Capitulo I

Transcripción

Capitulo I
Capı́tulo I
Concepto de curva
1.
Curvas regulares
Intuitivamente, una curva en Rn es un conjunto C ⊆ Rn que puede describirse con “ un
único parámetro ” que varı́a en un intervalo I de la recta real R. Dicha descripción se hace
mediante una aplicación
σ : I −→ Rn
t 7−→ σ(t) ∈ C ,
y se dice que dicha aplicación σ = σ(t) es una “ parametrización ” de la curva C.
Ejemplo 1.1 Una misma curva puede admitir muchas parametrizaciones distintas. Ası́, si C
es la semirrecta abierta de R2 que determina el eje positivo de abscisas,
C = {(x, 0) ∈ R2 : x > 0} ,
entonces podemos considerar las siguientes parametrizaciones de C:
(a)
σ : (0, +∞) −→ R2
t 7−→ σ(t) = (t, 0) ;
(b)
φ : R −→ R2
t 7−→ φ(t) = (et , 0), ;
(c)
ϕ : (−1, +∞) −→ R2
t 7−→ ϕ(t) = (t3 + 1, 0) ;
(d)
g : (−1, +∞) −→ R2



 (t + 1, 0)
t −
7 → g(t) =
(1, 0)


 (t, 0)
1
si − 1 < t < 0 ,
si 0 ≤ t ≤ 1 ,
si 1 < t ;
2
Capı́tulo I. Concepto de curva
(e)
f : (0, +∞) −→ R2
{
(1 − t, 0)
t 7−→ f (t) =
(t, 0)
si 0 < t < 1 ,
si 1 ≤ t ;
(f)
h : (0, +∞) −→ R2
t 7−→ h(t) =
{
(t, 0)
(2t − 1, 0)
si 0 < t < 1 ,
si 1 ≤ t .
Las parametrizaciones (a), (b) y (c) son diferenciables, la (d) y la (f) son continuas pero no son
diferenciables, y la (e) ni siquiera es continua.
En este curso queremos aplicar los métodos del cálculo diferencial al estudio de las curvas
en R3 , y es por eso que en general consideraremos parametrizaciones diferenciables.
1.2 En adelante I denotará un intervalo abierto de R (acotado ó no). Recordemos que toda
aplicación que valora en Rn tiene sus “ funciones componentes ”: sobre Rn tenemos las funciones
coordenadas cartesianas x1 , . . . , xn , donde dado i ∈ {1, . . . , n} es
x
i
Rn −−→
R
(λ1 , . . . , λn ) 7−→ λi .
Ahora, dada una aplicación σ : I → Rn , si denotamos σi = xi ◦σ, i = 1, . . . , n, entonces tenemos
σ : I −→ Rn
t 7−→ σ(t) = (σ1 (t), . . . , σn (t)) ;
las funciones σ1 , . . . , σn son las componentes de la aplicación σ, y abreviadamente escribimos
σ = (σ1 , . . . , σn ).
Del Análisis Matemático sabemos que la aplicación σ es continua si y sólo si sus componentes
σ1 , . . . , σn son funciones continuas, y σ es diferenciable si y sólo si σ1 , . . . , σn son diferenciables;
nótese que σ1 , . . . , σn son funciones reales de variable real (que son las funciones que se estudian
en el bachillerato).
En general, σ = σ(t) es una aplicación de clase C r (r ≥ 0) cuando sus componentes son
funciones de clase C r . Recordemos que si σ = (σ1 , . . . , σn ) es de clase C r con r ≥ 1, entonces
la aplicación σ ′ = (σ1′ , . . . , σn′ ) es de clase C r−1 (r − 1 ≥ 0).
Definición 1.3 Llamaremos representación paramétrica regular (abreviadamente, parametrización regular) a toda aplicación σ : I → Rn , σ = (σ1 , . . . , σn ), que cumpla:
(i) σ es de clase C 1 ;
(ii) σ ′ (t) = (σ1′ (t), . . . , σn′ (t)) ̸= 0 para todo t ∈ I.
Ejemplo 1.4 Para las parametrizaciones dadas en el ejemplo 1.1 tenemos: (a) y (b) son
regulares; (c) es de clase C 1 pero no es regular; (d) y (f) son de clase C 0 (continuas) pero no
son de clase C 1 (y por tanto no son regulares); (e) ni siquiera es de clase C 0 .
1. Curvas regulares
3
1.5 Aunque todas las parametrizaciones de clase C 1 del ejemplo 1.1 son aplicaciones inyectivas,
no es cierto que toda parametrización de clase C 1 sea inyectiva (ni aunque sea regular). Por
ejemplo,
σ : R −→ R2
t 7−→ (cos t, sen t)
es una representación paramétrica regular de la circunferencia de radio 1 de R2 centrada en
el origen. Cuando el parámetro t recorre R, el punto σ(t) se mueve sobre dicha circunferencia
en el sentido contrario al de las agujas del reloj, de modo que cuando t avanza un intervalo
de longitud 2π, σ(t) completa una vuelta: para todo t ∈ R y para todo k ∈ Z se cumple
σ(t) = σ(t + 2kπ).
Lema 1.6 Toda representación paramétrica regular es localmente inyectiva.
Demostración. Utilizaremos el conocido “ teorema de Rolle ”. Dados a, b ∈ R con a < b, sea
f : [a, b] → R una función continua que es diferenciable en el intervalo abierto (a, b); dicho
teorema afirma que si f (a) = f (b) entonces existe c ∈ (a, b) tal que f ′ (c) = 0, o lo que es
equivalente, si f ′ (t) ̸= 0 para todo t ∈ (a, b) entonces f (a) ̸= f (b).
Sea ahora σ : I → Rn , σ = (σ1 , . . . , σn ), una parametrización regular y fijemos t0 ∈ I.
Tenemos que probar que existe un entorno abierto J de t0 dentro de I tal que la restricción de
σ a J es inyectiva. Por hipótesis tenemos σ ′ (t0 ) = (σ1′ (t0 ), . . . , σn′ (t0 )) ̸= 0, por lo que alguna de
las coordenadas de σ ′ (t0 ) no se anula; supongamos, por ejemplo, que es σ1′ (t0 ) ̸= 0. Entonces
σ1′ tampoco se anula en algún entorno de t0 dentro de I porque es una función continua (σ1 es
de clase C 1 ), es decir, existe ϵ > 0 tal que (t0 − ϵ, t0 + ϵ) ⊆ I, y tal que si t ∈ (t0 − ϵ, t0 + ϵ)
entonces σ ′ (t) ̸= 0. Aplicando el teorema de Rolle obtenemos que σ1 es inyectiva sobre el
intervalo (t0 − ϵ, t0 + ϵ), y por lo tanto σ también es inyectiva sobre el mismo intervalo.
1.7 Para obtener parametrizaciones de algunas curvas planas (curvas que yacen en un plano),
a veces puede resultar útil la utilización de “ coordenadas polares ”, cuya noción recordamos a
continuación.
Dado un punto (x, y) de R2 − {(0, 0)}, existe θ ∈ R, único salvo múltiplos enteros de 2π,
tal que
x = r cos θ ,
y = r sen θ ,
√
donde r = x2 + y 2 . Diremos que (r, θ) son coordenadas polares del punto (x, y).
Ejercicios 1.8 (a) Se denomina cicloide a la curva plana que describe un punto P0 de una
circunferencia C que rueda sin resbalar sobre una recta r. En R2 , supóngase que la recta r
es el eje de abscisas, que el radio de la circunferencia C es R > 0, y que inicialmente C está
centrada en el punto (0, R) y P0 = (0, 0) ∈ C. Obténgase una parametrización de la cicloide
que describe P0 , y estúdiese la regularidad de dicha parametrización.
(b) Una epicicloide es la curva plana que describe un punto P0 de una circunferencia C que
rueda sin resbalar sobre otra circunferencia C0 . En R2 , supóngase que C0 es la circunferencia
de radio r0 > 0 y que está centrada en el origen (0, 0), que el radio de la circunferencia C
es r > 0, y que inicialmente C está centrada en el punto (r0 + r, 0) y P0 = (r0 , 0) ∈ C.
Obténgase una parametrización de la epicicloide que describe P0 , y estúdiese la regularidad de
dicha parametrización.
4
Capı́tulo I. Concepto de curva
(c) Se llama hipocicloide a la curva plana que describe un punto P0 de una circunferencia C
que rueda sin resbalar en el interior de otra circunferencia C0 de mayor radio. En R2 , supóngase
que C0 es la circunferencia de radio r0 > 0 y que está centrada en el origen (0, 0), que el radio
de la circunferencia C es r > 0 (r0 > r > 0), y que inicialmente C está centrada en el punto
(r0 − r, 0) y P0 = (r0 , 0) ∈ C. Obténgase una parametrización de la hipocicloide que describe
P0 , y estúdiese la regularidad de dicha parametrización.
(d) Sea k = 0, 1, 2, . . . un entero positivo y considérese la aplicación
σ : R −→ R2
t 7−→ σ(t) =
{(
t , tk sen 1t
)
(0 , 0)
si t ̸= 0 ,
si t = 0 .
Estúdiese, en función del valor de k, si σ = σ(t) es continua, derivable, ó representación paramétrica regular.
Definición 1.9 Llamaremos cambio admisible de parámetro a toda función θ : I → R que
cumpla:
(i) θ = θ(t) es de clase C 1 ;
(ii) θ′ (t) ̸= 0 para todo t ∈ I.
¯
Proposición 1.10 Sea θ : I → R, θ = θ(t), un cambio admisible de parámetro. Si Idenota
la
imagen de θ, I¯ = θ(I), entonces I¯ es un intervalo abierto de R y θ : I → I¯ es un difeomorfismo
(es biyectiva y su inversa, que denotaremos t : I¯ → I, t = t(θ), es diferenciable).
Como consecuencia se sigue que la función inversa t = t(θ) también es un cambio admisible
de parámetro.
Demostración. En la recta real, los conjuntos conexos (no vacı́os) son justamente los intervalos,
ası́ que como toda aplicación continua entre espacios topológicos transforma conjuntos conexos
en conjuntos conexos, concluimos que I¯ = θ(I) es un intervalo de R. Del mismo modo, por
ser θ′ continua (porque θ es de clase C 1 ) obtenemos que θ′ (I) es un intervalo de R, y como
dicho intervalo no contiene a cero (por la condición (ii) de la última definición), llegamos a que
debe cumplirse: θ′ (t) > 0 para todo t ∈ I ó θ′ (t) < 0 para todo t ∈ I. Por lo tanto, θ es
estrictamente creciente ó es estrictamente decreciente, y en cualquiera de los dos casos llegamos
a que θ es inyectiva, es decir, θ : I → I¯ es una biyección.
Comprobemos que el intervalo I¯ es abierto, para lo cual supondremos que no es abierto
y llegaremos a una contradicción. Si, por ejemplo, es I¯ = [a, b), entonces existe t0 ∈ I tal
que θ(t0 ) = a; pero por ser I abierto existen t1 , t2 ∈ I tales que t1 < t0 < t2 , y por lo
tanto obtenemos: θ no es estrictamente creciente porque θ(t1 ) ≥ a = θ(t0 ), y θ tampoco no es
estrictamente decreciente porque θ(t2 ) ≥ a = θ(t0 ).
Ahora, como θ : I → I¯ es una aplicación biyectiva entre dos intervalos abiertos de R,
diferenciable y con derivada no nula sobre todo I, entonces en los cursos( de )Cálculo se prueba
′
que la aplicación inversa t : I¯ → I también es diferenciable y se cumple θ−1 = 1/θ′ ; es decir,
¯ entonces
si t0 ∈ I y θ0 = θ(t0 ) ∈ I,
dt
1
1
(θ0 ) =
.
= ′
d
θ
dθ
θ (t0 )
(t0 )
dt
1. Curvas regulares
5
¯ es
En particular, t = t(θ) es de clase C 1 y tiene derivada no nula sobre todo el intervalo I,
¯
decir, t : I → I es un cambio admisible de parámetro.
1.11 Sea σ : I → Rn , σ = σ(t), una parametrización regular. Si t : I¯ → I, t = t(s), es un
cambio admisible de parámetro, entonces la aplicación σ̄ : I¯ → Rn , σ̄(s) := σ(t(s)), esto es,
la composición
t
σ
I¯ −→ I
−−→ Rn
s 7−→ t(s) 7−→ σ(t(s)) ,
también es una parametrización regular. En efecto, por una parte tenemos que σ̄ es de clase C 1
porque es composición de aplicaciones de clase C 1 ; por otra parte, dados s0 ∈ I¯ y t0 = t(s0 ),
aplicando la conocida regla de la cadena obtenemos
dσ̄
d(σ ◦t))
dσ
dt
(s0 ) =
(s0 ) =
(t0 ) ·
(s0 ) ̸= 0 .
ds
ds
dt
ds
Ejemplos 1.12 Consideremos las parametrizaciones dadas en el ejemplo 1.1.
(i) La parametrización (b) se obtiene de la parametrización (a) haciendo el cambio de
parámetros t : I¯ = R → (0, +∞) = I, t(s) = es . Las parametrizaciones son regulares y el
cambio de parámetro es también regular (admisible).
(ii) Si en la parametrización (a) hacemos el cambio de parámetros
t : I¯ = (0, +∞) −→ (0, +∞) = I
{
1−s
s 7−→ t(s) =
s
si 0 < s < 1 ,
si 1 ≤ s ,
entonces obtenemos la parametrización (e), que no es continua. Nótese que la parametrización
(a) es regular, pero que el cambio de parámetro no es admisible (ni siquiera es continuo).
Definición 1.13 Dadas dos parametrizaciones regulares
σ ∗ : I¯ −→ Rn
s 7−→ σ ∗ (s) ,
σ : I −→ Rn
t 7−→ σ(t) ,
diremos que “ son equivalentes ” si existe un cambio admisible de parámetro s : I → I¯ tal que
σ(t) = σ ∗ (s(t)), esto es, tal que es conmutativo el triángulo
∼
I −−−−−→ I¯
σ↘
↙ σ∗
Rn
Llamaremos curva regular a las clases de equivalencias que la anterior relación define en el
conjunto de todas las parametrizaciones regulares.
Observación 1.14 Cuando tengamos una representación paramétrica regular σ : I → Rn , la
identificaremos con su imagen C = Im σ (que es la curva propiamente dicha) y abusando del
lenguaje diremos “ Sea σ : I → Rn una curva regular . . . ”.
Ejercicio 1.15 Póngase un ejemplo de subconjunto C de R2 que admita dos parametrizaciones
regulares no equivalentes (y por tanto determina al menos dos curvas regulares distintas).
6
2.
Capı́tulo I. Concepto de curva
Longitud de un arco de curva
Definiciones 2.1 Consideremos una curva σ : I → Rn (no necesariamente regular), y fijemos
en ella un “ arco de curva ”: a, b ∈ I, a < b, σ : [a, b] → Rn . Cada subdivisión del intervalo
cerrado [a, b] de la forma a = t0 < t1 < . . . < tm = b determina sobre la curva la sucesión
finita de puntos σ(a) = σ(t0 ), σ(t1 ), . . . , σ(tm ) = σ(b), y por tanto define sobre dicho arco la
“ poligonal ” P que tiene como vértices los puntos de esa sucesión: la unión de los segmentos
de recta que unen cada punto σ(ti−1 ) con el siguiente σ(ti ), i = 1, . . . , m. La longitud s(P ) de
la poligonal es la suma de las longitudes de sus segmentos de recta, esto es,
s(P ) =
m
∑
{
m
} ∑
distancia del punto σ(ti−1 ) al punto σ(ti ) =
|σ(ti ) − σ(ti−1 )| ,
i=1
i=1
√
donde dado v = (x1 , . . . , xn ) ∈ Rn es |v| = x21 + · · · + x2n .
Intercalando valores del parámetro t entre los t0 < t1 < . . . < tm obtenemos otra poligonal
P ′ sobre el mismo arco de curva con más puntos que la poligonal P , y de las propiedades de
la distancia euclı́dea de Rn se sigue que s(P ) ≤ s(P ′ ). Diremos que el arco σ : [a, b] → Rn es
rectificable (o que tiene longitud finita) cuando el conjunto de números reales
{
}
L = s(P ) : P es una poligonal sobre el arco σ : [a, b] → Rn
esté acotado superiormente, en cuyo caso se define la longitud de dicho arco de curva como el
supremo del conjunto L (que existe porque todo conjunto de números reales que está acotado
superiormente tiene supremo).
Se dice que σ : I → Rn es una curva rectificable cuando todo arco suyo sea rectificable.
Ejercicio 2.2 (a) Pruébese que la curva
σ : R −→ R2
t 7−→ σ(t) =
{(
t , t sen 1t
)
(0 , 0)
si t ̸= 0 ,
si t = 0 .
no es rectificable.
(b) Pruébese que la curva
φ : R −→ R2
t 7−→ φ(t) =
{(
t , t2 sen 1t
(0 , 0)
)
si t ̸= 0 ,
si t = 0 .
sı́ es[ rectificable.
Indicaciones: Ambas curvas son de clase C 1 en todo R salvo en t = 0, donde σ no es
diferenciable, y φ sı́ es diferenciable pero φ′ no es continua. El resultado que probaremos en el
siguiente teorema afirma que toda curva de clase C 1 es rectificable, ası́ que en ambos casos hay
que investigar qué ocurre sobre el arco de curva definido en un intervalo de la forma [0, b]; por
ejemplo b = 2/π, en cuyo caso es sen 1b = 1.
2. Longitud de un arco de curva
7
Ahora, para σ : [0, b] → R2 considérense poligonales con vértices en los puntos del arco
de curva que están sobre las rectas y = x e y = −x, y después téngase en cuenta la igualdad
1
1 + 21 + · · · + m
+ · · · = ∞.
Para φ : [0, b] → R2 , como este arco de curva está “ enmarcado ” por las parábolas y =
2
x e y = −x2 , las longitudes de las poligonales que están sobre este arco están acotadas
]
superiormente por (un múltiplo de) la serie 1 + 14 + 19 + · · · + m12 + . . . , que es convergente.
Teorema 2.3 Toda curva de clase C 1 es rectificable (aunque no sea regular).
Demostración. Sea σ : I → Rn , σ(t) = (σ1 (t), . . . , σn (t)), una aplicación de clase C 1 . Consideremos un arco de curva suyo, σ : [a, b] → Rn con a, b ∈ I, a < b, y veamos que es rectificable.
Como las funciones derivadas σ1′ , . . . , σn′ son continuas sobre todo el intervalo abierto I, se sigue
que están acotadas sobre [a, b] : existen constantes positivas M1 , . . . , Mn tales que
|σ1′ (t)| ≤ M1 , . . . , |σn′ (t)| ≤ Mn
para todo t ∈ [a, b] .
Consideremos sobre el arco de curva la poligonal P determinada por una sucesión finita a =
t0 < t1 < . . . < tm = b. Fijado un ı́ndice i ∈ {1, . . . , m}, por una parte tenemos 1
√(
)2
(
)2
σ(ti ) − σ(ti−1 ) =
σ1 (ti ) − σ1 (ti−1 ) + · · · + σn (ti ) − σn (ti−1 )
≤ σ1 (ti ) − σ1 (ti−1 ) + · · · + σn (ti ) − σn (ti−1 ) .
Por otra parte, del conocido “ teorema del valor medio ” se sigue que existen c1 , . . . , cn ∈
(ti−1 , ti ) tales que
σ1 (ti ) − σ1 (ti−1 ) = σ1′ (c1 ) · (ti − ti−1 ) ,
..
.
σn (ti ) − σn (ti−1 ) = σn′ (cn ) · (ti − ti−1 ) .
De todo lo anterior obtenemos
σ(ti ) − σ(ti−1 ) ≤ σ1 (ti ) − σ1 (ti−1 ) + · · · + σn (ti ) − σn (ti−1 )
(
)
= σ1′ (c1 ) + · · · + σn′ (cn ) · (ti − ti−1 )
≤ (M1 + · · · + Mn ) · (ti − ti−1 ) ,
y por lo tanto
s(P ) =
m
∑
|σ(ti ) − σ(ti−1 )|
i=1
m
∑
≤ (M1 + · · · + Mn ) ·
(ti − ti−1 ) = (M1 + · · · + Mn ) · (b − a) .
i=1
{
Hemos demostrado
que
el
conjunto
de
números
reales
s(P ) : P es una poligonal sobre el
}
n
arco σ : [a, b] → R está acotado superiormente por (M1 + · · · + Mn ) · (b − a), que es lo que
querı́amos hacer.
1
Téngase en cuenta la desigualdad
√
x21 + · · · + x2n ≤ |x1 | + · · · + |xn |.
8
Capı́tulo I. Concepto de curva
Teorema 2.4 Sea σ : I → Rn , σ = σ(t), una curva de clase C 1 . Dados a, b ∈ I, a < b, la
longitud del arco σ : [a, b] → Rn es
∫ b
′
σ dt .
s=
a
√( )
( )2
2
Demostración. Escribamos σ = (σ1 , . . . , σn ), de modo que será |σ ′ | =
σ1′ + · · · + σn′ .
Nótese que la función |σ ′ | : [a, b] → R es continua porque σ = σ(t) es de clase C 1 ; por lo tanto
∫b
está bien definida la integral a |σ ′ | dt.
Denotemos por s la longitud del arco de curva que estamos considerando, esto es,
{
}
s = sup s(P ) : P es una poligonal sobre el arco σ : [a, b] → Rn .
∫b
Fijado ε > 0, tenemos que probar la desigualdad s − a |σ ′ | dt < ε.
Por una parte, como las funciones σ1′ , . . . , σn′ son continuas sobre el intervalo cerrado y
acotado [a, b], son uniformemente continuas sobre el mismo intervalo:
(i) existe δ1 > 0 tal que si t, t′ ∈ [a, b] cumplen |t − t′ | < δ1 , entonces
′
σ (t) − σ ′ (t′ ) <
k
k
ε
,
3n(b − a)
k = 1, . . . , n .
Por otra parte, de la “ definición de integral ” tenemos:
(ii) existe δ2 > 0 tal que para toda subdivisión a = t0 < t1 < . . . < tm = b del intervalo [a, b]
que cumpla |ti − ti−1 | < δ2 , i = 1, . . . , m, debe satisfacerse
∫
m
b
∑
σ ′ (t) dt −
σ ′ (θi ) · (ti − ti−1 ) < ε
si θi ∈ [ti−1 , ti ] , i = 1, . . . , m .
a
3
i=1
Ahora, por definición de s tenemos que existe una subdivisión a = t0 < t1 < . . . < tm = b que
define una poligonal P para la que se cumple
(iii)
|s − s(P )| <
ε
.
3
Además, intercalando valores en la anterior subdivisión si fuera necesario, podemos suponer
que tenemos |ti − ti−1 | < mı́n{δ1 , δ2 } para cada i ∈ {1, . . . , m}. De ese modo podemos aplicar
las propiedades (i) y (ii) anteriores a dicha subdivisión.
Consideremos entonces la poligonal P del párrafo anterior. Aplicando la propiedad (iii)
tenemos
∫ b
∫ b
′ ′ σ (t) dt
s −
σ (t) dt ≤ |s − s(P )| + s(P ) −
a
a
∫ b
′ ε
<
σ (t) dt .
+ s(P ) −
3 a
(2.1)
2. Longitud de un arco de curva
9
Aplicando el teorema del valor medio a las n funciones σ1 , . . . , σn sobre los m intervalos [t0 , t1 ],
[t1 , t2 ], . . . , [tm−1 , tm ], obtenemos que existen valores θk,i ∈ [ti−1 , ti ], k = 1, . . . , n e i = 1, . . . , m,
tales que
σk (ti ) − σk (ti−1 ) = σk′ (θk,i ) · (ti − ti−1 )
k ∈ {1, . . . , n} , i ∈ {1, . . . , m} .
En particular será
s(P ) =
m
∑
|σ(ti ) − σ(ti−1 )| =
i=1
=
m
∑
m
∑
(
)
σ1 (ti ) − σ1 (ti−1 ), . . . , σn (ti ) − σn (ti−1 ) i=1
( ′
)
σ1 (θ1,i ), . . . , σn′ (θn,i ) · (ti − ti−1 ) .
i=1
Restando y sumando
∑m ′ i=1 σ (ti ) · (ti − ti−1 ) tenemos
m (
∫ b
)
′ ∑
( ′
)
s(P ) −
σ (t) dt ≤ σ1 (θ1,i ), . . . , σn′ (θn,i ) − σ ′ (ti ) · (ti − ti−1 )
a
i=1
∫ b
m
∑
σ ′ (ti ) · (ti − ti−1 ) −
σ ′ (t) dt
+
a
i=1
m ∑
) ( ′
≤
σ1 (θ1,i ), . . . , σn′ (θn,i ) − σ ′ (ti ) · (ti − ti−1 )
(2.2)
i=1
m
∫ b
∑ σ ′ (ti ) · (ti − ti−1 ) −
σ ′ (t) dt .
+
a
i=1
Por una parte, la propiedad (ii) asegura que
m
∫ b
∑ ′ ′
σ (ti ) · (ti − ti−1 ) −
σ (t) dt < ε .
3
a
i=1
Por otra parte, fijado i ∈ {1, . . . , m}, de la propiedad (i) obtenemos 2
(
) ′ ′
′
− σ (ti ) ≤ |σ1′ (θ1,i ) − σ1′ (ti )| + · · · + |σn′ (θn,i ) − σ1′ (ti )|
σ
(θ
),
.
.
.
,
σ
(θ
)
1 1,i
n n,i
<
ε
ε
ε
+ . n. . +
=
.
3n(b − a)
3n(b − a)
3(b − a)
Por lo tanto, de la desigualdad (2.2) se sigue
(∑
)
∫ b
m
′ ε
ε
ε(b − a)
ε
2ε
s(P ) −
σ (t) dt <
·
(ti − ti−1 ) +
=
+
=
,
3(b − a)
3
3(b − a)
3
3
a
i=1
2
∑
Dados vectores e = (a1 , . . . , an ) y v = (b1 , . . . , bn ) en Rn se cumple |e| − |v| ≤ |e − v| ≤ n
k=1 |ak − bk |.
10
Capı́tulo I. Concepto de curva
y basta tener en cuenta la desigualdad (2.1) para obtener
∫ b
′ s −
σ (t) dt < ε + 2ε = ε ,
3
3
a
que es lo que querı́amos probar.
Ejercicio 2.5 Calcúlese la longitud de una circunferencia C de R2 cuyo radio es R > 0.
2.6 Si un arco de una curva es rectificable, entonces su longitud deberı́a ser independiente de
las posibles parametrizaciones de la curva. Sin embargo eso no es cierto si se aceptan todas sus
parametrizaciones posibles. A continuación probaremos que dicha independencia sı́ se cumple
para una curva regular (esto es, para una parametrizaciones regular y todas las que se obtienen
de ella haciendo cambios admisibles de parámetro).
Lema 2.7 La longitud de un arco de curva de una curva regular no depende de la parametrización.
Demostración. Sea σ : I → Rn , σ = σ(t), una curva regular y sea t : I¯ → I, t = t(s), un
cambio admisible de parámetro. Entonces σ̄ : I¯ → Rn , σ̄(s) = σ(t(s)), es otra parametrización
regular de la misma curva.
Sabemos que el cambio de parámetros t = t(s) es estrictamente creciente ó estrictamente
decreciente (véase la demostración de la proposición 1.10). Supongamos, por ejemplo, que es
¯
estrictamente creciente, esto es, que la función dt/ds es positiva sobre todo el intervalo I.
Sean s0 , s1 ∈ I¯ tales que s0 < s1 , en cuyo caso t0 = t(s0 ) ∈ I y t1 = t(s1 ) ∈ I cumplen
t0 < t1 ; en estas condiciones, σ̄ : [s0 , s1 ] → Rn y σ : [t0 , t1 ] → Rn representan el mismo arco de
curva. Según el teorema 2.4, la longitud de dicho arco medida con la parametrización σ = σ(t)
es
∫ t1 dσ l=
dt dt ,
t0
y la longitud del mismo arco medida con la otra parametrización σ̄ = σ̄(s) es
∫ s1 dσ̄ ¯l =
ds ds ,
s0
y debemos probar la igualdad l = ¯l.
Recordemos la fórmula de “ integración por cambio de variable ” probada en los cursos de
cálculo: si denotamos t′ = dt/ds y consideramos una función continua f : I → R, f = f (t),
haciendo el cambio de variable t = t(s) tenemos dt = t′ ds y se cumple
∫ t1
∫ s1
f (t) dt =
f (t(s)) t′ ds .
t0
s0
Utilicemos la fórmula anterior para la función f = dσ
dt : aplicando la regla de la cadena en la
igualdad σ̄(s) = σ(t(s)) tenemos
dσ 1 dσ̄ dσ̄
dσ dt
′ dσ
= ′ ·
,
=
·
=t ·
⇒
f =
ds
dt ds
dt
dt |t |
ds 3. La longitud de arco como parámetro
11
y por lo tanto
∫ s1
∫ s1
∫ t1 ∫ t1
∫ s1 dσ dσ̄ 1 dσ̄ ′
′
ds = ¯l ,
f
(t(s))t
ds
=
l =
dt
=
f
(t)dt
=
t
ds
=
dt ds ′ s0 |t | ds
s0
t0
t0
s0
donde hemos utilizado que es t′ /|t′ | = 1 porque estamos suponiendo que t = t(s) es estrictamente creciente.
Observación 2.8 Si en la demostración anterior hubiéramos supuesto que t = t(s) es estrictamente decreciente, entonces dicha demostración serı́a exactamente
la misma
en cuenta
∫t ∫ teniendo
dt = − t1 dσ dt.
que t′ /|t′ | = −1, y que al ser t1 < t0 se cumplirı́a l = t10 dσ
dt
dt
t0
3.
La longitud de arco como parámetro
Definición 3.1 Diremos que una curva regular σ : I → Rn , σ = σ(t), está parametrizada por
la longitud de arco (o que t es un parámetro longitud de arco para la curva, o que t es un
parámetro natural para la curva, o que σ = σ(t) es una parametrización natural de la curva),
si |σ ′ (t)| = 1 pata todo t ∈ I.
Cuando la curva está parametrizada por la longitud de arco, la longitud de la curva entre
dos valores del parámetro coincide con la diferencia de ambos valores:
∫
t1
|σ ′ | dt =
t0
∫
t1
dt = t1 − t0 .
t0
Lema 3.2 Consideremos dos parametrizaciones naturales
σ : I −→ Rn
t 7−→ σ(t) ,
σ̄ : I¯ −→ Rn
s 7−→ σ̄(s)
de una misma curva regular. Entonces existe una constante λ ∈ R tal que t = ± s + λ.
Demostración. Consideremos el cambio admisible de parámetro t : I¯ → I, t = t(s), que
transforma una parametrización en la otra. Utilizando la notación de la demostración del lema
2.7 tenemos
dσ̄ ′ dσ ′
=
|t
|
·
1=
dt = |t | ,
ds es decir, t′ = ± 1. Basta integrar la anterior igualdad para obtener que la función t = t(s) es
t = ± s + λ para cierta constante λ ∈ R.
Nota 3.3 Siguiendo con la notación del lema anterior, el signo de la igualdad t = ±s + λ
depende del “ sentido en que las parametrizaciones recorren la curva ”. Si t = s + λ, entonces
t crece cuando s crece y por lo tanto ambas parametrizaciones recorren la curva en el mismo
sentido; cuando t = −s + λ, t decrece cuando s crece y por lo tanto las parametrizaciones
recorren la curva en sentidos opuestos.
12
Capı́tulo I. Concepto de curva
Lema 3.4 Toda curva regular admite parametrizaciones naturales.
Demostración. Sea σ : I → Rn , σ = σ(t), una curva regular. Fijemos un valor t0 ∈ I del
parámetro y definamos la función
f : I −→ R
t 7−→ f (t) :=
∫
t
|σ ′ (u)| du .
t0
Como |σ ′ | es una función continua (porque σ es de clase C 1 ), del Análisis Matemático sabemos
que f es una función diferenciable tal que f ′ = |σ ′ |; en particular f es de clase C 1 . Como
además f ′ (t) = |σ ′ (t)| ̸= 0 para todo t ∈ I, concluimos que f : I → R es un cambio admisible
de parámetro (véase la definición 1.9). En particular I¯ = f (I) es un intervalo abierto, f : I → I¯
es biyectiva y diferenciable, y la función inversa f −1 : I¯ → I también es un cambio admisible
de parámetro (véase la proposición 1.10).
Si el cambio de parámetro lo denotamos s = f (t), en cuyo caso será t = f −1 (s), entonces
tenemos una parametrización de la curva σ̄ : I¯ → Rn , σ̄(s) = σ(t(s)) = σ(f −1 (s)), para la que
s es un parámetro longitud de arco. En efecto, teniendo en cuenta que el cambio inverso es
σ(t) = σ̄(s(t)) = σ̄(f (t)), obtenemos
σ′ =
dσ̄ ds
dσ̄ ′
dσ
=
·
=
·s ,
dt
ds dt
ds
y como |σ ′ | = f ′ = s′ debe ser | dσ̄
ds | = 1.
( t
)
3
t sen t , et . Tenemos
Ejemplo
3.5
Consideremos
la
curva
σ
:
R
→
R
,
σ(t)
=
e
cos
t
,
e
(
)
σ ′ (t) = et cos t − et sen t , et sen t + et cos t , et , y con unos sencillos cálculos obtenemos |σ ′ | =
√ t
3 e . Tomando t0 = 0 definimos el nuevo parámetro s = s(t),
s=
∫ t√
√
3 eu du = 3 (et − 1) ;
0
√
¯ y despejando t en función de s obtenemos t =
si (t ∈ R =) I entonces s ∈ (− 3, ∞) = I,
s
ln √3 + 1 . La parametrización de la curva con el nuevo parámetro es
σ : I¯ −→ R3
(
)(
( (
))
( (
)) )
s
s
s
√
√
√
s 7−→
+ 1 · cos ln
+ 1 , sen ln
+ 1 ,1 .
3
3
3
Puede comprobarse que la anterior es una parametrización por la longitud de arco.
Nota 3.6 Del lema 3.2 se sigue que todas las parametrizaciones naturales de una curva regular
σ : I → Rn , σ = σ(t), se obtienen (esencialmente) como en la demostración del lema 3.4. Fijado
t0 ∈ I tenemos para la curva el parámetro natural
∫ t
s=
|σ ′ (u)| du ;
t0
4. Problemas
13
para otro valor t1 ∈ I obtenemos otro parámetro
∫
t
s̄ =
|σ ′ (u)| du ,
t1
que también es natural para la curva. Se cumple la relación
∫
t
s=
|σ ′ (u)| du =
∫
t0
t1
|σ ′ (u)| du +
t0
∫
t
|σ ′ (u)| du = s̄ + λ ,
t1
∫t
donde λ = t01 |σ ′ (u)| du ∈ R es una constante. También podemos cambiar el orden de los
lı́mites de integración en la definición de s para obtener el parámetro
∫
ŝ =
t0
|σ ′ (u)| du = −s ,
t
que también es natural.
4.
Problemas
4.1 Obténgase una parametrización de la curva que se obtiene al cortar el cilindro x2 +y 2 = 1
con el plano x + y + z = 1 en la que no intervengan radicales.
4.2 Obténgase una parametrización de la curva que se obtiene al cortar el cilindro x = z 2
con el cilindro 1 − x = y 2 en la que no intervengan radicales.
4.3 Pruébese que la función θ : R → R, θ(t) = 3t5 + 10t3 + 15t + 1, es un cambio admisible
de parámetro.
4.4 Hállese un cambio admisible de parámetro que aplique el intervalo I = (0, 2) sobre el
intervalo J = (−∞, 0).
4.5 Demuéstrese que la función θ : I → R, θ(t) = t2 /(t2 + 1), es un cambio admisible de
parámetro, donde I = (0, ∞). ¿Cuál es el intervalo imagen de I por θ? .
4.6 Considérese la epicicloide descrita por el punto P0 de la circunferencia C del ejercicio
1.8 (b). Si θ es el ángulo que va formando el semieje positivo de abscisas y la semirrecta con
vértice en (0, 0) que pasa por el centro de C, entonces una parametrización de dicha epicicloide
es la aplicación
σ : R −→ R2
(
(r + r )
( r + r ))
0
0
θ 7−→
(r0 + r) cos θ − r cos
θ , (r0 + r) sen θ − r sen
θ .
r
r
(a) Estúdiese la regularidad de la anterior parametrización.
(b) Calcúlese la longitud de un arco de epicicloide.
14
Capı́tulo I. Concepto de curva
4.7 Considérese la hipocicloide descrita por el punto P0 de la circunferencia C del ejercicio
1.8 (c). Si θ es el ángulo que va formando el semieje positivo de abscisas y la semirrecta con
vértice en (0, 0) que pasa por el centro de C, entonces una parametrización de dicha hipocicloide
es la aplicación
σ : R −→ R2
(
(r − r )
( r − r ))
0
0
θ 7−→
(r0 − r) cos θ + r cos
θ , (r0 − r) sen θ − r sen
θ
r
r
(a) Estúdiese la regularidad de la anterior parametrización.
(b) Calcúlese la longitud de un arco de hipocicloide.
4.8 Considérese la cicloide descrita por el punto P0 de la circunferencia C del ejercicio 1.8 (a).
Compruébese que la aplicación
σ : R −→ R2
(
)
t 7−→
R(t − sen t) , R(1 − cos t)
es una parametrización de dicha cicloide.
(a) ¿Cuál es el significado geométrico del parámetro t?
(b) Estúdiese la regularidad de la anterior parametrización.
(c) Calcúlese la longitud de un arco de cicloide.
4.9
Estúdiese si t es un parámetro natural para la curva
σ : R −→ R3
( (
) (
)−1 √
(
))
√
√
√
2
1
2 + 1 , 1 t + t2 + 1
2+1
t 7−→
t
+
t
,
ln
t
+
t
.
2
2
2
4.10 Descrı́banse las parametrizaciones naturales de la circunferencia de R2 de radio r > 0
centrada en el origen.
(
)
√
t 1
2
3
, ,
ln t , por
4.11 Obténgase una parametrización de la curva σ : I → R , σ(t) =
2 2t 2
la longitud de arco, donde I = (0, +∞).
4.12
Pruébese que las aplicaciones
σ : (−∞, ∞) −→ R3
(
)
t 7−→ t, sen t, et
y
σ ∗ : (0, ∞) −→ R3
(
)
s 7−→
ln s, sen(ln s), s
son parametrizaciones de la misma curva.

Documentos relacionados