Total (Π
Π ηi )
0.987
0.800
0.74
Reynolds fluid (Ref)
4011
4011
4011
Gravitational penetration
1
0.797
-
Diffusional penetration
0.999
0.9999
-
Turbulent penetration
0.988
0.998
-
Total (Π
Π ηi )
0.987
0.795
0.743
ARMUG 2014 – NPL – 11/19/2014
Total
Penetration
0.305
0.346
0.547
0.580
0.583
The Real Emissions..determining Aerosols Deposition
(Aerosols) Stack to Monitor sampling: Conclusions
Case Item 5 was adopted : A tube of a 38 mm diameter and BWG 14
(ID 33.88mm) at a nominal flow of 100 l/min.
Global penetration of 58.3% -reached with previous adoption-, is
above the 50% deemed as sufficient design value for the transfer of
aerosols with a 10µ
µm diameter.
ARMUG 2014 – NPL – 11/19/2014
Stack To Monitor Sampling Lines: Iodine Plate Out..?
The following equation given by ANSI N13.1-1999, Annex C (C-1) is
Vd: Deposition speed in [m/s] interpolated
used to calculate iodine penetration:
ηiodine = e
Species
I2
HOI
CH3I
V L
−4 d
U dt
to 50% rel. humidity
L: Total Length [m]
U: Air Flow speed [m/s]
dt: Piping diameter [m]
The calculation considers fixed length L= 25m
Inner
diameter 0.0221 0.0221
0.0316
0.03388
[m]
Velocity
3.26
2.85
2.00
1.85
[m/s]
Vd (50 %
Penetration ηiodo
humidity)
1.43E-03
0.1374 0.1033
0.1041
0.1085
m/s
3.85E-05
0.9914 0.9870
0.9817
0.9810
m/s
7.50E-08
0.9999 0.9999
0.9999
0.9999
m/s
ARMUG 2014 – NPL – 11/19/2014
Stack To Monitor Sampling Lines.. Iodine Plate Out..?
(Iodine) Stack to Monitor sampling lines: Conclusions
All penetrations are above 50%, except for chemical species I2, in which values are
quite low, mainly as a result of the small Vd (Deposition Speed)* for this species.
Case Item 5 adopted before, i.e. a tube of a 38 mm diameter and BWG 14 (ID
33.88mm) at a nominal flow of 100 l/min, showed acceptable conditions for Iodine
Plate-Out also (for HOI and CH3I species).
* Deposition speed (Vd) being considered is that reported by M.J. Kabat, “Deposition of
Airborne Radioiodine Species on surfaces of metals and plastic”, Ontario Hydro, mentioned
as reference in standard ANSI 13.1-1999, and corresponding to stainless steel.
ARMUG 2014 – NPL – 11/19/2014
Now.. a look to internal monitor´s sampling lines
(Iodine – Plate Out)
Comparison among Penetrations for each Iodine Species
Note here for I2 (Plastic):
Much LOWER Vd than SS!
Smaller L than external
Smaller d than external
Much efficient Penetration!
ARMUG 2014 – NPL – 11/19/2014
Comparison between stack monitor´s External & Internal
sampling lines: the I2 Case
Vd: Iodine Deposition Speed [m/s] interpolated
considering 50% de humidity
L: Total Length [m]
U: Air Flow rate [m/s]
dt: Piping diameter [m]
Note here for I2 (Plastic):
Smaller L
Smaller d
Much higher Vd!
Calculations for I2
Vd(I2)
L
U
d
L/( U x d)
ηd
Stack to Monitor
SS 304L
Monitor
internal lines
SS304L
1,43E-03
25
3,26
0,0221
347,0005274
13,74%
1,43E-03
1,42
4,46
0,0195
16,3274692
91,08%
ARMUG 2014 – NPL – 11/19/2014
Stack to
Monitor
Monitor
internal
Poliethylene Poliethylene
9,50E-05
25
3,26
0,0221
347,000527
87,65%
9,50E-05
1,42
4,46
0,0195
16,32746924
99,38%
Monitor´s internal Iodine Plate Out :
(some) Lessons learned
Using Plastic - instead of SS – dramatic improvements may be reached
when focusing on I2 species…(I2 is «more anomalous» in terms of
deposition on SS..)
Iodine depositions are extraordinary sensitive to geometrical parameters.
If I2 were the predominant species,…Plastic should be used instead of
SS...but (because of chemical stability and relative abundance in air),
as I2 as not the most common species for radioactive Iodine, therefore..
…SS is –still- a good relative solution in terms of Iodine penetration.
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Monitor´s internal sampling line: Why Experimental Determination….?
..since Monitor´s sampling circuit do present non-regular geometrical arrays, such as..
Non perfectly cylindrical sections (namely ¾” ID Poliethylene pipes).
Valves of different types and sections
Curves
Fittings (7)
Elbows
T – reductions
Adapters
…..theoretical calculations & modelling do not bring fully reliable data..
(as may be developed in case of for regular piping sections for stack to monitor sampling
lines).
..Experimental Validation Tool is required for Aerosols Deposition factors determinations
(Similar criteria as in case of calculation of Hydraulic losses in complex
equipment/sampling circuits where experimental validation is current used tool, beyond
finite elements calculations).
ARMUG 2014 – NPL – 11/19/2014
Now..how Does Behave Aerosols Deposition
inside Monitor´s Internal Sampling Lines?
…Experimental Determination needed!!
Ideal representation…..but Complex real Geometry
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Experimental Determinations: Main Facts
To quantify aerosols deposition from monitor´s flange connection to process (stack
sampling lines), up to the aerosols measurement chamber.
Calibrated Spherical Particles - 5.4* µm mean diameter (standard deviation 0.5 µm) were
injected at monitor´s inlet.
Particle generation is performed using a high speed N2 jet
Jet-driven depression sucks and atomizes the particulate suspension
More than 30 filter collection measurements were performed.
Each measurement comprises collection on filter at monitor´s entrance, and collection on
filter inside aerosols measurement chamber.
Simultaneous measurement of particle concentration with an Aerodynamic Particle Sizer
(APS) at monitor´s inlet.
Quantification performed by weighing of collection filters and relationship to APS
measurements.
Measurements
were
performed
environmental conditions.
at
INVAP´s
Testing
ARMUG 2014 – NPL – 11/19/2014
facilities,
under
controlled
The Real Emissions…determining Aerosols Deposition
Aerosols sampling depositions: Experimental Array
Measurement Array does include:
A particle spray generator
A Heat Exchanger (for water evaporation on water drops attached to the
particle)
A Dryer for absorption of water steam
A Flow compensation device (between particulate injection flow and
monitor´s air flow)
An APS (Aerodynamic Particle Sizer)
Glass Fiber filters for Aerosols collection
Injection system components (i.e., N2 cylinder, flowrate meters, valves, etc.)
Micro-balance (Accuracy 10 E -7 gr)
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Aerosols sampling depositions: Experimental Set-Up (schematic)
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Experimental Set-Up : Filter Removal at Aerosols Measurement Chamber location
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Experimental Set-Up
APS
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Results
Several statistical methods were applied to handle experimental data.
Selected for final Data processing:
Adjustment by minimum squares (linear relationship between weighed
mass on the filters and APS mass determination for filter collection at
inlet and outlet position, respectively)
Pairing Data Analysis
The results obtained for Aerosols relative deposition, namely the ratio between
Mass Deposition (Md) to the mass at the entrance of the equipment (Me), as
the “envelope” of the more conservative result brought with different statistical
analysis lead to:
(Mdep/Me) ~ (14 +/- 5) %
η: (1 –Mdep/Me) < ~ 90%
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Conclusions
Aerosols deposition inside internal sampling lines on Stack Monitors –though relatively lowis NOT NEGLIGIBLE, and should be taken into account for proper estimation of aerosols
actual stack emissions.
Type, Size and materials of internal piping, are indeed a relevant issue on designing Stack
Monitor´s. Plastic is still an option to be considered on specific cases (with some remarks on
Electrostatic issue and exceptive life if installed outdoors..)
Characterization of sample losses inside monitor´s internal circuits - combined together
with external sampling lines deposition estimations may bring an integral picture in order to
get a more accurate adjustment of sample losses by Aerosols Deposition –and Iodine Plate
Out.
(Calculated & Measured) Penetration factors may be integrated into equipment user
interface in order to facilitate estimations of real emissions of aerosols coming out through
the stack and to acknowledge of sampling lines modifications during monitor´s lifecycle.
“In situ” adjustments of monitor´s sampling system during life cycle operation can be
done, in order to optimize equipment performance and accuracy
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Conclusions (Cont.)
To include strategic sampling points in the system to do predictive maintenance and
calibrations in order to take into account the variations of sampling line performance
along time.
Optimize the instrumentation to monitor and control the flow performance.
Finite element is a very useful calculation tool to predict: best point to install sampling point
–main isokinetic nozzle and test point-, minimum mixing length required, flow pattern
changes under different conditions at the stack (wind, temperature, etc.)
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
REFERENCES
“Aerosol Measurement: Principles, Techniques, and Applications” by Pramod
Kulkarni, Paul A. Baron, Klaus Willeke, Paul A. Baron, Wiley Third Edition - 2011
(2nd. Edition – 2004)
“Gaseous Radioiodine Deposition Losses in Nuclear Reactor Sample Lines”,
Byung Soo Lee, William A. Jester, Pennsylvania State University, Nuclear
Engineering Department
“Deposition of Airborne Radioiodine Species on surfaces of metals and
plastic”, M.J. Kabat , Ontario Hydro
“Monitoring of Radioactive releases to Atmosphere from Nuclear Facilities,
Tech. Ref. M-11 (UK)”.
“Sampling and Monitoring Releases of airborne Radioactive Substances from
the Stack and Ducts of Nuclear Facilities”. Standard ANSI/HPS N13.1-1999
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Aknowledgements
Marcelo Caputo
Marcelo Gimenez,
from Centro Atómico Bariloche (CNEA-Argentine National Atomic Energy
Commission), for technical support on implementation of the experimental
technique
Mariana Di Tada
Román Pino,
from INVAP, for valuable technical discussions and support with this
presentation
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Thank you! …… Questions..?
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
Measurement Steps
A previously weighed filter, is set at the entrance of the monitor to collect aerosols
during a defined time interval.
After collection and remotion of this filter, another weighed filter is set inside the
monitor at the regular particulate measurement location (without interrupting
particulate generation), so that particulates are collected for a similar (time)
interval.
Both filters are weighed again,after collection, in order to get by difference the
deposited net mass inside monitor´s internal sampling lines.
Using APS measurements, the sampling flow rate and the collection time interval,
the total mass being injected is calculated.
Four measurements were performed: two for mass (monitor´s input and output),
corresponding to filter weighing, and two for concentration (direct measurements
performed with APS at monitor´s inlet).
ARMUG 2014 – NPL – 11/19/2014
The Real Emissions…determining Aerosols Deposition
El cambio de la posición del filtro insume del orden de 20 s para cada caso. Por lo tanto el APS, que medía en intervalos secuenciales e
ininterrumpidos, de 3600 o 1800 s, iniciaba 20 s antes la medición.
Por este motivo, para estimar el error de la masa calculada a partir de la concentración medida por el APS se considera un error en el
tiempo de colección de 20 s.
Durante el experimento, esto es con el filtro colocado adelante o en el interior del equipo, se mantuvieron los caudales
de aspiración del equipo AEMI-4531-RCMS (90 l/min ajustado con una válvula a la salida del equipo), generación de
partículas (11.30 l/min) y de aspiración del APS (5.00 l/min) constantes dentro del error del instrumento de medición,
que era de ~ 1 l/min para el caudalímetro del equipo, ~ 0.01 l/min para el caudal de generación y ~ 0.01 l/min para el
caudalímetro del APS.
Entonces el error de la masa entrante, calculada a partir del APS, estará dado por la siguiente expresión:
∆M APS ∆TC ∆Qg ∆C p
=
+
+
M APS
TC
Qg
Cp
2
donde es el error de la masa medida por el APS, es el error en el tiempo de colección, Qg es el error en el caudal de aspiración y Cp
es el error de la concentración medida por el APS. Los valores extremos de cada una de estas variables alcanzados en al menos una
medición se muestran en la Tabla 1.
Valor máximo
Valor mínimo Error de medición
Tc [s]
Qg [l/m]
Cp [mg/m3]
3600 1800
91
89
20
1
0.1370 0.0547 0.0001
Tabla 1: Valores máximos y mínimos medidos de las variables utilizadas para el cálculo de MAPS.
Evaluando la ecuación 2 para la situación más desfavorable, esto es para los errores relativos más altos, se tiene que:
∆M APS
= 0.02 → 2%
M APS
INTERNAL ARCHITECTURE (Options)
Seismic resistant structure (Racks,
including Sampling Systems qualification)
Processing & Control Unit inside IP65
Cabinet
Sampling system distributed in custom
designed cabinet for ease of maintenance
Local Synoptic diagram accesible through
Touch-screen panel for local user interface
commands
Remote communication and Data
Transmission through:
# Modbus RS-485 RTU
# Ethernet
SEISMIC QUALIFIED 1E after IEEE 344
STANDARD RACK WITH TOUCH SCREEN
LOCAL INTERFACE
The Real Emissions…determining Aerosols Deposition
El cambio de la posición del filtro insume del orden de 20 s para cada caso. Por lo tanto el APS, que medía en intervalos secuenciales e
ininterrumpidos, de 3600 o 1800 s, iniciaba 20 s antes la medición.
Por este motivo, para estimar el error de la masa calculada a partir de la concentración medida por el APS se considera un error en el
tiempo de colección de 20 s.
Durante el experimento, esto es con el filtro colocado adelante o en el interior del equipo, se mantuvieron los caudales
de aspiración del equipo AEMI-4531-RCMS (90 l/min ajustado con una válvula a la salida del equipo), generación de
partículas (11.30 l/min) y de aspiración del APS (5.00 l/min) constantes dentro del error del instrumento de medición,
que era de ~ 1 l/min para el caudalímetro del equipo, ~ 0.01 l/min para el caudal de generación y ~ 0.01 l/min para el
caudalímetro del APS.
Entonces el error de la masa entrante, calculada a partir del APS, estará dado por la siguiente expresión:
∆M APS ∆TC ∆Qg ∆C p
=
+
+
M APS
TC
Qg
Cp
2
donde es el error de la masa medida por el APS, es el error en el tiempo de colección, Qg es el error en el caudal de aspiración y Cp
es el error de la concentración medida por el APS. Los valores extremos de cada una de estas variables alcanzados en al menos una
medición se muestran en la Tabla 1.
Valor máximo
Valor mínimo Error de medición
Tc [s]
Qg [l/m]
Cp [mg/m3]
3600 1800
91
89
20
1
0.1370 0.0547 0.0001
Tabla 1: Valores máximos y mínimos medidos de las variables utilizadas para el cálculo de MAPS.
Evaluando la ecuación 2 para la situación más desfavorable, esto es para los errores relativos más altos, se tiene que:
∆M APS
= 0.02 → 2%
M APS
USER INTERFACE – Spectrometric screens
USER INTERFACE – Spectrometric screens
USER INTERFACE – Main measurement variables Display
Pulsed Batch Emissions Operational Mode
(Medical Isotope Production Facilities – MIPF)
DISCONTINUOUS REGIME
PULSED BATCH EMISSIONS
SHORT INTEGRATION PERIODS
COMPLEX – CUSTOMIZED SAMPLING SYSTEMS
HIGH ACTIVITY NOBLE GAS CONCENTRATIONS
FOLLOW UP OF SPECIFIC ISOTOPES (Xe´s – Kr´s)
NOBEL GAS BATCH EMISSIONS (MIPF) – PAM EMISSIONS (RR)
# 108 Bq/m3 up to ~ 1013 Bq/m3 (γ´s) - using Solid State detectors
# 108 Bq/m3 up to ~ 1014 Bq/m3 (β´s) – using Flow-through Ionization chambers
INVAP RMS PROCESS MONITORS: STACK
EFFLUENTS & AIR VENTILATION SYSTEMS
IEEE – 1 E QUALIFICATION (344,323)
ANSI 13.1 & M11 STANDARDS DESIGN ORIENTED
Integration of INVAP´s electronic modules
with COTS products
Structure & sampling system
3 Levels of Communication & User´s Interface
Custom & Process oriented designed software Interface
Regular - continuous - Operational Mode
(RR – NPP´s)
CONTINUOUS MODE (REGULAR OPERATION)
ACCOUNTABILITY ON LONGER INTEGRATION PERIODS
GROSS MEASUREMENTS (daily – weekly integration)
# Aerosols:
# Iodine:
3 up to ~ 105
Bq/m3 (γ´s)
1 up to ~ 5 x 104
Bq/m3 (β´s)
1 up to ~ 3 x 105
Bq/m3 (131 I)
# Nobles Gases: 2 x 104 Bq/m³ up to ~ 8 x 109 Bq/m³ (β´s)
1 x 104 Bq/m3 up to ~ 109 Bq/m3 (γ´s)
Vibración
Termovacío
Scanner de Campo cercano
Acústico

Documentos relacionados